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We consider the (direct sum over all n ∈ N of the) K-theory of the semi-
nilpotent commuting variety of gln, and describe its convolution algebra struc-
ture in two ways: the first as an explicit shuffle algebra (i.e., a particular
Z[q±1

1 , q±1
2 ]-submodule of the equivariant K-theory of a point) and the second as

the Z[q±1
1 , q±1

2 ]-algebra generated by certain elements {H̄n,d}(n,d)∈N×Z. As the
shuffle algebra over Q(q1, q2) has long been known to be isomorphic to half of
an algebra known as quantum toroidal gl1, we thus obtain a description of an
important integral form of the quantum toroidal algebra.
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1. INTRODUCTION

1.1. Commuting stacks

Moduli spaces of quiver representations and moduli spaces of sheaves are
both important settings for geometric representation theory. Moreover, they
are very closely connected, in that one can see the same phenomena occur for
both classes of moduli spaces. Arguably, nowhere is this more apparent than
in the case of the Jordan quiver (namely, the quiver with one vertex and one
loop), which corresponds to sheaves on A2. To be more specific, consider the
commuting stack

Commn =
{
(X,Y ) ∈ Mat×2

n×n s.t. [X,Y ] = 0
}/

GLn

where the action of GLn is by simultaneous conjugation of the matrices X,Y .
From the point of view of quivers, Commn is the cotangent bundle of the stack
Matn×n/GLn of n-dimensional representations of the Jordan quiver. From the
point of view of sheaves, a point of Commn describes a length n sheaf on A2,
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as the commuting endomorphisms X and Y encode an action of OA2 . Let us
consider

(1) K =

∞⊕
n=0

KC∗×C∗(Commn)

the (0-th) equivariant algebraic K-theory groups of all commuting stacks con-
sidered together. The torus C∗ × C∗ acts by rescaling the matrices X and
Y independently, and thus K is a Z[q±1

1 , q±1
2 ]-module, where q1, q2 denote the

standard characters of C∗ × C∗. As explained in [13], there is a convolution
algebra structure onK which is additive in n (we do not need to review the con-
struction in the present paper, but the interested reader may find an overview
in [11, Section 2.3]).

1.2. K-theoretic Hall algebras

Upon localization with respect to the fraction field of Z[q±1
1 , q±1

2 ], the
algebra

(2) Kloc = K
⊗

Z[q±1
1 ,q±1

2 ]

Q(q1, q2)

is a well-known object in representation theory: it was shown in [13] to match
the elliptic Hall algebra of [1], in [3, 12] to match half of quantum toroidal gl1
(also known as the Ding–Iohara–Miki algebra, see [16] for an overview of this
important algebra), and in [7] to match the shuffle algebra of [2]. However,
if one has derived categories (or any other categorification) in mind, knowing
Kloc is not good enough. Instead, one would hope to solve the following.

Problem 1.1. Describe K as a Z[q±1
1 , q±1

2 ]-algebra.

Although certain aspects of Problem 1.1 have been studied ([18, 19]), the bad
news is that we do not yet know a complete solution. The good news is that
in Theorem 1.2, we provide a complete solution to a closely related problem,
which is relevant to the setting of categorified knot invariants and affine Hecke
algebras studied in [4, 5]. To set up this closely related problem, let us note
that the commuting stack has three variants of interest to us, namely

(3) Commnilp
n ⊂ Commsemi-nilp

n ⊂ Commn

where the stack on the left consists of pairs of nilpotent commuting matrices
(X,Y ), while the stack in the middle allows X to be arbitrary but requires Y
to be nilpotent. The (direct sums over all n ∈ N0 of the) C∗ × C∗ equivariant
algebraic K-theory groups of the stacks above are denoted by

(4) Knilp −→ Ksemi-nilp −→ K.
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The maps above are simply the direct image maps induced by (3), and they
are actually algebra homomorphisms with respect to the convolution product
(indeed, Knilp and Ksemi-nilp are algebras by the exact same construction as K
of (1)). All three algebras in (4) have the same localization, i.e., are isomorphic
upon tensoring with Q(q1, q2), but the middle one is described explicitly before
localization.

Theorem 1.2. We have an isomorphism ιsemi-nilp : Ksemi-nilp ∼−→ S,
where

S ⊂
∞⊕
n=0

Z
[
q±1
1 , q±1

2

][
z±1
1 , . . . , z±1

n

]sym
is the Z[q±1

1 , q±1
2 ]-submodule determined by the conditions of Definition 3.1,

and made into an algebra via the shuffle product (16).

1.3. Connection with the elliptic Hall algebra

Our starting point in the analysis of Ksemi-nilp is the fact (proved in [14])
that it is generated as an algebra by theK-theory groups of the closed substacks

(5)
(
Matn×n × {0}

)/
GLn ⊂ Commsemi-nilp

n

as n ranges over N0. The isomorphism ιsemi-nilp of Theorem 1.2 maps the
K-theory group of the substack (5) to

(6) Z
[
q±1
1 , q±1

2

][
z±1
1 , . . . , z±1

n

]sym · Fn ⊂ S

where

(7) Fn =
∏

1≤i,j≤n

(
1− q2zi

zj

)
.

The elements Fn were first studied in [2], and we prove the surjectivity of the
map ιsemi-nilp by showing that the elements of (6) also generate S, as n ranges
over N0. As the injectivity of ιsemi-nilp was established in [17], this proves
Theorem 1.2.

Inspired by the elliptic Hall algebra of [1], it was shown in [7] that we
have the following equality of Q(q1, q2)-vector spaces

(8) Sloc := S
⊗

Z[q±1
1 ,q±1

2 ]

Q(q1, q2) =
⊕

d1
n1

≤···≤ dk
nk

Q(q1, q2) · H̄n1,d1 . . . H̄nk,dk

for certain elements {H̄n,d}(n,d)∈N×Z of Sloc, that we recall in Section 4. We
then prove the following stronger version of the decomposition (8).
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Lemma 1.3. We have the following equality of Z[q±1
1 , q±1

2 ]-modules

(9) S =
⊕

d1
n1

≤···≤ dk
nk

Z
[
q±1
1 , q±1

2

]
· H̄n1,d1 . . . H̄nk,dk

2. THE (SEMI-NILPOTENT) K-THEORETIC HALL ALGEBRA

2.1. Commuting stacks revisited

Let us consider the commuting variety

(10) Commn
in
↪→ A2n2

1 consisting of pairs of commuting n×n matrices X,Y . We consider the action

Gn := C∗ × C∗ ×GLn ↷ A2n2

given by

(t1, t2, g) · (X,Y ) =
( 1

t1
gXg−1,

1

t2
gY g−1

)
which preserves Commn. Thus, (10) induces a map on equivariant K-theory

(11) KGn

(
Commn

) in∗−−→ KGn

(
A2n2)

.

