MULTIPLICATIVE n-TH ROOT FUNCTIONS OVER FINITE SEMIGROUPS, GROUPS, FIELDS AND COMMUTATIVE RINGS

BOAZ COHEN

Communicated by Alexandru Zaharescu

In this paper, we study the existence and uniqueness of multiplicative n-th root functions $\sqrt[n]{\ }$ over *finite* semigroups, in order to implement these ideas on finite groups, fields and commutative rings. A set of sufficient and necessary conditions are presented for existence of multiplicative n-th root functions over different algebraic structures. It is also shown that once the existence is established, the uniqueness is guaranteed. In addition, we describe the construction procedure of such a function.

AMS 2020 Subject Classification: 18B40, 20M15, 20D99, 11T99.

Key words: finite semigroups, finite groups, finite fields, finite commutative rings, n-th roots.

1. INTRODUCTION

Given a real number $a \in \mathbb{R}$, a *square-root* of a is any $b \in \mathbb{R}$ for which $b^2 = a$. It is well known that any positive real number has two square roots, one positive and one negative. That fact, along with the observation that the square-root of θ is θ , allow us to define the *principal* square root of α , which is denoted by \sqrt{a} , to be its non-negative square-root. One of the most familiar properties of the principal square-root function is its multiplicativity property properties of the principal square-root function is its multiplicativity property
which states that $\sqrt{ab} = \sqrt{a}\sqrt{b}$ for every two non-negative real numbers a and b.

The concept of square-root functions can be carried on into a wider medium: by a *square-root function* over a field F we mean a function $r : \mathbb{F}^{(2)} \to$ F, where $\mathbb{F}^{(2)} \coloneqq \{a^2 : a \in \mathbb{F}\},$ such that $r(x)^2 = x$ for every $x \in \mathbb{F}^{(2)}$. For example, if $\mathbb{F} = \mathbb{R}$, then $\mathbb{R}^{(2)} = [0, \infty)$. In this case, both functions $r_1(x) = \sqrt{x}$ example, if $\mathbf{r} = \mathbf{r}$, then $\mathbf{r}(\mathbf{v}) = [\mathbf{0}, \infty)$. In this case, both functions $r_1(\mathbf{v}) = \sqrt{x}$ and $r_2(x) = -\sqrt{x}$ are examples of square-root functions over R. It turns out that among all square-root functions over \mathbb{R} , the function r_1 above is the only square-root function which satisfies the multiplicity property. Generally, the existence of a multiplicative square-root function is not guaranteed over every field. For example, over the field of complex numbers C such a multiplicative

square-root function does not exist. Indeed, as one can verify, in this case $\mathbb{C}^{(2)} = \mathbb{C}$ and if we had a multiplicative square-root function $r : \mathbb{C} \to \mathbb{C}$, then on the one hand $r(1) = r((-1)^2) = r(-1)^2 = -1$, but on the other hand $r(1) = r(1^2) = r(1)^2 = 1$, a contradiction. In view of this, it is natural to ask, in which fields can a multiplicative square-root function be defined, and in these cases, is this function unique? This problem in general was treated by Waterhouse in $[12]$ and by Gladki in $[3]$ and $[4]$, in which an extensive treatment of this problem was given for both finite and infinite fields. The goal of this paper is to study the existence and uniqueness of multiplicative n -th root functions over several finite algebraic structures. To do so, we first discuss this issue from a more general point of view, by solving the problem for finite semigroups. We then apply the results to finite groups, commutative rings and fields.

Let S be a semigroup, written multiplicatively, and let $n \geq 2$ be an integer. For any $a \in S$, we define the *n*-th power of a to be a^n . The set of *n*-th powers of the elements of S is denoted by $S^{(n)}$, that is $S^{(n)} := \{a^n : a \in S\}.$ Given an element $a \in S$, any solution $x \in S$ of the equation

 $x^n = a$

is called an *n-th root of a*. In general, a may not have an *n*-th root. On the other hand, it may have more than one. The set of the n-th roots of a is denoted by $a^{\frac{1}{n}}$, that is $a^{\frac{1}{n}} \coloneqq \{b \in S : b^{n} = a\}$. Note that a has an n-th root if and only if $a \in S^{(n)}$. Therefore, $S^{(n)}$ can also be referred as the set of elements of S which have an n-th root. An n-th root function (abbreviated as RF) over S is a function $r: S^{(n)} \to S$ that maps every element of $S^{(n)}$ to one of its *n*-th roots. In other words, *r* is an *n*-th RF if $r(x) \in x^{\frac{1}{n}}$, or equivalently, if $r(x)^n = x$ for every $x \in S^{(n)}$. An *n*-th RF *r* over *S* such that $r(x) = x$ for every $x \in S^{(n)}$, is referred to as *trivial*. It should be noted that in general, a trivial n-th RF may not exists over S. A 2-nd RF and a 3-rd RF are also called a *square-RF* and a *cube-RF*, respectively. We say that an *n*-th RF *r* over S is *multiplicative* if $S^{(n)}$ is a subsemigroup of S and r is a semigroup homomorphism from $S^{(n)}$ into S, that is, if $r(xy) = r(x)r(y)$ for every $x, y \in S^{(n)}$. The term "multiplicative *n*-th root function" is abbreviated as *n*-th MRF. It should be emphasized that $S^{(n)}$ may not be a subsemigroup of S and in these cases an n-th MRF does not exist over S . Furthermore, if $S^{(n)}$ is a subsemigroup of S, then the existence of an n-th MRF over S is not guaranteed. We note that if S is commutative, then $S^{(n)}$ is subsemigroup of S for every n.

We also need the notion of *n*-commutativity. Let *n* be a positive integer. Then a semigroup S is *n*-commutative if $(ab)^n = a^n b^n$ for each $a, b \in S$. If R

is a subset of a semigroup S, then R is *n*-commutative if R is a subsemigroup of S and $(ab)^n = a^n b^n$ for each $a, b \in R$.

As an illustrative example, consider the set of residues modulo 18, namely the set $\mathbb{Z}_{18} = {\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{17}}$ with respect to modular multiplication. In this case

$$
\mathbb{Z}_{18}^{(2)} = \{ \overline{0}^2, \overline{1}^2, \overline{2}^2, \dots, \overline{17}^2 \} = \{ \overline{0}, \overline{1}, \overline{4}, \overline{7}, \overline{9}, \overline{10}, \overline{13}, \overline{16} \}.
$$

Since

there are $3^2 \cdot 2^6 = 576$ different square-RF's over \mathbb{Z}_{18} . It turns out that among them, only the following function is multiplicative

$$
r(\overline{0}) = \overline{0} \t r(\overline{9}) = \overline{9}
$$

\n
$$
r(\overline{1}) = \overline{1} \t r(\overline{10}) = \overline{10}
$$

\n
$$
r(\overline{4}) = \overline{16} \t r(\overline{13}) = \overline{7}
$$

\n
$$
r(\overline{7}) = \overline{13} \t r(\overline{16}) = \overline{4}.
$$

Our goal in this paper is to study the existence and uniqueness of n -th MRF's over finite semigroups, in order to implement these ideas on finite groups, fields and commutative rings.

We begin our study in Section [2,](#page-5-0) in which a brief overview of some special concepts in semigroups theory is given. In Section [3,](#page-7-0) we discuss n -th MRF's over finite semigroups. One of our main results in Section [3](#page-7-0) is Theorem [3.6:](#page-11-0)

THEOREM 3.6. Suppose that S is a finite semigroup and $n \geq 2$ is an integer. Then there exists an n-th MRF r over S iff $S^{(n)}$ is an n-commutative subsemigroup of S, $\text{ind}(S) \leq n$ and $\gcd(n, \text{per}(S)) = \gcd(n^2, \text{per}(S))$. Furthermore, if such a function exists, then it is unique and it is given by

$$
r(x) = x^e,
$$

where e is the least positive integer such that $ne \equiv 1 \pmod{per(S^{(n)})}$.

Recall that $S^{(n)}$ is *n*-commutative if and only if $S^{(n)}$ is a subsemigroup of S and $(ab)^n = a^n b^n$ for every $a, b \in S^{(n)}$. In addition, $\text{per}(S)$ is the least common multiple of the periods of all the elements in S and $ind(S)$ is the maximal index among the indices of the elements of S. The notions of period and index are defined in Section [2.](#page-5-0)

The n-th MRF, in case of existence, is denoted by our more familiar surd The *n*-th MKF, in case of existence, is denoted by our more rammar surfaction $\sqrt[n]{\ }$. We remark that due to uniqueness, there is no ambiguity in using this notation.

Section [4](#page-15-0) focuses on *n*-th MRF's over finite groups. When referring to groups, *n*-commutativity is called being *n*-abelian. In the following theorem, we gather the main results on the *n*-th MRF's over finite groups, which can be obtained by the application of the results for semigroups:

THEOREM 4.2. Suppose that G is a finite group and $n \geq 2$ is an integer. Then there exists a n-th MRF r over G if and only if $G^{(n)}$ is an n-abelian subgroup of G and $gcd(n, exp(G)) = gcd(n^2, exp(G))$. Furthermore, if r exists, then the following assertions hold:

- (a) r is the unique n-th MRF over G and is given by $r(x) = x^e$, where e is the least positive integer such that $ne \equiv 1 \pmod{G^{(n)}}$. Furthermore, r is non-trivial if and only if $e > 1$.
- (b) $G^{(n)} \trianglelefteq G$ and consequently $r(x^g) = r(x)^g$ for every $x \in G^{(n)}$ and $g \in G$.
- (c) $\exp(G/G^{(n)}) \mid n$.

As an application of Theorem [4.2,](#page-16-0) we analyze the problem of existence of non-trivial n -th MRF's over certain families of groups:

THEOREM 4.6. There exist no non-trivial n-th MRF's over finite nonabelian simple groups for every integer $n \geqslant 2$.

THEOREM 4.8. Let p be an odd prime number and let $n \geqslant 2$ be an integer. In addition, suppose that m, k are positive integer such that $m \geq 2k$ and consider the following p-group

$$
C_{p^m} \rtimes C_{p^k} = \langle a, b \mid a^{p^m} = 1, b^{p^k} = 1, bab^{-1} = a^{p^{m-k}+1} \rangle.
$$

Then there exists a non-trivial n-th MRF over $C_{p^m} \rtimes C_{p^k}$ if and only if $n \equiv 1$ $\pmod{p^k}$ and $n \not\equiv 1 \pmod{p^m}$.

In Section [5,](#page-23-0) we consider n -th MRF's over finite commutative rings (with identity). One of our main results is Theorem [5.3:](#page-25-0)

THEOREM 5.3. Suppose that R is a finite commutative ring and $n \geq 2$ is an integer. Then there exists an n-th MRF over R iff $gcd(n, exp(R^*))$ $\gcd(n^2, \exp(R^*))$ and $R^{(n)} \setminus \{0\}$ has no nilpotent elements. Furthermore, in this case, the n-th root function is given by

$$
\sqrt[n]{x} = x^e,
$$

where e is the least positive integer such that $ne \equiv 1 \pmod{R^*}/u$ and u is the number of n-th roots of unity in R.

As an application of Theorem [5.3,](#page-25-0) we obtained a criterion for the existence of an *n*-th MRF's over finite fields and over the ring \mathbb{Z}_m of residues modulo m.

COROLLARY 5.4. Suppose that $\mathbb F$ is a finite field and $n \geq 2$ is an integer. Then there exists an n-th MRF over $\mathbb F$ if and only if $gcd(n, |\mathbb F| - 1) =$ $gcd(n^2, |F|-1)$. Furthermore, in this case, the n-th root function is given by

 $\sqrt[n]{x} = x^e,$

where e is the least positive integer such that $ne \equiv 1 \pmod{\frac{F|-1}{u}}$ and $u =$ $gcd(n, |F| - 1).$

It should be noted that the first part of this result can be also obtained as a consequence of Corollary 2.8 in [\[4\]](#page-31-2). We mention the following special case of Corollary [5.4,](#page-27-0) when $\mathbb{F} = \mathbb{Z}_p$ is the field of residues modulo a prime p. In this case, it can be shown that there exists a multiplicative square-RF over \mathbb{Z}_p if and only if $p \equiv 3 \pmod{4}$. Furthermore, this square-RF is given by

$$
\sqrt{x} = x^{\frac{p+1}{4}}.
$$

See Example [5.5](#page-27-1) for more details.

COROLLARY 5.6. Suppose that $m > 1$ and $n \geq 2$ are integers and let $m = p_1^{a_1} \cdots p_s^{a_s}$ be the decomposition of m into distinct prime factors. Then there exists an n-th MRF over \mathbb{Z}_m if and only if

$$
\max\{a_1,\ldots,a_s\} \leqslant n \quad and \quad \gcd(n,\lambda(m)) = \gcd(n^2,\lambda(m)),
$$

where λ is the universal exponent of m. Furthermore, in this case, the n-th root function is given by

 $\sqrt[n]{x} = x^e,$

where e is the least positive integer such that $ne \equiv 1 \pmod{\frac{\varphi(m)}{u_n(m)}}$ and $u_n(m)$ is the number of n-th roots of unity in \mathbb{Z}_m .

