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We extend the result in [6, 7] and [8], and give a dimension-free Euler estimation
of solution of rough di�erential equations in terms of the driving rough path. In
the meanwhile, we prove that, the solution of rough di�erential equation is close
to the exponential of a Lie series, with a concrete error bound.
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1. INTRODUCTION

Suppose that X is a continuous bounded variation path de�ned on some
interval I and taking its values in a Banach space V. We view this path as a
stream of information and allow it to be highly oscillatory on normal scales.
The theory of rough paths considers streams of information, such as X, for
their e�ect on other systems and provides quantitative tools to model this
interaction. Consider the stream as the input to an automata or controlled
di�erential equation and so impacting on the evolution of the state Y in some
controlled system:

(1) dY = f (Y ) dX, Y0 = ξ.

A key contribution of the theory is the development of quantitative tools
and estimates that allow one to analyze the response Y from a top down analysis
of X, and in particular provides a mechanism for directly quantifying the e�ects
of the oscillatory components of X without a detailed analysis of the trajectory
of X. As a result, the methods apply to equations where X does not have
�nite length. Di�erential equations driven by Brownian motion can be treated
deterministically.

The interest in modelling and understanding such interactions is rather
wide. This paper is intended to create a useful interface by stating and proving
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one of the main results in a way that appears to the authors particularly useful
for moving out into applications. It deliberately sets out to hide the machinery
and implementation of the main proofs in rough path theory and to provide
only a useful and rigorous statement of a result that captures the essence of
what the machinery delivers and is valid across all Banach spaces (including
�nite dimensional ones) so that the methods can be used more widely without
great initial intellectual investment.

Davie [6] established some high order Euler estimates of solution of rough
di�erential equations, driven by p-rough paths, 1 ≤ p < 3. By using geodesic
approximations, Friz and Victoir [7, 8] extended Davie's results to rough di�er-
ential equations driven by weak geometric p-rough paths, p ≥ 3. The formula-
tion and proofs in [6, 7], and [8] are dimension-dependent, and the error bound
may explode as the dimension increases.

By modifying the method used in [6, 7] and [8], we give a dimension-
free high order Euler estimation of solution of rough di�erential equations (i.e.
both the driving rough path and the solution path live in in�nite dimensional
spaces). Our estimates are �rst developed for ordinary di�erential equations.
Then by passing to limit and using universal limit theorem (see [12, 14], similar
estimates hold for rough di�erential equations.

The main idea of our proof is to compare the solution of (1) (on small
interval [s, t]) with the solution of another ordinary di�erential equation (on
[0, 1]) whose vector �eld is invariant with time although it varies with s, t. We
do this by contracting the logarithm of the signature with the vector �elds of the
di�erential equation, through the canonical map of the free Lie algebra to the
space of vector �elds. Chen [5] �rst observed that the logarithm of the signature
is a Lie element in the free Lie algebra. Magnus [15] also gave a formula for the
solution of linear ordinary di�erential equations as an exponential of a Lie series
but it is not as transparent. Mielnik, Pleba�nski [16] and Strichartz [20], gave
the explicit expression of Magnus's formula. Arous [1], Hu [11] and Castell [3]
proved that similar results hold for stochastic di�erential equations. However,
none of these early references seem to have separated the expression into its two
components � the free Lie element (or log signature) and the canonical image
of the free Lie element as a vector �eld. However, it was well known that one
could do this and that it was an e�ective numerical approach by the time of the
paper [9]. See also Baudoin [2] for detailed treatment of the exponential Lie
series for di�erential equations. Since the truncated exponential can be treated
as the solution of an ordinary di�erential equation (see [4]), we use this ordinary
di�erential equation to compute the truncated exponential of the original �ow,
and give a concrete error bound.
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2. BACKGROUND AND NOTATIONS

Let U and V be two Banach spaces.

2.1. Algebraic Structure

Following Def 1.25 [13], we de�ne admissible tensor norm on tensor prod-
ucts.