The commuting stack is Commn = Commn/GLn, and its K-theory is given
by

(12) KC∗×C∗
(
Commn

)
= KGn

(
Commn

)
which explains our interest in the map (11).

2.2. The shuffle algebra

If we let ◦ ∈ A2n2
denote the origin, then the following restriction map

(13) KGn

(
A2n2) |◦∼= KGn(pt) = Z

[
q±1
1 , q±1

2

][
z±1
1 , . . . , z±1

n

]sym
is an isomorphism, where q1, q2 denote the standard characters of C∗ × C∗,
z1, . . . , zn denote the standard characters of a maximal torus of GLn, and
“sym” denotes symmetric Laurent polynomials in z1, . . . , zn. Composing (11)
with (13) yields

KGn

(
Commn

) ιn−→ Z
[
q±1
1 , q±1

2

][
z±1
1 , . . . , z±1

n

]sym
1Strictly speaking, one should think of Commn as the derived subscheme of A2n2

cut out
by the Koszul complex of the system of n2 equations [X,Y ] = 0, but we do not need this
subtlety.
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as a map of Z[q±1
1 , q±1

2 ]-modules. We abuse the notation ιn by also using it for
the composition of the map above with the equality (12)

(14) KC∗×C∗
(
Commn

) ιn−→ Z
[
q±1
1 , q±1

2

][
z±1
1 , . . . , z±1

n

]sym
Definition 2.1 ([2]). Consider the rational function

ζ(x) =
(1− xq1)(1− xq2)

(
1− q1q2

x

)
1− x

The vector space

(15) V =
∞⊕
n=0

Z
[
q±1
1 , q±1

2

][
z±1
1 , . . . , z±1

n

]sym
is made into an algebra via the following shuffle product

(16) R(z1, . . . , zn) ∗R′(z1, . . . , zn′)

= Sym

[
R(z1, . . . , zn)R

′(zn+1, . . . , zn+n′)

n!n′!

∏
1≤i≤n<j≤n+n′

ζ
( zi
zj

)]
.

(above, “Sym” refers to symmetrization with respect to z1, . . . , zn+n′).

The K-theoretic Hall algebra is defined as

K =
∞⊕
n=0

KC∗×C∗(Commn).

It is endowed with a certain convolution product ([13], [11, Section 2.3] for
the construction in notation closer to ours), which has the property that the
maps (14) combine to an algebra homomorphism

(17) K
ι−→ V.

Unfortunately, we do not know how to effectively describe the image of ι.

2.3. The semi-nilpotent commuting stack

In the present paper, we study a variant of the K-theoretic Hall algebra,
which we are able to describe completely in terms of (the natural analogue of)
the homomorphism (17). Consider the semi-nilpotent commuting variety

Comm
semi-nilp
n ⊂ Commn

parametrizing those pairs (X,Y ) of commuting n×nmatrices with X arbitrary
and Y nilpotent. The semi-nilpotency condition initially arose in the context of
K-theoretic Hall algebras in [14], but it also naturally arises in categorification
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via knot invariants ([4, 5]). Letting the semi-nilpotent commuting stack
be

Commsemi-nilp
n = Comm

semi-nilp
n /GLn

we may define the following analogue of the construction of the previous sub-
section

Ksemi-nilp =

∞⊕
n=0

KC∗×C∗(Commsemi-nilp
n ).

Then, we have the natural analogue of the map (17)

(18) Ksemi-nilp ιsemi-nilp

−−−−−→ V.

One endows Ksemi-nilp with the same kind of convolution product as K, thus
making (18) into an algebra homomorphism. The map (18) is well known
to be injective ([17, Lemma 2.5.1]). The main purpose of the present paper
is to explicitly and effectively describe its image. We actually provide two
descriptions of the image: one as an explicit subalgebra S ⊂ V (in Section 3)
and one by producing an explicit PBW basis of S over the ring Z[q±1

1 , q±1
2 ] =

KC∗×C∗(pt) (in Section 4).

2.4. Generators

We employ the language of integer partitions from [6, Chapter 1]. For
any partition λ = (n1 ≥ · · · ≥ nk) ⊢ n, let

(19) Commsemi-nilp
λ

iλ
↪→ Commsemi-nilp

n

be the closure of the substack consisting of pairs of commuting matrices (X,Y )
which (up to conjugation) are block triangular with respect to a flag of sub-
spaces

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vk−1 ⊂ Vk = Cn

where dimVi/Vi−1 = ni; above, “block-triangular” means that

(20) X(Vi) ⊂ Vi and Y (Vi) = Vi−1

for all i ∈ {1, . . . , k}. A well-known fact of linear algebra is that

Commsemi-nilp
n =

⋃
λ⊢n

Commsemi-nilp
λ .

The substack corresponding to λ = (n) is simply An2
/GLn, as (20) requires X

to be arbitrary but Y to be 0. As such, the composition

KGn

(
An2) i(n)∗−−−→ KGn

(
Comm

semi-nilp
n

)
−→ KGn

(
A2n2) |◦∼= KGn(pt)
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is simply given by mapping X to (X, 0) and then restricting to the origin.
Because of this, the image of the composition above is the principal ideal
generated by the (equivariant) Koszul complex of

An2
↪→ A2n2

, X 7→ (X, 0)

in the ring Z[q±1
1 , q±1

2 ][z±1
1 , . . . , z±1

n ]sym. This Koszul complex is none other
than

Fn(z1, . . . , zn) =
∏

1≤i,j≤n

(
1− ziq2

zj

)
.

Therefore, we have for all n ∈ N

(21) Z
[
q±1
1 , q±1

2

][
z±1
1 , . . . , z±1

n

]sym · Fn ⊂ Im ιsemi-nilp.

Proposition 2.2. As a Z[q±1
1 , q±1

2 ]-algebra, Im ιsemi-nilp is generated by
the elements in the left-hand side of (21), as n goes over N.