We recall that $\varphi(m) := |\mathbb{Z}_m^*|$ and that the universal exponent of m is defined by $\lambda(m) := \exp(\mathbb{Z}_m^*)$. As an example, let us consider the ring \mathbb{Z}_{54} . In this case, $m = 54 = 2^1 \cdot 3^3$ and it can be shown that $\lambda(54) = 18$. Therefore, by Corollary [5.6](#page-28-0) there exists an *n*-th MRF over \mathbb{Z}_{54} if and only if $\max\{1,3\} \leq n$ and $\gcd(n, \lambda(54)) = \gcd(n^2, \lambda(54))$, that is, if and only if $3 \leq n$ and $gcd(n, 18) = gcd(n^2, 18)$. In particular, it follows that a multiplicative square-RF and cube-RF do not exist over \mathbb{Z}_{54} , while a multiplicative forth-RF does exist. In order to find an explicit formula for this forth-RF, first note that

 $\mathbb{Z}_{54}^{(4)}=\{\overline{0},\overline{1},\overline{4},\overline{7},\overline{10},\overline{13},\overline{16},\overline{19},\overline{22},\overline{25},\overline{27},\overline{28},\overline{31},\overline{34},\overline{37},\overline{40},\overline{43},\overline{46},\overline{49},\overline{52}\}.$

Now, by Corollary [5.6,](#page-28-0) we have that $\sqrt[4]{x} = x^e$, where e is the least positive integer such that $4e \equiv 1 \pmod{\varphi(54)/u_4(54)}$. In this case, $\varphi(54) = 18$ and it can be shown that $\overline{-1}$, $\overline{1}$ are the only forth-root of unity in \mathbb{Z}_{54} . Hence, $u_4(54) = 2$, so $4e \equiv 1 \pmod{9}$ and its least solution is $e = 7$. Therefore, the multiplicative forth-root function over \mathbb{Z}_{54} is given by

$$
\sqrt[4]{x} = x^7
$$

for every $x \in \mathbb{Z}_{54}^{(4)}$. As an illustrative example, note that on the one hand we get that

$$
\sqrt[4]{\overline{13} \cdot \overline{4}} = \sqrt[4]{\overline{52}} = \overline{52}^7 = \overline{34},
$$

and on the other hand

$$
\sqrt[4]{\overline{13}} \sqrt[4]{\overline{4}} = \overline{13}^7 \cdot \overline{4}^7 = \overline{31} \cdot \overline{22} = \overline{34}
$$

so $\sqrt[4]{\overline{13} \cdot \overline{4}} = \sqrt[4]{\overline{13}} \sqrt[4]{\overline{4}}$, as expected.

2. PRELIMINARIES: MONOGENIC SEMIGROUPS

Let S be a semigroup. Given an element $a \in S$, we define $\langle a \rangle :=$ $\{a, a^2, a^3, \dots\}$. Clearly, $\langle a \rangle$ it is a subsemigroup of S and is referred to as the *monogenic subsemigroup* of S generated by a. If S is a semigroup in which there exists an element a such that $S = \langle a \rangle$, then S is said to be a *monogenic* semigroup.

If S is a finite semigroup, then there are repetitions among the powers of a, so there exist positive integers $1 \leq \alpha < \beta$ such that

 $a^{\alpha} = a^{\beta}.$

If β is the least exponent satisfying such an equality, then all elements in the sequence $\{a, a^2, \ldots, a^{\beta-1}\}\$ are distinct, and therefore, the exponent α is uniquely determined by β . Thus

$$
\langle a \rangle = \{a, a^2, a^3, \dots, a^{\alpha}, \dots, a^{\beta - 1}\}
$$

and α is the least exponent such that there exists $\gamma > \alpha$ with $a^{\alpha} = a^{\gamma}$. Under these settings, we define the *order* of a as $\text{ord}(a) := \beta - 1$, the *index* of a as $\text{ind}(a) := \alpha$ and the *period* of a as $\text{per}(a) := \beta - \alpha$. The following scheme summarizes these definitions:

the size of that list
\nis the order of a
\nthe size of that list
\nis the period of a
\n
$$
a, a^2, a^3, \ldots, a^{\alpha}, a^{\alpha+1}, a^{\alpha+2}, \ldots, a^{\beta-1}
$$

\nthe size of that list
\nis the index of a

Note that as $a^{\alpha} = a^{\beta}$, under these definitions,

a

$$
a^{\operatorname{ind}(a)} = a^{\operatorname{ind}(a) + \operatorname{per}(a)} = a^{\operatorname{ord}(a) + 1}
$$

and $a^x = a^y$ if and only if either $x = y$ or

 $x \equiv y \pmod{\text{per}(a)}$ and $\text{ind}(a) \leqslant \text{min}\{x, y\}.$

As an illustrative example, let us consider the monogenic subsemigroup $\langle 10 \rangle$ of $S = \mathbb{Z}_{112}$ with respect to modular multiplication. In this case, we get that

$$
\langle \overline{10} \rangle = \{ \overline{10}, \overline{10}^2, \overline{10}^3, \overline{10}^4, \ldots \}
$$

= \{ \overline{10}, \overline{100}, \overline{104}, \overline{\mathbf{32}}, \overline{96}, \overline{64}, \overline{80}, \overline{16}, \overline{48}, \overline{\mathbf{32}}, \overline{96}, \overline{64}, \ldots \}

Thus, $ind(\overline{10}) = 4$, $per(\overline{10}) = 6$ and $ord(\overline{10}) = 9$. As another example, consider the monogenic subsemigroup $\langle \overline{3} \rangle$ of $S = \mathbb{Z}_6$ with respect to modular multiplication. In this case, we get that $\langle \overline{3} \rangle = {\overline{3}, \overline{3}^2, \overline{3}^3, \ldots} = {\overline{3}, \overline{3}, \overline{3}, \ldots}$, so in this case, $ind(\overline{3}) = 1$, $per(\overline{3}) = 1$ and $ord(\overline{3}) = 1$.

Given an element a of a finite semigroup S , the monogenic subsemigroup $\langle a \rangle$ is determined, up to isomorphism, by the index and the period of a. In other words, for every $a, b \in S$, $\langle a \rangle \cong \langle b \rangle$ if and only if a and b have the same index and period (see [\[7,](#page-31-3) p. 12]). Furthermore, it can be shown that the generator a of the finite monogenic subsemigroup $\langle a \rangle$ is uniquely determined by $\langle a \rangle$, unless $\langle a \rangle$ is a group (see [\[7,](#page-31-3) p. 40]).

An important subset of $\langle a \rangle$ is the *kernel* of $\langle a \rangle$, which is defined by

$$
K_a \coloneqq \{a^{\alpha}, a^{\alpha+1}, \dots, a^{\beta-1}\}.
$$

By [\[7,](#page-31-3) pp. 11–12] the subset K_a forms a cyclic group of order per(*a*). For example, the kernel of the monogenic subsemigroup $\langle \overline{10} \rangle$ of $S = \mathbb{Z}_{112}$ is

$$
K_{\overline{10}} = {\overline{10}}^4, \overline{10}^5, \ldots, \overline{10}^9 = {\overline{32}}, \overline{96}, \overline{64}, \overline{80}, \overline{16}, \overline{48}.
$$

This set forms a cyclic group of order 6 generated by $\overline{10}^7 = \overline{80}$ with $\overline{10}^6 = \overline{64}$ as an identity element. Note that by the definition of the kernel, it follows that $\langle a \rangle$ is a group if and only if $\text{ind}(a) = 1$. In addition, it is worth noting that if e is the identity element of K_a , then $K_a = \{e, ea, ea^2, \dots, ea^{\rho-1}\},$ where $\rho = \text{per}(a)$. Since e is an idempotent, it follows that $(ea)^k = ea^k$ for every $k \geq 1$. Thus $K_a = \langle ea \rangle$. Furthermore, if $o(x)$ denotes the order of x as an element of the group K_a , then $o((ea)^n) = o(ea)/\gcd(n, o(ea))$ for every positive integer *n*. But $o(x) = \text{per}(x)$ for every $x \in K_a$ and since $\text{per}(ea^n) = \text{per}(a^n)$, it follows that

$$
per(a^n) = \frac{per(a)}{gcd(n, per(a))}
$$

for every positive integer n.

Given a finite subset $A = \{a_1, \ldots, a_n\}$ of a finite semigroup S, we further define

$$
per(A) := lcm(per(a1), ..., per(an))
$$

ind(A) := max{ind(a₁), ..., ind(a_n)}.

Note that, in particular, for $A = S$ we get that $a^{\text{ind}(S)} = a^{\text{ind}(S) + \text{per}(S)}$ for all $a \in S$.

Another important concept is the *exponent* of S, denoted by $\exp(S)$, which is defined to be the smallest positive integer ω such that all the elements of $S^{(\omega)}$ are idempotents. Recall that an element e of a semigroup S is *idempotent* if $e^2 = e$. We remark that $exp(S)$ is well defined since by [\[7,](#page-31-3) p. 12], for every $a \in S$, there exists a positive integer k such that a^k is idempotent. Note that by the definition of the exponent $a^{\exp(S)} = a^{2 \exp(S)}$ for every $a \in S$, so $\text{ind}(a) \leq \exp(S)$ and $\text{per}(a) | \exp(S)$ for every $a \in S$. Therefore, $\text{ind}(S) \leq \exp(S)$ and $\text{per}(S) | \exp(S)$. In general, it may happen that $per(S) \neq exp(S)$. For example, let

$$
S = \left\{ \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}, \underbrace{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}}, \underbrace{\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}}, \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}, \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}}_{e} \right\}.
$$

Under usual multiplication of matrices, we get the following multiplication table

As one can see, S is a non-commutative finite semigroup. Note that $a = a^2$, $b^2 = b^3$, $c^2 = c^3$, $d = d^2$ and $e = e^2$, so every element has period 1. Thus, $per(S) = 1$ and $ind(S) = 2$. Furthermore, $exp(S) = 2$ since a, d, e are the idempotent elements of S and $S^{(2)} = \{a, d, e\}.$

It is worth mentioning that if $\text{ind}(a) \leqslant \text{per}(a)$ for all $a \in S$, then $\text{per}(S) =$ $\exp(S)$. Indeed, in this case, $a^{\text{per}(a)}$ is the identity element of K_a , so $a^{\text{per}(S)}$ is idempotent for all $a \in S$. Hence, $\exp(S) \leq \exp(S)$ and since $\mathrm{per}(S) \mid \exp(S)$. we deduce that $per(S) = exp(S)$, as claimed.

In the case $S = G$ is a finite group, we get that $\text{ind}(a) = 1$ and $\text{per}(a) =$ ord(a) for every $a \in G$, so $\text{ind}(G) = 1$ and $\text{per}(G) = \exp(G)$. Here, $\exp(G)$ denotes, as usual, the least positive integer k such that $a^k = 1_G$ for all $a \in G$.

3. THE n-TH MRF'S OVER FINITE SEMIGROUPS

In this section, we establish the main properties of the n -th MRF's over finite semigroups. We begin with the following two important theorems, which plays a key role in our analysis.

THEOREM 3.1. Suppose that S is a finite semigroup, $n \geq 2$ is an integer and $a \in S^{(n)}$. If r is an n-th MRF over S, then

- (a) $\langle a \rangle = \langle r(a) \rangle$ and consequently $r(a) \in S^{(n)}$.
- (b) $\langle a \rangle$ forms a group and its order satisfies $gcd(n, ord(a)) = 1$.
- (c) r is an automorphism of $S^{(n)}$.
- (d) $r(a)$ is the unique n-th root of a in $S^{(n)}$.

Proof. (a) Suppose that $a \in S^{(n)}$ and set $r(a) = b$. Then $b \in S$ and $a = b^n$. Note that since $a = b^n$, it follows that $a \in \langle b \rangle$, so $\langle a \rangle \subseteq \langle b \rangle$. Therefore, in order to prove our assertion, it suffices to prove that $\text{ord}(a) = \text{ord}(b)$.

Let α , β be the index and the period of a, respectively, and let γ , δ be the index and the period of b, respectively. So $a^{\alpha} = a^{\alpha+\beta}$ and $b^{\gamma} = b^{\gamma+\delta}$. First, we prove that $\alpha = \gamma$ and $\beta = \delta$. Indeed, note that

$$
b^{\alpha} = r(a)^{\alpha} = r(a^{\alpha}) = r(a^{\alpha+\beta}) = r(a)^{\alpha+\beta} = b^{\alpha+\beta}.
$$

Thus $b^{\alpha} = b^{\alpha+\beta}$, so $\gamma \leq \alpha$ and $\alpha \equiv \alpha + \beta \pmod{\delta}$, that is, $\gamma \leq \alpha$ and $\delta \mid \beta$. Similarly

$$
a^{\gamma} = (b^n)^{\gamma} = (b^{\gamma})^n = (b^{\gamma+\delta})^n = (b^n)^{\gamma+\delta} = a^{\gamma+\delta}.
$$

Thus $a^{\gamma} = a^{\gamma+\delta}$, so $\alpha \leq \gamma$ and $\gamma \equiv \gamma + \delta \pmod{\beta}$, that is, $\alpha \leq \gamma$ and β | δ. Therefore $\alpha = \gamma$ and $\beta = \delta$, as claimed. It follows that $\langle a \rangle \cong \langle b \rangle$, so $\mathrm{ord}(a) = \mathrm{ord}(b)$, as required.

(b) In order to prove that $\langle a \rangle$ is a group, it suffices to prove that the index α of a is 1. Indeed, $\langle a \rangle = \langle b \rangle$ by Part (a), so in particular $b \in \langle a \rangle$. Hence, there exists a positive integer k such that $b = a^k$. Since $a = b^n$, it follows that $a = a^{kn}$. But $1 < kn$ since $n \ge 2$, so we deduce that $\alpha = 1$, as claimed.

Next, we prove that $gcd(n, ord(a)) = 1$. Note that by the first part of this proof, it follows that $1 \equiv kn \pmod{\beta}$, so $gcd(n, \beta) = 1$. Since $\langle a \rangle$ is a group, it follows that $\text{ord}(a) = \beta$, so $\text{gcd}(n, \text{ord}(a)) = 1$, as claimed.

(c) By definition, r is a homomorphism from $S^{(n)}$ into S. In addition, r is injective. Indeed, if $a, b \in S^{(n)}$ and $r(a) = r(b)$, then $r(a)^n = r(b)^n$, so $a = b$, as required. Finally, we verify that $\text{im}(r) = S^{(n)}$. Since r is injective, it suffices to verify that $\text{im}(r) \subseteq S^{(n)}$. But this follows immediately form Part (a) since $r(a) \in S^{(n)}$ for every $a \in S^{(n)}$.

(d) Set $r(a) = b$. By definition, b is an n-th root of a and by Part (a) we know that $b \in S^{(n)}$. We prove that if $a = c^n$ for some $c \in S^{(n)}$, then $b = c$. Indeed, since r is multiplicative, it follows that $b = r(a) = r(c^n) = r(c)^n = c$, as required. \square

THEOREM 3.2. Suppose that S is a finite semigroup and $n \geq 2$ is an integer. Then $S^{(n)} = S$ if and only if $\text{ind}(S) = 1$ and $\text{gcd}(n, \text{exp}(S)) = 1$. Consequently, if $\text{ind}(S) = 1$ and $\text{gcd}(n, \text{exp}(S)) = 1$, then every $a \in S$ has a unique n -th root in S .

