
THE DIAMAGNETIC INEQUALITY FOR THE HEAT SEMIGROUP
IN HERMITIAN BUNDLES OVER COMPACT RIEMANNIAN

MANIFOLDS

ALEXANDRU MUSTĂT, EA
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If M is a measure space and A and B are operators on L2(M) that
generate the semigroups e−tA and e−tB, B. Simon has given necessary and
sufficient conditions in [9] that allow one to“compare” these two semigroups,
more precisely that ensure that the “diamagnetic inequality” |e−tAf |≤ e−tB|f |
holds pointwise almost everywhere for all f ∈ L2(M). Extending this work,
it is interesting to replace the function f with square-integrable sections in
vector bundles over M . Necessary and sufficient conditions have been obtained
in order for a similar “diamagnetic inequality” to hold, too; some of these
results are mentioned in [7, Appendix B.4]. Unfortunately, these conditions
are not easy to verify in practice, therefore, in the present paper, we use a
completely new strategy in order to prove that the diamagnetic inequality holds
in the important case when A and B are the unique self-adjoint extensions of
the connection Laplacean in a Hermitian bundle over a compact Riemannian
manifold M and, respectively, of the opposite of the Laplace–Beltrami operator
of M .

1. INTRODUCTORY RESULTS

Let M be a closed Riemannian manifold of dimension n, and E → M a
Hermitian vector bundle of complex rank r < ∞ over M ; the fiber of E over
x ∈ M is denoted Ex. We do not place any other restriction on M or E.
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We denote by d : M × M → [0,∞) the distance induced on M by the
Riemannian structure. Let injrad(M) denote the injectivity radius of M (for
details, see [2, p. 118]). For any Banach (or, respectively, Hilbert) space X, its
norm is denoted by ∥·∥X (and its Hermitian product, respectively, by ⟨·,−⟩X),
and IdX denotes the identity map. All the Hermitian products used in this
text are linear in the first argument. C(M) denotes the space of continuous
(and therefore bounded) complex-valued functions on M , endowed with the
supremum norm. For bounded linear operators between normed spaces, ∥·∥op
denotes their operator norm, the spaces being clear from the context. The
measure on M obtained using the Riemannian metric is µ. Next, if s is a
section of E, the notation ∥s∥ (without any other index) denotes the function
M ∋ x 7→ ∥s(x)∥Ex∈ [0,∞). Γ(E) is the space of smooth sections in E and
Γ2(E) is the space of classes of equivalence of sections in E under equality
almost everywhere and having the property that ∥s∥∈ L2(M). It is known
that Γ(E) is dense in Γ2(E).

Furthermore, if ∇ is a Hermitian connection in E (more specifically,
X⟨s, s′⟩ = ⟨∇Xs, s′⟩ + ⟨s,∇Xs′⟩ for all X ∈ Γ(TM) and s, s′ ∈ Γ(E)), the
connection Laplacean ∇∗∇ : Γ(E) ⊂ Γ2(E) → Γ2(E) is positive-definite and
symmetric, therefore it admits a unique densely-defined, positive-definite, self-
adjoint extension H∇ : Dom(H∇) → Γ2(E), for which Γ(E) is an essential
domain. In the particular case of the trivial bundle M×C → M endowed with
the usual Hermitian structure and the connection d (the usual differential), the
corresponding operator is Hd.

Since specH∇ ⊆ [0,∞), we may deduce from the spectral theorem that
the resolvent of H∇ at every λ < 0 has the property that

∥(H∇ − λ)−1 ∥op = sup
{∣∣∣ 1

µ− λ

∣∣∣ | µ ∈ specH∇

}
≤ sup

{∣∣∣ 1

µ− λ

∣∣∣ | µ ∈ [0,∞)
}
=

1

|λ|
so, using the Hille–Yoshida theorem ([3, Corollary 2.22]), we deduce that −H∇
generates a strongly-continuous contraction semigroup in Γ2(E) that we denote
(e−tH∇)t≥0.