The result above was proved at the level of Chow groups in [14, Proposi-
tion 5.12]; the adaptation of the proof of loc. cit. to K-theory is straightfor-
ward, so we leave it as an exercise to the reader.

3. THE SHUFFLE ALGEBRA

3.1. An integral version of wheel conditions

The main purpose of the present section is to identify the image of the
map (18). Proposition 2.2 implies that

(22) Im ιsemi-nilp =
〈
Z
[
q±1
1 , q±1

2

][
z±1
1 , . . . , z±1

n

]sym · Fn

〉
n∈N

⊂ V.

Definition 3.1. Consider the Z[q±1
1 , q±1

2 ]-submodule S ⊂ V consisting of
symmetric Laurent polynomials R(z1, . . . , zn) such that for any partition (n1 ≥
· · · ≥ nk) ⊢ n, the quantity

(23) R
(
x1, x1q2, . . . , x1q

n1−1
2 , . . . , xk, xkq2, . . . , xkq

nk−1
2

)
is divisible by

(24)

k∏
i=1

[
(1− q2)

ni

ni−1∏
s=1

ζ(qs2)
ni−s

]
∏

1≤i<j≤k

[ni−1∏
a=1

nj−1∏
b=0

(
xiq1 − xjq

b−a
2

)][ni−1∏
a=1

nj−1∏
b=0

(
xjq1 − xiq

a−b−1
2

)]
in the ring Z[q±1

1 , q±1
2 ][x±1

1 , . . . , x±1
k ]. We call S the (integral) shuffle algebra.
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Remark 3.2. Upon tensoring with Q(q1, q2), all scalars 1 − q2 and ζ(qs2)
become invertible, and the fact that the specialization (23) is divisible by (24)
reduces to

(25) R
(
x, xq2, xq1q2, z4, . . . , zn

)
= R

(
x, xq2, xq

−1
1 , z4, . . . , zn

)
= 0

(which is none other than the particular case of equation (24) for the partition
(2, 1, . . . , 1) ⊢ n). Conditions (25) are precisely the well-known wheel condi-
tions ([2]) for the shuffle algebra associated to quantum toroidal gl1 over the
field Q(q1, q2).

Remark 3.3. In the context of integral forms of quantum affine groups,
divisibility conditions on integral shuffle algebras were first studied in [15, Def-
inition 3.37].

3.2. The inclusion ⊆ of Theorem 1.2

The following two propositions immediately establish the fact that

(26) Im ιsemi-nilp ⊆ S.

Proposition 3.4. For any n ∈ N, we have Z[q±1
1 , q±1

2 ][z±1
1 , . . . , z±1

n ]sym ·
Fn ⊂ S.

Proof. Since Fn vanishes whenever we set zi = q2zj (for any i ̸= j), then
the conditions in Definition 3.1 for any multiple of Fn are trivially satisfied.

Proposition 3.5. The submodule S ⊂ V is a subalgebra with respect to
equation (16).

Proof. Let us write Sn ⊂ S for the graded part consisting of Laurent
polynomials in n variables (i.e., the n-th direct summand of (15)). We need to
prove that

R ∈ Sn′ and R′ ∈ Sn−n′ ⇒ R ∗R′ ∈ Sn.

Consider the specialization of the set of variables {z1, . . . , zn} at

(27)
{
x1, x1q2, . . . , x1q

n1−1
2 , . . . , xk, xkq2, . . . , xkq

nk−1
2

}
for some n1 + · · · + nk = n. By (16), to plug this specialization into R ∗ R′

means to sum over all ways to permute the variables (27) and to plug them
into

(28)
R(z1, . . . , zn′)R′(zn′+1, . . . , zn)

n′!(n− n′)!

∏
1≤i≤n′<j≤n

ζ
( zi
zj

)
.
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However, because ζ(q−1
2 ) = 0, such a permutation can produce a non-zero

contribution only if the variables

xi, xiq2, . . . , xiq
mi−1
2 are plugged into the variables of R′

xiq
mi
2 , xiq

mi+1
2 , . . . , xiq

ni−1
2 are plugged into the variables of R

for some mi ∈ {0, . . . , ni}, for all i ∈ {1, . . . , k}. The contribution of such a
permutation to the specialization of (28) is then

R
(
. . . , xiq

mi
2 , xiq

mi+1
2 , . . . , xiq

ni−1
2 , . . .

)
R′(. . . , xi, xiq2, . . . , xiqmi−1

2 , . . .
)
.

(29)
k∏

i=1

ni−1∏
a=mi

mi−1∏
b=0

ζ(qa−b
2 )

[ ∏
1≤i ̸=j≤k

ni−1∏
a=mi

mj−1∏
b=0

ζ
(xiqa2
xjqb2

)]
.

It remains to show that, for anymi ∈ {0, . . . , ni}, the expression (29) is divisible
by (24). Because R ∈ Sn′ and R′ ∈ Sn−n′ , the first line of (29) is divisible by

(1− q2)
n

k∏
i=1

[mi−1∏
s=1

ζ(qs2)
mi−s

ni−mi−1∏
s=1

ζ(qs2)
ni−mi−s

]
.

Together with the various ζ(qa−b
2 ) on the second line of (29), this precisely

establishes divisibility by the expression on the first line of (24). Then it
remains to prove that (29) is divisible by the expression on the second line of
(24). To this end, note that the formula in square brackets in (29) is divisible
by

(30)
∏

1≤i ̸=j≤k

[ni−1∏
a=mi

mj−1∏
b=0

(
xiq1 − xjq

b−a
2

)mi−1∏
a=0

nj−1∏
b=mj

(
xiq1 − xjq

b−a−1
2

)]
.

Meanwhile, the second line of (24) can be rewritten in a more symmetric way
as

(31)
∏

1≤i ̸=j≤k

[ ni−1∏
a=min(ni−nj ,0)+1

min(ni,nj)−1∏
b=0

(
xiq1 − xjq

b−a
2

)]
.

As a consequence, Definition 3.1 implies that the first line of (29) is divisible
by

(32)
∏

1≤i ̸=j≤k

[ mi−1∏
a=min(mi−mj ,0)+1

min(mi,mj)−1∏
b=0

(
xiq1 − xjq

b−a
2

)
ni−mj−1∏

a=min(mi−mj ,ni−nj)+1

min(ni−mi,nj−mj)−1∏
b=0

(
xiq1 − xjq

b−a
2

)]
.