Proof. Set $\omega = \exp(S)$ and suppose that $\text{ind}(S) = 1$ and $\text{gcd}(n, \omega) = 1$. Consider the function $f: S \to S^{(n)}$ defined by $f(x) = x^n$. Observe that f is onto. Thus, in order to prove that $S^{(n)} = S$, it suffices to prove that f is also one-to-one. So suppose that $f(a) = f(b)$ for some $a, b \in S$. Set $\alpha = \text{per}(a)$ and $\beta = \text{per}(b)$. Since $\text{ind}(S) = 1$, it follows that $\text{ind}(a) = 1$ and $\text{ind}(b) = 1$. Thus $a = a^{1+\alpha}$ and $b = b^{1+\beta}$. First, note that by induction, we obtain that $a = a^{1+k\alpha}$ and $b = b^{1+k\alpha}$ for every non-negative integer k. Recall that $\text{per}(S) \mid \omega$ and since $gcd(n, \omega) = 1$, it follows that $gcd(n, \text{lcm}(\alpha, \beta)) = 1$. Therefore, there exists a positive integer t such that $nt \equiv 1 \pmod{lcm(\alpha, \beta)}$. In addition, since α | lcm(α , β) and β | lcm(α , β), there exist positive integers k, m such that $nt = 1 + k\alpha$ and $nt = 1 + m\beta$. Now, using our assumption that $a^n = b^n$, we get that

as required.
$$
a = a^{1+k\alpha} = a^{nt} = (a^n)^t = (b^n)^t = b^{nt} = b^{1+m\beta} = b
$$
,

Conversely, suppose that $S^{(n)} = S$ and consider again the function f: $S \to S^{(n)}$ defined by $f(x) = x^n$. Clearly, f is onto and since $|S^{(n)}| = |S|$, we conclude that f is one-to-one. In other words, for every $x, y \in S$, the assumption $x^n = y^n$ implies that $x = y$.

First, we prove that $\text{ind}(S) = 1$. Suppose by the way of contradiction that $\text{ind}(S) > 1$. Therefore, there exists $a \in S$ such that $\text{ind}(a) > 1$. Set $\alpha = \text{ind}(a)$ and $\beta = \text{per}(a)$. Note that since $\alpha > 1$ and $n \ge 2$, it follows that $\alpha \leq 2(\alpha - 1) \leq n(\alpha - 1)$. In addition, since $n(\alpha - 1) \equiv n(\alpha - 1 + \beta) \pmod{\beta}$, we deduce that $a^{n(\alpha-1)} = a^{n(\alpha-1+\beta)}$, that is

$$
(a^{\alpha - 1})^n = (a^{\alpha - 1 + \beta})^n.
$$

But f is one-to-one, so $a^{\alpha-1} = a^{\alpha-1+\beta}$, which contradicts the minimality of α .

Next, we prove that $gcd(n, \omega) = 1$. Suppose by the way of contradiction that $\gcd(n, \omega) \neq 1$ and let p be a prime number such that $p \mid \omega$ and $p \mid n$. We begin by proving that there exists $a \in S$ such that $a^{\omega} \neq a^{\omega/p}$. Suppose otherwise that $a^{\omega} = a^{\omega/p}$ for every $a \in S$. Since a^{ω} is idempotent, we deduce that $a^{\omega/p}$ is idempotent for every $a \in S$, which implies by the minimality of the exponent, that $\omega \leq \omega/p$, a contradiction. Thus, there exists $a \in S$ such that $a^{\omega} \neq a^{\omega/p}$, as claimed. Now, note that since a^{ω} is idempotent, it follows that $(a^{\omega})^{n/p} = a^{\omega}$ and $(a^{\omega})^n = a^{\omega}$. Hence

$$
(a^{\omega/p})^n = (a^{\omega})^{n/p} = a^{\omega} = (a^{\omega})^n,
$$

which contradicts the fact that f is one-to-one. □

In order to prove our main result, we need first the following three propositions.

PROPOSITION 3.3. Let a, b, n be positive integers. Then

- (a) $gcd(n, a) = gcd(n^2, a)$ and $gcd(n, b) = gcd(n^2, b)$ if and only if we have that $gcd(n, lcm(a, b)) = gcd(n^2, lcm(a, b)).$
- (b) $gcd(n, lcm(a, b)) = 1$ if and only if $gcd(n, a) = 1$ and $gcd(n, b) = 1$.

Proof. (a) For convenience, we denote $gcd(a, b)$ and $lcm(a, b)$ by (a, b) and [a, b], respectively. Suppose that $(n, a) = (n^2, a)$ and $(n, b) = (n^2, b)$. Using the identity $(a, [b, c]) = [(a, b), (a, c)]$ from [\[9,](#page-31-4) p. 23], we obtain that

$$
(n, [a, b]) = [(n, a), (n, b)] = [(n2, a), (n2, b)] = (n2, [a, b]),
$$

as required. Conversely, suppose that $(n,[a,b]) = (n^2,[a,b])$. Clearly, (n,a) n^2 and $(n,a) \mid a$, so $(n,a) \mid (n^2,a)$. In addition, $(n^2,a) \mid a$ and $a \mid [a,b]$, so $(n^2, a) \mid [a, b]$. Since $(n^2, a) \mid n^2$, it follows that $(n^2, a) \mid (n^2, [a, b])$. By our assumption, $(n, [a, b]) = (n^2, [a, b])$, so $(n^2, a) | (n, [a, b])$ and hence $(n^2, a) | n$. Since $(n^2, a) \mid a$, we deduce that $(n^2, a) \mid (n, a)$. Thus $(n^2, a) = (n, a)$ and similarly $(n^2, b) = (n, b)$.

(b) The assertion follows by the identity $(n,[a,b]) = [(n,a),(n,b)]$ and by noting that $[x, y] = 1$ if and only if $x = 1$ and $y = 1$ for every two positive integers x, y . \Box

PROPOSITION 3.4. Suppose that S is a finite semigroup and $n \geq 2$ is an integer. Then

- (a) If $a \in S^{(n)}$, then $\langle a \rangle \subseteq S^{(n)}$.
- (b) If S is n-commutative, then $S^{(n)}$ is a subsemigroup of S.

Proof. Part (a) is trivial. For Part (b), let $a, b \in S^{(n)}$. Then there exist $x, y \in S$ such that $a = x^n$ and $b = y^n$. Since S is *n*-commutative, it follows that $ab = x^n y^n = (xy)^n$. But $xy \in S$ since S is a semigroup, so $ab \in S^{(n)}$, as required. \Box

We remark that the converse of Proposition [3.4\(](#page-10-0)b) does not hold. As a counterexample, take S to be the quaternion group $Q_8 = {\pm 1, \pm i, \pm j, \pm k}$. As one can verify, in this case, $Q_8^{(3)} = Q_8$, so $Q_8^{(3)}$ is indeed a subgroup. But Q_8 is not 3-abelian since $(ij)^3 = k^3 = -k$, while $i^3 j^3 = (-i)(-j) = i j = k$.

PROPOSITION 3.5. Suppose that S is a finite semigroup and $n \geq 2$ is an integer. Then

- (a) $gcd(n, per(S^{(n)})) = 1$ if and only if $gcd(n, per(S)) = gcd(n^2, per(S)).$
- (b) $\text{ind}(S^{(n)}) = 1$ if and only if $\text{ind}(S) \leq n$.

Proof. (a) Suppose that $S = \{a_1, \ldots, a_k\}$ and for each $1 \leq i \leq k$ set $d_i = \text{per}(a_i)$. Recall that $\text{per}(a_i^n) = d_i / \text{gcd}(n, d_i)$ for each $1 \leq i \leq k$. Hence

$$
\gcd(n, \text{per}(S^{(n)})) = \gcd(n, \text{lcm}(\text{per}(a_1^n), \dots, \text{per}(a_k^n)))
$$

$$
= \gcd\left(n, \text{lcm}\left(\frac{d_1}{\gcd(n, d_1)}, \dots, \frac{d_k}{\gcd(n, d_k)}\right)\right).
$$

Using Proposition [3.3\(](#page-10-1)b), we deduce that $gcd(n, per(S^{(n)})) = 1$ if and only if

$$
\gcd\left(n, \frac{d_i}{\gcd(n, d_i)}\right) = 1
$$

for each $1 \leq i \leq k$. Since

$$
\gcd\left(n,\frac{d_i}{\gcd(n,d_i)}\right) = \frac{\gcd(n \gcd(n,d_i),d_i)}{\gcd(n,d_i)} = \frac{\gcd(n^2,nd_i,d_i)}{\gcd(n,d_i)} = \frac{\gcd(n^2,d_i)}{\gcd(n,d_i)},
$$

it follows that $gcd(n, \frac{d_i}{gcd(n, d_i)}) = 1$ if and only if $gcd(n^2, d_i) = gcd(n, d_i)$. By Proposition [3.3\(](#page-10-1)a), we deduce that $gcd(n^2, d_i) = gcd(n, d_i)$ for every $1 \leq i \leq k$ if and only if

$$
\gcd(n, \operatorname{lcm}(d_1, \ldots, d_k)) = \gcd(n^2, \operatorname{lcm}(d_1, \ldots, d_k)),
$$

that is, if and only if $gcd(n, per(S)) = gcd(n^2, per(S))$, as required.

(b) Note that it suffices to prove that $\text{ind}(a^n) = 1$ if and only if $\text{ind}(a) \leq n$ for every $a \in S$. Set $\beta = \text{per}(a)$ and $\delta = \text{per}(a^n)$. Now

$$
ind(a^n) = 1 \Leftrightarrow a^n = (a^n)^{1+\delta}
$$

\n
$$
\Leftrightarrow a^n = a^{n+n\delta}
$$

\n
$$
\Leftrightarrow ind(a) \leq n \text{ and } n \equiv n + n\delta \pmod{\beta}
$$

\n
$$
\Leftrightarrow ind(a) \leq n \text{ and } \beta \mid n\delta.
$$

But $\delta = \beta / \gcd(n, \beta)$ and $\gcd(n, \beta) \mid n$, so $\beta \mid n\delta$. Therefore, $\mathrm{ind}(a^n) = 1$ if and only if $\text{ind}(a) \leq n$, as claimed. \perp

We are ready now to prove our main theorem.

THEOREM 3.6. Suppose that S is a finite semigroup and $n \geq 2$ is an integer. Then there exists an n-th MRF r over S iff $S^{(n)}$ is n-commutative subsemigroup of S, $\text{ind}(S) \leq n$ and $\gcd(n, \text{per}(S)) = \gcd(n^2, \text{per}(S))$. Furthermore, if such a function exists, then it is unique and it is given by

$$
r(x) = x^e,
$$

where e is the least positive integer such that $ne \equiv 1 \pmod{per(S^{(n)})}$.

Proof. Suppose that there exists an *n*-th MRF r over S . We begin by proving that $(S^{(n)})^{(n)} = S^{(n)}$. First of all, since $S^{(n)} \subseteq S$, it follows that $(S^{(n)})^{(n)} \subseteq S^{(n)}$. Additionally, if $x \in S^{(n)}$, then $r(x) \in S^{(n)}$ by Theo-rem [3.1\(](#page-8-0)a), so $x = r(x)^n \in (S^{(n)})^{(n)}$. Hence, $(S^{(n)})^{(n)} \supseteq S^{(n)}$ and therefore $(S^{(n)})^{(n)} = S^{(n)}$, as claimed. Since $S^{(n)}$ is a semigroup, it follows by The-orem [3.2](#page-9-0) that $\text{ind}(S^{(n)}) = 1$ and $\text{gcd}(n, \exp(S^{(n)})) = 1$. Recall that since $\text{ind}(S^{(n)}) = 1$, we deduce that $\exp(S^{(n)}) = \text{per}(S^{(n)})$. Hence, $\text{ind}(S^{(n)}) = 1$ and $gcd(n, per(S⁽ⁿ⁾)) = 1$, and by Proposition [3.5,](#page-10-2) it follows that $ind(S) \leq n$ and $gcd(n, per(S)) = gcd(n^2, per(S))$, as required. We are left to prove that $S^{(n)}$ is *n*-commutative. So, suppose that $x, y \in S^{(n)}$. By Theorem [3.1\(](#page-8-0)c), r is an automorphism of $S^{(n)}$, so there exist $a, b \in S^{(n)}$ such that $r(a) = x$ and $r(b) = y$. Since r is multiplicative, it follows that $xy = r(a)r(b) = r(ab)$. Hence $(xy)^n = ab = x^n y^n$, as required.

Conversely, suppose that $\text{ind}(S) \leq n$ and $\text{gcd}(n, \text{per}(S)) = \text{gcd}(n^2, \text{per}(S))$ and that $S^{(n)}$ is *n*-commutative subsemigroup of S. First, by Proposition [3.5,](#page-10-2) we deduce that $gcd(n, per(S^{(n)})) = 1$ and $ind(S^{(n)}) = 1$. Hence, by Theo-rem [3.2,](#page-9-0) every $a \in S^{(n)}$ has a unique *n*-th root \hat{a} in $S^{(n)}$. Now, consider the function $x \cdot S^{(n)} \rightarrow S^{(n)}$ defined by $x(x) = \hat{x}$. Note that x is an *n* th PE over S. function $r : S^{(n)} \to S^{(n)}$ defined by $r(x) = \hat{x}$. Note that r is an n-th RF over S, so it suffices to prove that r is multiplicative. Let $x, y \in S^{(n)}$. On the one hand, since $S^{(n)}$ is a semigroup, it follows that $xy \in S^{(n)}$. Thus, \widehat{xy} is the unique *n*-th root of xy in $S^{(n)}$. On the other hand, $\hat{x}, \hat{y} \in S^{(n)}$ and since $S^{(n)}$ is *n*-
commutative somistion it follows that $\hat{x} \hat{y} \in S^{(n)}$ and $(\hat{x} \hat{y})^n = (\hat{x})^n(\hat{y})^n = xy$ commutative semigroup, it follows that $\widehat{x}\widehat{y} \in S^{(n)}$ and $(\widehat{x}\widehat{y})^n = (\widehat{x})^n(\widehat{y})^n = xy$.
Thus $\widehat{x}\widehat{y}$ is an *n* th root of *nu* in $S^{(n)}$ and by uniqueness $\widehat{x}\widehat{y} = \widehat{x}\widehat{y}$, that is Thus, $\hat{x}\hat{y}$ is an *n*-th root of xy in $S^{(n)}$ and by uniqueness $\hat{x}\hat{y} = \hat{x}\hat{y}$, that is, $r(xy) = r(x)r(y)$, as required.

