THE PRIME-REPRESENTING FUNCTIONS

DUC-SON TRAN

Communicated by Alexandru Zaharescu

In this paper, we prove that there is a fixed number D such that the values $\lceil D^{d^n} \rceil$ are primes for all positive integers n and real numbers $d > 8/3$. We also prove that there exists a value e such that the values $[B^{e^n}]$ are primes for all positive integers n and a given any real number $B > 1$, where [.] is the ceiling function.

AMS 2020 Subject Classification: 11Axx.

Key words: prime representing function, Mill theorem, consecutive primes.

1. INTRODUCTION

Mills $[2]$ (only with one page), showed that there is a fixed number A such that, for all positive integers n, the values $[A^{3^n}]$ are primes. Niven [\[3\]](#page-3-1) proved that, given any real number $B > 1$, there exist a value b such that, for all positive integers n, the values $[B^{b^n}]$ are prime numbers. Toth [\[4\]](#page-3-2) proved that there exists a positive real constant C such that $\lceil C^{c^n} \rceil$ is a prime-representing function for $c \geq 3, c \in \mathbb{N}$ and all positive integers n. All proofs make use of the result that $p_{n+1} - p_n < K p_n^{5/8}$, where K is a fixed positive integer and p_n is the n^{th} prime. This result is due to Ingham [\[1\]](#page-3-3).

2. THEOREMS

We show that there is a fixed number D such that the values $[D^{d^n}]$ are primes for all positive integers n and real numbers $d > 8/3$ (by Mills's result). Since $p_{n+1} - p_n < K p_n^{5/8}$, we derive

(1)
$$
p_n > p_{n+1} - K p_n^{5/8} > p_{n+1} - K p_{n+1}^{5/8}.
$$

LEMMA 2.1. If d is a real number greater than $8/3$ and N is a positive integer satisfying $N > K^{\frac{8}{3d-8}} \geq 1$ (K as in [\[1\]](#page-3-3) or [\(1\)](#page-0-0)), then there exists a prime p such that $N^d > p > (N-1)^d + 1$.

MATH. REPORTS 26(76) (2024), 3-4, 251–254 doi: [10.59277/mrar.2024.26.76.3.4.251](http://dx.doi.org/10.59277/mrar.2024.26.76.3.4.251)

Proof. First, we prove
$$
N^d - N^{d-1} > (N-1)^d + 1
$$
, that is, $(N-1)[N^{d-1} - (N-1)^{d-1}] > 1$. Consider $f(d) = N^{d-1} - (N-1)^{d-1}$. Since $f'(d) = N^{d-1}lnN - (N-1)^{d-1}ln(N-1) > 0$ for $d > 1$,

f is an increasing function. We deduce that $f(d) > f(8/3) > f(2) = 1$. Hence $(N-1)[N^{d-1} - (N-1)^{d-1}] > N-1 \ge 1$. We conclude that

(2)
$$
N^d - N^{d-1} > (N-1)^d + 1.
$$

Next, we consider $g(x) = x - Kx^{5/8}$ where $x > N^d$. Since

$$
g'(x) = 1 - \frac{5}{8}K\frac{1}{x^{3/8}} = \frac{8x^{3/8} - 5K}{8x^{3/8}},
$$

it is easy to see that $x^{3/8} > N^{3d/8} > [K^{8/(3d-8)}]^{3d/8} = K^{\frac{3d}{3d-8}} > K$. It follows that $g'(x) > 0$. Therefore, we claim that

(3)
$$
x - Kx^{5/8} > N^d - KN^{5d/8}.
$$

Finally, let p_{n+1} be the smallest prime greater than N^d . Since [\(1\)](#page-0-0), [\(2\)](#page-1-0) and [\(3\)](#page-1-1), we have

$$
p_{n+1} > N^d > p_n > p_{n+1} - K p_{n+1}^{5/8} > N^d - K N^{5d/8} > N^d - N^{\frac{3d-8}{8}} N^{5d/8}
$$

= $N^d - N^{d-1} > (N-1)^d + 1$.