192 A. Negut, 10

We claim that the product of (30) and (32) is divisible by (31), for any
choice of numbers mi ∈ {0, . . . , ni}, exactly what we needed to prove in or-
der to conclude Proposition 3.5. This follows from the fact that the Laurent
polynomial

ni−1∑
a=mi

mj−1∑
b=0

zb−a +

mi−1∑
a=0

nj−1∑
b=mj

zb−a−1 +

mi−1∑
a=min(mi−mj ,0)+1

min(mi,mj)−1∑
b=0

zb−a

+

ni−mj−1∑
a=min(mi−mj ,ni−nj)+1

min(ni−mi,nj−mj)−1∑
b=0

zb−a

−
ni−1∑

a=min(ni−nj ,0)+1

min(ni,nj)−1∑
b=0

zb−a.

has non-negative coefficients, as it is equal to
∑max(0,mj−mi)−1

a=min(nj−ni,mj−mi)
za.

3.3. The inclusion ⊇ of Theorem 1.2

We now prove the opposite inclusion to (26), thus concluding the proof
of Theorem 1.2.

Proposition 3.6. We have Im ιsemi-nilp ⊇ S.

Proof. We refine the argument of [7, Proposition 2.4], itself based on [2].
For any partition λ = (n1 ≥ · · · ≥ nk) ⊢ n, consider the linear map

Sn
φλ−−→ Z

[
q±1
1 , q±1

2

][
x±1
1 , . . . , x±1

k

]
(33) R(z1, . . . , zn 7→ R

(
x1q

n1−1
2 , . . . , x1q2, x1, . . . , xkq

nk−1
2 , . . . , xkq2, xk

)
.

We consider the total lexicographic order on partitions of size n, where

(m1 ≥ · · · ≥ ml) > (n1 ≥ · · · ≥ nk)

means that there exists i such that m1 = n1, . . . ,mi = ni,mi+1 > ni+1. The
sets

Sλ =
⋂
µ>λ

Ker φµ

yield an increasing filtration of Sn = S(n).

Claim 3.7. For any R ∈ Sλ, there exists R′ ∈ (Im ιsemi-nilp) ∩ Sλ such
that

(34) φλ(R) = φλ(R
′).
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Iterating Claim 3.7 for all partitions λ in decreasing lexicographic order allows
us to take any R ∈ Sn, and by subtracting various elements in Im ιsemi-nilp,
ensure that it lies in the kernel of φλ for smaller and smaller λ. As soon as we
pass λ = (1, . . . , 1), then we have made R equal to 0 by subtracting various
elements in Im ιsemi-nilp, and the proof of Proposition 3.6 would be complete.
Let us now prove Claim 3.7. If we write λ = (n1 ≥ · · · ≥ nk), then the
transposed partition λ′ = (t1 ≥ · · · ≥ tp) is defined by the equation

(35) ni =
∣∣{u ∈ {1, . . . , p} | tu ≥ i

}∣∣
for all i. Let us write si = t1 + · · ·+ ti for all i, and define

(36) R′(z1, . . . , zn) = Sym
[
r(z1, . . . , zn)

]
where for any ρ ∈ Z[q±1

1 , q±1
2 ][z±1

1 , . . . , z±1
n ]psym, we set

r = ρ(z1, . . . , zn)

p∏
i=1

Fti(zsi−1+1, . . . , zsi)
∏

1≤i<j≤p

si∏
a=si−1+1

sj∏
b=sj−1+1

ζ
(za
zb

)
(the superscript “psym” means that we require ρ to be symmetric in the set
zsi−1+1, . . . , zsi for all i ∈ {1, . . . , p} separately). We claim that

(37) R′ ∈ (Im ιsemi-nilp) ∩ Sλ.

Note that R′ ∈ Im ιsemi-nilp, as it is a linear combination of shuffle products of
Laurent polynomials divisible by Ft1 , . . . , Ftp . Next, we claim that R′ ∈ Sλ; to
see this, we must show that R′ is annihilated by φµ for any µ > λ. Computing
φµ(R

′) for some µ = (m1 ≥ · · · ≥ ml) entails specializing the variables of R′ to

(38)
{
xi, xiq2, . . . , xiq

mi−1
2

}
{1,...,l}.

Equivalently, this amounts to inserting the variables (38) among the arguments
of r in an arbitrary order. Let us call such an insertion “good” if for each
i ∈ {1, . . . , l}, the variables xiq

mi−1
2 , . . . , xiq2, xi are plugged in successive sets

among

(39)
{
z1, . . . , zs1

}
,
{
zs1+1, . . . , zs2

}
, . . . ,

{
zsp−1+1, . . . , zn

}
.

Because ζ(q−1
2 ) = 0 and Ft(. . . , x, xq2, . . . ) = 0 for all t, only good insertions

have the property that r specializes to a non-zero value. However, µ > λ means
that

m1 = n1 =
∣∣{u ∈ {1, . . . , p} | tu ≥ 1

}∣∣
. . .

mi = ni =
∣∣{u ∈ {1, . . . , p} | tu ≥ i

}∣∣
mi+1 > ni+1 =

∣∣{u ∈ {1, . . . , p} | tu ≥ i+ 1
}∣∣
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for some i, and thus good insertions cannot exist. This establishes (37).
It remains to show that we can choose the Laurent polynomial ρ in the def-

inition of r so that (34) holds. Recall that φλ(R
′) is calculated by inserting the

variables xiq
ni−1
2 , . . . , xiq2, xi in the arguments of r. Repeating the argument

in the preceding paragraph shows that the only good insertions contributing
to φλ(R

′) are{
zsi−1+1, zsi−1+2, . . . , zsi

}
=

{
x1q

n1−i
2 , x2q

n2−i
2 , . . . , xtiq

nti−i
2

}
for all i ∈ {1, . . . , p}. Thus, we conclude that

φλ(R
′) = φλ(ρ)

p∏
i=1

∏
1≤a,b≤ti

(
1− xaq

na+1
2

xbq
nb
2

) ∏
1≤i<j≤p

ti∏
a=1

tj∏
b=1

ζ

(
xaq

na−i
2

xbq
nb−j
2

)
.

