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We review recent progress regarding the index theory of operators defined on
non-compact manifolds that can be modeled by Lie groupoids. The structure
of a particular type of almost regular foliation is recalled and the construction
of the corresponding accompanying holonomy Lie groupoid. Using deformation
groupoids, K-theoretical invariants can be defined and compared. We summarize
how questions in index theory are addressed via the geometrization made possible
by the use of deformation groupoids. The discussion is motivated by examples
and applications to degenerate PDE’s, diffusion processes, evolution equations
and geometry.
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1. INTRODUCTION

The purpose of this article is to survey the state of research and the
recent solution of some of the open problems that were posed in the summary
of V. Nistor [42] and that were obtained by the author of the present text with
collaborators.

In the study of partial differential equations, the Fredholm index plays
an important role. It codifies the dimension of the space of solutions of the
equation associated to the underlying Hilbert space operator and the image of
the operator in the number ind(P ) = dimkerP −dim cokerP . Whenever both
dimensions in the difference are finite, the operator is Fredholm. The most
notable outcome is the Atiyah-Singer index theorem [1, 2], which expresses the
index in terms of topological information reliant on the stable homotopy class
of the principal symbol of the operator. This theorem is widely acclaimed due
to its revelation of surprising connections among Analysis, Topology, and Ge-
ometry. Furthermore, it finds diverse applications in the realms of PDEs and
theoretical physics. The validity of the result is established for compact man-
ifolds without boundaries, where the ellipticity of the operator is synonymous
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with its Fredholm property as a bounded operator acting on the appropriate
Sobolev spaces. Over the subsequent decades, researchers have explored vari-
ous potential avenues for generalizing the index theorem. In this note, we focus
on the extensions to specific non-compact manifolds.

The geometry of non-compact manifolds with a prescribed behavior at
infinity can often be effectively understood via a compactification, where the
resulting object is a compact manifold endowed with a structural Lie algebra of
vector fields. Such degenerate vector fields that give rise to Lie structures could
be for example of the type {∂t, x∂x}, as occur e.g. in the evolution equation

∂tu =
(
µ− 1

2
σ2

)
(x∂x)u+

1

2
σ2(x∂x)

2u

that is a well-known example from the study of diffusion processes, cf. Sec-
tion 2.1. In this example, the intuition is that x serves as a variable defining
the boundary of a compact manifold with boundary M , where the vector field
∂t is defined on the interior, M0, of the manifold and x∂x is tangent to the
boundary ∂M . More generally, there occur manifolds with corners, i.e. many
intersecting boundary strata which are endowed with a Lie algebra V of vector
fields. To V we can associate a vector bundle A, whose set of smooth sections
is V. Formally, we can associate a groupoid whose Lie algebroid is A:

G := M0 ×M0 ∪ ∂M × ∂M × (R \ {0}).

The object G can be understood as a glueing of the pair groupoid on the
interior to the cylinder formed out of the boundary. Operators of the type
exemplified above can be in a sense realized on this desingularized object G.
The proper context for such objects is the theory of singular foliations, i.e.
manifolds endowed with a structural Lie algebra of vector fields that belong to
a particular class of singular foliations.

In the abstract setup, we study foliations which stem from a Lie alge-
broid A over a compact manifold with corners M , with the property that the
restriction A|M0

to a dense open subset M0 ⊂M results in the tangent bundle
TM0 and further condition on the boundary behavior of the accompanying
vector fields. These Lie algebroids have universal integrating Lie groupoids,
whose construction was described by C. Debord [16] and J. Pradines [46]. In
addition, these foliations are the ones studied under the name manifold with a
Lie structure at infinity or Lie manifold by Ammann–Lauter–Nistor [3]. In a
more general context, I. Androulidakis and G. Skandalis [4] gave a construction
of the holonomy groupoids. The resulting groupoid is no longer transversally
smooth, but retains a smooth structure on the fibers. A singular foliation in
the sense of Androulidakis–Skandalis becomes a Debord foliation after a Nash
blowup [34]. As observed by A. Connes [15], the space of leaves of a folia-
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tion, which is generally topologically badly behaved, should be replaced by
the corresponding integrating holonomy groupoid. Therefore, in attempting
to generalize the Atiyah-Singer index theorem [1] to non-compact manifolds,
groupoids play the central role. The index problem of elliptic operators, which
may include pseudodifferential operators on noncompact manifolds has appli-
cations in the study of partial differential equations. For instance, in the case
of stratified manifolds, the index of Lopatinskij–Shapiro type problems asso-
ciated with the restrictions of the operator to lower dimensional strata gives
the number of additional boundary and coboundary conditions that have to
be imposed in order to obtain a well-posed problem.

The above considerations lead to three main objects of study in order to
address index theory questions on foliated structures:

� The topological pre-quantization of singular structures in the form of
Lie groupoids (or continuous family groupoids) and their corresponding
deformation theory.

� The quantization of groupoids, often times given in the form of C∗-
algebras of groupoids.

� The K-theoretic invariants furnished by deformation groupoids.

The resulting geometrization of the index theory of interesting operators
occurring in the theory of partial differential equations, gives rise to powerful
tools.

We study integrated Lie structures (M,G), that is amenable Lie groupoids
G over compact manifolds with corners such that M0 = M \ ∂M is saturated
and GM0 = M0 ×M0. For instance, that covers the following situations:

� Manifolds with corners [39]. Here G = Gb is obtained after blowing-up
successively the submanifolds Hi × Hi into M × M , where Hi run through
the connected boundary hypersurfaces of M , and then removing the so-called
lateral faces in b-geometry terminology, which equivalently amounts to consider
the subspace SBlupr,s(M

2, (H2
i )i) of the blow-up according to the terminology

of [19].

� Manifolds with fibered corners, and thus equivalently stratified pseu-
domanifolds [18]. Here G = Gπ is obtained as before (blowing-up and removing
the lateral faces), but now starting with Gb in which the fibered diagonals
Hi ×π Hi are blown-up in the order prescribed by the order relation between
boundary hypersurfaces, cf. Section 2.3.
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� Manifolds with amenable foliated boundary. The pseudodifferential
operators are studied in [48] and the corresponding groupoid GF , although not
directly used, is constructed. Actually, it is stated in [19] that GF is obtained by
blowing-up in M ×M the holonomy groupoid of the foliation on the boundary,
that is GF = SBlupr,s(M ×M,Hol(F)).

� Contact structures, by which we mean tuples (M,G) where G is fil-
tered, i.e. the associated Lie algebroid A(G) is equipped with a filtration by
subbundles 0 = A0G ≤ A1G ≤ · · · ≤ ANG = A(G) such that the module of
C∞-sections Γ(A•G) is a filtered Lie algebra, cf. Section 3.2.

� There are many other examples related to singular spaces, see for in-
stance [42, 14].

In the case of a contact structure, a special notion for Fredholmness and a
modified pseudodifferential calculus is needed. In the other examples, there
is a well-defined notion of full ellipticity for operators, namely the principal
symbol and the indicial symbols (restrictions (IF )F∈F1(M) of the operator family
(Px)x∈M , defined over the fibers (Gx)x∈M , to the closed embedded boundary
faces F ∈ F1(M), IF : (Px)x∈M 7→ (Px)x∈F ) are both pointwise invertible, cf.
Section 4.1 in the corresponding calculus, that ensures the Fredholmness of the
associated operators on M .

Although we lay a focus on the index of (fully-)elliptic operators, the
theory also enables the study of non-elliptic Fredholm operators, using an
adapted associated pseudodifferential calculus (on so-called contact structures
which are special cases of almost injective Lie algebroids, cf. Section 3.2) and
higher invariants cf. Section 6.

2. OPERATORS ON MANIFOLDS WITH CORNERS

2.1. Degenerate operators and propagators

We begin this section with several examples of degenerate operators which
can be naturally defined on Lie structures. As is shown later, they occur as
special cases of the (pseudo-)differential operators on Lie structures.

Example 2.1. 1) Let (Xt) denote the Itô diffusion process fulfilling the
stochastic differential equation:

dXt = µ(X, t) dt+ σ(X, t) dWt.