Next, we turn to prove that there exists at most one *n*-th MRF over S. Suppose that r and \tilde{r} are two n-th MRF's over S. By Theorem [3.1\(](#page-8-0)d), any $x \in S^{(n)}$ has a unique *n*-th root in $S^{(n)}$. In addition, since by Theorem [3.1\(](#page-8-0)a) both $r(x)$ and $\tilde{r}(x)$ are *n*-th roots in $S^{(n)}$, we deduce that $r(x) = \tilde{r}(x)$, as required.

Finally, we prove that in case of existence, any n -th MRF r is of the form $r(x) = x^e$, where e is a positive integer such that $ne \equiv 1 \pmod{per(S^{(n)})}$. Before we begin, note that since $gcd(n, per(S)) = gcd(n^2, per(S))$, it follows by Proposition [3.5\(](#page-10-2)a) that $gcd(n, per(S^{(n)})) = 1$, so a positive number e such that $ne \equiv 1 \pmod{\text{per}(S^{(n)})}$ indeed exists. Now, given $x \in S^{(n)}$, note that $x^e \in S^{(n)}$ by Proposition [3.4\(](#page-10-0)a). Furthermore, since $\text{ind}(S) \leq n$, it follows by Proposition [3.5\(](#page-10-2)b) that $\text{ind}(S^{(n)}) = 1$, so $\text{ind}(x) = 1$. In addition, since $\text{per}(x) \mid \text{per}(S^{(n)})$ and since $ne \equiv 1 \pmod{per(S^{(n)})}$, it follows that $ne \equiv 1 \pmod{per(x)}$. By noting that $1 = \text{ind}(x) < ne$, we deduce that $(x^e)^n = x^{ne} = x$, so x^e is an *n*-th root of x in $S^{(n)}$. Since by Theorem [3.1\(](#page-8-0)d) every element of $S^{(n)}$ has a unique *n*-th root in $S^{(n)}$, it follows that $r(x) = x^e$, as required.

Remark 1. The necessary and sufficient conditions for existence of n -th MRF's, given in Theorem [3.6,](#page-11-0) can be replaced with the aid of Proposition [3.5](#page-10-2) as follows: there exists an *n*-th MRF over S if and only if $S^{(n)}$ is *n*-commutative, $\text{ind}(S^{(n)}) = 1$ and $\text{gcd}(n, \text{per}(S^{(n)})) = 1$. These equivalent conditions are sometimes more usable then those stated in Theorem [3.6.](#page-11-0)

Remark 2. The least positive integer e in Theorem [3.6,](#page-11-0) for which the set $r(x) = x^e$ can be replaced by another least positive integer e' satisfying $ne' \equiv 1 \pmod{m}$, where m is any positive integer such that $gcd(n, m) = 1$ and $per(S^{(n)}) \mid m$. In order to establish that claim, it suffices to prove that $e \equiv e'$ (mod per $(S^{(n)})$). First, note that since $gcd(n, m) = 1$, the congruence $ne' \equiv 1$ (mod m) is indeed solvable. Now, since $\text{per}(S^{(n)}) \mid m$, it follows that $ne' \equiv 1$ (mod per $(S^{(n)})$). Hence $ne \equiv ne' \pmod{per(S^{(n)})}$, so $e \equiv e' \pmod{per(S^{(n)})}$ since $gcd(n, m) = 1$, as required. As we see, expressing r in term of e' rather than e, can be more convenient in some cases.

By Theorem [3.6,](#page-11-0) if an *n*-th MRF over S exists, it is unique. This unique function is denoted by the familiar surd notation $\sqrt[n]{\ }$. Thus, by definition, the function is denoted by the rainmar sure notation \sqrt{v} . Thus, by definition, the
function $x \mapsto \sqrt[n]{x}$ (in case it exists) satisfies $\sqrt[n]{x^n} = x$ and $\sqrt[n]{xy} = \sqrt[n]{x} \sqrt[n]{y}$ for every $x, y \in S^{(n)}$. As we have shown, likewise the familiar real *n*-th roots functions, this function can be written also in exponential notation.

Example 3.7. Consider the set of residues $\mathbb{Z}_8 = \{0, \overline{1}, \overline{2}, \ldots, \overline{7}\}\$ with respect to modular multiplication. Note that, in this case

$$
\langle \overline{2} \rangle = \{ \overline{2}, \overline{4}, \overline{0}, \overline{0}, \overline{0}, \ldots \}.
$$

Thus, $ind(\overline{2}) = 3$, so $ind(\mathbb{Z}_8) \geq 3$. It follows by Theorem [3.6](#page-11-0) that a multiplicative square-RF does not exist over \mathbb{Z}_8 .

Example 3.8. Consider the semigroup S consisting of the $m \times m$ zero matrix O and all the $m \times m$ matrices E_{ij} with 1 on the ij entry and 0 elsewhere. As one can verify, S forms a finite semigroup of order $m^2 + 1$ under matrix multiplication. Note that for every $i, j \in \{1, 2, \ldots, m\}$

$$
E_{ij}^2 = \begin{cases} O & \text{if } i \neq j \\ E_{ii} & \text{if } i = j. \end{cases}
$$

Hence, $\text{ind}(S) = 2$ and $\text{per}(S) = 1$. Therefore, $S^{(n)} = S^{(2)} = \{O, E_{11}, \ldots, E_{mm}\}$ for every integer $n \geq 2$. In addition, note that $S^{(n)}$ is commutative, which implies that $S^{(n)}$ is *n*-commutative. Therefore, by Theorem [3.6,](#page-11-0) we deduce that there exists an *n*-th MRF $x \mapsto \sqrt[n]{x}$ over S. Furthermore, since $e = 1$ trivially satisfies the congruence $ne \equiv 1 \pmod{per(S^{(n)})}$, it follows that $\sqrt[n]{x} = x$ for every $x \in S^{(n)}$, so there is no non-trivial *n*-th MRF over *S*.

Example 3.9. Consider the set of residues $\mathbb{Z}_{26} = \{0, \overline{1}, \overline{2}, \ldots, \overline{25}\}\$ with respect to modular multiplication. In this case

 $\mathbb{Z}_{26}^{(3)} = {\overline{0}, \overline{1}, \overline{5}, \overline{8}, \overline{12}, \overline{13}, \overline{14}, \overline{18}, \overline{21}, \overline{25}}$

and

$$
\begin{array}{ll}\n\langle \overline{0} \rangle = \{ \overline{0}, \overline{0}, \overline{0}, \ldots \} & \langle \overline{13} \rangle = \{ \overline{13}, \overline{13}, \overline{13}, \ldots \} \\
\langle \overline{1} \rangle = \{ \overline{1}, \overline{1}, \overline{1}, \ldots \} & \langle \overline{14} \rangle = \{ \overline{14}, \overline{14}, \overline{14}, \ldots \} \\
\langle \overline{5} \rangle = \{ \overline{5}, \overline{25}, \overline{21}, \overline{1}, \overline{5}, \overline{25}, \ldots \} & \langle \overline{18} \rangle = \{ \overline{18}, \overline{12}, \overline{8}, \overline{14}, \overline{18}, \overline{12}, \ldots \} \\
\langle \overline{8} \rangle = \{ \overline{8}, \overline{12}, \overline{18}, \overline{14}, \overline{8}, \overline{12}, \ldots \} & \langle \overline{21} \rangle = \{ \overline{21}, \overline{25}, \overline{5}, \overline{1}, \overline{21}, \overline{25}, \ldots \} \\
\langle \overline{12} \rangle = \{ \overline{12}, \overline{14}, \overline{12}, \overline{14}, \ldots \} & \langle \overline{25} \rangle = \{ \overline{25}, \overline{1}, \overline{25}, \overline{1}, \ldots \}.\n\end{array}
$$

Observe that $\text{ind}(x) = 1$ and $\text{per}(x) \in \{1, 2, 4\}$ for every $x \in \mathbb{Z}_{26}^{(3)}$. Thus $\text{ind}(\mathbb{Z}_{26}^{(3)}) = 1$ and $\text{per}(\mathbb{Z}_{26}^{(3)}) = 4$. Additionally, since \mathbb{Z}_{26} is commutative, it follows by Theorem [3.6](#page-11-0) that there exists a (unique) multiplicative cube-RF over \mathbb{Z}_{26} . By noticing that $e = 3$ satisfies the congruence $3e \equiv 1 \pmod{4}$, we obtain that this cube-RF is

obtain that this cube-RF is
\nwhere
$$
x \in \mathbb{Z}_{26}^{(3)}
$$
. Hence,
\n $\sqrt[3]{\overline{0}} = \overline{0}$ $\sqrt[3]{\overline{1}} = \overline{1}$ $\sqrt[3]{\overline{5}} = \overline{21}$ $\sqrt[3]{\overline{8}} = \overline{18}$ $\sqrt[3]{\overline{12}} = \overline{12}$
\n $\sqrt[3]{\overline{13}} = \overline{13}$ $\sqrt[3]{\overline{14}} = \overline{14}$ $\sqrt[3]{\overline{18}} = \overline{8}$ $\sqrt[3]{\overline{21}} = \overline{5}$ $\sqrt[3]{\overline{25}} = \overline{25}$.

COROLLARY 3.10. Suppose that S is a finite commutative semigroup and $m, n \geqslant 2$ are integers. In addition, suppose that there exists an n-th MRF over S. If $n \mid m$ and if m has exactly the same prime divisors as n, then there exists an m-th MRF over S. In particular, there exists an n^k -th MRF over S for every positive integer k.

Proof. By Theorem [3.6,](#page-11-0) the existence of an *n*-th MRF over S implies that $\text{ind}(S) \leq n$ and $\text{gcd}(n, \text{per}(S)) = \text{gcd}(n^2, \text{per}(S))$. Note that since S is commutative, it suffices to prove that

 $\text{ind}(S) \leqslant m$ and $\text{gcd}(m, \text{per}(S)) = \text{gcd}(m^2, \text{per}(S)).$

First, since $\text{ind}(S) \leq n$ and $n \mid m$, it follows that $\text{ind}(S) \leq m$. Next, suppose that $p^a||n$, where p is a prime and $a \geq 1$, and let $b \geq 0$ such that $p^b \text{||} \gcd(n, \text{per}(S))$. Then $b \leq a$. We claim that $p^b \text{||per}(S)$. Indeed, suppose otherwise that p^{b+1} | per(S). Since $p^{2a}||n^2$ and $b+1 \leq a+1 \leq 2a$, it follows that $p^{b+1} \mid n^2$, so $p^{b+1} \mid \gcd(n^2, \text{per}(S))$, which contradicts the fact that $gcd(n, per(S)) = gcd(n^2, per(S))$. So $p^b||per(S)$ and since $n | m$, we deduce that p^b || gcd $(m, \text{per}(S))$ and p^b || gcd $(m^2, \text{per}(S))$. Now, n and m have the same prime divisors, so $gcd(n, per(S)) = gcd(m, per(S))$ and $gcd(n^2, per(S)) =$ $gcd(m^2, \text{per}(S))$. Therefore, $gcd(m, \text{per}(S)) = gcd(m^2, \text{per}(S))$, as required. П

Recall that given two finite semigroups (S, \cdot) and (T, \bullet) , then $S \times T$ with the binary operation $*$ defined by $(x_1, y_1) * (x_2, y_2) = (x_1 \cdot x_2, y_1 \cdot y_2)$ is a semigroup. Note also that since $per((x, y)) = lcm(per(x), per(y))$ and $ind((x, y)) = max{ind(x), ind(y)}$ for every $(x, y) \in S \times T$, it follows that $ind(S \times T) = max{ind(S), ind(T)}$ and $per(S \times T) = lcm(per(S), per(T)).$

The next result, which is useful in the sequel, follows straightforwardly from the definition of $S \times T$.

PROPOSITION 3.11. Suppose that S and T are finite semigroups and $n \geq$ 2 is an integer. Then there exist n-th MRF's over S and over T if and only if there exists an n-th MRF over $S \times T$.

4. THE n-TH MRF OVER FINITE GROUPS

In this section, we implement the previous results assuming that $S = G$ is a finite group with identity element $1 = 1_G$. Recall that in the case of a finite group G, $ind(G) = 1$, so $per(G) = exp(G)$, where here $exp(G)$ denotes, as usual, the least positive integer k such that $x^k = 1$ for all $x \in G$. As a matter of terminology, in the framework of groups, the concept of n-commutative group is referred as *n*-abelian group. Thus, the group G is *n*-abelian if and only if $(ab)^n = a^n b^n$ for every $a, b \in G$. Notice that 2-abelian and 3-abelian groups are abelian (see [\[6,](#page-31-5) pp. 35, 48]). Recall also that an n-th MRF r over G is *trivial* if and only if $r(x) = x$ for all $x \in G^{(n)}$.

In the following proposition, we summarize some basic results that is used in the rest of this section.

PROPOSITION 4.1. Suppose that G is a finite group and $n \geq 2$ is an integer. Then

- (a) $G^{(n)} = G$ if and only if $gcd(n, |G|) = 1$. Consequently, if $gcd(n, |G|) = 1$, then every $a \in G$ has a unique n-th root.
- (b) If r is an n-th MRF over G, then r is trivial if and only if $\exp(G^{(n)})$ $n-1$. Consequently, if either $exp(G) \mid n \text{ or } exp(G) \mid n-1$, then r is trivial.
- (c) If $G^{(n)}$ is a subgroup of G, then $gcd(n, exp(G)) = gcd(n^2, exp(G))$ if and only if $gcd(n, |G^{(n)}|) = 1$.

Proof. (a) is well known. To prove (b), note that since in the framework of groups $r(x) = x$ if and only if $x^{n-1} = 1$ for every $x \in G^{(n)}$, it follows that r is trivial if and only if $exp(G^{(n)}) | n-1$, as required. Furthermore, if $exp(G) | n$,

then $G^{(n)} = \{1\}$ and $exp(G^{(n)}) \mid n-1$, so r is trivial by the first part of the proof. If $\exp(G) \mid n-1$, then $\exp(G^{(n)}) \mid n-1$ since $G^{(n)} \leq G$. Thus, by the first part of the proof r is trivial, as required.

