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For a Banach algebra A, we say that an element M in A ⊗γ A is a hyper-
commutator if (a⊗ 1)M = M(1⊗ a) for every a ∈ A. A diagonal for a Banach
algebra is a hyper-commutator whose image under diagonal mapping is 1. It is
well known that a Banach algebra is contractible iff it has a diagonal. The main
aim of this note is to show that for any Banach subalgebra A ⊆ L(X) of bounded
linear operators on infinite-dimensional Banach space X, which contains the
ideal of finite-rank operators, the image of any hyper-commutator of A under
the canonical algebra-morphism L(X)⊗γ L(X) → L(X ⊗γ X), vanishes.
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1. INTRODUCTION

A Banach algebra A is called contractible (super-amenable) [8, 10] if every
bounded derivation from A into any Banach A-bimodule is inner. Contractibil-
ity is a strong version of the notion of amenability. The concept of amenability
(for Banach algebras) has been formulated by Johnson in his seminal paper [4]
on Hochschild cohomology of Banach algebras. For various notions of amenabil-
ity in Theory of Banach Algebras, see [7, 8, 10]. It is known that any finite-
dimensional contractible Banach algebra is a finite direct sum of full matrix
algebras [10, Theorem 4.1.4]. Until now, the only known contractible Banach
algebras are of this form. Indeed, it is a longstanding question that whether
every contractible Banach algebra is finite-dimensional [8, p. 224]. Also, the
following special case of this question has not been answered yet [3],[8, p. 224]:
Does, for any Banach space X, the contractibility of the Banach algebra L(X)
of all bounded linear operators on X, imply that X is finite-dimensional? For
information on these questions see [10, §4.1 and p. 196] and [12, 5]. We must
remark that the chance that there exist infinite-dimensional contractible Ba-
nach algebras is not very small: For a long time it was a common belief that
for infinite-dimensional Banach spaces X, L(X) cannot be amenable. But, in
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2009, Argyros and Haydon [1] found out a specific infinite-dimensional Banach
space E which its dual is ℓ1 = E∗ and has The Scaler-Plus-Compact Property.
For such a Banach space E, as it has been pointed out by Dales, L(E) is an
amenable Banach algebra; see [9].

In this note, we introduce the notion of hyper-commutator for Banach
algebras. It is well known that a Banach algebra is contractible iff it is unital
and has a diagonal. By definition, a diagonal of a Banach algebra is a hyper-
commutator whose image under the diagonal mapping is 1. The main aim
of this note is to prove the following property of hyper-commutators: For
any infinite-dimensional Banach space X, and any Banach subalgebra A of
L(X) which contains the ideal of finite-rank operators, the image of any hyper-
commutator of A, under the canonical algebra-morphism,

A⊗γ A ↪→ L(X)⊗γ L(X) → L(X ⊗γ X),

vanishes. For the proof, we use the famous Kadec–Snobar’s estimate [2, The-
orem 6.28] on operator-norms of projections.

Since our results mainly concern the contractibility of L(X), some known
results on contractibility are organized in Section 2 for contractible central
Banach algebras. (So, there is nothing special new in Section 2.) In Section 3,
we prove our main result and give some new remarks on contractibility of L(X).

2. SOME KNOWN RESULTS ON CONTRACTIBILITY

For preliminaries on contractibility, we refer the reader to Runde’s books
[8, 10]. (All results in this section are well known or are simple variations of the
results of [5, 8, 10, 12].) The topological dual of a Banach space X is denoted
by X∗. The completed projective tensor product of Banach spaces X,Y is
denoted by X ⊗γ Y . The projective norm is denoted by ∥ · ∥γ . The Banach
space of bounded linear operators from X into Y is denoted by L(X,Y ). For
Banach algebras A,B, the Banach space A⊗γ B is a Banach algebra with the
multiplication given by (a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′ for a, a′ ∈ A, b, b′ ∈ B. The
diagonal mapping ∆ : A⊗γA→ A for A is the unique bounded linear operator
defined by a⊗ b 7→ ab. A diagonal for a unital Banach algebra A is an element
M ∈ A⊗γ A satisfying

∆(M) = 1, (c⊗ 1)M =M(1⊗ c), (c ∈ A).