Given a twice differentiable function f(t, x), application of a Taylor ex-
pansion and of Itô’s Lemma furnishes the Kolmogorov backward equation:

−∂tf(x, t) = µ(x, t)∂xf(x, t) +
1

2
σ2(x, t)∂2

xf(x, t).
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The corresponding propagator is the operator ∂t + L+, where

L+ := µ(x, t)∂x +
1

2
σ2(x, t)∂2

x

denotes the Kolmogorov backward operator. In important special cases, the
propagator is an elliptic parabolic operator of degenerate type. For example,
this is the case if the process is assumed to be stationary, Markovian, ergodic
and the corresponding diffusion matrix is nonnegative definite, i.e., X is a
hypoelliptic diffusion process. We have the underlying initial value problem:

∂tf = L+f, f(0, x) = g(x).

Formally, a solution is denoted by u(t) = exp(−tL+). Several numeri-
cal, approximate schemes, also based on the Laplace operator in Riemannian
geometry (cf. e.g. [20, 23, 36, 40, 45, 50]), have been proposed to study the
solution operator in various special cases of interest. Many important cases of
elliptic generators L+ correspond to differential operators associated to spe-
cific Lie structures. We return to the complicated analysis of the associated
heat operator exp(−tG2) of a pseudodifferential operator P on an arbitrary Lie
structure for an unbounded representative G in Section 5. Of interest is also
the associated wave operator, which describes the diffuse behavior (cf. quan-
tum dynamics) of the underlying system. We make some remarks regarding
future research directions at the end of the paper.

2) Consider the special case of the previous example given by the Black-
Scholes-Merton model with constant drift µ and constant volatility σ, corre-
sponding to a fixed underlying asset. Let f be twice differentiable such that

df =
(
µx∂xf + ∂tf +

1

2
σ2x2f

)
dt.

Note that (x∂x)
2 − x∂x = x2∂2

x, hence

df = (µx∂xf + ∂tf +
1

2
σ2(x∂x)

2f − 1

2
σ2(x∂x)f) dt

=
((

µ− 1

2
σ2

)
(x∂x)f +

1

2
σ2(x∂x)

2f + ∂tf
)
dt

=: ((L+µ,σ + ∂t)f) dt.

Here

L+µ,σ :=
(
µ− 1

2
σ2

)
(x∂x) +

1

2
σ2(x∂x)

2

is the corresponding elliptic generator. The vector fields {∂t, x∂x} generate a
smooth foliation; by the Serre-Swan theorem these generators give rise to a
vector bundle TbM over a compact manifold with boundary M .

3) Various forms of the Laplacian operator make their appearance as
differential operators adapted to different Lie structures.



260 K. Bohlen 6

� We can consider the Laplacian in cylindrical coordinates (ϱ, θ, z) on R3

written as

∆u = ϱ−2
(
(ϱ∂ϱ)

2u+ ∂2
θu+ (ϱ∂z)

2
)
.

The local generators are {ϱ∂ϱ, ∂θ, ϱ∂z} which yield the Lie structure of
edge type. The behavior of partial differential equations near the edges of
certain polyhedral domains can be described in this way. We can consider
boundary value problems on such domains with the help of a so-called wedge
structure. This is modeled on particular manifolds with corners in three di-
mensions.

� The Laplace operator in polar coordinates (ϱ, θ) on R2 is written

∆u = ϱ−2(ϱ2∂2
ϱu+ ϱ∂ϱu+ ∂2

θu).

Therefore, we have the local generators {ϱ−1∂ϱ, ∂θ} which correspond
to the Lie structure of b-type near ϱ = ∞. This example is relevant when
considering boundary value problems on domains with conical ends [42, 26].

� Similarly, we can write the Laplacian in spherical coordinates (ϱ, x′),
ϱ > 0, x′ ∈ S2

−
(
∆+

Z

ϱ

)
u = −ϱ−2(ϱ2∂2

ϱu+ 2ϱ∂ϱu+∆x′u+ Zϱu).

We obtain the Schrödinger operator with Newton potential in three di-
mensions, see also [42].

2.2. Manifolds with corners

A manifold with corners is a manifold modeled on the space [0,∞)n =
Rn
+. To develop the theory of such manifolds one starts by identifying the

points x ∈ M of different codimension. A point x has a neighborhood of the
form (0,∞)k × Rn−k, where by k we designate the codimension of the point.
Connected components of codimension k points are referred to as codimension
k faces. The closed faces of codimension k are the closures of open faces of
codimension k. A convenient supplementary condition is to require faces to
be in addition embedded in M . By that we mean that the closed, embedded
hyperface F has a corresponding smooth function ρF : M → R+ that vanishes
on F and dρ is non-vanishing when restricted to F . The nice feature of such
faces is that they have again the structure of a manifold with corners. We
denote by Fk(M) the closed codimension k-faces. The C∞-structure on M
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can be determined by a smooth neighborhood (a smooth manifold without

boundary) M̃ into which M is embedded and which by pullback furnishes the
C∞-structure on M . We recall the notion of a tame submersion for a C∞ map
f : M → N between manifolds with corners, that at any point x ∈M we have:

(1) dfx(TxM) = Tf(x)N and (dfx)
−1

(
T+
f(x)N

)
= T+

x M.

Here, TM denotes the ordinary tangent vector bundle and T+M its subset of
inward pointing vectors. Under such assumptions, f preserves the codimension
of points and its fibers have no boundary.

2.3. Integrated Lie structures

By a Lie structure, we mean a structural Lie algebra of vector fields that
forms a projective, finitely generated C∞-module, or equivalently a Lie alge-
broid with additional properties. Such structures are special kinds of singular
foliations that are in particular almost injective. The Lie structures were in-
troduced by B. Ammann, R. Lauter and V. Nistor as an axiomatization of
compactifications of certain non-compact manifolds with a controlled struc-
ture at infinity. The motivation stems from singular analysis and the Melrose
quantization problem, a program that was detailed in the talk [38]. In gen-
eral, to any singular foliation one can construct a holonomy groupoid, i.e., an
integrating groupoid which is minimal or universal in a precise sense. How-
ever, the groupoid may fail to be transversally smooth and Hausdorff, but still
possesses smooth range/source fibers (without corners), cf. I. Androulidakis
and G. Skandalis [4]. Almost injective Lie algebroids on the other hand have
a Hausdorff and C∞ integrating holonomy groupoid, cf. the construction de-
tailed by C. Debord [16]. By a Lie groupoid over a compact manifold with
embedded corners G0 = M we mean the structural maps

(r, s) : G ⇒ M,u : G0 ↪→ G, i : G
∼−→ G,

m : G ∗rs G =
{
(γ, η) ∈ G × G : s(γ) = r(η)

}
→ G

fulfilling the axioms
i) (s ◦ u)|G0

= (r ◦ u)|G0
= idG0 ,

ii) For each γ ∈ G
m
(
(u ◦ r)(γ), γ

)
= γ, m

(
γ, (u ◦ s)(γ)

)
= γ,

iii) For (γ, η) ∈ G ∗rs G we have

r
(
m(γ, η)

)
= r

(
γ), s(m(γ, η)

)
= s(η),

iv) For (γ1, γ2), (γ2, γ3) ∈ G ∗rs G, we have

m
(
m(γ1, γ2), γ3

)
= m

(
γ1,m(γ2, γ3)

)
,
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v) r ◦ i = s, s ◦ i = r,

vi) For all γ ∈ G

m
(
i(γ), γ

)
= ids(γ), m

(
γ, i(γ)

)
= idr(γ),

such that the arrows G = G1 form a C∞ manifold with corners, all structural
maps are C∞ maps of manifolds with corners and the source map is a tame
surjective submersion. By the axiom r = s ◦ i, also the range map is a tame
surjective submersion. Thereby, the source and range fibers s−1(x), r−1(x) for
each x ∈ G0 = M are smooth manifolds without corners. It is convenient to
denote multiplication by m(γ, η) = γ · η, whenever the arrows are composable
and by i(γ) = γ−1 the inverse operation. The associated Lie algebroid is
defined as the pullback by the unit inclusion A(G) := u∗T sG, where by T sG =
ker ds we denote the s-vertical tangent bundle. The anchor is defined as ϱ =
dr ◦ u∗ : A(G) → TM . On the other hand, given an abstract Lie algebroid
(π : A → M,ϱ : A → TM), we call A integrable if there is a Lie groupoid G
such that A(G) ∼= A.