The lemma is proved. \Box

Let P_0 be a prime greater than $K^{\frac{8}{3d-8}}$. By using Lemma [2.1,](#page-0-1) there exists a prime P_1 such that we have $P_0^d > P_1 > (P_0 - 1)^d + 1$. On the other hand, $(P_0 - 1)^d + 1 > P_0 > K^{\frac{8}{3d-8}}$, thus, $P_1 > K^{\frac{8}{3d-8}}$ and so on, we can construct an infinite sequence of primes $P_0 \langle P_1 \langle P_2 \langle \cdots \rangle \rangle$ such that $P_n^d > P_{n+1} > (P_n - 1)^d + 1$. Let $u_n = P_n^{d^{-n}}$, $v_n = (P_n - 1)^{d^{-n}}$. Then $u_n > v_n;$ $u_{n+1} = P_{n+1}^{d^{-(n+1)}} < u_n = P_n^{d^{-n}};$ $v_{n+1} = (P_{n+1} - 1)^{d^{-(n+1)}} > v_n = (P_n - 1)^{d^{-n}}.$

It follows that the u_n form a bounded monotone decreasing sequence. Let $D = \lim_{n \to \infty} u_n$.

THEOREM 2.2. For all positive integers n and real numbers $d > 8/3$, the number $[D^{d^n}]$ is a prime.

Proof. One can check that $u_n > D > v_n$. Therefore, $P_n > D^{d^n} > P_n - 1$, i.e., $[D^{d^n}]$ is a prime. \Box

We show that there exists a value e such that the values $[B^{e^n}]$ are primes for all positive integers n (by Niven's result).

LEMMA 2.3. If a is a real number greater than 8 and M is a positive integer satisfying $M > K$ (K as in [\[1\]](#page-3-3) or [\(1\)](#page-0-0)), then there exists a prime p such that $M^a > p > (M-1)^a + 1$.

Proof. First, we prove that $M^a - M^{a-1} > (M-1)^a + 1$; this means that $(M-1)[M^{a-1}-(M-1)^{a-1}]>1$. Consider $f(a)=M^{a-1}-(M-1)^{a-1}$. Since $f'(a) = M^{a-1} \ln M - (M-1)^{a-1} \ln(M-1) > 0$ for $a > 1$. We deduce that $f(a) > f(8) > f(2) = 1$. Hence $(M-1)[M^{a-1} - (M-1)^{a-1}] > M - 1 \ge 1$. We conclude that

(4)
$$
M^a - M^{a-1} > (M-1)^a + 1.
$$

Next, we consider $g(x) = x - Kx^{5/8}$ where $x > M^a$. Since

$$
g'(x) = 1 - \frac{5}{8}K \frac{1}{x^{3/8}} = \frac{8x^{3/8} - 5K}{8x^{3/8}},
$$

it is easy to see that $x^{3/8} > M^{3a/8} > K^{3a/8} > K$. It follows that $g'(x) > 0$. Therefore, we claim that

(5)
$$
x - Kx^{5/8} > M^a - KM^{5a/8}.
$$

Finally, let p_{n+1} be the smallest prime greater than M^a . Since [\(1\)](#page-0-0), [\(4\)](#page-2-0) and (5) , we have

$$
p_{n+1} > M^a > p_n > p_{n+1} - K p_{n+1}^{5/8} > M^a - K M^{5a/8}
$$

>
$$
M^a - M M^{5a/8} > M^a - M^{a-1} > (M - 1)^a + 1.
$$

The lemma is proved. \Box

Given a real number $B > 1$, we write $\log x$ for the logarithm of x to base B, that is, $\log x = \log_B x$ for every real number $x > 0$. Let P_1 be a prime greater than max $\{B^8 + 1, K\}$, hence $\log(P_1 - 1) > 8$. By using Lemma [2.3,](#page-2-2) there exists a prime P_2 such that $P_1^{\log P_1} > P_2 > (P_1 - 1)^{\log P_1} + 1$. Moreover,