It is well known that a Banach algebra is contractible iff it is unital and has a
diagonal: Suppose that A is contractible. Let E denote the Banach A-bimodule
with the underlying Banach space A and, left and right module-operations
ax := ax and xa := 0 for a ∈ A, x ∈ E. Then id : A → E is a derivation and
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hence, inner. Thus, A has a right unit. Similarly, it is proved that A has a
left unit and hence, A is unital. Now, consider the derivation D : A→ ker(∆)
defined by a 7→ (1 ⊗ a) − (a ⊗ 1). (Note that A ⊗γ A is canonically a Banach
A-bimodule with module-operations given by c(a ⊗ b) := (c ⊗ 1)(a ⊗ b) and
(a ⊗ b)c := (a ⊗ b)(1 ⊗ c), and ∆ is a bimodule-morphism.) D must be inner
and thus, there is N ∈ ker(∆) with the property aN − Na = D(a); hence,
M := N + (1⊗ 1) is a diagonal for A. Conversely, suppose that M ,

(1) M =
∞∑
n=1

an ⊗ bn,
∞∑
n=1

∥an∥∥bn∥ <∞, (an, bn ∈ A)

is a diagonal for A. If D : A → X is a bounded derivation, then it can be
checked that for the element z :=

∑∞
n=1 anD(bn) of X we have D(a) = az−za.

Thus, D is inner.

Lemma 2.1. Let A be a contractible Banach algebra and let E,F be uni-
tal Banach left A-modules. Then any diagonal for A gives rise to a bounded
projection Φ = ΦE,F from L(E,F ) onto LA (E,F ).

Here, LA (E,F ) denotes the closed linear subspace of L(E,F ) of all
bounded linear left A-module-morphisms from E into F .

Proof. Let M be a diagonal for A. For any T ∈ L(E,F ), consider the
bounded 3-linear mapping

θT : A×A× E → F, (a, b, x) 7→ aT (bx).

This gives rise to the bounded linear operator

ΘT : A⊗γ A⊗γ E → F, (a⊗ b⊗ x) 7→ θT (a, b, x).

We let Φ(T ) : E → F be the bounded linear operator defined by[
Φ(T )

]
(x) := ΘT (M ⊗ x).

More explicitly, if M is of the form (1) then

(2)
[
Φ(T )

]
(x) :=

∞∑
n=1

anT (bnx) (x ∈ E).

For c ∈ A and x ∈ E we have,[
Φ(T )

]
(cx) = ΘT (M ⊗ cx)

= ΘT

(
(Mc)⊗ x

)
= ΘT

(
(cM)⊗ x

)
= c

(
ΘT (M ⊗ x)

)
= c

[
Φ(T )

]
(x).
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Thus, Φ(T ) belongs to LA (E,F ). It is easily verified that T 7→ Φ(T ) is a
bounded linear operator from L(E,F ) into LA (E,F ). If T ∈ LA (E,F ), then
(2) shows that Φ(T )(x) =

∑∞
n=1 anbnT (x) = T (x). The proof is complete.

The center of a Banach algebra A is denoted by Z(A). Note that Z(A)
is a closed subalgebra of A.

Proposition 2.2. Let A be a contractible Banach algebra. Then any
diagonal for A gives rise to a canonical bounded linear operator Ψ : A→ Z(A)
with Ψ(1) = 1.

Proof. Consider A as a Banach left A-module in the canonical fashion.
For any c ∈ A, let ℓc : A→ A denote the left multiplication operator by c. By
the notations of Lemma 2.1,

ΦA,A(ℓc) : A→ A, x 7→
∞∑
n=1

ancbnx

is a left module-morphism and hence, there is a c̃ ∈ A such that ΦA,A(ℓc) = rc̃
where rc̃ : A → A denotes the right multiplication operator by c̃. It is clear
that c̃ =

∑∞
n=1 ancbn and c̃ ∈ Z(A). We let Ψ to be defined by c 7→ c̃.