Definition 2.2. We recall the definition of a Lie structure.

1. Let M be a compact manifold with embedded corners. A Lie structure is
a Lie algebroid (π : A →M,ϱ : A → TM) such that A|M0

= π−1(M0) the
restriction to the interior M0 := M \ ∂M is isomorphic, via the anchor
map ϱ, to the tangent bundle on the interior TM0 (almost injectivity)
and in addition the structural Lie algebra of vector fields V := Γ(A)
consists of vector fields tangent to all faces in M .

2. A Lie structure A is called integrated if there is an s-connected Lie
groupoid G ⇒ M such that the associated Lie algebroid is canonically
isomorphic to A, i.e., A(G) ∼= A.

Remark 2.3. Given a C∞-manifold M , the Serre-Swan theorem furnishes
a category equivalence between C∞-modules that are finitely generated pro-
jective over M and the category of finite rank C∞ vector bundles over M . For
a structural Lie algebra of vector fields that is a projective C∞(M)-module,
this furnishes a vector bundle A → M that carries the natural Lie algebroid
structure. Note that, we have not made use of the compactness of M .

Lie structures can be classified by the generators of the structural Lie
algebra of C∞ vector fields V := Γ(A), cf. Table 1.
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Table 1 – Singular manifolds

Local generators Lie structure

∂xi smooth, compact
x∂x, x∂yi asymptotically euclidean
x∂x, ∂yi b-type
xn∂x, ∂yi general cusps (n ≥ 2)
x2∂x, x∂yi scattering

xl∂x, xl∂yi , ∂zj edge (l-fold)
x2∂x, x∂yi , ∂zj fibered cusp

etc.

Example 2.4 (Scattering Lie structure). Let M be a compact manifold
with boundary endowed with the Lie structure of scattering vector fields, i.e.
the module of vector fields Vsc = pVb where p is the boundary defining function.
In local coordinates where x1 = p the generators of these vector fields can be
chosen as {x21∂x1 , x1∂xj}, j > 1. An integrating groupoid in this case is written
as a set

Gsc = T∂MM ∪ (M0 ×M0) ⇒ M.
Here the tangent bundle restricted to ∂M is a Lie groupoid which is glued

to the pair groupoid on the interior. If M is a compact manifold with corners
the scattering groupoid takes the form

Gsc =
( ⋃

F∈F1(M)

TFM

)
∪ (M0 ×M0) ⇒ M.

Example 2.5 (Generalized cusp Lie structure). On the compact manifold
with cornersM we consider the Lie structure Vcn of generalized cusps for n ≥ 2.
The local generators of vector fields of Vcn are given by {xn1∂x1 , ∂x2 , . . . , ∂xn}.
Then an integrating groupoid is defined as

Γn(M)=
{
(x, y, λ) ∈M×M×(R+)

I :λipi(x)
npi(y)

n = pi(x)
n−pi(y)n,∀ i ∈ I

}
.

The structural maps are defined in the same way as in the b-groupoid case. We
set Gn(M) := CsΓn(M), the s-connected component of the groupoid Γn(M).

Example 2.6 (Fibered cusp Lie structure). Another interesting case is
that of manifolds with iterated fibered boundary, in particular the following
example is based on [35] and the definitions are from [18]. For the construction
of the integrating Lie groupoid of a different type of fibered cusp Lie struc-
ture we refer to [22]. We assume again that M is a compact manifold with
corners, but this time the boundary strata are assumed to be fibered in the
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following sense. Let {Fi}i∈I the boundary hyperfaces of M and denote by
π = (π1, . . . , πN ) an iterated boundary fibration structure: There is a partial
order defined on {Fi}i∈I , π : Fi → Bi are fibrations where Bi is the base, a
compact manifold with corners. The Lie structure is defined via

Vπ :=
{
V ∈ Vb : V|Fi

tangent to fibers of πi : Fi → Bi, V pi ∈ p2iC
∞(M)

}
where {pi}i∈I denotes the boundary defining functions as usual. Then Vπ is
a finitely generated C∞(M)-module and a Lie sub-algebra of Γ∞(TM). The
corresponding groupoid is amenable [18, Lemma 4.6]; as a set it is defined as

Gπ(M) := (M0 ×M0) ∪
( N⋃

i=1

(Fi ×πi T
πBi ×πi Fi)× R

)
,

where T πBi denotes the algebroid of Bi.

Example 2.7. We model space time as a 3 + 1 dimensional manifold M0,
i.e., a manifold endowed with a metric g0. The metric in most cases is the
Schwartzschild or Kerr metric and describes a manifold which is asymptotically
euclidean. This is a particular example of a Lie structure. In [25], the authors
consider this manifold to prove the uniqueness of smooth stationary black holes
in general relativity under certain assumptions.

2.4. Pseudodifferential operators

Abstractly, a Lie structure V gives rise to an enveloping algebra, which
provides us with a class of differential operators. In fact, the class of differential
operators of order m is recursively defined as

Diffm
V (M) := VDiffm−1

V +Diffm−1
V (M)

=
{
fV1 · · ·Vm : f ∈ C∞(M), Vj ∈ V, 1 ≤ j ≤ m

}
.

We set Diff0
V(M) := C∞(M). Let G ⇒ M be a Lie groupoid, define by

Diffm(G) the right-equivariant, linear operators C∞
c (G) → C∞

c (G) which are
generated by vector fields in Γ(T sG) as a C∞

c (G)-module. The bigger class of
pseudodifferential operators is essentially given by a family of pseudodifferential
operators on the fibers of the groupoid.

Since the Lie groupoids G ⇒ G0 under consideration have by definition
the source and range given by tame submersions, the fibers Gx are smooth
manifolds without corners. Imposing a uniform support property implies that
the operator is properly supported when considered as an operator acting on
C∞
c (G). We obtain furthermore, by imposition of a right equivariance property
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of the family P = (Px)x∈G0 , a reduced kernel kP , which is a compactly sup-
ported distribution on G conormal to G0. If P is such an operator, note that
by right equivariance

kr(γ)(γ1, γ2) = ks(γ)(γ1γ
−1, γ2γ

−1) for γ1, γ2 ∈ Gr(γ), γ ∈ G

it follows that ks(γ)(γ, η) = kr(γ)(idr(γ), ηγ
−1) =: kP (ηγ

−1). In particular, the
reduced kernel kP (ηγ

−1) = ks(γ)(η, γ) depends only on ηγ−1 ∈ G for each
(η, γ−1) ∈ G ∗rs G as can be shown by the right-invariance of a given Haar
system. Thus the G-operator P : C∞

c (G)→ C∞
c (G) is defined as

Pu(γ) =

∫
Gs(γ)

kP (γη
−1)u(η) dµs(γ)(η)

for u ∈ C∞
c (G) and (µx)x∈G0 is a smooth right invariant system of Haar mea-

sures which is uniquely determined up to Morita equivalence. The class of
pseudodifferential operators Ψm(G) on G is defined in the following fashion,
where the kernel kP turns out to be a distribution on G that is conormal to M
(which is embedded in G, via the unit inclusion).

Definition 2.8. A pseudodifferential operator on G is a C∞-family of pseu-
dodifferential operators on the s-fibers of G, equivariant with respect to the
action of G.