De�nition 1 (admissible norm). Suppose V is a Banach space. Denote by
Sym (n) the symmetric group of degree n. We say a norm on tensor products
of (elements in) V is admissible, if it satis�es that,

(2)
∥∥v1 ⊗ · · · ⊗ vn∥∥ =

∥∥∥vσ(1) ⊗ · · · ⊗ vσ(n)∥∥∥ ≤ Πn
i=1

∥∥vi∥∥ , ∀{vi}
i
⊂ V,

∀σ ∈ Sym (n) , ∀n ≥ 1.

For example, inequality (2) is satis�ed by injective and projective tensor
norms (Prop 2.1 and Prop 3.1 in [18]).

De�nition 2 (V⊗n and [V]n). We select an admissible norm on tensor
products of V, and for integer n ≥ 1, de�ne V⊗n and [V]n as the closure of{

m∑
k=1

v1k ⊗ · · · ⊗ vn−1k ⊗ vnk ,
{
vik
}
i,k
⊂ V, m ≥ 1

}
,{

m∑
k=1

[
v1k, · · ·

[
vn−1k , vnk

]]
,
{
vik
}
i,k
⊂ V, m ≥ 1

}
,

w.r.t. the norm selected, where [u, v] := u⊗ v − v ⊗ u.

De�nition 3. For integers n ≥ k ≥ 1, let πk denote the projection of
1⊕V ⊕ · · · ⊕ V⊗n to V⊗k. De�ne expn : V ⊕ · · · ⊕ V⊗n → 1⊕V ⊕ · · · ⊕ V⊗n by

expn (a) := 1 +

n∑
k=1

πk

 n∑
j=1

a⊗j

j!

 , ∀a ∈ V ⊕ · · · ⊕ V⊗n.

De�ne logn : 1⊕ V ⊕ · · · ⊕ V⊗n → V ⊕ · · · ⊕ V⊗n by

logn (g) :=
n∑
k=1

πk

 n∑
j=1

(−1)j+1

j
(g − 1)⊗j

 , ∀g ∈ 1⊕ V ⊕ · · · ⊕ V⊗n.

De�nition 4 (Gn (V)). Suppose V is a Banach space. Then we de�ne
recursively

[V]k+1 :=
[
V, [V]k

]
with [V]1 := V,



28 Youness Boutaib, Lajos Gergely Gyurk�o, Terry Lyons and Danyu Yang 4

and de�ne

Gn (V) :=
{

expn (a) |a ∈ [V]1 ⊕ · · · ⊕ [V]n
}
.

For g, h ∈ Gn (V), we de�ne product and inverse as

g ⊗ h :=
n∑
k=0

 k∑
j=0

πj (g)⊗ πk−j (h)

 and

g−1 := 1 +
n∑
k=1

πk

 n∑
j=1

(−1)j (g − 1)⊗j

 .

We equip Gn (V) with ‖·‖ which is de�ned as

(3) ‖g‖ :=
n∑
k=1

‖πk (g)‖
1
k , ∀g ∈ Gn (V) .

Then Gn (V) is a topological group, called the step-n nilpotent Lie group
over V.

Gn (V) is nilpotent because
[
tn, . . . ,

[
t2, t1

]]
= 0, ∀{ti}ni−1 ⊂ V⊕· · ·⊕V⊗n.

The ‖·‖ de�ned at (3) is not a norm because it is not sub-additive, but ‖·‖ is
equivalent to a norm up to a constant depending on n (Exer 7.38 [8], which is
valid for truncated Lie group over Banach space V).

For more about Lie algebra and Lie group, please refer to [?].

2.2. Rough Paths

De�nition 5 (Sn (x)). Suppose x : [0, T ] → V is a continuous bounded
variation path. For integer n ≥ 1, de�ne the step-n signature of x, Sn (x) :
[0, T ]→ (Gn (V) , ‖·‖), as

Sn (x)t =
(
1, x10,t, x

2
0,t, . . . , x

n
0,t

)
,

with xh0,t =

∫
. . .

∫
0<u1<···<uh<t

dxu1 ⊗ · · · ⊗ dxuk

)
.