Note that a unital Banach algebra is called central if its center is the
one-dimensional subalgebra generated by 1. It is an elementary fact that for
any Banach space X, L(X) is central. The following result is a variation of [5,
Proposition 5.1].

Proposition 2.3. Let A be a contractible central Banach algebra. Then
any diagonal for A gives rise to a canonical bounded linear functional ψ ∈ A∗

with ψ(1) = 1.

Proof. We have Z(A) = C1. With the notations of Proposition 2.2, ψ is
defined by

Ψ(c) =

∞∑
n=1

ancbn = ψ(c)1, (c ∈ A).

By an “ideal” in a Banach algebra, we mean a closed two-sided ideal.
It is an elementary fact that any proper ideal in a unital Banach algebra is
contained in at least one maximal ideal. Thus, any nonzero unital Banach
algebra has at least one maximal ideal.

Theorem 2.4. Let A be a contractible central Banach algebra. Then A
has a unique maximal ideal MA.
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Proof. Let

MA := closed linear span of
{
c ∈ A : c belongs to a proper ideal of A

}
.

It is clear that MA is an ideal of A which contains every proper ideal of
A. With ψ as in Proposition 2.3, for any c ∈ A which is contained in a
proper ideal J of A, we must have ψ(c) = 0, because otherwise we must have
1 = ψ(c)−1

∑∞
n=1 ancbn ∈ J , a contradiction. Thus, MA ⊆ ker(ψ) and hence,

MA is a proper ideal of A.

A closed linear subspace F of a Banach space E is called topologically
complemented if there is a closed linear subspace F ′ of E such that E = F⊕F ′.
In this case, F ′ is called a topological complement for F . F is topologically
complemented in E iff there is a bounded linear projection from E onto F .

Lemma 2.5. Let A be a contractible Banach algebra and let E be a unital
Banach left A-module. Suppose that E is compactly generated, i.e., there exists
a norm-compact subset K of E such that every x ∈ E is of the form x = ay
for some a ∈ A, y ∈ K. Suppose that E has approximation property. Then E
is finite-dimensional.

Proof. Let M be a diagonal for A of the form (1). We can suppose that
∥bn∥ → 0 and supn≥1 ∥an∥ < ∞. Continuity of the module-operation implies
that the set ∪n≥1bnK ⊂ E is contained in a compact subset of E. Let ΦE,E

be defined as in the proof of Lemma 2.1. The approximation property for
E means that there exists a net (Sλ)λ of finite-rank operators in L(E) such
that Sλ → idE uniformly on compact subsets of E. The above assumptions
imply that ΦE,E(Sλ) is a net of compact operators on E such that it converges
uniformly to idE on K. Now, since ΦE,E(Sλ)’s are module-morphisms and
K generates E, we have ΦE,E(Sλ) → idE in operator-norm. Thus, idE is a
compact operator. Hence, E is finite-dimensional.

Note that any Banach space X considered as a unital Banach left L(X)-
module in the canonical fashion, is generated by any of its nonzero vectors.
Also, for any unital Banach algebra A and any closed left ideal J of A, the
quotient Banach left A-module A/J is generated by the class of 1 in A/J .

Lemma 2.6. Let A be a contractible Banach algebra and let E be a unital
Banach left A-module. Suppose that F ⊂ E is a closed submodule which is (as
a Banach space) topologically complemented in E. Then F has a topological
complement in E which is also a closed submodule.