Theorem 1.1. There exists a function h : (0,∞) × M × M → [0,∞)
called the heat kernel of M with the following properties:

1. h > 0;

2. h is smooth;

3. h(·,−, y) satisfies the homogeneous heat equation (∂t−∆)u = 0 for all
y ∈ M , where ∆ is the Laplace–Beltrami operator on M ;
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4. limt→0

∫
M h(t, x, y) f(y) dy = f(x) for all x ∈ M and all f ∈ C(M);

5. h is uniquely determined by the above properties;

6. h(t, x, y) = h(t, y, x) for all t, x, y;

7. h enjoys the “convolution” property∫
M

h(u, y, p)h(v, p, z) dp = h(u+ v, y, z)

for all u, v > 0 and y, z ∈ M ;

8.
∫
M h(t, x, y) dy = 1; for all t > 0 and x ∈ M ;

9. (e−tHdf)(x) =
∫
M h(t, x, y) f(y) dy for all f ∈ L2(M) and almost all

x ∈ M .

Proof. All these statements are proved across multiple references: prop-
erties (1)-(7) may be obtained by corroborating, for instance, [1, Chapter VIII,
Theorem 4] with [5, Theorem 7.13]; property (8) is a consequence of [1, Chapter
VIII, Theorem 5], and property (9) is [5, Theorem 9.5].

Theorem 1.2 (Chernoff). Let X be a Banach space and let B(X) be the
algebra of bounded operators on X. Suppose that [0,∞) ∋ t 7→ Qt ∈ B(X) is
a family of bounded operators with Q0 = Id and that there exists a ∈ R such
that ∥Qt∥op≤ eta for all t ≥ 0. Let C ⊆ X be an essential domain for the
generator Z of a strongly-continuous 1-parameter semigroup (Tt)t≥0 on X. If
limt→0

1
t (Qtu − u) = Zu for all u ∈ C, then Ttu = limk→∞ (Q t

k
)ku for all

u ∈ X and t ≥ 0. Furthermore, the convergence is uniform with respect to t
from bounded subsets of [0,∞).

Proof. The uniformity with respect to t is obvious from the proof (see [3,
Lemma 3.28]).

We make use of the parallel transport in E and, as a consequence, we
remind that the parallel transport along a smooth curve c : [0, 1] → M is, for
all t ∈ [0, 1], a linear isometry PTc(0)→c(t) : Ec(0) → Ec(t), the unique solution of
the differential equation ∇ċ(t)PTc(0)→c(t) = 0 subjected to the initial condition
PTc(0)→c(0) = IdEc(0)

. If the curve c is contained in a coordinate patch which
is also a trivialization domain for E, then in these coordinates, we have that
∇ = d + A, where A =

∑n
i=1Ai dx

i is the local connection 1-form, with
Ai ∈ Matr(C) square matrices of dimension r for all 1 ≤ i ≤ n, so that the
above differential equation may be rewritten as U̇(t) = −A(c(t)) (ċ(t))U(t),
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with the initial condition U(0) = IdCr , the solution of which may be written
as the convergent series

(1) U(1) = IdCr +
∑
k≥1

(−1)k
∫ 1

0
dt1 . . .

∫ tk−1

0
dtk A(c(t1)) . . . A(c(tk)).

In this article, the curve c is always be a minimizing geodesic. Since not
all pairs of points may be joined by such geodesics, we need to use a cut-off
function. Let κ : [0,∞) → [0, 1] be a smooth function such that κ|[0, 1

3
]= 1

and κ|[ 1
2
,∞)= 0. Let ρ ∈ (0, injrad(M)). Defining the desired cut-off function

χ : M ×M → [0, 1] by χ(x, y) = κ
(
d(x,y)2

ρ2

)
, we notice that χ is smooth (the

square is necessary in order to guarantee the smoothness in the neighbourhood
of the pairs with y = x). Finally, we define a “truncated parallel transport”
P ∈ Γ(E ⊠ E∗) by

P (x, y) =

{
χ(x, y)PTy→x, if d(x, y) < ρ,

0, otherwise,

where PTy→x is the parallel transport along the unique minimizing geodesic
defined on [0, 1], which can be shown to be smooth on the open subset of
M×M made of those pairs of points that may be joined uniquely by minimizing
geodesics (the geodesic neighbourhood of the diagonal ofM×M). The fact that
χ is smooth and that its support has been chosen to be contained in the geodesic
neighbourhood of the diagonal of M ×M ensures that P is smooth, a property
that is necessary later. Let us also notice that ∥P (x, y)∥op≤ χ(x, y) ≤ 1 for all
x, y ∈ U .