Now, we turn to proving (c). Since $gcd(n, exp(G)) = gcd(n^2, exp(G))$ if and only if $gcd(n, exp(G^{(n)})) = 1$ by Proposition [3.5\(](#page-10-2)a), it suffices to prove that $gcd(n, |G^{(n)}|) = 1$ if and only if $gcd(n, exp(G^{(n)})) = 1$. Indeed, we notice that if $gcd(n, |G^{(n)}|) = 1$, then $gcd(n, exp(G^{(n)})) = 1$ since $exp(G^{(n)}) | |G^{(n)}|$. Conversely, suppose otherwise that $gcd(n, |G^{(n)}|) \neq 1$ and let p be a prime number such that $p \mid n$ and $p \mid |G^{(n)}|$. Then, $G^{(n)}$ has an element of order p, so $p | \exp(G^{(n)})$. Hence $gcd(n, exp(G^{(n)})) \neq 1$, a contradiction. \Box

We note that over any finite group G , we can construct a trivial *n*-th MRF over G for *some* integer $n \ge 2$. For example, if $n \ge 2$ is an integer such that $\exp(G) \mid n$, then $G^{(n)} = \{1\}$, so the function r defined by $r(1) = 1$, is a trivial MRF over G . Naturally, we are interested in non-trivial *n*-th MRF's.

Proposition [4.1\(](#page-15-1)a) implies that if $gcd(n, |G|) = 1$, then there exists a unique n-th RF over G . It should be stressed that this function does not have to be multiplicative. To illustrate this, consider the symmetric group of three elements $S_3 = \{(), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)\}.$ Note that in this case

() ¹ ⁵ = {()} (1 3) ¹ ⁵ = {(1 3)} (1 2 3) ¹ ⁵ = {(1 3 2)} (1 2) ¹ ⁵ = {(1 2)} (2 3) ¹ ⁵ = {(2 3)} (1 3 2) ¹ ⁵ = {(1 2 3)}

so there exists a (non-trivial) unique 5-th RF over S_3 defined by

$$
\sqrt[5]{\binom{3}{1}} = \begin{pmatrix} 1 & \sqrt[5]{13} \\ \sqrt[5]{12} & \sqrt[5]{23} \end{pmatrix} = \begin{pmatrix} 13 & \sqrt[5]{123} \\ \sqrt[5]{123} & \sqrt[5]{123} \end{pmatrix} = \begin{pmatrix} 132 \\ \sqrt[5]{123} \end{pmatrix}
$$
\n
$$
\sqrt[5]{\binom{12}{1}} = \begin{pmatrix} 132 \\ \sqrt[5]{12}} \end{pmatrix}
$$

However, this function is not multiplicative since $\sqrt[5]{(1\,2)}\sqrt[5]{(1\,3)} \neq \sqrt[5]{(1\,2)(1\,3)}$.

In the following theorem, we gather the main results on n -th MRF's over finite groups.

THEOREM 4.2. Suppose that G is a finite group and $n \geq 2$ is an integer. Then there exists a n-th MRF r over G if and only if $G^{(n)}$ is an n-abelian subgroup of G and $gcd(n, exp(G)) = gcd(n^2, exp(G))$. Furthermore, if r exists, then the following assertions hold:

- (a) r is the unique n-th MRF over G and it is given by $r(x) = x^e$, where e is the least positive integer such that $ne \equiv 1 \pmod{|G^{(n)}|}$. Furthermore, r is non-trivial if and only if $e > 1$.
- (b) $G^{(n)} \trianglelefteq G$ and consequently $r(x^g) = r(x)^g$ for every $x \in G^{(n)}$ and $g \in G$.
- (c) $\exp(G/G^{(n)}) \mid n$.

Proof. The first statement of the theorem follows by applying Theorem [3.6](#page-11-0) to finite groups.

(a) By Theorem [3.6,](#page-11-0) r is unique and is given by $r(x) = x^e$, where e is the least positive integer satisfying $ne \equiv 1 \pmod{\exp(G^{(n)})}$. Note that by Propo-sition [4.1\(](#page-15-1)b), r is trivial if and only if $n \equiv 1 \pmod{\exp(G^{(n)})}$. Hence, r is nontrivial if and only if $e > 1$, as claimed. Furthermore, since $gcd(n, exp(G)) =$ $gcd(n^2, exp(G))$, we deduce by Proposition [4.1\(](#page-15-1)c) that $gcd(n, |G^{(n)}|) = 1$. Now, by noticing that $\exp(G^{(n)}) \mid |G^{(n)}|$, it follows by Remark [2](#page-13-0) that we may choose e to be the least positive integer such that $ne \equiv 1 \pmod{G^{(n)}}$, as required.

(b) Since there exists an *n*-th MRF over G, it follows that $G^{(n)}$ is a subgroup of G. If $a \in G^{(n)}$, then $a = b^n$ for some $b \in G$ and if $g \in G$, then

$$
a^g = g^{-1}ag = g^{-1}b^n g = (g^{-1}bg)^n = (b^g)^n \in G^{(n)}.
$$

Hence $G^{(n)} \triangleleft G$. In addition, if $b = r(a)$, then $b \in G^{(n)}$ by Theorem [3.1\(](#page-8-0)a) and hence $b^g \in G^{(n)}$. Since b^g is an *n*-th root of a^g , it follows by Theorem [3.1\(](#page-8-0)d) that $r(a^g) = b^g = r(a)^g$, as claimed.

(c) By Part (b) the quotient $G/G^{(n)}$ is well defined. Since $g^n \in G^{(n)}$ for every $g \in G$, it follows that the order of every element of $G/G^{(n)}$ divides n. Hence $\exp(G/G^{(n)}) \mid n$, as required. \Box

Remark 3. The necessary and sufficient conditions for existence of n -th MRF's, given in Theorem [4.2,](#page-16-0) can be replaced with the aid of Proposition $4.1(c)$ as follows: There exists an *n*-th MRF r over G if and only if $G^{(n)}$ is an *n*-abelian subgroup of G and $gcd(n, |G^{(n)}|) = 1$.

If G is a finite abelian group, then $G^{(n)}$ is n-abelian and we get the following result.

COROLLARY 4.3. Suppose that G is a finite abelian group and $n \geq 2$ is an integer. Then there exists an n-th MRF over G if and only if $gcd(n, exp(G)) =$ $gcd(n^2, exp(G))$. In particular, an n-th MRF exists if $gcd(n, exp(G)) = 1$.

If G is non-abelian, then the existence of an n-th MRF over G requires $G^{(n)}$ to be *n*-abelian. The following result of Alperin [\[1\]](#page-31-6) gives a criterion for a finite group to be *n*-abelian. Even though, it is quite difficult to pin down the structure of n-abelian groups from such a description.

THEOREM (Alperin). A finite group is n-abelian if and only if it is a homomorphic image of a subgroup of the direct product of a finite abelian group, a finite group of exponent dividing n and a finite group of exponent dividing $n-1$.

In the case of the multiplicative square-root and third-root functions, Theorem [4.2](#page-16-0) and Remark [3](#page-17-0) imply the following result.

COROLLARY 4.4. Suppose that G is a finite group and let $n \in \{2,3\}$. Then there exists an n-th MRF over G if and only if $G^{(n)}$ is an abelian subgroup of G and $n \nmid |G^{(n)}|$. Consequently, either $G = G^{(n)}$ or $\exp(G/G^{(n)}) = n$.

Proof. Let $n \in \{2, 3\}$. By Theorem [4.2](#page-16-0) and Remark [3,](#page-17-0) there exists an *n*-th MRF over G if and only if $G^{(n)}$ is *n*-abelian subgroup of G and $gcd(n, |G^{(n)}|)$ = 1. If $G^{(n)}$ is an abelian subgroup of G and $n \nmid |G^{(n)}|$, then $G^{(n)}$ is n-abelian and $gcd(n, |G^{(n)}|) = 1$ since n is a prime, so an n-th MRF over G exists. Conversely, suppose that $G^{(n)}$ is *n*-abelian subgroup of G and $gcd(n, |G^{(n)}|) = 1$. Then $n \nmid |G^{(n)}|$ and $(ab)^n = a^n b^n$ for every $a, b \in G^{(n)}$. Since $n \in \{2,3\}, G^{(n)}$ is an abelian subgroup of G . Therefore, there exists an *n*-th MRF over G if and only if $G^{(n)}$ is an abelian subgroup of G and $n \nmid |G^{(n)}|$, as required.

For the second part of the corollary, since $exp(G/G^{(n)})$ | n by The-orem [4.2\(](#page-16-0)c), it follows that either $G = G^{(n)}$ or $exp(G/G^{(n)}) = n$, as required. \square

Example 4.5. For an integer $m \ge 2$, let us consider the Dihedral group

$$
D_{2m} = \langle a, b \mid a^m = b^2 = 1, bab^{-1} = a^{-1} \rangle.
$$

Since $(a^{\alpha}b)^2 = 1$ for every integer α , it follows that $D_{2m}^{(2)} = \langle a^2 \rangle$ which is cyclic of order $\frac{m}{\gcd(m,2)}$. Since $\frac{m}{\gcd(m,2)}$ is odd if and only if $4 \nmid m$, it follows by Corollary [4.4](#page-18-0) that there exists a multiplicative square-root function over D_{2m} if and only if $4 \nmid m$. Notice that this function is non-trivial if and only if $m > 2$. In particular, there exists a non-trivial multiplicative square-root function over $D_6 \cong S_3$, but not over D_8 .

In the following theorems, we investigate the existence of a non-trivial n-th MRF's over certain families of groups.

THEOREM 4.6. There exist no non-trivial n-th MRF's over finite nonabelian simple groups for every integer $n \geqslant 2$.

Proof. Suppose that r is an n-th MRF over a simple group G. By The-orem [4.2\(](#page-16-0)b), $G^{(n)}$ is a normal subgroup of G and since G is simple, it follows that either $G^{(n)} = \{1\}$ or $G^{(n)} = G$.

If $G^{(n)} = \{1\}$, then $\exp(G^{(n)}) \mid n-1$, so r is trivial by Proposition [4.1\(](#page-15-1)b). If, on the other hand, $G^{(n)} = G$, then $gcd(n, |G|) = 1$ by Proposition [4.1\(](#page-15-1)a). Since G is a non-abelian simple group, it follows by Feit–Thompson theorem, that G is of even order and hence, n is an odd integer. Moreover, the set $H = \langle x \in G \mid x^2 = 1 \rangle$ is a non-trivial normal subgroup of G. Hence $H = G$ and if $g \in G$, then $g = a_1 a_2 \cdots a_k$, where the a_i 's are involutions. Since G is n -abelian and n is an odd integer, it follows that

$$
g^{n} = (a_{1}a_{2}...a_{k})^{n} = a_{1}^{n}a_{2}^{n}...a_{k}^{n} = a_{1}a_{2}...a_{k} = g.
$$

Therefore $g^{n-1} = 1$ for each $g \in G$, which implies that $\exp(G) \mid n-1$. Thus, r is trivial by Proposition [4.1\(](#page-15-1)b). \Box

THEOREM 4.7. Let G be a p-group for some prime p and let $n \geq 2$ be an integer. Then there exists a non-trivial n-th MRF over G if and only if $p \nmid n$, G is n-abelian and $\exp(G) \nmid n-1$.

Proof. Suppose that $p \nmid n$, G is n-abelian group and $\exp(G) \nmid n-1$. Since $p \nmid n$ and G is a p-group, it follows by Proposition [4.1\(](#page-15-1)a) that $G^{(n)} = G$. Hence, $G^{(n)}$ is an *n*-abelian subgroup of G, $gcd(n, |G^{(n)}|) = 1$ and $exp(G^{(n)}) \nmid n-1$. Thus, by Theorem [4.2,](#page-16-0) Remark [3](#page-17-0) and Proposition [4.1\(](#page-15-1)b) there exists a nontrivial *n*-th MRF over G .

Conversely, suppose that r is a non-trivial n-th MRF over G . Then $G^{(n)}$ is a normal subgroup of G by Theorem [4.2\(](#page-16-0)b). Suppose by contradiction that $G^{(n)} \neq G$. Since r is non-trivial, it follows that $G^{(n)} \neq \{1\}$, so p | $|G^{(n)}|$. In addition, $p | \exp(G/G^{(n)})$ since $G^{(n)} \neq G$. But by Theorem [4.2\(](#page-16-0)c) $exp(G/G^{(n)}) \mid n$, so $p \mid gcd(n, |G^{(n)}|)$ in contradiction to $gcd(n, |G^{(n)}|) = 1$, which is required by Remark [3.](#page-17-0) Therefore $G^{(n)} = G$. Since r is non-trivial, we deduce that $exp(G) \nmid n-1$. In addition, $gcd(n, |G|) = 1$ by Proposition [4.1\(](#page-15-1)a), so $p \nmid n$, as required. \square

In the following theorem, we discuss the existence of an n -th MRF over certain non-abelian p-groups.

THEOREM 4.8. Let p be an odd prime number and let $n \geqslant 2$ be an integer. In addition, suppose that m, k are positive integers such that $m \geq 2k$ and consider the following p-group

$$
C_{p^m} \rtimes C_{p^k} = \langle a, b \mid a^{p^m} = 1, b^{p^k} = 1, bab^{-1} = a^{p^{m-k}+1} \rangle.
$$

Then there exists a non-trivial n-th MRF over $C_{p^m} \rtimes C_{p^k}$ if and only if $n \equiv 1$ $\pmod{p^k}$ and $n \not\equiv 1 \pmod{p^m}$.

Proof. We begin by noting that by [\[10,](#page-31-7) pp. 414–415] the presentation above indeed defines a group. Moreover, every element in G is of the form $a^{\alpha}b^{\beta}$, where $\alpha \in \{0, 1, \ldots, p^m - 1\}, \beta \in \{0, 1, \ldots, p^k - 1\}$ and the product rule is

$$
(a^{\alpha}b^{\beta})(a^{\gamma}b^{\delta}) = a^{\alpha + \gamma(p^{m-k}+1)^{\beta}}b^{\beta + \delta}.
$$

Note that since $m \geq 2k$, it follows that $j(m - k) \geq 2(m - k) \geq m$ for every $2 \leq j \leq \beta$. Hence

$$
(1+p^{m-k})^{\beta} = \sum_{j=0}^{\beta} {\beta \choose j} p^{j(m-k)} \equiv 1 + \beta p^{m-k} \pmod{p^m},
$$

so the product rule can be simplified as follows

$$
(a^{\alpha}b^{\beta})(a^{\gamma}b^{\delta}) = a^{\alpha+\gamma+\beta\gamma p^{m-k}}b^{\beta+\delta}.
$$

Using induction, we get that

$$
(a^{\alpha}b^{\beta})^n = a^{n\alpha + \frac{n(n-1)}{2}\alpha\beta p^{m-k}}b^{n\beta}
$$

for every *n*. Notice that $\frac{p^m-1}{2}$ is an integer, so $(a^{\alpha}b^{\beta})^{p^m} = 1$. Hence, we have $exp(G) = p^m$.