(6)
$$
P_2 > (P_1 - 1)^{\log P_1} + 1 > (P_1 - 1)^{\log(P_1 - 1)} + 1 > P_1 > K.
$$

Since $P_1^{\log P_1} > P_2$, we deduce that $\{\log P_1\} {\log P_1} > \log P_2$, thus (7) $\log P_1 > {\log P_2}^{1/2}.$

Since $P_2 > (P_1 - 1)^{\log(P_1 - 1)} + 1$, that is, $P_2 - 1 > (P_1 - 1)^{\log(P_1 - 1)}$. Therefore, $log(P_2 - 1) > {log(P_1 - 1)}{log(P_1 - 1)}$. It follows that

(8)
$$
\left\{\log (P_2 - 1)\right\}^{1/2} > \log (P_1 - 1) > 8.
$$

From (7) and (8) , we get

(9)
$$
\log P_1 > {\log P_2}^{1/2} > {\log (P_2 - 1)}^{1/2} > \log (P_1 - 1) > 8.
$$

By [\(6\)](#page-2-5) and [\(9\)](#page-2-6), we have $P_2 > P_1 > \max\{B^8 + 1, K\}$ and $\{\log P_2\}^{1/2} > 8$, respectively. Similarly, by the lemma there exists a prime P_3 satisfying $P_2^{\{\log P_2\}^{1/2}} >$ $P_3 > (P_2 - 1)^{\{\log P_2\}^{1/2}} + 1 > (P_2 - 1)^{\{\log(P_2 - 1)\}^{1/2}} + 1 > P_2 > K$. We also have

$$
{\log P_2}\frac{1}{2} > {\log P_3}\frac{1}{3} > {\log (P_3 - 1)}\frac{1}{3} > {\log (P_2 - 1)}\frac{1}{2} > 8.
$$

And so on, we can construct an infinite sequence of primes $P_1 < P_2 < P_3 < \cdots$, such that

(10)

$$
P_n^{\{\log P_n\}^{1/n}} > P_{n+1} > (P_n - 1)^{\{\log P_n\}^{1/n}} + 1 > (P_n - 1)^{\{\log(P_n - 1)\}^{1/n}} + 1 > P_n.
$$

Let $u_n = {\log P_n}^{1/n}, v_n = {\log(P_n - 1)}^{1/n}$. From [\(10\)](#page-3-4), one can easily check that $u_n > u_{n+1} > v_{n+1} > v_n > 8$. It follows that the u_n form a bounded monotone decreasing sequence. Let $e = \lim_{n \to \infty} u_n$.

THEOREM 2.4. Given any real number $B > 1$, there exists a value e such that, for all positive integers n, the values $[B^{e^n}]$ are prime numbers.

Proof. It is easy to see that $u_n > e > v_n$. Therefore, $P_n > B^{e^n} > P_n - 1$, i.e., $[B^{e^n}]$ is a prime. \Box

Acknowledgments. The author wishes to thank the referees for so carefully checking the manuscript.

REFERENCES

- [1] A.E. Ingham, On the difference between consecutive primes. Q. J. Math. 8 (1937), 255– 266.
- [2] W.H. Mills, A prime-representing function. Bull. Amer. Math. Soc. 53 (1947).
- [3] I. Niven, Function which represent prime numbers. Proc. Amer. Math. Soc. 2 (1951), 753–755.
- [4] L. Tóth, A variation on Mills-like prime-representing functions. J. Integer Seq. 20 (2017), 9, article no. 17.9.8.

Received 24 May 2023 5T4-401 Buu Long Apt., Quarter 1, Buu Long Ward, Bien Hoa City, Dong Nai Province, Vietnam sontd8284@gmail.com