De�nition 6 (dp metric and p-variation). For p ≥ 1, denote [p] as the
integer part of p. Suppose X and Y are continuous paths de�ned on [0, T ]
taking value in G[p] (V). De�ne

dp (X,Y ) := max
k=1,2,...,[p]

sup
D⊂[0,T ]

 ∑
j,tj∈D

∥∥πk (Xtj ,tj+1

)
− πk

(
Ytj ,tj+1

)∥∥ pk 1
p

,
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where the supremum is taken over all �nite partitions D = {tj}nj=0, 0 = t0 <
t1 < · · · < tn = T , n ≥ 1.

With e denotes the identity path (i.e. et = 1 ∈ G[p] (V), t ∈ [0, T ]), we
de�ne the p-variation of X on [0, T ] as

‖X‖p−var,[0,T ] := dp (X, e) .

De�nition 7 (geometric p-rough path). X : [0, T ] →
(
G[p] (V) , ‖·‖

)
is

called a geometric p-rough path, if there exists a sequence of continuous bounded
variation paths xl : [0, T ]→ V, l ≥ 1, such that

lim
l→∞

dp
(
S[p] (xl) , X

)
= 0.

De�nition 8 (Cγ (V,U)). For γ > 0, we say r : V → U is Lip (γ) and
denote r ∈ Cγ (V,U), if and only if r is bγc-times Fr�echet di�erentiable (bγc
denotes the largest integer which is strictly less than γ), and

|r|Lip(γ) :=

(
max

k=0,1,...,bγc

∥∥∥Dkr
∥∥∥
∞

)
∨
∥∥∥Dbγcr∥∥∥

(γ−bγc)−Höl
<∞,

where ‖·‖∞ denotes the uniform norm and ‖·‖(γ−bγc)−Höl denotes the (γ − bγc)-
H�older norm.

Denote C0 (V,U) as the space of bounded measurable mappings from V
to U .

De�nition 9 (L (W, Cγ (V,U))). Suppose U , V andW are Banach spaces.
Denote L (W, Cγ (V,U)) as the space of linear mappings from W to Cγ (V,U),
and denote

|f |Lip(γ) := sup
w∈W,‖w‖=1

|f (w)|Lip(γ) , ∀f ∈ L (W, Cγ (V,U)) .

Before proceeding to the de�nition of solution of rough di�erential equa-
tion, we de�ne rough integral as in Lyons [13]. The following de�nition can be
found on pages 73, 74 in [13].

De�nition 10. Denote the symmetric group of degree N by Sym (N). For
integers ki ∈ {1, 2, . . . , N},

∑n
i=1 ki = N , we denote N0 := 0, Ni+1 := Ni + ki,

i = 0, . . . , n − 1, and de�ne OS (k1, . . . , kn) by the set of σ ∈ Sym (N) which
satis�es

(4) σ (Ni + 1) < σ (Ni + 2) < · · · < σ (Ni+1) , i = 0, 1, . . . , n− 1,

and σ (N1) < σ (N2) < · · · < σ (Nn) .

For f ∈ L (V, Cγ (V,U)) and integer k = 1, . . . , bγc+1, Dk−1f ∈ L
(
V⊗k,

Cγ+1−k (V,U)
)
. For integer n ≥ 1 and k1, . . . , kn ∈ {1, 2, . . . , bγc+ 1}, we

denote N0 := 0, Ni+1 := Ni + ki+1, i = 0, . . . , n− 1, and de�ne(
Dk1−1f

)
⊗ · · · ⊗

(
Dkn−1f

)
∈ L

(
V⊗Nn , Cγ+1−maxi=1,...,n ki

(
V,U⊗n

))
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as the unique continuous linear operator, which satis�es, ∀vi ∈ V, i = 1, 2, . . . ,
Nn, ∀v ∈ V, ((

Dk1−1f
)
⊗ · · · ⊗

(
Dkn−1f

))
(v1 ⊗ · · · ⊗ vNn) (v)

=
((
Dk1−1f

)
(v1 ⊗ · · · ⊗ vN1) (v)

)
⊗ · · · ⊗((

Dkn−1f
) (
vNn−1+1 ⊗ · · · ⊗ vNn

)
(v)
)
.

Then based on Def 4.9 in [13], we de�ne rough integral.