212 M. M. Sadr 6

Proof. Let M be a diagonal of the form (1) for A, and let ΦE,F be the
corresponding operator as in Lemma 2.1. There exists a bounded linear pro-
jection p from E onto F . By Lemma 2.1, ΦE,F (p) is a module-morphism from
E into F , and hence, kerΦE,F (p) is a closed submodule of E. Since F is a
submodule, for every y ∈ F and b ∈ A, we have p(by) = by ∈ F . Thus

[ΦE,F (p)](y) =

∞∑
n=1

anp(bny) =

∞∑
n=1

anbny = y, (y ∈ F ).

This shows that ΦE,F (p) is a projection from E onto F . Thus, kerΦE,F (p) is
the desired complement for F .

If A,A′ are contractible Banach algebras with diagonals M,M ′ of the
forms as in (1), then

∑∞
n,m=1 an⊗a′m⊗ bn⊗ b′m is a diagonal for A⊗γ A′. Also,∑∞

n=1 bn ⊗ an is a diagonal for Aop, the opposite algebra of A. Thus, if A is
contractible, then A⊗γ Aop is contractible.

The analogue of Lemma 2.6 is satisfied for bimodules:

Lemma 2.7. Let A be a contractible Banach algebra and E a unital Ba-
nach A-bimodule. If F is a closed sub-bimodule of E which is topologically
complemented, then it has a complement in E which is also a sub-bimodule.

Proof. Any unital Banach A-bimodule E may be considered as unital
Banach left A⊗γ Aop-module with module operation given by (a⊗ b)x := axb
(a ∈ A, b ∈ Aop, x ∈ E). In this fashion, any A-bimodule-morphism is a left
A⊗γAop-module-morphism. The converses of this facts are also satisfied. Now,
the desired result follows from Lemma 2.6.

In the following result, we consider some properties of any nonzero proper
ideal J of a contractible central Banach algebra A. Note that the existence
of J implies that A is infinite-dimensional. Indeed, if A is finite-dimensional
then it follows from [10, Theorem 4.1.2] that A is isomorphic to a full matrix
algebra and hence, A has not nontrivial ideals.

Theorem 2.8. Let A be a contractible central Banach algebra. Suppose
that J is a proper and nonzero ideal of A. The following statements hold:

(i) J is not topologically complemented in A.

(ii) A/J has not approximation property.

(iii) If J is compactly generated as left (respectively, right) A-module, then J
has not approximation property.
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Proof. (i): If J is topologically complemented in A, then by Lemma 2.7
there is a closed, proper, and nonzero ideal J ′ such that A = J ⊕ J ′. Thus,
we have J, J ′ ⊂ MA, a contradiction. (Note that (i) may be concluded from
centrality of A. Indeed, if A = J ⊕ J ′, then there exist orthogonal nonzero
central idempotents e ∈ J, e′ ∈ J ′ with e + e′ = 1.) (ii): If A/J has approxi-
mation property, then by Lemma 2.5, A/J is finite-dimensional and hence, J
is topologically complemented in A, a contradiction with (i). (iii) follows from
Lemma 2.5, similarly.

The following corollary follows from the above results.

Corollary 2.9. Let X be an infinite-dimensional Banach space. If
L(X) is contractible then, (i) X has not approximation property; (ii) L(X)
has a unique maximal ideal M; (iii) M is not topologically complemented; and
(iv) L(X)/M has not approximation property.

A contractible Banach algebra A is called symmetrically contractible if
A has a symmetric diagonal; that is, a diagonal M satisfying FA(M) = M
where FA : A ⊗γ A → A ⊗γ A denotes flip, i.e., the unique bounded linear
mapping defined by (a ⊗ b) 7→ (b ⊗ a). The matrix algebra Mn is symmetri-
cally contractible. Indeed, it is well known that Mn has the unique diagonal
n−1

∑n
i,j=1 δij ⊗ δji where δij ’s denote the standard basis of Mn. We know

from [10, Theorem 4.1.2] that any finite-dimensional contractible Banach al-
gebra is a finite direct sum of full matrix algebras; hence, any such a Banach
algebra is also symmetrically contractible. Note that if for i = 1, . . . , k, Ai is a
contractible Banach algebra with diagonal Mi, then

(M1, . . . ,Mk) ∈ ⊕k
i=1(Ai ⊗γ Ai) ⊂ (⊕k

i=1Ai)⊗γ (⊕k
i=1Ai),

is a diagonal for the Banach algebra ⊕k
i=1Ai. The following result is a variation

of [5, Proposition 5.3].