We refer to [43] for the technical details regarding the uniform support
condition contained in the notion of being a C∞-family which entails that kP
is uniformly supported. We denote by Ψ∗

V(M ;E0, E1) the algebra of pseudod-
ifferential operators of Lie type on M0 = M \ ∂M acting between the sections
of vector bundles Ej → M [3]. It coincides with the image of Ψ∗

G(E0, E1) by
the vector representation r# when G is s-connected [3]. By a slight abuse of
notation, we continue to set Ψ∗

V = r#Ψ
∗
G in the general case. Equivalently, Ψ∗

V
is isomorphic to the space obtained by restricting elements of Ψ∗

G to the fiber
of G over any arbitrary interior point x. The isomorphism comes then from
the diffeomorphism r : Gx → M0. One observes that the pseudodifferential
operators of order < 0 are contained in C∗(G). The 0-order operators Ψ0(G)
are a subalgebra of the multiplier algebra M(C∗(G)) which makes it possible to
consider the norm closure Ψ0(G). Since the groupoids under consideration are
assumed to be amenable, we do not need to make any distinction between the
reduced and the full C∗-algebras of a Lie groupoid. More details and proofs of
these assertions are contained in the survey [19].
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3. DESINGULARIZATION AND RENORMALIZATION

3.1. Renormalization

In order to obtain finite values, upon integration of forms that are gen-
erated by a given Lie structure, the need arises to suitably renormalize the
singular denominators. The renormalization procedure depends on the order
of the singularities considered (referred to as the degeneracy index below).

Example 3.1. Consider the case of the b vector fields V = Vb on a manifold
M0 with cylindrical end (−∞, 0]s × Y . The Kondratiev transform x = es

furnishes a compactification M̂0 = M to a manifold with boundary, where
s → −∞ corresponds to x → 0. Close to the boundary we have the density
ds = dx

x with ∂s = x∂x. The singular structure is encoded in a Riemannian
metric g (a compatible metric on the b-tangent bundle TbM → M) which is
product type close to the boundary

g = ds2 + h =
(dx
x

)2
+ h.

Notice that dx
x is not integrable over [0, 1]x. We use therefore the renor-

malization by observing that for ℜz > 0 the function xz is integrable with
regard to dx

x over [0, 1]x. By setting

G(f)(z) =

∫
M

xzf dg, f ∈ C∞(M), ℜ(z) > 0

we define the b-trace as the regularized value of G(f)(z) in z = 0 by which we
mean that G(f) extends to a meromorphic function of z ∈ C, and we consider
the constant Laurent coefficient at 0.

These issues motivate the following general definition of renormalizability.
To keep the presentation short, we exclude here the case of fibered corners.
However, in [12] renormalizability is defined more generally for a class of Lie
structures of fibration type, see also [42, 37].

Definition 3.2. Let (M,V) be a compact manifold with corners, endowed
with Lie structure V and boundary defining functions (ρF )F∈F1(M). We set
ρ :=

∏
F∈F1(M) ρF . Then, the Lie structure V is called renormalizable if for

ω ∈ VΩ
p
(M) there is a k ≥ 1 such that Gρ(ω)(z) :=

∫
M ρzω is holomorphic

on {z ∈ CF1(M) : ℜ(zF ) > k − 1} and admits a meromorphic extension to
CF1(M). We call the minimal kdeg(V) := k for which this property holds, the
degeneracy index of V. We call the boundary defining functions a choice of
renormalization. Define

V∫
M
− ω := Regz=0

∫
M

ρzω(2)



13 Index theory 267

as the regularized value at z = 0 of Gρ(ω)(z).

Remark 3.3. i) Up to a remainder term, involving the integral and deriva-
tives of ω restricted to the boundary components, the value depends on the
choice of boundary defining functions [29, Section 4].

ii) We make in what follows the assumption that (M,G,A) is an integrated
Lie manifold with connected boundary ∂M and trivial fibration p : ∂M → {pt}.
Assume that the underlying Lie structure Vk := Γ(A(Gk)) has generators of
the form {xk∂x, ∂y} where k ∈ N. We refer to this as the ck-structure. Denote
by Vb the Lie structure consisting of smooth vector fields that are tangent
to the boundary ∂M . Hence the c1-structure corresponds to the b-structure.
The degeneracy indices are kdeg(Vk) = k. According to [28, Section 15.3],
the norm closure of the calculus for the ck structure with k ≥ 2 is the same
as the norm closure of the b-structure. In particular, the Lie groupoid C∗-
algebras are equal. In the more general case of a fibered cusp Lie structure,
given a geometric Dirac operator that is fully elliptic, the index problem can
be reduced to a fully elliptic geometric Dirac operator on a b-manifold, by
deforming the exact metrics, cf. [32]. In view of these facts, we restrict the
following discussion of the renormalized integrals to the case of the integrated
Lie structure (G,M,A) with V = Vb = Γ(A). For this case, we can compare the
previously defined renormalization with the Hadamard partie finie procedure.
To M attach the semi-infinite cylinder ∂M × (−∞, 0] yielding a manifold with
cylindrical endsMcyl. We take the metric g = g∂M+dt2 and map the cylindrical
end via the transform r = et to a tubular neighborhood of the boundary,
obtaining the cylindrical end metric g = g∂M + (r−1dr)2 near the boundary.
We consider the set bC∞(M0) defined to consist of f ∈ C∞(M0) such that
there are f−

0 , f−
1 , · · · ∈ C∞(∂M) with

f̃(x,−) ∼x→−∞ f−
0 + f−

1 ex + f−
2 e2x + · · · ,

f̃(x,−) = f(ex,−),

cf. [32, Section 1.6] for the details. Accordingly, we define the p-forms bΩ
p
(M0),

i.e. forms that in local coordinates are written as

ω = f(x, y)dx ∧ dyi1 ∧ · · · ∧ dyip−1 + g(x, y)dyj1 ∧ · · · ∧ dyjp

where 1 ≤ i1 < · · · < ip−1 ≤ n and 1 ≤ j1 < · · · < jp ≤ n and f, g are
contained in bC∞(M0). Consider the functions smooth up to the boundary,
C∞(M). The restriction to the interior induces an isomorphism of algebras
C∞(M)

∼−→ bC∞(M0) and the inclusion of the boundary ∂M → Mcyl induces
a pullback i∗ : bΩ

p
(M0) → Ωp(∂M). Given a p-form ω on the manifold with

cylindrical end, the renormalized integral is defined via the Hadamard finite
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part renormalization

b∫
Mcyl

− ω = finite part of

∫
x≥−R

ω as R→∞.

3.2. Holonomy groupoid

Let us briefly sketch the construction of the holonomy groupoid as de-
scribed by C. Debord [16], given an almost injective Lie algebroid A.

The Lie groupoid is reconstructed via a sheaf of germs of equivalence
classes of partial Morita equivalences that fulfills an additional technical con-
dition. Given an almost injective Lie algebroid (π : A →M,ϱ) over a compact
manifold with corners with dense interior M0 = M \ ∂M . As demonstrated
in the work C. Debord [16] and J. Pradines [46], a sheaf of germs can be con-
structed and used to glue the holonomy groupoid. We recall this construction
in the present section.

We consider spans A← Z → B that are formed out of the tame surjective
submersions, in the category of C∞ manifolds with corners. The notion of
Lie groupoids that are final objects in the category of such spans goes back
to B. Bigonnet under the name of quasi-graphoid. J. Renault [48] refers to
them as essentially principal groupoids and J. Pradines calls them monograph
groupoids.

Definition 3.4. A partial Lie groupoid is given by the data (L1,L0, s)
where L1,L0 are C∞-manifolds (with corners) and s : L1 → L0 is a (tame)
surjective submersion, as well as Dm ⊂ L1 ∗ L1, which is an open subset. The
involution i : L1 → L1, as well as the remaining structure maps m : Dm →
L1, r : L1 → L0, s : L1 → L0, u : L0 → L1 fulfill the usual axioms of a
groupoid, whenever the corresponding operations are defined.

Dm

L L L0

L1 ∗ L1 ⊇ Dm

pr1

i r

m

Definition 3.5. A generalized atlas A := {Li ⇒ Ui}i∈I consists of partial
Lie groupoids Li ⇒ Ui and a covering {Ui}i∈I by open subsets, such that:
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1. For each i ∈ I the partial Lie groupoids Li is a partial spanoid, i.e. a
final object in spans.

2. For each i, j ∈ I there are partial sub groupoids Hj
i ⊂ Li, H i

j ⊂ Lj and

partial span isomorphisms φij : H
j
i

∼−→ H i
j .

Remark 3.6. The partial spanoid property implies that the φij are unique,
i.e., there is a maximal open subset D(φij) ⊂ Li such that Ui ∩ Uj ⊂ D(φij),
referred to as the domain of φij . We assume throughout that all domains of
φij are maximal.