2. THE MAIN RESULTS

Using the heat kernel, one may define a semigroup Pt : C(M) → C(M)
by P0f = f and

(Ptf)(x) =

∫
M

h(t, x, y) f(y) dy

for all f ∈ C(M) and all t > 0, as explained in [5, Theorem 7.16]. Let L
be the generator of this semigroup; it makes sense, then, to use the intuitive
notation e−tL instead of Pt. One knows from the general theory of semigroups
in Banach spaces (see [3] for details) that the domain of L is given by

Dom(L) =
{
u ∈ C(M); lim

t→0

1

t
(e−tLu− u) ∈ C(M)

}
.

In the following, whenever one applies a differential operator to a map
that depends on several arguments, the differential operator carries the argu-
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ment with respect to which it acts as a lower index; in particular, Ly means
the operator L acting with respect to y.

Lemma 2.1. Dom(L) contains the smooth functions C∞(M).

Proof. If u ∈ C∞(M) it is clear that Lu ∈ C(M). We show that

lim
t→0

1

t
(e−tLu− u) = −Lu

in the norm topology of C(M).
To begin with, let us show that [0,∞) ∋ t 7→ (e−tLu)(x) ∈ C is smooth

for all x ∈ M . Since h is smooth, the function (t, x) 7→ h(t, x, y)u(y) is
smooth for all y ∈ M ; being smooth in y, it is also integrable with re-
spect to it. Moreover, since h satisfies the heat equation, we obtain that
∂t(h(t, x, y)u(y)) = [−Lyh(t, x, y)]u(y); since M is compact, the latter func-
tion is bounded on it, therefore using the dominated convergence theorem, we
may differentiate with respect to t ∈ (0,∞) under the integral and obtain that

d

dt
(e−tLu)(x) =

∫
M

−Lyh(t, x, y)u(y) dy =

∫
M

h(t, x, y) (−Lu)(y) dy.

This argument may be iterated indefinitely, so (0,∞) ∋ t 7→ (e−tLu)(x) ∈ C
is smooth for all x ∈ M . Passing to the limit when t → 0 also gets us the
smoothness at 0.

It is easy to see that

lim
t→0

1

t
(e−tLu− u)(x) = lim

t→0
∂t

∫
M

h(t, x, y)u(y) dy

= lim
t→0

∫
M

h(t, x, y) (−Lu)(y) dy = (−Lu)(x)

for all x ∈ M .
To illustrate, we consider the function Fu : [0,∞) → C(M) given by

Fu(t) = e−tLu− u+ tLu. We have that Fu(0)(x) = 0 and F ′
u(0)(x) = 0 for all

x ∈ M , whence it follows that

∥Fu(t)∥C(M) = sup
x∈M

|Fu(t)(x)|= sup
x∈M

∣∣∣ ∫ t

0
(t− τ)F ′′

u (t)(x) dτ
∣∣∣

≤ t2

2
sup
x∈M

|F ′′
u (t)(x)|≤

t2

2

∫
M

h(t, x, y) |L2u|(y) dy

≤ t2

2
∥L2u∥C(M),

which shows that limt→0∥Fu(t)∥C(M)= 0, which means that limt→0
1
t (e

−tLu−
u) = −Lu in the norm topology of C(M), as desired, whence u ∈ DomL as
claimed.
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We have come now to the main technical result of this article. Its main
underlying intuition is that the heat semigroup in E may be approximated,
at small time, by the product between the heat semigroup acting on functions
and the parallel transport in E; semi-formally,

(e−tH∇σ)(x) ≈ e−tHd [P (x, ·)σ](x)
for small t ≥ 0. This intuition is made rigorous by the application of Chernoff’s
theorem to the family of operators (Qt)t≥0 defined by

(Qtσ)(x) =

∫
M

h(t, x, y)P (x, y)σ(y) dy

and Q0σ = σ for all σ ∈ Γ2(E) and all t > 0. One notices immediately that,
using the contractivity property of e−tHd ,

∥Qtσ∥2Γ2(E) ≤
∫
M

dx
(∫

M
h(t, x, y) ∥σ(y)∥Eydy

)2

=
∥∥e−tHd∥σ∥

∥∥2
L2(M)

≤ ∥∥σ∥∥2L2(M) = ∥σ∥2Γ2(E)

so Qt is a bounded linear operator in Γ2(E) with ∥Qt∥op≤ 1.

Theorem 2.2. limk→∞Qk
t
k

= e−tH∇ strongly in Γ2(E), uniformly with

respect to t from bounded subsets of [0,∞).