First, we prove that G is *n*-abelian if and only if $n^2 \equiv n \pmod{p^k}$. On the one hand, since $2(m-k) \geq m$, we obtain that $a^{p^{2(m-k)}} = 1$, so by the product rule

$$
(a^{\alpha}b^{\beta})^n(a^{\gamma}b^{\delta})^n = (a^{n\alpha + \frac{n(n-1)}{2}\alpha\beta p^{m-k}}b^{n\beta})(a^{n\gamma + \frac{n(n-1)}{2}\gamma\delta p^{m-k}}b^{n\delta})
$$

=
$$
a^{n(\alpha+\gamma) + \frac{n(n-1)}{2}p^{m-k}(\alpha\beta+\gamma\delta) + n\beta(n\gamma + \frac{n(n-1)}{2}\gamma\delta p^{m-k})p^{m-k}}b^{n(\beta+\delta)}
$$

=
$$
a^{n(\alpha+\gamma) + \frac{n(n-1)}{2}p^{m-k}(\alpha\beta+\gamma\delta) + n^2\beta\gamma p^{m-k}}b^{n(\beta+\delta)}.
$$

On the other hand,

$$
((a^{\alpha}b^{\beta})(a^{\gamma}b^{\delta}))^{n} = (a^{\alpha+\gamma+\beta\gamma p^{m-k}}b^{\beta+\delta})^{n}
$$

= $a^{n(\alpha+\gamma+\beta\gamma p^{m-k})+\frac{n(n-1)}{2}}(\alpha+\gamma+\beta\gamma p^{m-k})(\beta+\delta)p^{m-k}}b^{n(\beta+\delta)}$
= $a^{n(\alpha+\gamma+\beta\gamma p^{m-k})+\frac{n(n-1)}{2}}(\alpha+\gamma)(\beta+\delta)p^{m-k}}b^{n(\beta+\delta)}.$

Therefore, G is *n*-abelian if and only if

$$
n(\alpha + \gamma) + \frac{n(n-1)}{2} p^{m-k} (\alpha \beta + \gamma \delta) + n^2 \beta \gamma p^{m-k}
$$

\n
$$
\equiv n(\alpha + \gamma + \beta \gamma p^{m-k}) + \frac{n(n-1)}{2} (\alpha + \gamma) (\beta + \delta) p^{m-k} \pmod{p^m},
$$

that is, if and only if

$$
n^2 \beta \gamma p^{m-k} \equiv n \beta \gamma p^{m-k} + \frac{n(n-1)}{2} (\alpha \delta + \gamma \beta) p^{m-k} \pmod{p^m}
$$

for every integers $\alpha, \beta, \gamma, \delta$. Since p is odd, the above congruence is equivalent to

$$
2n^2\beta\gamma \equiv 2n\beta\gamma + n(n-1)(\alpha\delta + \gamma\beta) \pmod{p^k},
$$

that is, to

$$
n(n-1)(\beta\gamma - \alpha\delta) \equiv 0 \pmod{p^k} \qquad (*)
$$

Clearly, (*) is true for every $\alpha, \beta, \gamma, \delta$ if and only if $n(n-1) \equiv 0 \pmod{p^k}$, as claimed.

Now, we turn to proving our main assertion. If $n \equiv 1 \pmod{p^k}$ and $n \neq 1 \pmod{p^m}$, then $p \nmid n$ and $\exp(G) \nmid n-1$, since $\exp(G) = p^m$. In

addition, $n^2 \equiv n \pmod{p^k}$, so by the first part of the proof G is *n*-abelian. Therefore, by Theorem [4.7,](#page-19-0) there exists a non-trivial *n*-th MRF over G .

Conversely, suppose that there exists a non-trivial *n*-th MRF over G . Then $p \nmid n$, G is an n-abelian and exp(G) $\nmid n-1$ by Theorem [4.7.](#page-19-0) Hence $n \neq 1$ (mod p^m) and $n^2 \equiv n \pmod{p^k}$ by the first part of the proof. But $p \nmid n$, so $n \equiv 1 \pmod{p^k}$, as required. \Box

Example 4.9. Given an odd prime p , let us consider the set

$$
G = \left\{ \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{0} & \overline{1} \end{pmatrix} : \overline{a}, \overline{b} \in \mathbb{Z}_{p^2} \text{ and } a \equiv 1 \pmod{p} \right\}.
$$

Note that

$$
\begin{pmatrix} \overline{a} & \overline{b} \\ \overline{0} & \overline{1} \end{pmatrix} \begin{pmatrix} \overline{c} & \overline{d} \\ \overline{0} & \overline{1} \end{pmatrix} = \begin{pmatrix} \overline{ac} & \overline{ad+b} \\ \overline{0} & \overline{1} \end{pmatrix}.
$$

In addition, since $ac \equiv 1 \pmod{p}$ whenever $a \equiv 1 \pmod{p}$ and $c \equiv 1 \pmod{p}$. it can be easily verified that G is a non-abelian group of order p^3 . By [\[5,](#page-31-8) p. 50] there exist, up to isomorphism, only two non-abelian group of order p^3 , namely $C_{p^2} \rtimes C_p = \langle a, b \mid a^{p^2} = 1, b^p = 1, bab^{-1} = a^{p+1} \rangle$ and $(C_p \times C_p) \rtimes C_p = \langle a, b, c \mid a \rangle$ $a^p = 1, b^p = 1, c^p = 1, ab = bac, ca = ac, cb = bc$. Now, if m is any positive integer, then it can be shown using induction that

(*)
$$
\left(\begin{array}{cc} \overline{a} & \overline{b} \\ \overline{0} & \overline{1} \end{array}\right)^m = \left(\begin{array}{cc} \overline{a}^m & \overline{b}(\overline{1} + \overline{a} + \overline{a}^2 + \dots + \overline{a}^{m-1}) \\ \overline{0} & \overline{1} \end{array}\right)
$$

so, in particular

$$
\begin{pmatrix} \overline{1} & \overline{1} \\ \overline{0} & \overline{1} \end{pmatrix}^p = \begin{pmatrix} \overline{1} & \overline{p} \\ \overline{0} & \overline{1} \end{pmatrix}.
$$

Therefore $\exp(G) \neq p$, so $G \cong C_{p^2} \rtimes C_p$.

By Theorem [4.8,](#page-19-1) there exists a non-trivial *n*-th MRF over G if and only if $n \equiv 1 \pmod{p}$ and $n \not\equiv 1 \pmod{p^2}$, that is, if and only if $p||n-1$. Let us describe the corresponding $(p + 1)$ -th root function. In this case, since $gcd(p+1, |G|) = 1$, it follows that $G^{(p+1)} = G$. By Theorem [4.2,](#page-16-0) this function is of the form $r(x) = x^e$, where e is the least positive integer such that $(p+1)e \equiv 1$ (mod p^3). Note that $p^3 + 1 = (p+1)(p^2 - p + 1)$, so $e = p^2 - p + 1$. Thus

$$
\sqrt[p+1]{\left(\begin{array}{cc}\overline{a}&\overline{b}\\0&\overline{1}\end{array}\right)}=\left(\begin{array}{cc}\overline{a}&\overline{b}\\0&\overline{1}\end{array}\right)^{p^2-p+1}
$$

This expression can be simplified as follows: Note that by [\[9,](#page-31-4) p. 42], $a^{\varphi(p^2)} \equiv 1$ (mod p^2), where φ denotes the Euler totient function. Hence $a^{p^2-p+1} \equiv a$

(mod p^2). In addition, recall that $a \equiv 1 \pmod{p}$, so let k be the integer such that $a = 1 + pk$. Then

$$
a^{m} = (1 + pk)^{m} = 1 + {m \choose 1}pk + \sum_{j=2}^{m} {m \choose j}p^{j}k^{j} \equiv 1 + mpk \pmod{p^{2}}
$$

for every non-negative integer m. Hence

$$
1 + a + a2 + \dots + ap2-p \equiv \sum_{m=0}^{p2-p} (1 + mpk)
$$

= $(1 + p2 - p) (1 + \frac{p-1}{2} p2 k) \equiv 1 - p \pmod{p2}$

and by (∗) we deduce that

$$
\sqrt[p+1]{\begin{pmatrix} \overline{a} & \overline{b} \\ \overline{0} & \overline{1} \end{pmatrix}} = \begin{pmatrix} \overline{a} & (\overline{1} - \overline{p})\overline{b} \\ \overline{0} & \overline{1} \end{pmatrix}.
$$

As an illustrative example, if $p = 3$, then there exists a multiplicative forth-root function over G and this function is given by

$$
\sqrt[4]{\left(\begin{array}{cc}\overline{a} & \overline{b}\\ \overline{0} & \overline{1}\end{array}\right)} = \left(\begin{array}{cc}\overline{a} & \overline{7b}\\ \overline{0} & \overline{1}\end{array}\right).
$$

Note that on the one hand,

$$
\sqrt[4]{\left(\begin{matrix} \overline{2} & \overline{4} \\ \overline{0} & \overline{1} \end{matrix}\right) \left(\begin{matrix} \overline{3} & \overline{2} \\ \overline{0} & \overline{1} \end{matrix}\right)} = \sqrt[4]{\left(\begin{matrix} \overline{6} & \overline{8} \\ \overline{0} & \overline{1} \end{matrix}\right)} = \left(\begin{matrix} \overline{6} & \overline{2} \\ \overline{0} & \overline{1} \end{matrix}\right)
$$

and on the other hand

$$
\sqrt[4]{\left(\frac{\overline{2}}{0} - \frac{\overline{4}}{1}\right)} \sqrt[4]{\left(\frac{\overline{3}}{0} - \frac{\overline{2}}{1}\right)} = \left(\frac{\overline{2}}{0} - \frac{\overline{1}}{1}\right) \left(\frac{\overline{3}}{0} - \frac{\overline{5}}{1}\right) = \left(\frac{\overline{6}}{0} - \frac{\overline{2}}{1}\right),
$$

$$
\sqrt[4]{\left(\frac{\overline{2}}{0} - \frac{\overline{4}}{1}\right) \left(\frac{\overline{3}}{0} - \frac{\overline{2}}{1}\right)} = \sqrt[4]{\left(\frac{\overline{2}}{0} - \frac{\overline{4}}{1}\right)} \sqrt[4]{\left(\frac{\overline{3}}{0} - \frac{\overline{2}}{1}\right)},
$$

as expected.

so

The MRF's discussed in Theorem [4.8](#page-19-1) and in Example [4.9](#page-21-0) were over nonabelian *p*-groups with exponent at least p^2 . In the next theorem, we wish to discuss the existence of MRF over non-abelian finite group with exponent p. In order to do so, we need a new notation: given a finite group G and an integer n, let $f_n: G \to G$ be the function defined by $f_n(x) = x^n$. Note that G is *n*-abelian if and only if f_n is a homomorphism of G into G. The following result is useful.

THEOREM (Trotter [\[11\]](#page-31-9)). Suppose that G is a finite group and $n \geq 2$ is an integer. If f_n is an automorphism of G, then f_{n-1} is a homomorphism of G into G.

In addition, we say that a finite group G is *trivially n-abelian* if either $x^n = 1$ for each $x \in G$ or $x^n = x$ for each $x \in G$, that is, if either $\exp(G) \mid n$ or $\exp(G)$ | n – 1. Now, we are ready to prove.

THEOREM 4.10. Let G be a non-abelian finite group of prime exponent p and let $n \geqslant 2$ be an integer. Then G is n-abelian if and only if it is trivially n-abelian. Consequently, there exist no non-trivial n-th MRF's over G .

Proof. Clearly, if G is trivially *n*-abelian, then it is *n*-abelian. Conversely, suppose that G is *n*-abelian. Note that in order to prove our assertion, it suffices to prove that either $p \mid n$ or $p \mid n-1$. Suppose by way of contradiction that $p \nmid n$ and $p \nmid n-1$. Since $\exp(G) = p$, it follows that G is a p-group. Thus $gcd(n, |G|) = 1$, so $G^{(n)} = G$ by Proposition [4.1\(](#page-15-1)a). Let $m \geq 0$ and $0 \leq d < p$ be integers such that $n = mp + d$. Since $p \nmid n$ and $p \nmid n-1$, it follows that $d \geq 2$. In view of the fact that $exp(G) = p$ and $n = mp + d$, we deduce that $g^n = g^d$ for every $g \in G$, and since G is *n*-abelian, it follows that G is also dabelian. Let k be the smallest integer in $\{2, 3, \ldots, d\}$ such that G is k-abelian. If $k = 2$, then G is abelian, which contradicts our assumption. If $2 < k \leq d$, then $p \nmid k$, since $d < p$. Hence $G^{(k)} = G$ by Proposition [4.1\(](#page-15-1)a) and we deduce that $f_k(x) = x^k$ is an automorphism of G. By Trotter's result it follows that $f_{k-1}(x) = x^{k-1}$ is a homomorphism of G into G, so G is $(k-1)$ -abelian, which contradicts the minimality of k.

For the second part of theorem, suppose that r is a non-trivial n-th MRF over G. On the one hand, since r is non-trivial, it follows by Proposition [4.1\(](#page-15-1)b) that $\exp(G)$ $\nmid n$ and $\exp(G)$ $\nmid n-1$. Thus, G is not trivially n-abelian. On the other hand, by Theorem [4.2](#page-16-0) it follows that $G^{(n)}$ is *n*-abelian and since $p \nmid n$, we may deduce that $G^{(n)} = G$, so G is n-abelian. But by the first part of the proof, it follows that G is trivially n-abelian, a contradiction. \Box

5. n-TH MRF OVER FINITE COMMUTATIVE RINGS

If R is a finite ring, then by viewing R as a semigroup with respect to multiplication, Theorem [3.6](#page-11-0) provides a necessary and sufficient condition for existence of an *n*-th MRF over R . Our goal in this section is to provide a simplified criterion for existence of such a function in the special case of finite commutative rings. As an application, we formulate a criterion for the existence of a *n*-th MRF over finite fields and over the ring $\mathbb{Z}_m = {\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{m-1}}$ of residues modulo m, for integers $m > 1$.