De�nition 11 (rough integral). Suppose X : [0, T ] →
(
G[p] (V) , ‖·‖

)
is a

geometric p-rough path, and f ∈ L (V, Cγ (V,U)) for some γ ∈ (p − 1, [p]].
Then Y : [0, T ] →

(
G[p] (V) , ‖·‖

)
is called the rough integral of f against X,

and denoted by
∫
f (X) dX, if for any [s, t] ⊆ [0, T ] satisfying ‖X‖p−var,[s,t] ≤ 1

and any n = 1, 2, . . . , [p], we have (with OS (k1, . . . , kn) de�ned at (4) and
σ (v1 ⊗ · · · ⊗ vN ) := vσ(1) ⊗ · · · ⊗ vσ(N))∥∥∥∥∥∥πn (Ys,t)−

∑
ki≥1,k1+···+kn≤[p]

((
Dk1−1f

)
⊗ · · · ⊗

(
Dkn−1f

))
 ∑
σ∈OS(k1,...,kn)

σ−1πk1+···+kn (Xs,t)

 (π1 (Xs))

∥∥∥∥∥
≤ Cp,γ |f |nLip(γ) ‖X‖

γ+1
p−var,[s,t] .

Then based on Thm 4.3, Thm 4.6 and Thm 4.12 in [13], we have

Theorem 12. For p ≥ 1, if f in De�nition 11 is in L (V, Cγ (V,U)) for

γ > p−1, then the rough integral
∫
f (X) dX exists uniquely, and is continuous

in dp-metric w.r.t. the driving rough path X.

We de�ne the solution of rough di�erential equations as in Def 5.1 in
Lyons [13].

De�nition 13 (solution of RDE). Suppose that U and V are two Ba-
nach spaces, X : [0, T ] →

(
G[p] (V) , ‖·‖

)
is a geometric p-rough path, f ∈

L (V, Cγ (U ,U)) for some γ > p − 1 and ξ ∈ U . De�ne h : V ⊕ U →
L (V ⊕ U ,V ⊕ U) as

(5) h (v1, u1) (v2, u2) = (v2, f (v2) (u1 + ξ)) , ∀v1, v2 ∈ V, ∀u1, u2 ∈ U .

Then geometric p-rough path Z : [0, T ] →
(
G[p] (V ⊕ U) , ‖·‖

)
is said to

be a solution to the rough di�erential equation

(6) dY = f (Y ) dX, Y0 = ξ,
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if πG[p](V) (Z) = X, and Z satis�es the rough integral equation (in sense of
De�nition 11):

Zt =

∫ t

0
h (Zu) dZu, t ∈ [0, T ] .

For g ∈ Gn (V) and λ > 0, we de�ne δλg ∈ Gn (V) by

(7) δλg := 1 +

n∑
k=1

λkπk (g) .

Theorem 14 (Lyons). When f in (6) is in L (V, Cγ (U ,U)) for γ > p, the
solution of (6) exists uniquely. Moreover, there exists a constant Cp,γ, which
only depends on p and γ, such that, for any interval [s, t] ⊆ [0, T ] satisfying
|f |Lip(γ) ‖X‖p−var,[s,t] ≤ 1, we have (after rescaling f , X and Y )

(8)
∥∥∥(δ|f |Lip(γ)X,Y )∥∥∥p−var,[s,t] ≤ Cp,γ |f |Lip(γ) ‖X‖p−var,[s,t] .

Based on the universal limit theorem (Thm 5.3 in [13]), when |f |Lip(γ) = 1,
there exists constant Cp,γ (which only depends on p and γ), such that for
interval [s, t] satisfying ‖X‖p−var,[s,t] ≤ 1, we have

(9) ‖(X,Y )‖p−var,[s,t] ≤ Cp,γ .

When |f |Lip(γ) 6= 1, we rescale f , X and Y , and can get (8). Indeed, for
µ > 0, ε > 0, (with δλ de�ned at (7)) we rewrite the rough di�erential equation

dY = f (Y ) dX as d (δεY ) = µ−1f
(
ε−1 (εY )

)
dδµεX .

For interval [s, t] ⊆ [0, T ], we select µ and ε such that

(10) ‖δµεX‖p−var,[s,t] = µε ‖X‖p−var,[s,t] = 1,
∣∣µ−1f (ε−1·)∣∣

Lip(γ)

= µ−1
(
1 ∨ ε−γ

)
|f |Lip(γ) = 1.