Theorem 2.10. Let A be a symmetrically contractible Banach algebra.
Then any symmetric diagonal of A gives rise to a bounded normalized Z(A)-
valued trace for A. If A is central, then A has a normalized trace ψ ∈ A∗.

Proof. Let M be a symmetric diagonal for A of the form (1). We saw in
Proposition 2.2 that the assignment c 7→

∑∞
n=1 ancbn defines a bounded linear

mapping Ψ : A→ Z(A) with Ψ(1) = 1. For every c, c′ ∈ A, we have
∑∞

n=1 bn⊗
ancc

′ =
∑∞

n=1 cbn ⊗ anc
′ and hence

∑∞
n=1 ancc

′ ⊗ bn =
∑∞

n=1 anc
′ ⊗ cbn. Thus,

we have

Ψ(cc′) = ∆

( ∞∑
n=1

ancc
′ ⊗ bn

)
= ∆

( ∞∑
n=1

anc
′ ⊗ cbn

)
= Ψ(c′c).
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For the second assertion in the statement, if A is a central Banach algebra, then
we apply the above reasoning with Ψ replaced by ψ as given by Proposition
2.3.

For the matrix algebra Mn, the unique diagonal of Mn gives rise to the
ordinary trace.

3. A NULL-PROPERTY OF DIAGONALS

Let X be a Banach space. Consider the unique bounded linear operator

Υ : L(X)⊗γ L(X) → L(X ⊗γ X),

defined by

[Υ(T ⊗ S)](x⊗ y) = T (x)⊗ S(y), (T, S ∈ L(X), x, y ∈ X).

Then Υ is an algebra-morphism between Banach algebras. We denote the
image under Υ of any element N ∈ L(X) ⊗γ L(X), by Nop. It follows from
properties of projective tensor product, that ∥Υ∥ = 1 and hence ∥Nop∥ ≤
∥N∥γ . Note that, in general, Υ is not one-to-one. (This can be concluded from
the fact that the canonical mapping from X∗ ⊗γ X∗ onto the space of nuclear
bilinear functionals on X ×X is not necessarily one-to-one [11, §2.6].)

Proposition 3.1. Let Λ ∈ L(X ⊗γ X) be such that for every rank-one
operator T ∈ L(X),

(T ⊗ 1)opΛ = Λ(1⊗ T )op.
Then there is a unique operator Γ in L(X) such that Λ = (1⊗ Γ)opFX .

Proof. Let y be a nonzero vector in X, and let f ∈ X∗ be such that
f(y) = 1. Let T ∈ L(X) to be defined by x 7→ f(x)y. For x ∈ X, we have

(3) (T ⊗ 1)opΛ(x⊗ y) = Λ(x⊗ y).

X has the decomposition < y > ⊕ ker(f) where < y > denotes the subspace
generated by y. There exist z ∈ ker(f)⊗γ X and w ∈ X such that

Λ(x⊗ y) = y ⊗ w + z.

It follows from (3) that Λ(x⊗ y) = y ⊗w. Since the mapping x 7→ Λ(x⊗ y) is
linear and bounded, there is Γy ∈ L(X) such that Λ(x⊗ y) = y⊗Γy(x). Now,
suppose that y, y′ in X are linearly independent. We have

Λ
(
x⊗ (y + y′)

)
= y ⊗ Γy(x) + y′ ⊗ Γy′(x),

Λ
(
x⊗ (y + y′)

)
= (y + y′)⊗ Γy+y′(x).