Throughout this section, we assume that R is a *commutative* ring with an identity element $1 = 1_R$ and a zero element $0 = 0_R$. By a unit, k such that $x^k = 0$. The *index of nilpotency* of x is the least positive integer k such that $x^k = 0$. Note that viewing R as a semigroup with respect to multiplication, if $x \in R$ is nilpotent, then $per(x) = 1$ and $ind(x)$ is the index of nilpotency of x. If R is a finite commutative ring, then by [\[2,](#page-31-10) p. 40] R can be expressed as a direct product of local rings, say

$$
R \cong R_1 \times R_2 \times \cdots \times R_s.
$$

Moreover, this decomposition is unique up to permutation of the factors. Recall that R is a *local ring* if it has a unique maximal ideal. A basic example of a local ring is the ring \mathbb{Z}_{p^k} , where p is a prime number. In this case, the unique maximal ideals is (\bar{p}) . The ring \mathbb{Z}_6 , for example, is not local since $(\bar{2})$ and (3) are both different maximal ideal of \mathbb{Z}_6 . In the case of \mathbb{Z}_m , if $m > 1$ and $m = p_1^{a_1} \cdots p_s^{a_s}$ is its decomposition into distinct prime factors, then the local ring decomposition of \mathbb{Z}_m is

$$
\mathbb{Z}_m\cong \mathbb{Z}_{p_1^{a_1}}\times\cdots\times \mathbb{Z}_{p_s^{a_s}}
$$

(see [\[8,](#page-31-11) p. 95]).

PROPOSITION 5.1. Let R be a finite commutative local ring. Then every non-unit element $x \in R$ is nilpotent.

Proof. Let M be the unique maximal ideal of R. Since R is local, it follows by $[8, p. 110]$ $[8, p. 110]$ that every element of M is a non-unit, while every element of $R \setminus M$ is a unit. Now, let x be a non-unit element of R and let $\alpha = \text{ind}(x), \ \beta = \text{ord}(x) + 1.$ Then $x^{\alpha} = x^{\beta}$ and $\alpha < \beta$, so $x^{\alpha}(1 - x^{\beta - \alpha}) = 0.$ Since x is a non-unit, it follows that $x^{\beta-\alpha} \in M$. If $1-x^{\beta-\alpha} \in M$, then $1 = x^{\beta-\alpha} + (1-x^{\beta-\alpha}) \in M$, which is false. Hence $1-x^{\beta-\alpha}$ is a unit, so $x^{\alpha} = 0$, as required.

PROPOSITION 5.2. Suppose that R is a finite commutative local ring and assume that $n \geqslant 2$ is an integer. Then there exists an n-th MRF over R if and only if $gcd(n, exp(R^*)) = gcd(n^2, exp(R^*))$ and $R^{(n)} \setminus \{0\} \subseteq R^*$.

Proof. By Theorem [3.6,](#page-11-0) there exists an *n*-th MRF over R if and only if $gcd(n, per(R)) = gcd(n^2, per(R))$ and $ind(R) \leq n$. Hence, it suffices to show that $per(R) = exp(R^*)$, and that $ind(R) \leq n$ if and only if $R^{(n)} \setminus \{0\} \subseteq R^*$.

Let $R^* = \{x_1, \ldots, x_k\}$ and $R \setminus R^* = \{x_{k+1}, \ldots, x_n\}$ be the sets of units and non-units in R, respectively. If $x \in R$ is non-unit, then x is nilpotent by Proposition [5.1,](#page-24-0) so $per(x) = 1$. Hence

$$
per(R) = lcm(per(x1),...,per(xn)) = lcm(per(x1),...,per(xk)) = per(R*)
$$

and since R^* is a finite group, it follows that $\text{per}(R) = \exp(R^*)$, as claimed.

Next, suppose that $\text{ind}(R) \leqslant n$ and let $x \in R^{(n)}$. It suffices to prove that if x is a non-unit, then $x = 0$. Indeed, since x is nilpotent by Proposition [5.1,](#page-24-0) it follows that $x^k = 0$, where $k = \text{ind}(x)$. By Proposition [3.5\(](#page-10-2)b) $\text{ind}(R^{(n)}) = 1$, so $\text{ind}(x) = 1$ and therefore $x = 0$, as required. Conversely, suppose that $R^{(n)} \setminus \{0\} \subseteq R^*$. It suffices to prove that $\text{ind}(R^{(n)}) = 1$. Indeed, if $x = 0$, then clearly $ind(x) = 1$. If $x \neq 0$, then by our assumption x is a unit which implies that $ind(x) = 1$, as required. \Box

Now, we are ready to prove our main result in this section.

THEOREM 5.3. Suppose that R is a finite commutative ring and $n \geq 2$ is an integer. Then there exists an n-th MRF over R iff $gcd(n, exp(R^*))$ $\gcd(n^2,\exp(R^*))$ and $R^{(n)}\setminus\{0\}$ has no nilpotent elements. Furthermore, in this case, the n-th root function is given by

$$
\sqrt[n]{x} = x^e,
$$

where e is the least positive integer such that $ne \equiv 1 \pmod{R^*}/u$ and u is the number of n-th roots of unity in R.

Proof. Assume that r is an n -th MRF over R . First, we prove that $R^{(n)} \setminus \{0\}$ has no nilpotent elements. Suppose otherwise that $x \in R^{(n)}$ is a non-zero nilpotent element and let k be its index of nilpotency. Set $\alpha = \lceil \frac{k}{n} \rceil$ and $\beta = n\alpha - k$. Note that since $\frac{k}{n} \leqslant \lceil \frac{k}{n} \rceil$, it follows that $\beta \geqslant 0$. In addition $\frac{k}{n}$, it follows that $\beta \geqslant 0$. In addition, since $x \neq 0$, we deduce that $k \geq 2$, so

$$
\alpha = \left\lceil \frac{k}{n} \right\rceil < \frac{k}{n} + 1 \leqslant \frac{k}{2} + 1 \leqslant k.
$$

Therefore $x^{\alpha} \neq 0$. Now, $x \in R^{(n)}$, so $x^{\alpha} \in R^{(n)}$ and since

$$
(x^{\alpha})^n = x^{k+\beta} = x^k x^{\beta} = 0
$$

we deduce that x^{α} is an *n*-th root of 0 in $R^{(n)}$. But clearly $r(0) = 0$, which contradicts the fact that r is injective.

Next, we prove that $gcd(n, exp(R^*)) = gcd(n^2, exp(R^*))$. Indeed, since R^* is a subsemigroup of R with respect to multiplication and since $r(x) \in \langle x \rangle$ for every $x \in R^*$, it follows that $r(R^*) \subseteq R^*$, which implies that r, restricted to R^* , is an *n*-th MRF over R^* . In addition, R^* is an abelian group, so by Corollary [4.3,](#page-17-1) we deduce that $gcd(n, exp(R^*)) = gcd(n^2, exp(R^*))$, as required.

Conversely, assume that $R^{(n)} \setminus \{0\}$ has no nilpotent elements and that $gcd(n, exp(R^*)) = gcd(n^2, exp(R^*))$. Let $R_1 \times \cdots \times R_s$ be the local ring decom-position of R. By Proposition [3.11,](#page-15-2) it suffices to prove that there exist n -th MRF's over R_i for every $1 \leq i \leq s$. In order to do so, we use Proposition [5.2](#page-24-1)

and prove that $R_i^{(n)}$ $\{0\} \subseteq R_i^*$ and that $\gcd(n, \exp(R_i^*)) = \gcd(n^2, \exp(R_i^*))$ for every $1 \leqslant i \leqslant s$. Indeed, note that $R^* \cong R_1^* \times \cdots \times R_s^*$, so $\exp(R^*) =$ lcm($\exp(R_1^*), \ldots, \exp(R_s^*)$). Now, since $\gcd(n, \exp(R^*)) = \gcd(n^2, \exp(R^*))$ by our assumption, we deduce that

 $gcd(n, lcm(exp(R_1^*), \ldots, exp(R_s^*))) = gcd(n^2, lcm(exp(R_1^*), \ldots, exp(R_s^*))).$ Hence, by Proposition [3.3\(](#page-10-1)a) it follows that $gcd(n, exp(R_i^*)) = gcd(n^2, exp(R_i^*))$ for every $1 \leqslant i \leqslant s$, as required.

Next, let $x \in R_i^{(n)}$ $\{0\}$ and assume that x in a non-unit. By Proposi-tion [5.1](#page-24-0) it follows that x is nilpotent. Thus

$$
(0,\ldots,x,\ldots,0)\in R_1^{(n)}\times\cdots\times R_i^{(n)}\times\cdots\times R_s^{(n)}
$$

is also a non-zero nilpotent element. Now, since $R \cong R_1 \times \cdots \times R_s$, it follows that $R^{(n)} \cong R_1^{(n)} \times \cdots \times R_s^{(n)}$ (as semigroups under multiplication). Hence, we may deduce that there exists a non-zero nilpotent element of $R^{(n)}$, which contradicts the assumption that $R^{(n)} \setminus \{0\}$ has no nilpotent elements.

Finally, we prove that such an *n*-th MRF is of the form $\sqrt[n]{x} = x^e$, where e is the least positive integer such that $ne \equiv 1 \pmod{R^*}/u$ and u is the number of *n*-th root of unity in R . By Theorem [3.6](#page-11-0) there exists a positive integer e such that $\sqrt[n]{x} = x^e$ for every $x \in R^{(n)}$. By Remark [2,](#page-13-0) we may choose e to be the least positive integer such that $ne \equiv 1 \pmod{m}$, where m is any positive integer such that $gcd(n, m) = 1$ and $per(R^{(n)}) \mid m$. We prove that $m = |(R^*)^{(n)}|$ satisfies these two conditions. Indeed, as mentioned above, r, restricted to R^* , is an n-th MRF over the group R^* . Hence, by Remark [3,](#page-17-0) it follows that $gcd(n, |(R^*)^{(n)}|) = 1$, as claimed. We turn to verifying that $per(R^{(n)}) | (R^*)^{(n)}|$. As we have proved above, there exists an n-th MRF over each ring R_i in the local ring decomposition of R. Hence, by Proposition [5.2,](#page-24-1) $R_i^{(n)}$ $\{n\} \subseteq R_i^*$ for each $1 \leqslant i \leqslant s$. Since $(R_i^*)^{(n)} \subseteq R_i^{(n)}$ $\{0\}$, it follows that $R_i^{(n)}$ $\{a_i^{(n)} \setminus \{0\} = (R_i^*)^{(n)}$, that is $R_i^{(n)} = \{0\} \cup (R_i^*)^{(n)}$. Using the fact that each R_i^* is an abelian group, we obtain that $\text{per}(R_i^{(n)})$ $\mathcal{E}_i^{(n)}$) = per $(\{0\} \cup (R_i^*)^{(n)}) = \exp((R_i^*)^{(n)}),$ so

$$
\begin{aligned} \text{per}(R^{(n)}) &= \text{per}(R_1^{(n)} \times \cdots \times R_s^{(n)}) = \text{lcm}(\text{per}(R_1^{(n)}), \dots, \text{per}(R_s^{(n)})) \\ &= \text{lcm}(\text{exp}((R_1^*)^{(n)}), \dots, \text{exp}((R_s^*)^{(n)})) = \text{exp}((R_1^*)^{(n)} \times \cdots \times (R_s^*)^{(n)}) \\ &= \text{exp}((R_1^* \times \cdots \times R_s^*)^{(n)}) = \text{exp}((R^*)^{(n)}). \end{aligned}
$$

Now, since $\exp((R^*)^{(n)}) | |(R^*)^{(n)}|$, we deduce that $\text{per}(R^{(n)}) | |(R^*)^{(n)}|$, as claimed.

Now consider the map $f: R^* \to (R^*)^{(n)}$ given by $f(x) = x^n$. Since R^* is an abelian group, it follows that f is a group homomorphism. Therefore

$$
\operatorname{im}(f) \cong R^* / \operatorname{ker}(f).
$$

But ker(f) = { $x \in R^* : x^n = 1$ } and $\text{im}(f) = (R^*)^{(n)}$, so $|(R^*)^{(n)}| = |R^*|/u$, as required. \Box

As an application, let us apply Theorem [5.3](#page-25-0) to finite fields. Note that if F is a finite field, then $\mathbb{F}^* = \mathbb{F} \setminus \{0\}$, so $\exp(\mathbb{F}^*) = |\mathbb{F}| - 1$. In addition, since the number of n-th root of unity in F is $gcd(n, |F| - 1)$, we obtain by Theorem [5.3](#page-25-0) the following result

COROLLARY 5.4. Suppose that $\mathbb F$ is a finite field and $n \geq 2$ is an integer. Then there exists an n-th MRF over F if and only if $gcd(n, |F| - 1) =$ $gcd(n^2, |F| - 1)$. Furthermore, in this case, the n-th root function is given by

$$
\sqrt[n]{x} = x^e,
$$

where e is the least positive integer such that $ne \equiv 1 \pmod{\frac{|\mathbb{F}|-1}{u}}$ and $u =$ $gcd(n, |F| - 1).$

Example 5.5. Let p be an odd prime and consider the field \mathbb{Z}_n . By Corol-lary [5.4,](#page-27-0) there exists a multiplicative square-root function over \mathbb{Z}_p if and only if $gcd(2, p-1) = gcd(4, p-1)$, that is, if and only if $2 = gcd(4, p-1)$. Since either $p \equiv 1 \pmod{4}$ or $p \equiv 3 \pmod{4}$, it follows that there exists a multiplicative square-root function over \mathbb{Z}_p if and only if $p \equiv 3 \pmod{4}$.

In order to find the exponential form of this square function, we need to solve the congruence $2e \equiv 1 \pmod{\frac{p-1}{2}}$. Since

$$
2\left(\frac{p+1}{4}\right) = \frac{p+1}{2} = \frac{p-1}{2} + 1 \equiv 1 \pmod{\frac{p-1}{2}},
$$

it follows that $e = \frac{p+1}{4}$ $\frac{+1}{4}$, so the desired square-root function is given by

$$
\sqrt{x} = x^{\frac{p+1}{4}}.
$$

As an illustrative example, if $p = 11$, then there exists a square-root function As an inustrative example, if $p = 11$, then there exists a sq
over \mathbb{Z}_{11} and this square-root function is given by $\sqrt{x} = x^3$.