Then, based on (9), we have

(11) ‖(δµεX, δεY )‖p−var,[s,t] = ε ‖(δµX,Y )‖p−var,[s,t] ≤ Cp,γ .

Thus, by solving (10), and substituting the value of µ and ε into (11), we
get (8).

Remark 15. The unique solution of (6) is recovered by a sequence of rough
integrals. Then based on Thm 4.12 and Prop 5.9 in [13] and by using lower semi-
continuity of p-variation, the constant Cp,γ in (8) is an absolute constant which
only depends on p and γ, and can be chosen to be �nite whenever γ > p− 1.
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When U and V are �nite dimensional spaces, for any f ∈ L (V, Cγ (U ,U)),
γ > p − 1, there exists a solution to (6) which satis�es (8). Indeed, based on
Prop 5.9 [13], when f is Lip (γ) for γ > p− 1, the sequence of Picard iterations
{Zn}n : [0, T ] → G[p] (V ⊕ U), de�ne recursively as rough integrals: (with h
de�ned at (5))

Z0
t = (Xt, 0) , t ∈ [0, T ] ,

Zn+1
t =

∫ t

0
h (Znu ) dZnu , t ∈ [0, T ] , n ≥ 0,

are uniformly bounded and equi-continuous. When V and U are �nite-dimen-
sional spaces, bounded sets in G[p] (V ⊕ U) are relatively compact. Thus,
based on Arzel�a-Ascoli theorem, there exists a subsequence {Znk}k which con-
verge uniformly (denoted the limit as Z). Then by spelling out the almost-
multiplicative functional (associated with the Picard iteration) and letting k
tend to in�nity, one can prove that Z is a solution to the rough di�erential
equation (6). Then based on Thm 4.12 and Prop 5.9 in [13] and by using lower
semi-continuity of p-variation, the estimate (8) holds for Z.

When U is a Banach space and when f in (6) is Lip (γ) for γ ∈ (p− 1, p),
there does not always exist a solution to (6). Godunov [10] proved that, �each
Banach space in which Peano's theorem is true is �nite-dimensional�. Shkarin
[19] (in Cor 1.5) proved that, for any real in�nite dimensional Banach space
(denoted as V), which has a complemented subspace with an unconditional
Schauder basis, and for any α ∈ (0, 1), there exists α-H�older continuous function
f : V → V, such that the equation ẋ = f (x) has no solution in any interval
of the real line. Based on Shkarin [19] (Rrk 1.4), Lp [0, 1] (1 ≤ p < ∞) and
C [0, 1] are examples of such Banach spaces, and �roughly speaking, all in�nite
dimensional Banach spaces, which naturally appear in analysis� fall into this
category.

2.3. Di�erential Operator

For γ ≥ 0, recall Cγ (U ,U) in De�nition 8, and that L (V, Cγ (U ,U)) de-
notes the space of linear mappings from V to Cγ (U ,U). For f ∈ L (V, Cγ (U ,U))
and integer k ≤ γ + 1, we clarify in this subsection the meaning of di�eren-
tial operator f◦k (v) for v ∈ V⊗k. For r ∈ Ck (U ,U) and j = 0, 1, . . . , k,
Djr ∈ L

(
U⊗j , Ck−j (U ,U)

)
.

Notation 16 (Dk (U)). For integer k ≥ 0, denote with Dk (U) the set
of bounded kth order di�erential operators (on Ck (U ,U)). More speci�cally,
p ∈ Dk (U) if and only if p : Ck (U ,U) → C0 (U ,U) and there exist bounded
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pj : U → U⊗j , j = 0, 1, . . . , k, with pk 6≡ 0, such that

p (r) (u) =

k∑
j=0

(
Djr

)
(pj (u)) (u) , ∀u ∈ U , ∀r ∈ Ck (U ,U) .

We de�ne the following norm |·|k on Dk (U) as

|p|k := max
j=0,1,...,k

sup
u∈U
‖pj (u)‖ , ∀p ∈ Dk (U) .

Then Dk (U) can be extended to a Banach space
(
Dk (U) , |·|k

)
(with the

natural addition and scalar multiplication).