Proof. The proof consists in checking the hypotheses of Chernoff’s theo-
rem. Q0σ = σ trivially, by construction. We have also shown that ∥Qt∥op≤ 1.
It remains to check the last (and most difficult) hypothesis, namely that
limt→0

1
t (Qtσ − σ) = −H∇ σ in the norm topology of Γ2(E) for all σ ∈ Γ(E).

We first show that this convergence holds almost everywhere, and in a second
step that it is valid in the norm topology of Γ2(E).

Since we have seen that the domain of L contains C∞(M), it follows that
the domain of L ⊗ IdEx , the generator of the heat semigroup t 7→ e−tL⊗IdEx

acting on the Banach space C(M,Ex) ≃ C(M) ⊗ Ex of the continuous maps
defined on M with values in the fiber Ex, contains the smooth maps from M
to Ex.

In order to show the smoothness of Qtσ with respect to t, let us notice
that we may write

(Qtσ)(x) = {e−tL⊗IdEx [P (x, ·)σ(·)]}(x).
Indeed, since σ is smooth, and P (x, ·) is smooth by construction, the product
P (x, ·)σ(·) is a smooth map from M to the fiber Ex, therefore, belongs to the
domain of L ⊗ IdEx . It follows from the general theory of C0-semigroups of
operators that the map

[0,∞) ∋ t 7→ e−tL⊗IdEx [P (x, ·)σ(·)] ∈ C(M,Ex)
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is differentiable. Even more so, then, the map

[0,∞) ∋ t 7→ {e−tL⊗IdEx [P (x, ·)σ(·)]}(x) = ⟨δx, e−tL⊗IdEx [P (x, ·)σ(·)]⟩ ∈ Ex

is differentiable, because δx (the Dirac measure concentrated at x) belongs to
the dual of C(M), being a finite Borel regular measure. Since L ⊗ IdEx is a
differential operator and P (x, ·)σ(·) is a smooth map from M to Ex, one may
repeat this argument arbitrarily many times, showing that (t, x) 7→ (Qtσ)(x)
is smooth.

Using the definition of Qt, we have that

lim
t→0

Qtσ − σ

t
(x) =

∂

∂t

∣∣∣
t=0

(Qtσ)(x) = −[(L⊗ IdEx)P (x, ·)σ(·)](x)

= [∆y(PTy→xσ)](x),

for all x ∈ M , where the last line is justified by the fact that χ(x, ·) = 1 near
x, and y 7→ P (x, y)σ(y) is smooth, so we may replace L by −∆. Since ∆ is a
local operator, we may choose around every x ∈ M some domain Ux of normal
coordinates centered at x which, at the same time, is also a local trivialization
domain for E. Let ∇ = d+A in this trivialization, with A =

∑n
i=1Ai dx

i being
the local connection 1-form. In order to simplify the notation, we identify the
points in this coordinate domain with their images under the inverse exp−1

x

of the Riemannian exponential map at x. With all these preparations, the
unique minimizing geodesic defined on [0, 1] which joins y to x becomes the
line segment [0, 1] ∋ u 7→ x+ (1− u)(y− x) ∈ Ux, and the parallel transport is
given by the series (1)

(PTy →xσ)(y) = σ(y)+

∫ 1

0
[A(x+(1−u)(y−x))(y−x)]σ(y) du+

∫ 1

0

∫ u

0
[A(x

+ (1− u)(y − x))(y − x)A(x

+ (1− v)(y − x))(y − x)]σ(y) dv du+R ,

where R collects all the monomials of degree at least 3 in the components of
the vector y−x. Since ∆y is a differential operator of order 2, each of the terms
in ∆yR is of degree at least 1 in the components of y − x, so the evaluation of
∆yR at y = x is 0, hence

[∆y(PTy →xσ)](x) = (∆σ)(x)+∆y

∫ 1

0
A(x+(1−u)(y−x))(y−x)σ(y) du

∣∣∣
y=x

+∆y

∫ 1

0

∫ u

0
A(x+ (1− u)(y − x))(y − x)A(x

+ (1− v)(y − x))(y − x)σ(y) dv du
∣∣∣
y=x

.
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Moreover, if f is an arbitrary smooth function, then in normal coordinates
centered at x, we may write (∆f)(x) =

∑n
i=1(∂

2
i f)(x), so that

[∆y(PTy →xσ)](x) =

n∑
i=1

(∂2
i σ)(x) +

n∑
i=1

∂2
yi

∫ 1

0
A(x

+ (1− u)(y − x))(y − x)σ(y) du
∣∣∣
y=x

+
n∑

i=1

∂2
yi

∫ 1

0

∫ u

0
A(x+ (1− u)(y − x))(y − x)A(x

+ (1− v)(y − x))(y − x)σ(y) dv du
∣∣∣
y=x

.