We proceed to the construction of a pseudogroup, associated to a given
generalized atlas. To this end we form the following category Φ̃(X) ⇒ O(X):

Φ̃(X) :=

{
Φ̃(X)0 = O(X),

Φ̃(X)1 = span isomorphisms L0
∼−→ L1, U ⊂ L0, V ⊂ L1.

The category (Φ̃(X), ◦) is endowed with the fiber-product, furnishing the
composition of the category. In the next step, we augment this category to a
groupoid (Φ(X),⊚):

Φ(X) :=


Φ(X)0 = O(X),

Φ(X)1 = arrows f : L0 99K L1 partial Morita isomorphisms,

U ⊂ L0, V ⊂ L1.

The groupoid is endowed with the generalized tensor product ⊚, which
is the composition of arrows.

Definition 3.7. Given a generalized atlas A, we define the associated pseu-
dogroup ΦA to be the wide subgroup of Φ(X) consisting of partial Morita iso-
morphisms between elements of A such that the identity is contained in ΦA

and such that ΦA is stable with regard to inversion, partial composition and
restriction.

The pseudogroup ΦA gives rise to a sheaf of germs GΦA
:= ΦA/ ∼, con-

sisting of germs of partial Morita isomorphisms. The global object of this sheaf
realizes a Lie groupoid. To this end, the equivalence relation on ΦA is defined
as: Given two partial Morita isomorphisms f and g, then f ∼γf g if there are

open subsets Vf ,Wf ⊂ Zf and an isomorphism of spans φ : Vf
∼−→ Wf with

φ(γf ) = γf . The operation of generalized tensor product induces the nec-
essary algebraic structure on the partial Morita isomorphisms which induces
a groupoid structure on the global object. The partial spanoid property is
then decisive to yield a compatible C∞-structure that, by tameness, induces
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a smooth structure (without corners) on the fibers of the resulting holonomy
groupoid.

Definition 3.8. Given a Lie algebroid (π : A →M,ϱ), we define the holon-
omy groupoid G ⇒ M of A by the following properties:

1. The Lie groupoid G integrates A, i.e. A(G) ∼= A.

2. It is minimal, i.e. for any Lie groupoid H⇒ M which integrates A there
is a surjective morphism of Lie groupoids H → G.

Theorem 3.9 (Debord). Let (M,A) be an almost injective Lie algebroid.
Then there is a spanoid Lie groupoid G ⇒ M which integrates A.

Example 3.10. i) We refer to the examples of Section 2.3 for concrete Lie
groupoids whose existence may be inferred by the construction recalled above.

ii) Let (M,A) such that the Lie algebroid A is equipped with a filtration
by subbundles 0 = A0 ≤ A1 ≤ · · · ≤ AN = A such that the module of C∞-
sections Γ(A•G) is a filtered Lie algebra. We introduce the Lie algebroid AH≤

as a set by A×R∗∪AH×{0}, where we denote the graded Lie algebroid bundle
AH := ⊕N

i=1Ai/Ai−1. The C∞ sections of vector fields are defined by

Γ(AH≤) :=
{
X ∈ Γ(A× R) : ∂i

tX|t=0 ∈ Γ(Ai), i ≥ 0
}
.

Then AH≤ is an almost injective Lie algebroid and we can find an inte-
grating Lie groupoid GH≤ ⇒ M ×R by application of Theorem 3.9. There are
various different explicit constructions of the groupoid that can be found in
the literature. As an example, we refer to [21] for an elegant coordinate-free
approach.

4. REDUCTION THEORY

4.1. Deformation groupoids and geometric reduction

Let F ⊂ M be a closed subspace which is saturated, by which we mean
that s−1(F ) = r−1(F ), and set O := M \ F . Then GF is a continuous family
groupoid [44, 27]. By restricting over F , we get the F -indicial symbol map:

IF : Ψ∗
G(E0, E1)→ Ψ∗

GF

(
E0|F , E1|F

)
.

Gathering both symbol maps, we get the F -joint symbol map:
(3)
σF,m=(σpr, IF ) :Ψ

m
G (E0, E1)−→C

(
S(A∗), π∗Hom(E0, E1)

)
×Ψm

GF

(
E0|F , E1|F

)
.
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The range Σm
F (E0, E1) of σF,m is called the F -joint symbols space and its closure

is denoted by Σm
F (E0, E1). We write ΣF for Σ0

F .
This gives the short exact sequence of C∗-algebras [27]:

(4) C∗(GO,End(E)
)
// // ΨG(E)

σF // // ΣF (E),

where C∗(GO,End(E)) is the closure of C∞
c (GO, r

∗End(E)) into ΨG(E). The
adiabatic groupoid Gad ⇒ G0,ad := G0 × [0, 1] is the natural Lie groupoid
integrating the Lie algebroid (cf. Figure 1) (Aad, ϱad) given by:

Aad = A× [0, 1] and ϱad : Aad → TG0 × T [0, 1],

Aad ∋ (x, v, t) 7→ (x, tv, t, 0) ∈ TG0 × T [0, 1] = TG0,ad.

More precisely,

Gad = A× {0} ∪ G × (0, 1] and A(Gad) ∼= Aad,

see also [15, 24, 43]. Out of the adiabatic groupoid we construct the F -Fredholm
groupoid :

(5) GFF := Gad \
(
GF × {1}

)
⇒ GF0,F =

(
G0 × [0, 1]

)
\
(
F × {1}

)
This is again a Lie groupoid (as an open subset of Gad). The noncommutative
tangent bundle is defined by:

(6) TFG0 := GFF \
(
GO × (0, 1]

)
⇒ G0,F = GF0,F \

(
O × (0, 1]

)
.

It is a C∞,0 groupoid [44]. To gain more insight, consider the data encoded
by the K-theory of the C∗-algebra of the noncommutative tangent bundle
K0(C

∗(T )) for the case of F = ∂M connected boundary, cf. Figure 2. On the
one hand, for t = 0 it encodes the homotopy class of the principal symbol of
the given operator P . For 0 < t < 1, it encodes the homotopy data coming
from the indicial (boundary) symbol of the operator. The K-theory of the C∗-
algebra of the Fredholm groupoid (Figure 3) additionally encodes the values of
the geometric index map at t = 1, i.e. the K-theory of the compact operators
that are given by C∗(M0 ×M0) ∼= KM0 .

The exact sequence:

(7) C∗(GO × (0, 1]
)
// // C∗(GF )

e0 // // C∗(TFM)

possessing a contractible kernel and a nuclear quotient, we get an isomorphism
e0 : K0(C

∗(GFF ))→K0(C
∗(TFM)), and moreover, e0∈KK(C∗(GFF ), C∗(TFM))

provides a KK-equivalence (that is, is invertible). Considering the restriction
e1 : C

∗(GFF )→ C∗(GO), we get another index map:

indFF := (e1)∗ ◦ (e0)−1
∗ : K0

(
C∗(TFM)

)
→ K0

(
C∗(GO)

)
.

We have the following Poincaré duality type isomorphism, cf. [11, Theo-
rem 2.4].
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Theorem 4.1. There is a group isomorphism:

(8) pdF : EllF (G)→ K0

(
C∗(TFM)

)
such that e0(pdF [P ]F ) = [P ]pr,ev ∈ K0

c (A∗) and indFF (pdF [P ]F ) = indF ([P ]F ).
Here e0 is the restriction map C∗(TFM)→ C∗(A).

The analogy to the commutative case is that ΣF is the noncommutative
cosphere bundle, relative to F , and TFM is the noncommutative tangent bundle,
relative to F , associated with G ⇒ M , see also [27, Section 5]. Denote by
∂ : K1(ΣF ) → K0(C

∗(GO)) the connecting ”index” map in the K-theory six-
term exact sequence associated to the short exact sequence of the full symbol
map (4). By [17], we have that

indFF
(
pdF [P ]F

)
= ∂

[
σF (P )

]
1

where by [σF (P )]1, we denote the K1-class of P ∈ ΨG(E) under the full symbol
map σF . By Theorem 4.1 we obtain that indF ([P ]F ) = ∂[σF (P )]1. In particu-
lar for F = ∂M and G an integrated Lie manifold, the index map indF recovers
the Fredholm index. We consider here and below the data: φ : Σ→M , where
by Σ we denote a compact manifold with corners and by φ a tame surjective
submersion. By virtue of another straightforward deformation construction
(cf. Figures 4, 5), we obtain the following pushforward homomorphisms:

(9) φF
! : K∗

(
C∗((φG)F )) −→ K∗

(
C∗(GF ))),

(10) φnc
! : K∗

(
C∗(T Σ)

)
−→ K∗

(
C∗(TM)

)
,

(11) φ0
! : K∗

(
C∗(φA)

)
−→ K∗

(
C∗(A)

)
.