Thus, Γy = Γy′ . Also, it can be checked that for every nonzero scalar λ, we
have Γλy = Γy. Thus, there exists Γ ∈ L(X) such that Λ(x⊗ y) = y⊗Γ(x) for
every x, y ∈ X. The proof is complete.
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Corollary 3.2. Let M be an element of L(X)⊗γ L(X) that satisfies

(4) (T ⊗ 1)M =M(1⊗ T ), (T ∈ L(X) of rank one).

Then there exists Γ ∈ L(X) such that Mop = (1⊗ Γ)opFX . Moreover, if M is
symmetric (i.e., FL(X)(M) =M) then there exists a scaler λ such that

Mop = λFX .

Proof. The first part follows directly from Proposition 3.1. Suppose that
M is symmetric. It follows from the identity [FL(X)(M)]op = FXM

opFX , that

FX(1⊗ Γ)op = (1⊗ Γ)opFX .

Thus, for every x, y ∈ X, we have Γ(y)⊗ x = y ⊗ Γ(x). This means that Γ is
a scalar multiple of identity. The proof is complete.

Let Y, Y ′, Z be finite-dimensional Banach spaces. Similar to the mapping
Υ above, we denote by Υ : N 7→ Nop the unique bounded linear mapping

L(Y,Z)⊗γ L(Z, Y ′) → L(Y ⊗γ Z,Z ⊗γ Y ′),

given by

(T ⊗ S)op(y ⊗ z) =
(
T (y)⊗ S(z)

)
.

We know that this is a linear isomorphism.

Lemma 3.3. By the above assumptions, suppose that dim(Y ) = dim(Y ′).
Suppose that T : Y → Y ′ is a linear isomorphism. For every finite-dimensional
Banach space Z, let the linear mapping T̃Z be given by

T̃Z : Y ⊗γ Z → Z ⊗γ Y ′, (y ⊗ z) 7→
(
z ⊗ T (y)

)
.

There is a numerical positive constant c such that c is independent from Z
(independent from norm and dimension of Z) and such that:

∥Υ−1(T̃Z)∥γ ≥ c−1dim(Z).

Proof. Suppose that y1, . . . , yk and z1, . . . , zm are vector basis respec-
tively, for Y and Z, and let y′i = T (yi). Let the linear operators

Sij : Y → Z, S′
ji : Z → Y ′, (1 ≤ i ≤ k, 1 ≤ j ≤ m)

be given by

Sij(yi) = zj , Sij(yq) = 0, (q ̸= i), S′
ji(zj) = y′i, S

′
ji(zq) = 0, (q ̸= j).

Let N := Sij ⊗ S′
ji. Then N

op = T̃Z and hence Υ−1(T̃Z) = N .

Let ν denote the linear functional on L(Y, Y ′) that associates to any
operator Y → Y ′, the normalized trace of its matrix in the bases y1, . . . , yk
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and y′1, . . . , y
′
k of Y and Y ′. Suppose that c denotes the functional-norm of ν.

It is clear that c ̸= 0. Consider the bilinear functional

µ : L(Y, Z)× L(Z, Y ′) → C, (P,Q) 7→ ν(QP ).

Then, we have ∥µ∥ ≤ c and hence ∥c−1µ∥ ≤ 1. Now, it follows from the
properties of projective tensor-norm that

∥N∥γ ≥ |c−1µ(N)| = c−1m.

Proposition 3.4. Let X be an infinite-dimensional Banach space. Let
M ∈ L(X) ⊗γ L(X) be an element that satisfies (4). Then M ∈ ker(Υ). In
other notation, Mop = 0.

Proof. Suppose that Γ ∈ L(X) is as in Corollary 3.2. Suppose that
Mop ̸= 0 and hence Γ ̸= 0. Let y, y′ be two nonzero vectors in X such that
Γ(y) = y′. Suppose that Y, Y ′ denote the one-dimensional subspaces of X
generated respectively, by y, y′, and suppose that T : Y → Y ′ is defined by
T (y) = y′. Let Z be an arbitrary finite-dimensional subspace of X. Suppose
that EY : Y → X and EZ : Z → X denote the embedding-maps and PY ′ :
X → Y ′ is an arbitrary continuous projection from X onto Y ′. By Kadec–
Snobar’s Theorem [2, Theorem 6.28], we know that there exists a continuous
projection PZ : X → Z, from X onto Z, such that ∥PZ∥ < 1 +

√
dim(Z). Let

N := (PZ ⊗ PY ′)M(EY ⊗ EZ) ∈ L(Y, Z)⊗γ L(Z, Y ′).