As another application of Theorem [5.3,](#page-25-0) we determine the conditions for the existence of *n*-th MRF's over the ring \mathbb{Z}_m . As Theorem [5.3](#page-25-0) indicates, the group of units \mathbb{Z}_m^* and its exponent are essential in determining the existence of such functions. Recall that $|\mathbb{Z}_m^*| = \varphi(m)$, where φ is the Euler's totient function, and the exponent of \mathbb{Z}_m^* is denoted by $\lambda(m) = \exp(\mathbb{Z}_m^*)$. The function $\lambda(m)$ is called the *universal exponent* of m. By [\[9,](#page-31-4) p. 53], the values of λ can be computed as follows: $\lambda(1) = 1, \lambda(2) = 1, \lambda(4) = 2$ and $\lambda(2^a) = 2^{a-2}$, if $a \geq 3$. If p is an odd prime, then $\lambda(p^a) = p^{a-1}(p-1)$ for every $a \geq 1$. Finally, if p_1, \ldots, p_s are distinct primes, then $\lambda(p_1^{a_1} \cdots p_s^{a_s}) = \text{lcm}(\lambda(p_1^{a_1}), \ldots, \lambda(p_s^{a_s})).$ The first fifty values of λ are the following, as seen in Table 2:

$\,m$	$\lambda(m)$	m	$\lambda(m)$	$\,m$	$\lambda(m)$	$\,m$	$\lambda(m)$	${\rm m}$	$\lambda(m)$
1		11	10	21	6	31	30	41	40
$\overline{2}$	1	12	$\overline{2}$	22	10	32	8	42	6
3	$\overline{2}$	13	12	23	22	33	10	43	42
4	$\overline{2}$	14	6	24	$\overline{2}$	34	16	44	10
5	4	15	4	25	20	35	12	45	12
6	$\overline{2}$	16	4	26	12	36	6	46	22
	6	17	16	27	18	37	36	47	46
8	$\overline{2}$	18	6	28	6	38	18	48	4
9	6	19	18	29	28	39	12	49	42
10	4	20	4	30	4	40	4	50	20

Table 1 – Universal exponent for $1 \leq m \leq 50$

COROLLARY 5.6. Suppose that $m > 1$ and $n \geq 2$ are integers and let $m = p_1^{a_1} \cdots p_s^{a_s}$ be the decomposition of m into distinct prime factors. Then there exists an n-th MRF over \mathbb{Z}_m if and only if

 $\max\{a_1,\ldots,a_s\} \leqslant n$ and $\gcd(n,\lambda(m)) = \gcd(n^2,\lambda(m)),$

where λ is the universal exponent of m. Furthermore, in this case, the n-th root function is given by

 $\sqrt[n]{x} = x^e,$

where e is the least positive integer such that $ne \equiv 1 \pmod{\frac{\varphi(m)}{u_n(m)}}$ and $u_n(m)$ is the number of n-th roots of unity in \mathbb{Z}_m .

Proof. In view of Theorem 5.3, it suffices to prove that $\mathbb{Z}_m^{(n)} \setminus \{0\}$ has no nilpotent elements if and only if $\max\{a_1, \ldots, a_s\} \leq n$.

Suppose that $\max\{a_1,\ldots,a_s\} \leqslant n$ and let $\overline{x} \in \mathbb{Z}_m$. If \overline{x} is not nilpotent, then also $\bar{x}^n \in \mathbb{Z}_m^{(n)}$ is not nilpotent. If \bar{x} is nilpotent, then there exists a positive integer k such that $\bar{x}^k = \bar{0}$. Thus $p_i | x^k$, and hence $p_i | x$ for each $1 \leq i \leq s$. Therefore, the decomposition of x into prime numbers is of the form $x = p_1^{b_1} \cdots p_s^{b_s} y$, where $gcd(y, m) = 1$ and $b_i \geqslant 1$ for each $1 \leqslant i \leqslant s$. Thus

$$
x^n = p_1^{nb_1} \cdots p_s^{nb_s} y^n
$$

and since $a_i \leq n \leq nb_i$ for each $1 \leq i \leq s$, it follows that $m \mid x^n$, that is $\overline{x}^n = \overline{0}$. We conclude that $\mathbb{Z}_m^{(n)} \setminus \{0\}$ has no nilpotent elements.

Conversely, suppose that $\mathbb{Z}_m^{(n)}\backslash \{0\}$ has no nilpotent elements and assume by contradiction that $\max\{a_1, \ldots, a_s\} > n$. Thus, there exists $1 \leq i \leq s$ such that $a_i > n$. Let $x = p_1 \cdots p_s$. Clearly, $\overline{x}^n \in \mathbb{Z}_m^{(n)}$. Furthermore, \overline{x}^n is a nilpotent element. Indeed, if $k = \max\{a_1, \ldots, a_s\}$, then $m \mid x^k$, so $(\overline{x}^n)^k = \overline{0}$.

But $\bar{x}^n \neq \bar{0}$ since otherwise $x^n \equiv 0 \pmod{m}$, so $x^n \equiv 0 \pmod{p_i^{a_i}}$). Thus $p_i^n \equiv 0 \pmod{p_i^{a_i}}$, which contradicts the fact that $n < a_i$. \Box

COROLLARY 5.7. Let $m > 1$ be an integer. Then there exists a multiplicative square-root function over \mathbb{Z}_m if and only if either $m = 2$ or $m = 4$ or the prime decomposition of m is of the form

$$
m=2^{a_0}p_1^{a_1}\cdots p_s^{p_s},
$$

where $a_0 \in \{0, 1, 2\}$, $s \geq 1$ and $p_i \equiv 3 \pmod{4}$, $a_i \in \{1, 2\}$ for each $1 \leq i \leq s$. Furthermore, in this case, the square-root function is given by

$$
\sqrt{x} = x^e,
$$

where

$$
e = \begin{cases} \frac{1}{2} \left(\frac{\varphi(m)}{2^s} + 1 \right) & \text{if } 4 \nmid m \\ \frac{1}{2} \left(\frac{\varphi(m)}{2^{s+1}} + 1 \right) & \text{if } 4 \mid m \end{cases}
$$

and s is the number of odd prime divisors of m.

Proof. First suppose that $m = 2^a$, where $a \in \{1, 2\}$. Then $\max\{a\} \leq 2$ and since $\lambda(2^a) \in \{1,2\}$, it follows by Corollary [5.6](#page-28-0) that there exist multiplicative square-root functions over \mathbb{Z}_2 and over \mathbb{Z}_4 .

If $m = 2^a$, where $a \ge 3$, then $\max\{a\} \nleq 2$, so by Corollary [5.6](#page-28-0) a multiplicative square-root function over \mathbb{Z}_{2^a} does not exist.

Next, suppose that $m > 2$ and let $m = 2^{a_0} p_1^{a_1} \cdots p_s^{a_s}$ be the prime decomposition of m, where $a_0 \geqslant 0$, $s \geqslant 1$, p_i is an odd prime number and $a_i \geqslant 1$ for every $1 \leq i \leq s$. By Corollary 5.6, there exists a multiplicative square-root function over \mathbb{Z}_m if and only if $gcd(2, \lambda(m)) = gcd(4, \lambda(m))$, $a_0 \in \{0, 1, 2\}$ and $a_i \in \{1,2\}$ for every $1 \leq i \leq s$. Since $\lambda(m)$ is even for every $m > 2$, it follows that $gcd(2, \lambda(m)) = gcd(4, \lambda(m))$ if and only if $2||\lambda(m)$. By noting that $\lambda(m) = \text{lcm}(\lambda(2^{a_0}), \lambda(p_1^{a_1}), \ldots, \lambda(p_s^{a_s}))$ and that $\lambda(2^{a_0}) \in \{1, 2\}$, we deduce that $2\|\lambda(m)$ if and only if $2\|\lambda(p_i^{a_i})\|$ for each $1 \leq i \leq s$. Since the p_i 's are odd, it follows that $2\|\lambda(m)\|$ if and only if $2\|p_i-1\|$, that is, if and only if $p_i \equiv 3$ $\pmod{4}$ for each i, as required.

By Corollary [5.6](#page-28-0) the square-root function is given by $\sqrt{x} = x^e$, where e is a positive integer such that $2e \equiv 1 \pmod{\varphi(m)/u_2(m)}$ and $u_2(m)$ is the number of solutions of $x^2 = \overline{1}$ in \mathbb{Z}_m . Let s be the number of odd prime divisors of m. If $s = 0$, then by the first part of the theorem, either $m = 2$ or $m = 4$. In these cases, it is easy to see that $u_2(2) = 1$ and $u_2(4) = 2$. Suppose that $s \geqslant 1$. Since

$$
\mathbb{Z}_m^* \cong \mathbb{Z}_{2^{a_0}}^* \times \mathbb{Z}_{p_1^{a_1}}^* \times \cdots \times \mathbb{Z}_{p_s^{a_s}}^*,
$$

we obtain that $u_2(m) = u_2(2^{a_0})u_2(p_1^{a_1})\cdots u_2(p_s^{a_s})$. Note that by [\[9,](#page-31-4) p. 58], if q has a primitive root, then the equation $x^2 = \overline{1}$ has $u_2(q) = \gcd(2, \varphi(q))$ solutions in \mathbb{Z}_q . Now, since $a_0 \in \{0, 1, 2\}$, it follows that 2^{a_0} has a primitive root, so

$$
u_2(2^{a_0}) = \gcd(2, \varphi(2^{a_0})) = \begin{cases} 1 & \text{if } a_0 \in \{0, 1\} \\ 2 & \text{if } a_0 = 2. \end{cases}
$$

In addition, since the primes p_1, \ldots, p_s are odd, it follows that $2 | \varphi(p_i)$, so

$$
u_2(p_i^{a_i}) = \gcd(2, \varphi(p_i)) = 2
$$

for every $1 \leqslant i \leqslant s$. Therefore

$$
u_2(m) = \begin{cases} 1 & s = 0 \text{ and } m = 2 \\ 2 & s = 0 \text{ and } m = 4 \\ 2^s & s \ge 1 \text{ and } 4 \nmid m \\ 2^{s+1} & s \ge 1 \text{ and } 4 \mid m \end{cases}
$$

$$
= \begin{cases} 2^s & s \ge 0 \text{ and } 4 \nmid m \\ 2^{s+1} & s \ge 0 \text{ and } 4 \mid m. \end{cases}
$$

Since

$$
e = \frac{1}{2} \left(\frac{\varphi(m)}{u_2(m)} + 1 \right)
$$

clearly satisfies the congruence $2e \equiv 1 \pmod{\frac{\varphi(m)}{u_2(m)}}$, our proof is complete. \Box

As Corollary [5.7](#page-29-0) indicates, the first moduli m in which a multiplicative square-root function exists over \mathbb{Z}_m are

2, 3, 4, 6, 7, 9, 11, 12, 14, 18, 19, 21, 22, 23, 28, 31, 33, 36, 38, 42, 43, 44, 46, 47, 49.

Note that Corollary [5.7](#page-29-0) generalizes the result obtained in Example [5.5](#page-27-1) regarding prime moduli.

Example 5.8. Consider the ring $\mathbb{Z}_{33} = {\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{32}}$. In this case, $\mathbb{Z}_{33}^{(2)} = \{0,\overline{1},\overline{3},\overline{4},\overline{9},\overline{12},\overline{15},\overline{16},\overline{22},\overline{25},\overline{27},\overline{31}\}.$ Since $m = 33 = 3 \cdot 11$ and $3 \equiv$ 3 (mod 4), $11 \equiv 3 \pmod{4}$ it follows by Corollary [5.7](#page-29-0) that there exists a multiplicative square-root function over \mathbb{Z}_{33} . Furthermore, since m has $s = 2$ multiplicative square-root function over \mathbb{Z}_3 . Furthermore, since *m* has $s = 2$ odd prime divisors, it follows that the square-root function is given by $\sqrt{x} = x^e$, where

$$
e = \frac{1}{2} \left(\frac{\varphi(33)}{2^2} + 1 \right) = \frac{1}{2} \left(\frac{20}{4} + 1 \right) = 3
$$

that is $\sqrt{x} = x^3$. Therefore

$$
\sqrt{0} = 0
$$
 $\sqrt{1} = 1$ $\sqrt{3} = 27$ $\sqrt{4} = 31$
\n $\sqrt{9} = 3$ $\sqrt{12} = 12$ $\sqrt{15} = 9$ $\sqrt{16} = 4$
\n $\sqrt{22} = 22$ $\sqrt{25} = 16$ $\sqrt{27} = 15$ $\sqrt{31} = 25$.

Acknowledgments. I wish to thank Prof. Marcel Herzog for his careful reading this paper's drafts.

REFERENCES

- [1] J.L. Alperin, A classification of n-abelian groups. Canadian J. Math. 21 (1969), 1238– 1244.
- [2] B. Gilberto and F. Flamini, Finite Commutative Rings and their Applications. The Kluwer International Series in Engineering and Computer Science 680, Kluwer Academic Publishers, Boston, MA, 2002.
- [3] P. Gladki, *Root selections and 2-th root selections in hyperfields*. Discuss. Math. Gen. Algebra Appl. 39 (2019), 1, 43–53.
- [4] P. Ghadki, n -th root selections in fields. Ann. Math. Sil. **33** (2019), 1, 106–120.
- [5] M. Hall, The Theory of Groups. The Macmillan Company, New York, 1961.
- [6] I.N. Herstein, Topics in Algebra, Second Edition. Xerox College Publishing, Lexington, Mass.-Toronto, Ont, 1975.
- [7] J.M. Howie, Fundamentals of Semigroup Theory. London Mathematical Society Monographs. New Series, 12, The Clarendon Press, Oxford Univ. Press, New York, 1995.
- [8] S. Lang, Algebra, Third Edition. Grad. Texts in Math. 211, Springer, New York, 2002.
- [9] W.J. Leveq, Topics in Number Theory, Vol I. Dover Publications, Inc., Mineola, NY, 2002.
- [10] S. Mac Lane and G. Birkhoff, Algebra, Third Edition. American Mathematical Society, 1999.
- [11] H.F. Trotter, Groups in which raising to a power is an automorphism. Canad. Math. Bull. 8 (1965), 825–827.
- [12] W.C. Waterhouse, *Square root as a homomorphism*. Amer. Math. Monthly **119** (2012), 3, 235–239.

Received 18 April 2023 Department of Computer Science, The Academic College of Tel-Aviv, Rabenu Yeruham St., P.O.B 8401 Yaffo, 6818211, Israel arctanx@gmail.com