G

A(G)t = 0

t = 1

Figure 1 – Adiabatic groupoid.

Noting that the operation on a Lie groupoids given by pullback (by a
tame surjective submersion) does not commute with the operation of taking
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G∂M

A(G)t = 0

t = 1

Figure 2 – Noncommutative tangent bundle.

G

A(G)

M0 ×M0

t = 0

t = 1

Figure 3 – Fredholm groupoid.

the adiabatic deformation, we make use of another deformation groupoid:

Lφ = (φG)ad × {u = 0} ∪ φ1(Gad)× (0, 1]u ⇒ Σ× [0, 1]t × [0, 1]u

to facilitate the pushforward φ0
! . Denote by φ1 := φ× Id[0,1]t .

The groupoid Lncφ facilitating the pushforward φnc
! is the restriction of Lφ

to tz = 0, where z denotes the lift of a boundary defining function ϱ∂M : M →
R+ by φ, i.e. z = ϱ∂M ◦ φ.

4.2. Clutching data

Let P ∈ Ψm
V (M ;E0, E1) be a pseudodifferential operator that is fully

elliptic. We define next the clutching data associated to P as the quadruple
(ΣA, φ,Eσ, C).

The clutching space is defined as the sphere bundle ΣA := S(A⊕1R) which
equals B(A)+∪S(A)B(A)−, where B(A) denotes the ball bundle inA and B(A)±
denote the upper and lower hemispheres respectively that are glued along the
hypersurface S(A) to obtain the clutching space. Denote by φ : ΣA → M the
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φ1Gad

(φG)adu = 0

u = 1

Figure 4 – Groupoid facilitating pushforward φ0
! .

φ1TM

TΣu = 0

u = 1

Figure 5 – Groupoid facilitating pushforward φnc
! .

projection which yields a tame surjective submersion. The third component
is the clutched bundle Eσ → ΣA over ΣA. By ellipticity of P , we have an
isomorphism

σpr(P ) : π∗E0
∼−→ π∗E1.

Let Â = A ∪ S(A) be the radial compactification of A and π̂ : Â → M the
corresponding projection map. The clutched bundle Eσ → ΣA is defined by
the glueing of pullbacks of E0 and E1, along the boundary stratum S(A), using
σpr(P ):

Eσ = π̂∗E0 ∪S(A) π̂
∗E1.

In addition, we define the taming Callias operator C over the spinC-
manifold ΣA. The data (ΣA,

φG, φA), where φG denotes the pullback Lie
groupoid over ΣA integrating the pullback Lie algebroid φA, furnishes an inte-
grated Lie structure [11, Theorem 3.6] that is endowed with the spin structure
S → ΣA. The bundle

φA is spinC, since we can write φA = φ∗(A)⊕ker dφ and
since ΣA = S(A⊕ 1R) is a stably almost complex manifold, which can be seen
by using the A-metric with normal coordinates to define an almost complex
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structure on A. The vector bundle

W := Eσ ⊗ S ⊕ φ∗E1 ⊗ (−S)

is a Clifford module over the Clifford bundle Cl(φA). Denote by φ∇W an φA-
connection, i.e. a Levi-Civita connection on the pull back Lie algebroid φA
that is compatible with the Clifford action:

φ∇W
X

(
c(Y )f

)
= c(φ∇XY )f + c(Y )(φ∇W

X f), X, Y ∈ Γ(φA), f ∈ Γ(W ).(12)

A geometric Dirac operator over the Lie structure (ΣA,
φA) is then defined

via D = c ◦ (id ⊗ ♯) ◦ φ∇W , where ♯ is the isomorphism φA ∼= φA∗ induced
by the fixed compatible metric g, φ∇W denotes the φA-connection and c the
Clifford multiplication:

Γ(W )
φ∇W

// Γ(W ⊗ φA∗)
id⊗♯

// Γ(W ⊗ φA) c // Γ(W ).

Since c is a φV-operator of order 0 and φ∇W is a φV-operator of order 1,
we see that D is in Diff1

φV(ΣA;W ). Additionally, σ1(D)ξ = ic(ξ) ∈ End(W ),
hence invertible for ξ ̸= 0, and D is elliptic.

Definition 4.2. We call C = (D⊕D′)+R a taming Callias type operator of
D, if (D′,W ′) is a Dirac bundle of the same parity as (D,W ) and the residual
operator R ∈ Ψ−∞

φV (ΣA;W ⊕W ′) is such that

C := (D ⊕D′) +R ∈ Ψ1
φV(ΣA;W ⊕W ′)

is fully elliptic and the principal symbol classes in relative K-theory agree, i.e.
[D]pr = [C]pr.

The clutching data gives rise to a geometric K-homology theory, i.e. we
can describe a group VK

geo
(M) generated by data (Σ, φ,E,B), for a given

(odd) dimensional compact manifold with corners M ; a tame surjective sub-
mersion φ : Σ −→ M ; an even (odd) Dirac bundle (E,D) on (Σ, φG); a self-
adjoint even (odd) Dirac ∂Σ-taming B of D. We call such a tuple a geometric
cycle and introduce an equivalence relation on the set of geometric cycles (of
fixed parity) that is generated by the operations: isomorphisms of geometric
cycles, direct sums, cobordisms and vector bundle modifications. We refer to
[11, Section 4] for the technical details.

4.3. Reduction to Callias operators

There are three main ingredients to the main result which we are going
to record separately. The first is the commutativity of the geometric Fredholm
index map with pushforwards ([11, Theorem 3.7]).
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Theorem 4.3. Let (M,G) be an integrated Lie manifold and φ : Σ→M
a tame surjective submersion. Then the map φnc

! commutes with Fredholm
index:

(13) indF∂M ◦φnc
! = indF∂Σ

Here, the target group of the index maps indF• is replaced by Z after applying
the obvious Morita equivalences.

In other words, if B ∈ Ψ∗
φG(Ẽ+, Ẽ−) and P ∈ Ψ∗

G(E+, E−) are fully
elliptic operators and satisfy φnc

! [B]∂Σ,ev = [P ]∂Σ,ev then B and P have the
same Fredholm index.

The second ingredient is the so-called functoriality of the pushforward
maps that we introduced in the previous subsection. One may also refer to
this as a compatibility condition, with respect to the appropriate Thom iso-
morphisms, cf. [11, Theorem 3.8].

Theorem 4.4. Let (M,G) be an integrated Lie manifold, π : V → M
be a real vector bundle and denote by φ : Σ = S(V ⊕ R) → M the associated
clutching and i : V ↪→ Σ the embedding as an open hemisphere. Then

1. πnc
! and π0

! are isomorphisms, the latter being the inverse of the Thom
isomorphism of the complex bundle πA → A.

2. We have the identities:

(14) φ•
! ◦

(
i∗ ◦ (π•

! )
−1

)
= Id, with • = nc or 0.

Finally, a so-called Diracification Theorem ([11, Theorem 3.3]):

Theorem 4.5. Let (S,D) be a Dirac bundle. Then for any F -fully elliptic
operator P ∈ ΨG such that [P ]pr,∗ = [D]pr,∗ ∈ K∗(A), there exists a F -taming
B of (S,D) such that

(15) [B]F,∗ = [P ]F,∗ ∈ K∗
(
C∗(TFM)

)
≃ K(µF ).

Consideration of the commutative diagram

(16)

K0
c (A∗) K0

c (
πA∗) K0

c (
φA∗)

K0(C
∗(TM)) K0(C

∗(T A)) K0(C
∗(T ΣA))

Thom −⊗[i]

evt=0

(πnc
! )−1

evt=0

−⊗[i]

evt=0
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together with the previous facts, then furnishes the main (reduction) result
([11, Theorem 5.2, Theorem 5.4].