De�nition 17 (composition). Suppose p1 ∈ Dj1 (U) and p2 ∈ Dj2 (U) for
integers j1 ≥ 0, j2 ≥ 0. Then when the components of p2 are j1-times di�eren-
tiable, we de�ne the composition of p1 ◦ p2 ∈ Dj1+j2 (U) as(

p1 ◦ p2
)

(r) := p1
(
p2 (r)

)
, ∀r ∈ Cj1+j2 (U ,U) .

For p ∈ Dj (U), j ≥ 0, when the components of p satisfy the required
smoothness condition, we de�ne the di�erential operator p◦k ∈ Dk×j (U) for
integer k ≥ 1 by

(12) p◦1 := p and p◦k := p ◦ p◦(k−1), k ≥ 2.

Composition of di�erential operators is associative, i.e.
(
p1 ◦ p2

)
◦ p3 =

p1 ◦
(
p2 ◦ p3

)
.

De�nition 18 (f◦k). Suppose f ∈ L (V, Cγ (U ,U)) for some γ ≥ 0. Then
for any v ∈ V, we treat f (v) as a �rst order di�erential operator (i.e. in
D1 (U)), and de�ne

(f (v)) (r) (u) := (Dr) (f (v) (u)) (u) , ∀u ∈ U , ∀r ∈ C1 (U ,U) .

For integer k ∈ 1, 2, . . . , [γ]+1 and {vj}kj=1 ⊂ V, we de�ne f
◦k (v1 ⊗ · · ·⊗

vk) ∈ Dk (U) as

(13) f◦k (v1 ⊗ · · · ⊗ vk) := (f (v1)) ◦ (f (v2)) ◦ · · · ◦ (f (vk)) .

Then we denote with f◦k ∈ L
(
V⊗k,

(
Dk (U) , |·|k

))
the unique continuous

linear operator satisfying (13).

3. MAIN RESULT

We work with the �rst level (or �path� level) solution of rough di�erential
equations.

Firstly, we prove a lemma for ordinary di�erential equations. Then after
applying universal limit theorem (Thm 5.3 [13]), this lemma leads to similar
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estimates of rough di�erential equations. The proof of this lemma is in the
same spirit as Lemma 2.4(a) in [6], Lemma 16 in [7] and Lemma 10.7 in [8], only
that we use the ordinary di�erential equation (16) to compute the truncated
exponential of the original �ow.

Let U and V be two Banach spaces. For p ≥ 1, denote [p] the integer
part of p. For γ > 0, denote by bγc the largest integer which is strictly less
than γ. Denote Id : U → U as the identity function, i.e. Id (u) = u, ∀u ∈ U .
For f ∈ L (V, Cγ (U ,U)), integer k ≤ γ + 1 and v ∈ V⊗k, recall the di�erential
operator f◦k (v) in De�nition 18.

Lemma 19. Suppose x : [0, T ] → V is a continuous bounded variation

path, f ∈ L (V, Cγ (U ,U)) for γ > 1, and ξ ∈ U . Let y : [0, T ] → U be the

unique solution to the ordinary di�erential equation

(14) dy = f (y) dx, y0 = ξ ∈ U .
Then for any p ∈ [1, γ+1), there exists a constant Cp,γ, which only depends

on p and γ, such that, for any 0 ≤ s < t ≤ T ,

(1) ,
∥∥∥yt − ys,t1

∥∥∥ ≤ Cp,γ |f |γ+1
Lip(γ)

∥∥S[p] (x)
∥∥γ+1

p−var,[s,t] ,(15)

(2) ,

∥∥∥∥∥∥yt − ys −
bγc+1∑
k=1

f◦kπk

(
Sbγc+1 (x)s,t

)
(Id) (ys)

∥∥∥∥∥∥
≤ Cp,γ |f |γ+1

Lip(γ)

∥∥S[p] (x)
∥∥γ+1

p−var,[s,t] ,

where ys,t : [0, 1]→ U in (15) is the unique solution of the ordinary di�erential

equation (with ys denotes the value of y in (14) at point s):

dys,tu =

 bγc∑
k=1

f◦kπk

(
logbγc+1

(
Sbγc+1 (x)s,t

))
(Id)

(
ys,tu
)du, u ∈ [0, 1] ,(16)

ys,t0 = ys + f◦(bγc+1)πbγc+1

(
logbγc+1

(
Sbγc+1 (x)s,t

))
(Id) (ys) .