The second term is a sum of monomials of degree 2 in the components
of y− x, therefore its only non-vanishing terms after the application of ∂2

i and
the evaluation at y = x are

n∑
i=1

∂2
yi

∫ 1

0
A(x+ (1− u)(y − x)) (y − x)σ(y) du

∣∣∣
y=x

= 2
n∑

i=1

∫ 1

0
∂yiA(x+ (1− u)(y − x)) ∂yi(y − x)σ(y) du

∣∣∣
y=x

+ 2
n∑

i=1

∫ 1

0
A(x+ (1− u)(y − x)) ∂yi(y − x) ∂yiσ(y) du

∣∣∣
y=x

= 2
n∑

i=1

∫ 1

0
(1− u)(∂yiAi)(x+ (1− u)(y − x))σ(y) du

∣∣∣
y=x

+ 2

n∑
i=1

∫ 1

0
Ai(x+ (1− u)(y − x)) ∂yiσ(y) du

∣∣∣
y=x

=

n∑
i=1

(∂yiAi)(x)σ(x) + 2

n∑
i=1

Ai(x) (∂yiσ)(x).

With the same argument as above, the third term (which is of degree 4
in the components of y − x) is

n∑
i=1

∫ 1

0
A(x+ (1− u)(y − x)) ∂yi(y − x)

·
∫ u

0
A(x+ (1− v)(y − x)) ∂yi(y − x)σ(y) dv du

∣∣∣
y=x
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= 2

n∑
i=1

1∫
0

u∫
0

Ai(x+ (1− u)(y − x))Ai(x+ (1− v)(y − x))σ(y) dv du
∣∣∣
y=x

=
n∑

i=1

Ai(x)
2σ(x).

Collecting the results obtained so far, we conclude that

lim
t→0

1

t
(Qtσ − σ)(x)(2)

=
n∑

i=1

[(∂2
i σ)(x) + (∂iAi)(x)σ(x) + 2Ai(x)(∂iσ)(x) +Ai(x)

2σ(x)]

for almost all x ∈ M .
On the other hand, using the formula

∇∗∇ = −
n∑

i,j=1

gij∇∂i∇∂j +
n∑

i,j,k=1

gijΓk
ij∇∂k ,

the fact that ∇∂i = ∂i +Ai for all 1 ≤ i ≤ n, and remembering that gij(x) = 1
and Γk

ij(x) = 0 for all 1 ≤ i, j, k ≤ n (because we are working in normal
coordinates centered at x), we may write that

(−∇∗∇σ)(x) =(3)

=

n∑
i,j=1

δij [(∂i +Ai) (∂j +Aj)σ](x)−
n∑

i,j,k=1

δij · 0 · [(∂k +Ak)σ](x)

=

n∑
i=1

[(∂2
i σ)(x) + (∂iAi)(x)σ(x) + 2Ai(x) (∂iσ)(x) +Ai(x)

2σ(x)].

Comparing formulae 2 and 3, we obtain that limt→0
1
t (Qtσ−σ) = −H∇σ

for all σ ∈ Γ(E), pointwise. We need to check now that this convergence holds
Γ2(E). The map Fσ : [0,∞) → Γ2(E) given by Fσ(t) = Qtσ − σ + t(H∇σ) is
smooth with respect to t, with the same argument as the one in Lemma 2.1.
Since we have just shown that Fσ(0) = F ′

σ(0) = 0, it follows that

∥Fσ(t)∥Γ2(E)≤
∫ t

0
(t− τ) ∥F ′′

σ (τ)∥Γ2(E) dτ ≤ t2

2
sup

τ∈[0,t]
∥F ′′

σ (τ)∥Γ2(E)

=
t2

2
sup

τ∈[0,t]
∥∂2

τ Qτσ∥Γ2(E)=
t2

2
sup

τ∈[0,t]

(∫
M
∥∂2

τ (Qτσ)(x)∥2Ex
dx

) 1
2

=
t2

2
sup

τ∈[0,t]