Theorem 4.6. Let (M,G) be an integrated Lie structure and consider
P ∈ Ψm

G (E0, E1) a fully elliptic operator. Then there exists an even Dirac
bundle (E,D) on (ΣA,

φG) with boundary taming B such that

(17) φnc
!

(
[B]∂ΣA,ev

)
= [P ]∂M,ev ∈ K0

(
C∗(TM)

)
.

In particular, B+ and P have the same Fredholm index.

Corollary 4.7. The diagram

K∗(µ)

VK
geo

(M) K(C∗(TM ))

c
pd

λ

commutes. In particular, if P : C∞(M,E0) → C∞(M,E1) denotes a fully
elliptic pseudodifferential operator on the integrated Lie structure (M,G), then
there is a taming C on the integrated Lie structure (ΣA,

φG) such that we have
ind(C) = ind(P ).

5. ATIYAH–PATODI–SINGER INDEX FORMULA

Let P ∈ Ψm
V (M ;E0, E1) be a pseudodifferential operator that is fully

elliptic. Since G is by assumption s-connected, the algebra of pseudodifferential
operators of Lie type Ψ∗

V coincides with the image of Ψ∗
G(r

∗E0, r
∗E1) by the

vector representation r♯. Also, we fix the clutching data (ΣA, φ,Eσ, C) as
described in Subsection 4.2.

5.1. Heat kernel

Let G ∈ Ψ1(G, r∗E) be an elliptic operator that is in addition sym-
metric and viewed as an unbounded operator on the Hilbert C∗(G)-module
E = C∗(G, r∗E). Consider the initial value problem [13, 12]:

(18)
(∂t −G2)ut = 0, ut ∈ C0(G, E),

lim
t→0

ut ∗ u = u, u ∈ C∞
c (G, E).
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Denote by Γ the curve parametrized by R+ ∋ t 7→ −1 + t(1 ± i). The
Ansatz for the solution of the problem is the heat operator, defined via func-
tional calculus

e−tG2
:=

1

2πi

∫
Γ
e−tλ2

(G2 − λ)−1 dλ.(19)

S. Vassout has introduced the residual class Ψ−∞
G (r∗E) which is a (non-

unital) symmetric, continuously embedded Fréchet subalgebra of C∞(G, r∗E)∩
C∗(G, r∗E), that is also closed with respect to holomorphic functional calculus
(a Ψ∗-algebra). To make sense of the expression (19), note that the operator G
is closable. By [51], closure is a regular selfadjoint unbounded morphism on E .
We then apply the continuous functional calculus of [49], by which the integral
is absolutely convergent in Mor(E) and Gke−tG2

, e−tG2
Gk belong to Mor(E) as

well, for any k ∈ N. This shows that e−tG2
is contained in the residual class

Ψ−∞
G (r∗E).

We can associate an unbounded representative in K-homology to the
given pseudodifferential operator P , cf. [12, Section 3]. To this end, note that
by choosing ∆0 ∈ Ψ2

G(E0) as an elliptic nonnegative differential operator, we

obtain by [51] that (1 + ∆0)
1/2 ∈ Ψ1

G(E0) is an invertible operator. We can

therefore set G+ = P (1 + ∆0)
1/2 and G− = (G+)

∗. We can summarize this in
the following Lemma (cf. [12]).

Lemma 5.1. Given the data as specified, there is an unbounded represen-
tative G = GP in K-homology of the form

G =

(
0 G−
G+ 0

)
over E := E0 ⊕ E1 such that:

1. (G+)
∗ = G−, in particular G is self-adjoint and elliptic.

2. G ∈ Ψ1 = Ψ1
c +Ψ−∞

G .

3. ind(P ) = ind(G+).

In the computation of the index ind(P ), we expect an error term to arise,
that is a non-local contribution. To make an Ansatz for the non-local contribu-
tion, we use again the functional calculus and the unbounded representative.

Using GP , as specified in Lemma 5.1 as well as the functional calculus of
[33], we define the operators

A0(t) := Ge−
t
2G2,
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A1(t) :=

∫ ∞

t
Ge(

t
2
−s)G2

ds

that by virtue of the above considerations and the functional calculus are ele-
ments of Ψ−∞

G (E) for t > 0. We make the Ansatz:

Vη(GP )(t) := −
1

2
VTrs

[
A0(t), A1(t)

]
.(20)

5.2. Chern–Weil construction

A-connections

Let (A, ϱ) be an almost injective Lie algebroid over the compact manifold
with corners M and let g be a positive definite, symmetric 2-tensor on A
that extends a Riemannian metric g0 that is defined on the (dense) interior
M0 ⊂M . Then by [42, Proposition 3.11], there is a Levi-Civita connection on
A that extends the Levi-Civita connection on TM0.

Proposition 5.2. There is a Levi-Civita (LC) A connection, i.e. a dif-
ferential operator ∇ : Γ(A) → Γ(A ⊗ A∗) that extends the LC-connection on
the interior such that the following conditions hold:

1. X 7→ ∇X(fY ) = f∇X(Y ) +X(f)Y .

2. ∇fX(Y ) = f · ∇X(Y ).

3. X⟨Y,Z⟩ = ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩.

Where ⟨·, ·⟩ is the inner product on Γ(A) induced by g.

Remark 5.3. Note that the proof also works for so-called open Lie man-
ifolds, a variant of the Lie structure where M is not assumed to be compact
and the definition of the Lie structure is modified to contain the smooth sec-
tions with compact support, cf. [42, Definition 3.3]. On the other hand, the
condition of boundary tangency of [42] is not required for the existence of an
A-connection.

Chern–Weil theory is constructed in complete analogy to the standard
case of smooth manifolds, by making use of A-connections. We recall briefly
the definition of Lie algebroid cohomology as well as the Chern character and
Todd class.
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Cohomology

We set

Ωk(A) := Γ∞
(
G0;

k∧
A∗

)
.

Observe that the connection ∇ is a linear operator ∇ : Ω0(A) → Ω1(A). The
curvature tensor R(∇) ∈ Ω2(End(A)) is defined via

R(∇)(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

The operators

dA : Ωk(A)→ Ωk+1(A),
are defined via the Koszul formula

(21)

dAα(X0, . . . , Xk) :=
k∑

i=0

(−1)i∇Xiα(X0, . . . , X̂i, . . . , Xk)

+
∑
i<j

(−1)i+j−1α
(
[Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk

)
.

The corresponding cohomology groups are denoted by H•(A).
Remark 5.4. The theory is a simultaneous generalization of several other

situations, e.g. ifA is the tangent bundle TM , we recover de Rham cohomology
of M and if A is a Lie algebroid over a point, we recover the Lie algebra
Chevalley–Eilenberg cohomology.

Characteristic classes

The Chern–Weil construction of characteristic classes, applied to the Lie
algebroid case, proceeds as follows. Let ∇ be an A-connection. The Chern–
Weil theorem states that for a given degree k polynomial P :Mrk(A)(C)→C that
is invariant with respect to the conjugacy action of GLrk(A)(C), we have that

P (R(∇)) ∈ Ω2k(A) is a well-defined, closed form, that furnishes a cohomology
class in H2k(A) that is independent of the choice of connection. Note that via
the pullback along the anchor, the Chern–Weil construction for a connection
over a vector bundle corresponds to the construction for Lie algebroids. We
recall the definition of the primary characteristic classes for Lie algebroids,
which are the pullbacks of characteristic classes along the anchor map of the
corresponding Lie algebroid. The Chern character is defined by

(22)
chA(∇) := Tr

(
exp

( 1

2πi
R(∇)

))
= rk(E) + cA1 (∇) +

1

2

(
cA1 (∇)2 − 2cA2 (∇)

)
+ · · ·
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Here, the Chern classes are defined via

det
(
tI +

R(∇)
2πi

)
=

∑
i

cAi (∇)ti.(23)

We can also use the notation chA(E) and cAi (E). We have

cAi (E ⊕ F ) = cAi (E) · cAi (F )

The Chern character has the formal properties

chA(E ⊕ F ) = chA(E) + chA(F ),

chA(E ⊗ F ) = chA(E) · chA(F ).