Although ρ is not itself an element of Sn, the notation φλ(ρ) is defined just
like (33). We may now move the products in a, b from the inside to the outside
of the above formula, and obtain (after clearing various cancelations involving
ζ factors)

(40) φλ(R
′) = φλ(ρ) ·Π1Π2Π3

where

Π1 =
k∏

a=1

[
(1− q2)

na

na−1∏
u=1

ζ(qu2 )
na−u

]

Π2 =
∏

1≤a̸=b≤k

[u−v>na−nb∏
0≤u<na

0≤v<nb

(
1− xaq1

xbq
v−u
2

) u−v≤na−nb∏
1≤u≤na

0≤v<nb

(
1− xaq1

xbq
v−u
2

)]

Π3 =
∏

1≤a̸=b≤k

na∏
u=max(na−nb,0)+1

(
1− xaq

u
2

xb

)
.

Clearly, Π1 is precisely the first line of (24), while it is elementary to see
that Π2 matches the second line of (24) up to an overall monomial. The fact
that R ∈ Sn implies that φλ(R) is divisible by (24), and thus is divisible by
Π1Π2. However, the fact that R ∈ Sλ implies certain additional divisibilities:
whenever

xiq
−1
2 or xiq

ni
2 is set equal to xj , xjq2, . . . , xjq

nj−1
2

for some i < j, the quantity φλ(R) must vanish (indeed, this is because if we
enlarge ni and diminish nj by some positive amount, the resulting partition µ
is larger than λ). This precisely entails the fact that φλ(R) is divisible by Π3,
so we conclude that there exists a Laurent polynomial A(x1, . . . , xk) such that

(41) φλ(R) = A(x1, . . . , xk) ·Π1Π2Π3.
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Moreover, A(x1, . . . , xk) is symmetric in xa and xb if na = nb, because R is
symmetric in all of its variables. Thus, we must choose ρ such that

(42) φλ(ρ) = A(x1, . . . , xk)

and then (40) and (41) would imply (34). We may assume that A is a poly-
nomial in x1, . . . , xk, by multiplying (42) with a sufficiently high monomial.
Thus, if the partition λ consists of d1 times 1, d2 times 2 etc, we may assume
that

A(x1, . . . , xk) = mν1(xk, . . . , xk−d1+1)mν2(xk−d1 , . . . , xk−d1−d2+1) . . .

where mν(z1, z2, . . . ) =
∑σ∈S(∞)

σ(i)<σ(j) if νi=νj
zν1σ(1)z

ν2
σ(2) . . . denotes the monomial

symmetric function associated to the partition ν = (ν1 ≥ ν2 ≥ . . . ). If we
define

ρ′(z1, . . . , zn) = mν1(z1, . . . , zt1)mν2(zt1+1, . . . , zt1+t2) . . .

then it is straightforward to see that

φλ(ρ
′) = qsome integer

2 ·A(x1, . . . , xk) +B(x1, . . . , xk)

where B is a polynomial, symmetric in xa and xb if na = nb, for which the
sequence (

hom deg
xk,...,xk−d1

B, hom deg
xk−d1+1,...,xk−d1−d2

B, . . .
)

is lexicographically smaller than the analogous sequence for A (while the total
homogeneous degree of B is the same as that of A). Therefore, we may repeat
the argument above for B instead of A; after finitely many iterations of this
procedure, we would obtain a polynomial ρ for which (42) holds precisely.

Proof of Theorem 1.2. It follows from (26) and Proposition 3.6.

4. THE PBW BASIS

4.1. A basis indexed by convex paths

For any (n, d) ∈ N× Z, consider the Laurent polynomial

(43) Pn,d = Sym

[∏n
i=1 z

⌊ id
n
⌋−⌊ (i−1)d

n
⌋

i

∑t−1
s=0

za(t−1)+1...za(t−s)+1

qs2za(t−1)...za(t−s)∏n−1
i=1

(
1− zi+1

ziq2

) ∏
1≤i<j≤n

ζ
( zi
zj

)]
where we write t = gcd(n, d) and a = n

t . With the notation above, let

(44) γn,d =
qt2 − 1

(qt1 − 1)(qt3 − 1)
· (q1 − 1)n(q3 − 1)n
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with q3 =
1

q1q2
. Let us define the following rescaled versions of (43)

(45) P̄n,d = γn,d · Pn,d.

A sequence v = {(n1, d1), . . . , (nk, dk)} ⊂ N× Z is called a convex path if

d1
n1

≤ · · · ≤ dk
nk

.

We always consider convex paths up to the equivalence generated by permuting
lattice points of the same slope. This is motivated by the fact that Pn,d and
Pn′,d′ commute if (n, d) and (n′, d′) have the same slope ([7]), and thus the
expressions

Pv = Pn1,d1 ∗ · · · ∗ Pnk,dk(46)

P̄v = P̄n1,d1 ∗ · · · ∗ P̄nk,dk(47)

only depend on the equivalence class of a convex path. It was shown in [7] that

(48) Sloc := S
⊗

Z[q±1
1 ,q±1

2 ]

Q(q1, q2) =
⊕

v convex path

Q(q1, q2) · Pv

following the analogous result of [1] for the elliptic Hall algebra 2. Because
relation (48) is taken over Q(q1, q2), it also holds with the P ’s replaced by P̄ ’s.

Remark 4.1. The following formulas are proved in [10, (2.34) and (2.35)]

Pn,d = γ′n,d · Sym

[∏n
i=1 z

⌊ id
n
⌋−⌊ (i−1)d

n
⌋

i

∑t−1
s=0

za(t−1)+1...za(t−s)+1

qs1za(t−1)...za(t−s)∏n−1
i=1

(
1− zi+1

ziq1

) ∏
1≤i<j≤n

ζ
( zi
zj

)]

= γ′′n,d · Sym

[∏n
i=1 z

⌊ id
n
⌋−⌊ (i−1)d

n
⌋

i

∑t−1
s=0

za(t−1)+1...za(t−s)+1

qs3za(t−1)...za(t−s)∏n−1
i=1

(
1− zi+1

ziq3

) ∏
1≤i<j≤n

ζ
( zi
zj

)]
where we recall that q3 =

1
q1q2

, t = gcd(n, d), a = n
t , and define

γ′n,d =
qt1 − 1

(q1 − 1)n
· (q2 − 1)n

qt2 − 1
and γ′′n,d =

qt3 − 1

(q3 − 1)n
· (q2 − 1)n

qt2 − 1
.