[ ∫
M

∥∥∥∫
M

∂2
τh(τ, x, y)P (x, y)σ(y) dy

∥∥∥2
Ex

dx
] 1

2
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≤ t2

2
sup

τ∈[0,t]

[ ∫
M

∥∥∥∫
M

h(τ, x, y) (∆2
y ⊗ IdEx)[P (x, y)σ(y)] dy

∥∥∥2
Ex

dx
] 1

2

≤ t2

2
sup

τ∈[0,t]

[ ∫
M

(∫
M

h(τ, x, y) ∥(∆2
y ⊗ IdEx)[P (x, y)σ(y)]∥Ex dy

)2
dx

] 1
2

≤ t2

2
sup

τ∈[0,t]

√∫
M

(∫
M

h(τ, x, y) ∥(∆2
y ⊗ IdEx)[P (x, y)σ(y)]∥Ex dy

)2
dx.

The function

M ×M ∋ (x, y) 7→ ∥(∆2
y ⊗ IdEx)[P (x, y)σ(y)]∥Ex∈ [0,∞)

is obviously continuous, therefore it is bounded by some C > 0 (which depends
on σ and χ, of course). On the other hand,

∫
M h(τ, x, y) dy = 1 (this, in

particular, makes the supremum supτ∈[0,t] disappear). These facts corroborated
with the inequality shown above imply that

∥Fσ(t)∥Γ2(E)≤ C
√
µ(M)

t2

2
.

This means that

0 ≤ lim
t→0

∥∥∥Qtσ − σ

t
− (−H∇σ)

∥∥∥
Γ2(E)

≤ lim
t→0

C
√
µ(M)

t

2
= 0,

so the last hypothesis in Chernoff’s theorem is checked.

Following, we may now apply Chernoff’s theorem, which gives us that
e−tH∇σ = limk→∞ (Q t

k
)kσ for all σ ∈ Γ2(E), as claimed.

We have shown so far that Qt is a good approximation of e−tH∇ ; a useful
consequence of this technical result is the diamagnetic inequality for the
heat semigroup in E.

Theorem 2.3.

∥(e−tH∇ σ)(x)∥Ex≤ (e−tHd ∥σ∥)(x)

for all σ ∈ Γ2(E) and almost all x ∈ M .

Proof. Let σ ∈ Γ2(E). We begin with the inequality∥∥∥(Qk
t
k
σ
)
(x)

∥∥∥
Ex

=
∥∥∥∫

M
h
( t

k
, x, y1

)
P (x, y1)

(
Qk−1

t
k

σ
)
(y1) dy1

∥∥∥
Ex

≤
∫
M

h
( t

k
, x, y1

)∥∥∥(Qk−1
t
k

σ
)
(y1)

∥∥∥
Ey1

dy1

which, repeated k − 1 more times, leads to



11 The diamagnetic inequality in Hermitian bundles 181∥∥∥(Qk
t
k
σ
)
(x)

∥∥∥
Ex

≤
∫
M

dy1 h
( t

k
, x, y1

)
. . .

∫
M

dyk h
( t

k
, yk−1, yk

)
∥σ(yk)∥Eyk

= (e−
t
k
Hd . . . e−

t
k
Hd ∥σ∥)(x) = (e−tHd ∥σ∥)(x),

where ∥σ∥ is the function y 7→ ∥σ(y)∥Ey . (One has ∥σ∥∈ L2(M) tautologically
because σ ∈ Γ2(E).)

We have already shown that e−tH∇ σ = limk→∞Qk
t
k

σ in Γ2(E), therefore

there exists a subsequence (ki)i≥0 such that (e−tH∇ σ)(x) = limi→∞(Qki
t
ki

σ)(x)

for almost all x ∈ M , whence

∥(e−tH∇ σ)(x)∥Ex= lim
i→∞

∥∥∥(Qki
t
ki

σ
)
(x)

∥∥∥
Ex

≤ (e−tHd ∥σ∥)(x)

for almost all x ∈ M .

The diamagnetic inequality just proved is not new, but the proof pre-
sented above is. Alternative proofs based on stochastic techniques may be
found in [4, Section 9] and in [6, Proposition 2.2], and a more abstract treat-
ment, in the line of thought described in [9], may be found in [8]. Another
proof which uses only functional-analytic techniques (but completely different
from the one shown in this article) may be found in [7, Section VII.3].
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