We have

∥N∥γ ≤ ∥PZ∥∥PY ′∥∥M∥γ , Nop = T̃Z ,

where T̃Z is as in Lemma 3.3. Now, by Lemma 3.3, we have

dim(Z)

c∥PY ′∥(1 +
√

dim(Z))
< ∥M∥γ .

This implies that ∥M∥γ = ∞, a contradiction. Thus, we have Mop = 0.

Definition 3.5. Let A be a Banach algebra and let M ∈ A⊗γ A. We say
that M is a hyper-commutator for A if

aM =Ma (a ∈ A).

By definition, diagonals are hyper-commutators. Following the discussion
of Section 1, the next question is very natural.

Question 3.6. Which Banach algebras have nonzero hyper-commutators?
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Example 3.7. Let A and C be Banach algebras. Suppose that A has a
nonzero hyper-commutator M . Then the Banach algebra A⊕C has a nonzero
hyper-commutator. Indeed, if M is of the form (1) then

∞∑
n=1

(an, 0)⊗ (bn, 0) ∈ (A⊕ C)⊗γ (A⊕ C)

is a hyper-commutator for A ⊕ C. Thus, in particular, there exist infinite-
dimensional Banach algebras with nonzero hyper-commutators.

The next theorem, which is the main result of this note, establishes a
null-property of hyper-commutators.

Theorem 3.8. Let X be an infinite-dimensional Banach space. Next, let
A ⊆ L(X) be a Banach subalgebra such that it contains the ideal of finite-rank
operators. Then the image of any hyper-commutator of A under the canonical
algebra-morphism

A⊗γ A ↪→ L(X)⊗γ L(X) → L(X ⊗γ X),

vanishes.

Proof. It follows directly from Proposition 3.4.

Note that for any Banach algebra A as in Theorem 3.8, we have

Z(A) = 0 or Z(A) = 1C.

Remark 3.9. Suppose that L(X) is contractible. By Theorem 3.8, to
prove that X is finite-dimensional, it is enough to prove that at least one
of the diagonals of L(X) is invertible as a member of the Banach algebra
L(X) ⊗γ L(X). Note that for the unique diagonal M of Mn we have, in the
Banach algebra Mn ⊗γ Mn, n

2M2 = 1⊗ 1.

Remark 3.10. Suppose that X is an infinite dimensional Banach space
for which the canonical mapping Υ is one-to-one. Then, by Theorem 3.8, any
Banach subalgebra of L(X) containing the ideal of finite-rank operators, is not
contractible.

Remark 3.11. Let X be an infinite dimensional Banach space. If sub-
algebra A = L(X) has at least two maximal ideals, then by Corollary 2.9,
we know that A is not contractible. (See [6] for some examples of such
Banach spaces.) Suppose that A has only one maximal ideal J . To prove
that A is not contractible it is enough to show that the closer J̃ of the ideal
(J ⊗ A) + (A ⊗ J) ⊂ A ⊗γ A is a maximal ideal of A ⊗γ A: Indeed, if A is
contractible then A⊗γ A is contractible and since A⊗γ A is central (this fact
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can be checked by considering projections onto finite-dimensional subspaces of
X similar to the first part of the proof of Lemma 3.3) then it must have a
unique maximal ideal. Thus, we must have ker(Υ) ⊆ J̃ and hence, for any
diagonal M of A, M belongs to J̃ . Therefore, we have 1 = ∆(M) ∈ ∆(J̃) ⊂ J
that contradicts the properness of J .
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