4.2. From power sum functions to complete symmetric functions

For any coprime (n, d) ∈ N× Z, the following power series identities

1 +

∞∑
t=1

Hnt,dt

xt
= exp

( ∞∑
t=1

Pnt,dt

txt

)
(49)

2Indeed, [1] interpreted the fact that convex paths index a linear basis of (half of) the
elliptic Hall algebra as an analogue of the classic fact that unordered collections of positive
roots index a linear basis of (half of) quantum groups of finite type.
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1 +
∞∑
t=1

H̄nt,dt

xt
= exp

( ∞∑
t=1

P̄nt,dt

txt

)
(50)

define elements {Hn,d, H̄n,d}(n,d)∈N×Z ∈ Sloc. In [9, Formula (2.9)], we showed
that

(51) Hn,d = Sym

[∏n
i=1 z

⌊ id
n
⌋−⌊ (i−1)d

n
⌋

i∏n−1
i=1

(
1− zi+1

ziq2

) ∏
1≤i<j≤n

ζ
( zi
zj

)]
∀(n, d) ∈ N × Z. Similarly, the following formula can be found in [8, Exer-
cise 3.18]

(52) H̄n,d = (q1 − 1)n(q2 − 1)n

· Sym

[∏n
i=1 z

⌊ id
n
⌋−⌊ (i−1)d

n
⌋

i

∏t−1
s=1

(
qs1 −

zas+1

zasq3

)
(q1 − 1) . . . (qt1 − 1)

∏n−1
i=1

(
1− zi+1

ziq3

) ∏
1≤i<j≤n

ζ
( zi
zj

)]
.

By switching the roles of q1 and q3, one also obtains the following analogous
formula

(53) H̄n,d = (q2 − 1)n(q3 − 1)n

· Sym

[∏n
i=1 z

⌊ id
n
⌋−⌊ (i−1)d

n
⌋

i

∏t−1
s=1

(
qs3 −

zas+1

zasq1

)
(q3 − 1) . . . (qt3 − 1)

∏n−1
i=1

(
1− zi+1

ziq1

) ∏
1≤i<j≤n

ζ
( zi
zj

)]
.

Proposition 4.2. We have H̄n,d ∈ S for all (n, d) ∈ N× Z.

Proof. Consider any partition (n1, . . . , nk) ⊢ n. In the Laurent polyno-
mial

H̄n,d(z1, . . . , zn) · (1 + q3)(1 + q3 + q23) . . . (1 + q3 + · · ·+ qt−1
3 )

(where t = gcd(n, d)), let us specialize the variables z1, . . . , zn to

(54) x1, x1q2, . . . , x1q
n1−1
2 , . . . , xk, xkq2, . . . , xkq

nk−1
2 .

Using formula (53), this amounts to permuting the variables (54) arbitrarily,
and then inserting them instead of z1, . . . , zn into a certain expression of the
form

(55)
(1− q2)

n · Laurent polynomial∏n−1
i=1

(
1− zi+1

ziq1

) ∏
1≤i<j≤n

ζ
( zi
zj

)
.

Because ζ(q−1
2 ) = 0, the only insertions which produce a non-zero contribution

are those for which xiq
ni−1
2 , . . . , xi are plugged into za1 , . . . , zani

for certain
indices a1 < · · · < ani , for each i ∈ {1, . . . , k}. As such, it is clear that
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the resulting specialization is divisible by the expression on the first line of
(24). Moreover, for any i ̸= j such that ni ≥ nj , let us zoom in on a fixed
b ∈ {0, . . . , nj − 1} and assume that the variables (54) are permuted in the
order

xiq
ni−1
2 , . . . , xiq

u
2 , xjq

b
2, xiq

u−1
2 , . . . , xi

for some u. Then the product of ζ functions in (55) is a multiple of

(xiq1 − xjq
b−ni+1
2 ) . . . (xiq1 − xjq

b−u−1
2 )(xiq1 − xjq

b−u
2 )

(xiq1 − xjq
b−u
2 )(xiq1 − xjq

b−u+1
2 ) . . . (xiq1 − xjq

b−1
2 ).

As for the denominator in (55), it can at most cancel the underlined term
above. The resulting expression is a multiple of

∏ni−1
a=1 (xiq1 − xjq

b−a
2 ); taking

the product over b ∈ {0, . . . , nj − 1}’s shows that the overall specialization is
a multiple of the first product on the second line of (24). One shows that the
specialization is a multiple of the second product on the second line of (24)
analogously. Thus

H̄n,d(x1, . . . , x1q
n1−1
2 , . . . , xk, . . . , xkq

nk−1
2 )

expression (24)
∈

Z
[
q±1
1 , q±1

2

]
(1+q3+···+qs−1

3 )s∈N

[
x±1
1 , . . . , x±1

k

]
.

Repeating the argument with the roles of q1 and q3 switched (i.e., using (52)
instead of (53)) shows that the ratio above has coefficients in the localization

Z[q±1
1 , q±1

2 ](1+q1+···+qs−1
1 )s∈N

.

We conclude that the coefficients are actually in Z[q±1
1 , q±1

2 ], as we needed to
show.

4.3. A basis of the semi-nilpotent K-theoretic Hall algebra

By analogy with (46) and (47), let us write for any convex path v

Hv = Hn1,d1 ∗ · · · ∗Hnk,dk(56)

H̄v = H̄n1,d1 ∗ · · · ∗ H̄nk,dk .(57)

Clearly, the elements Pn,d may be replaced by either Hn,d and H̄n,d in (48), to
produce a valid basis of Sloc as a Q(q1, q2)-vector space. However, our main
interest is in the following Z[q±1

1 , q±1
2 ]-submodule of Sloc

A =
⊕

v convex path

Z[q±1
1 , q±1

2 ] · H̄v.

We are now ready to prove Lemma 1.3, which provides an integral version
of (48).
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Proof of Lemma 1.3. By Propositions 3.5 and 4.2, we have

S ⊇ A.

It remains to prove the opposite inclusion, namely

(58) S ⊆ A.