Thereby, the Chern character extends to a ring homomorphism

Vch: K0
c (A∗)→ Hev(A) :=

⊕
i≥0

H2i(A).(24)

We also define the Todd class

(25)
TdA(∇) := det

( 1
2πiR(∇)

1− exp(− 1
2πiR(∇))

)
= 1 +

1

2
cA1 (∇) +

1

12
(cA2 (∇) + cA1 (∇)2) + · · ·

By multiplicativity of the Â-class and the definition of the vector bundle
φA, combined with [30, Proposition 11.14], we have

Â(φA) = Â(φ∗A)2 = Td(φ∗A⊗ C) = φ∗Td(A⊗ C).(26)

5.3. Index via pairing

We address the question of how to obtain a suitable generalization of
the Atiyah–Patodi–Singer index formula for the fully elliptic operator P , via
an application of the representation of the K-homology class of P in terms
of tamed Dirac operators. More concretely, by an adaptation of a Getzler
rescaling argument to Lie groupoids, we have an index formula [13]

ind(D +R) =

φV∫
ΣA

− ch(W/S) ∧ Â(φ∇) +
φVη(D +R).(27)

In order to gain insight to the question on how to obtain a corresponding
index formula for P from the one given above for the taming D+R, we present
a representation of the index in terms of a pairing: between relative K-theory
and cyclic cohomology. Fix the notation

JM := Ψ−∞
G,tr , AM := Ψ−∞,+

G , BM := Ψ−∞,+
G /Ψ−∞

G,tr
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as well as

JΣ := Ψ−∞
φG,tr, AΣ := Ψ−∞,+

φG , BΣ := Ψ−∞,+
φG /Ψ−∞

φG,tr.

Denote by τM the trace and by τM the renormalized trace. We obtain a
class [τM ] in cyclic cohomology HC0(JM ) and a cochain τM over AM . Simi-
larly, we can define

µM

(
Q(a0), Q(a1)

)
= τ

(
[a0, a1]

)
, a0, a1 ∈ AM .

Since τM is a linear extension of τM , we observe that µM indeed only
depends on Q(a0), Q(a1). In addition, µ furnishes a cyclic 1-cocycle, i.e. we
obtain a class [µM ] ∈ HC1(BM ). Together, the pair (τM , µM ) yields a relative
cyclic 0-cocycle in HC0(AM ,BM ). By an application of the suspension and
linear extension, we obtain

τ+M := SpτM ∈ HC2p(AM ), µ+
M := SpµM ∈ HC2p+1(BM )

which yields a 2p-relative class [(τ+M , µ+
M )] ∈ HC2p(AM ,BM ), via the pro-

cedure described in [41, Section 8.2]. We express the Fredholm index as a
pairing ⟨−,−⟩K : K0(AM ,BM ) × HC2p(AM ,BM ) → C. As observed in [41,
Section 6.1], to obtain a bilinear continuous pairing, we need to complete the
algebras JM , AM and BM in Schatten class norms. The resulting algebras
are still holomorphically closed. By an abuse of notation, we keep our desig-
nation for such completed algebras in what follows. The group K0(AM ,BM )
is represented by a triple (p, q, pt) where p, q ∈ MN (AM ) are idempotents and
pt is a continuous path of idempotents connecting QM (p) with QM (q). Denote
by αex : K0(JM )

∼−→ K0(AM ,BM ) the excision isomorphism, [p, q] 7→ [p, q, c],
where by c, we denote the constant path. Note that by definition of the ideal
JM , we have an inclusion ∗-homomorphism iM : JM → KM0 which induces an
isomorphism

iM∗ : K0(JM )
∼−→ K0(KM0).

We construct a relative K-cycle (BG, e1, pt) where

e1 =

(
0 0
0 1

)
and BG denotes the graph projection of the unbounded representative G. Set-
ting τ(x2)2x2 = e−x2

(1− e−x2
), this projection is given by

BG =

(
1− e−G−G+ τ(G−G+)G−
τ(G+G−)G+ e−G+G−

)
with the path of projections p : [0, 1]→ P∞(AM ) given by

pt =

{
BtQM (G), t ∈ (0, 1]

e1, t = 0.
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Now, the Fredholm index of P can be expressed in terms of the pairing
(cf. [41]):

ind(P ) =
〈[
(BG, e1, pt)

]
,
[
(τ+, µ+)

]〉
K
.(28)

The situation at the level of K-theory and cohomology is summarized in
the following diagram (cf. Figure 6):

In the case of fully elliptic pseudodifferential operators, the strategy is
to first establish a Radul cocycle index formula in terms of renormalized trace
functionals. This is based on a construction of a full parabolic calculus and an
intricate analysis of an asymptotic expansion of the heat semigroup, subject to
growth conditions on the underlying Lie groupoid, cf. [12]. However, the re-
sulting formula over the base manifold M is not very explicit, since we face the
problem that fitting explicit representatives of cohomology classes that are de-
fined by the Chern characters may not exist in general. One can instead obtain
a representative for relative cohomology which includes a transgression form,
cf. the remarks of D. Quillen in [47]. At least for Dirac operators, convergence
as t → ∞ to an explicit representative for cohomology can be demonstrated,
cf. [5]. In the general case, convergence as t→∞ is not guaranteed. However,
assuming a Radul cocycle trace formula can be established, then the relation
(17) in combination with the functoriality properties of the Chern character
maps, as well as a comparison of the pairing formula (28) with the analogous
formula for the index of the taming, via a suitable limit argument as t → 0+

(adapted to our case from [41]), furnishes an index formula for P , formulated
herein on the clutching manifold Σ. Based on a homotopy argument and
cobordism invariance, over the clutching manifold Σ, we therefore obtain the
Atiyah–Bott–Patodi type index formula

ind(P ) =

φV∫
Σ
− ch(Eσ) ∧ Td(φ∗A⊗ C) +

φV∫
∂Σ
− ω∂ +

φVη(G̃)0,(29)

where
φVη(G̃)0 denotes the constant term in the asymptotic expansion of

φVη
G̃
(t) as t → 0+ and where the notation G̃ indicates a change in choice



284 K. Bohlen 30

G

A(G)

M0 ×M0
∼= KM0 ∋ indFM ([BG]− [e1]) = [(BG, e1, pt)]

∼= K1(C
∗(G))

∼= K0
c (A∗) ∋ [P ]prt = 0

t = 1

0 < t < 1

Figure 6 – Schematic for K0(C
∗(GF

M )).

of smoothing operator R in the taming, resulting from the application of a
homotopy between the principal symbols of P and D + R. In cases where a
variant of Stokes’ theorem holds, the Chern–Weyl representative, that is given
up to an exact form, gives rise to the renormalized integral of ω∂ in the formula.
Note that ω∂ is a direct sum of forms on the boundary strata of Σ, since the
boundary is stratified in general.

6. APPLICATIONS AND FUTURE DIRECTIONS

We summarize some of the consequences, as well as open problems in the
study of index theory questions on Lie structures.

� The index theorem for geometric Dirac operators gives rise to obstruc-
tions for the existence of positive scalar curvature metrics on Lie manifolds. In
addition, open problems arise in the study of concordance classes of metrics,
relative to positive scalar curvature metrics, as detailed in [8].

� In some cases, Lie groupoid geometries give rise to approximate solu-
tions of index problems associated to certain non-local operators with operator-
valued principal symbols, e.g. [9].

� The problem of finding index theoretic formulas for Shapiro–Lopatinskij
elliptic boundary value problems on manifolds with polycylindrical ends is a
potentially very important area of study. These boundary value problems
differ significantly from the ones in the regular case of compact manifolds with
boundary. Calculi along the lines of Boutet de Monvel’s calculus for boundary
value problems have been studied in the setting of Lie groupoids [7, 19]; see
also [6].

� It is an open problem to show that the comparison homomorphism λ
between our variant of geometric K-homology and relative K-theory is injec-
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tive and therefore an isomorphism. A positive answer to this question has
significant implications for the study of universal secondary invariants [10].
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