To this end, recall the symmetric pairing defined in [7, Formula (4.7)]

(59) Sloc ⊗ Sloc
⟨·,·⟩−−→ Q(q1, q2)

by the formula 3

(60)
〈
R,R′〉 =

1

(q2 − 1)n

∫
|z1|≫···≫|zn|

r(z1, . . . , zn)R
′(z−1

1 , . . . , z−1
n )∏

1≤i<j≤n ζ
( zj
zi

) n∏
i=1

Dzi

(where Dz = dz
2πiz ), for any R′ ∈ Sloc and

(61) R = Sym

[
r(z1, . . . , zn)

∏
1≤i<j≤n

ζ
( zi
zj

)]
where r is an arbitrary Laurent polynomial with coefficients in Q(q1, q2). Since
any element R ∈ Sloc can be written in the form (61) for some Laurent poly-
nomial r with coefficients in Q(q1, q2) (as proved in [7, Theorem 2.5]), formula
(60) determines the pairing (59) completely. It was shown in [7, Proposi-
tion 5.4] that {Pv}v convex is an orthogonal basis with respect to the pairing
(59), satisfying

(62)
〈
Pv, P̄v

〉
=

∏
µ∈Q

zλµ
v
.

Let us explain the notation in the right-hand side of (62): for any convex path
v = {(n1, d1), . . . , (nk, dk)} and any

µ =
d

n
∈ Q

(assume gcd(n, d) = 1), those elements of v of slope µ is of the form

(nt1, dt1), . . . , (ntk, dtk)

for some partition λµ
v = (t1 ≥ · · · ≥ tk). As µ goes over the infinitely many

rational numbers, all but finitely many of these partitions are empty. Finally,
for any partition λ = (t1 ≥ · · · ≥ tk), we set

zλ = t1 . . . tk
∏
u∈N

(number of u’s in λ)!

3Note that our normalization of (60) differs from that of loc. cit. by (q1 − 1)n(q3 − 1)n.
Moreover, the order of variables in our contour integral is opposite to that of loc. cit. (i.e.,
|z1| ≫ · · · ≫ |zn| instead of |z1| ≪ · · · ≪ |zn|); this is simply a matter of convenience for us,
as formula (60) holds with either order (compare with [11, Formulas (3.2) and (3.31)]).
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and this completes the explanation of the right-hand side of (62).

Claim 4.3. An element R ∈ Sloc is a linear combination of H̄v’s with
coefficients in Z[q±1

1 , q±1
2 ] if and only if〈

R,Hv

〉
∈ Z

[
q±1
1 , q±1

2

]
for all convex paths v.

Formula (62) reduces Claim 4.3 to the following well-known fact about
symmetric functions: the Hall inner product of a symmetric function f with
all products of complete symmetric functions hn are integral if and only if
f is an integral linear combination of products of complete symmetric func-
tions (indeed, products of complete symmetric functions yield the dual basis
to monomial symmetric functions). Thus, Claim 4.3 reduces (58) to showing
that

(63)
〈
R,Hv

〉
∈ Z[q±1

1 , q±1
2 ]

for any R ∈ S and any convex path v. The remainder of the proof deals with
establishing (63). To this end, formula (51) implies that Hv is a particular
element of the shuffle algebra of the form

(64) R′(z1, . . . , zn) = Sym

[
p(z1, . . . , zn)∏n−1
i=1

(
1− zi+1

ziq2

) ∏
1≤i<j≤n

ζ
( zi
zj

)]
where p(z1, . . . , zn) is an arbitrary Laurent polynomial with coefficients in
Z[q±1

1 , q±1
2 ].

Claim 4.4. For any R ∈ Sloc and any R′ as in (64), we have

(65)

〈
R,R′〉 =

∑
n1+···+nk=n

∫
|x1|≪···≪|xk|[

Res
{zn1+···+ni−1+1,...,zn1+···+ni}1≤i≤k={xiq

ni−1
2 ,...,xi}1≤i≤k

1

(q2 − 1)n
· R(z1, . . . , zn) · p(z−1

1 , . . . , z−1
n )∏n−1

i=1

(
1− zi

zi+1q2

)∏
1≤i<j≤n ζ

(
zi
zj

)] k∏
i=1

Dxi

where
Res

{z1,...,zn}={xqn−1
2 ,...,x}

denotes the iterated residue first at zn−1 = znq2, then at zn−2 = znq
2
2, . . . ,

finally at z1 = znq
n−1
2 , followed by relabeling the variable zn by x.

Let us first indicate how Claim 4.4 implies (63). When R ∈ S, Defini-
tion 3.1 tells us that the expression in square brackets of (65) is a Laurent
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polynomial with coefficients in Z[q±1
1 , q±1

2 ], divided by various linear terms of
the form

xiq
...
1 − xjq

...
2

for i ̸= j. As we take the integral of such an expression in the next limit
|x1| ≪ · · · ≪ |xk|, the result is still an element of Z[q±1

1 , q±1
2 ], thus establishing

formula (63).

Proof of Claim 4.4. It suffices to prove (65) for R of the form (61), as such
elements span Sloc. Then the right-hand side of (60) is equal to (q2−1)−n times∫

|z1|≫···≫|zn|

r(z1, . . . , zn)∏
1≤i<j≤n ζ

( zj
zi

) ∑
σ∈S(n)

p(z−1
σ(1), . . . , z

−1
σ(n))

∏
1≤i<j≤n ζ

( zσ(j)

zσ(i)

)
∏n−1

i=1

(
1− zσ(i)

zσ(i+1)q2

) n∏
i=1

Dzi

=

∫
|z1|≫···≫|zn|

∑
σ∈S(n)

r(z1, . . . , zn) · p(z−1
σ(1), . . . , z

−1
σ(n))∏n−1

i=1

(
1− zσ(i)

zσ(i+1)q2

) σ(i)>σ(j)∏
1≤i<j≤n

ζ
( zσ(j)

zσ(i)

)
ζ
( zσ(i)

zσ(j)

) n∏
i=1

Dzi

=
∑

σ∈S(n)

∫
|wσ−1(1)|≫···≫|wσ−1(n)|

r(wσ−1(1), . . . , wσ−1(n))p(w
−1
1 , . . . , w−1

n )∏n−1
i=1

(
1− wi

wi+1q2

)
σ(i)>σ(j)∏
1≤i<j≤n

ζ
(wj

wi

)
ζ
(
wi
wj

) n∏
i=1

Dwi

where in the last equality we changed the variables to wi = zσ(i). As we move
the contours from |wσ−1(1)| ≫ · · · ≫ |wσ−1(n)| toward |w1| ≪ · · · ≪ |wn| in the
integral above, we note that the only poles we might pick up are those of the
form {

wi = wi+1q2
}
i∈{1,...,n−1}.

Thus, we conclude that the integral above is equal to∑
n1+···+nk=n

∫
|x1|≪···≪|xk|

[
Res

{wn1+···+ni−1+1,...,wn1+···+ni}1≤i≤k={xiq
ni−1
2 ,...,xi}1≤i≤k∑

σ∈S(n)

r(wσ−1(1), . . . , wσ−1(n)) · p(w−1
1 , . . . , w−1

n )∏n−1
i=1

(
1− wi

wi+1q2

) σ(i)>σ(j)∏
1≤i<j≤n

ζ
(wj

wi

)
ζ
(
wi
wj

)] k∏
i=1

Dxi.

The second line of the expression above is

p(w−1
1 , . . . , w−1

n )∏n−1
i=1

(
1− wi

wi+1q2

)∏
1≤i<j≤n ζ

(
wi
wj

) ∑
σ∈S(n)

r
(
wσ−1(1), . . . , wσ−1(n)

) ∏
σ(i)>σ(j)

ζ
(wj

wi

)
which directly implies (65) for R of the form (61), as we needed to show.
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4.4. Slope subalgebras

In [7], we introduced slope subalgebras

(66) Bµ ⊂ Sloc

for any µ ∈ Q, which are isomorphic to the algebra

Λ = Q(q1, q2)[p1, p2, . . . ]

of symmetric polynomials in infinitely many variables (above, pt is interpreted
as the t-th power sum function). Explicitly, we have an algebra isomorphism

(67) τ
d
n : Λ

∼−→ B
d
n

for any coprime (n, d) ∈ N× Z, determined by the assignment

τ
d
n (pt) = P̄nt,dt.

If we let ht denote the t-th complete symmetric function, the power series
identity

1 +
∞∑
t=1

ht
xt

= exp

( ∞∑
t=1

pt
txt

)
and formula (50) imply that τ

d
n (ht) = H̄nt,dt for all coprime (n, d) and all

t ∈ N.

Remark 4.5. For any µ ∈ Q, the isomorphism (67) allows one to transport
the usual Hall coproduct on Λ to a coproduct ∆µ on Bµ; the latter coproduct
was given a shuffle algebra interpretation in [7]. In particular, this allows us
to prove that

(68) H̄n,0 = q
n(n−1)

2
1 Fn

as both LHS and RHS are uniquely determined by the fact that they are group-
like for ∆0 in B0, and are annihilated by the linear map φ (with q1 ↔ q2) of
loc. cit.

4.5. Ribbon skew Schur functions

The ring Λ is rich in automorphisms, as one can rescale the generators pt
independently and arbitrarily. We refer to the particularly important rescaling

p′t = pt(q
t
1 − 1)

as a plethysm. We therefore obtain elements h′t ∈ Λ via the usual formula

1 +
∞∑
t=1

h′t
xt

= exp

( ∞∑
t=1

p′t
txt

)
.
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It was shown in [9, Section 2.3] that

τ
d
n (h′t) = H̄ ′

nt,dt

for all coprime (n, d) ∈ N× Z and all t ∈ N, where

(69) H̄ ′
n,d = (q1 − 1)n(q2 − 1)n · Sym

[∏n
i=1 z

⌊ id
n
⌋−⌊ (i−1)d

n
⌋

i∏n−1
i=1

(
1− zi+1

ziq3

) ∏
1≤i<j≤n

ζ
( zi
zj

)]
4 for any (n, d) ∈ N × Z. Moreover, one can associate ribbon skew Schur
functions

s′ε ∈ Λ

to any sequence ε consisting of zeroes and ones 5, completely determined by

(70) s′εs
′
ε′ = s′ε0ε′ + s′ε1ε′

and the normalization s′(0t−1) = h′t for all t. It was shown in [7, Section 6.6]
that

τ
d
n (s′ε) = S′

n,d,ε

where

(71) S′
n,d,(ε1...εt−1)

= (q1 − 1)n(q2 − 1)n

· Sym

[∏n
i=1 z

⌊ id
n
⌋−⌊ (i−1)d

n
⌋

i

∏t−1
s=1

(
− zas+1

zasq3

)εs∏n−1
i=1

(
1− zi+1

ziq3

) ∏
1≤i<j≤n

ζ
( zi
zj

)]

for any (n, d) ∈ N× Z with gcd(n, d) = t and a = n
t .

Remark 4.6. Comparing (71) with (52) yields the identity

H̄n,d =
∑

ε1,...,εt−1∈{0,1}

q
∑t−1

s=1 s(1−εs)
1

(q1 − 1) . . . (qt1 − 1)
· S′

n,d,(ε1...εt−1)

which is simply τ
d
n applied to the symmetric function identity

ht =
∑

ε1,...,εt−1∈{0,1}

q
∑t−1

s=1 s(1−εs)
1

(q1 − 1) . . . (qt1 − 1)
· s′(ε1...εt−1)

.

4Note that our H̄ ′
n,d is (1− q1)Hn,d of [4].

5Explicitly, for any ε = (ε1, . . . , εt−1), we define s′ε as the skew Schur function associated
to the size t skew Young diagram whose first box is arbitrary, and whose i+1-th box is either
to the right or below the i-th box, depending on whether εi is 0 or 1 (see [7, Section 6.12] for
details).
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The upshot of the discussion above is that the elements {H̄nt,dt, H̄
′
nt,dt}t∈N play

the roles of ones and the same symmetric functions for any coprime (n, d) ∈
N × Z, under the isomorphisms (67). Thus, understanding these elements for
one slope (say 0) would yield an understanding for all slopes.
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Received 11 September 2022 École Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

and

Simion Stoilow Institute of Mathematics (IMAR)
of the Romanian Academy

Bucharest, Romania
andrei.negut@gmail.com


	Introduction
	Commuting stacks
	K-theoretic Hall algebras
	Connection with the elliptic Hall algebra

	The (semi-nilpotent) K-theoretic Hall algebra
	Commuting stacks revisited
	The shuffle algebra
	The semi-nilpotent commuting stack
	Generators

	The shuffle algebra
	An integral version of wheel conditions
	The inclusion  of Theorem 1.2
	The inclusion  of Theorem 1.2

	The PBW basis
	A basis indexed by convex paths
	From power sum functions to complete symmetric functions
	A basis of the semi-nilpotent K-theoretic Hall algebra
	Slope subalgebras
	Ribbon skew Schur functions