The proof of Lemma 19 starts from page 23. Since f ∈ L (V, Cγ (U ,U)),
it might be more appropriate to write (14) as dy = f (dx) (y). We keep it in
the current form so that it is consistent with the classical notation of ordinary
di�erential equations.

Remark 20. Consider the ordinary di�erential equation:

dỹs,tu =

bγc+1∑
k=1

f◦kπk

(
logbγc+1

(
Sbγc+1 (x)s,t

))
(Id)

(
ỹs,tu
)du, u ∈ [0, 1] ,(17)

ỹs,t0 = ys.
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(The summation of k in (17) is from 1 to bγc+ 1.) In Lemma 19, we used
(16) instead of (17), because based on Cor 1.5 in Shkarin [19], (17) may not
have a solution. If (17) has a solution (e.g. when U is �nite dimensional), then
(15) holds with ys,t1 replaced by ỹs,t1 .

Remark 21. When V is Rd and U is Re in Lemma 19, suppose f =(
f1, . . . , fd

)
∈ L

(
Rd, Cγ (Re,Re)

)
. For i = 1, . . . , d, we treat f i =

(
f i1, . . . , f

i
e

)
as a �rst order di�erential operator:

∑e
j=1 f

i
j
∂
∂yj

. Then it can be checked that

(with x =
(
x1, . . . , xd

)
: [0, T ]→ Rd)

f◦kπk

(
Sbγc+1 (x)s,t

)
(Id)

=
∑

i1,...,ik∈{1,...,d}

(
f i1 ◦ · · · ◦ f ik

)
(Id)

∫
· · ·
∫
s<u1<···<uk<t

dxi1u1 · · · dx
ik
uk
,

and our formulation coincides with [6, 7] and [8].

The theorem below follows from the universal limit theorem (Thm 5.3 [13])
and Lemma 19. Suppose X : [0, T ]→ G[p] (V) is a geometric p-rough path. For
integer n ≥ [p], we denote with Sn (X) the unique enhancement of X to a
continuous path with �nite p-variation taking values in Gn (V) (Thm 3.7 [13]).

Theorem 22. Suppose f ∈ L (V, Cγ (U ,U)) for γ > 1, X : [0, T ] →
G[p] (V) is a geometric p-rough path for some p ∈ [1, γ), and ξ ∈ U . Denote by

Z the unique solution (in the sense of De�nition 13) of the rough di�erential

equation

(18) dY = f (Y ) dX, Y0 = ξ.

Denote Y := πG[p](U) (Z). Then there exists a constant Cp,γ, which only

depends on p and γ, such that, for any 0 ≤ s ≤ t ≤ T ,

(1) ,
∥∥∥π1 (Yt)− ys,t1

∥∥∥ ≤ Cp,γ |f |γ+1
Lip(γ) ‖X‖

γ+1
p−var,[s,t] ,

(2) ,

∥∥∥∥∥∥π1 (Ys,t)−
bγc+1∑
k=1

f◦kπk

(
Sbγc+1 (X)s,t

)
(Id) (π1 (Ys))

∥∥∥∥∥∥
≤ Cp,γ |f |γ+1

Lip(γ) ‖X‖
γ+1
p−var,[s,t] ,

where ys,t : [0, 1] → U is the unique solution of the ordinary di�erential equa-

tion:

dys,tu =

 bγc∑
k=1

f◦kπk

(
logbγc+1

(
Sbγc+1 (X)s,t

))
(Id)

(
ys,tu
) du, u ∈ [0, 1] ,

ys,t0 = π1 (Ys) + f◦(bγc+1)πbγc+1

(
logbγc+1

(
Sbγc+1 (X)s,t

))
(Id) (π1 (Ys)) .
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The proof of Theorem 22 is on page 27.

Remark 23. Suppose f ∈ L (V, Cγ (U ,U)) for γ > 1, X : [0, T ]→ G[p] (V)
is a weak geometric p-rough path1 for some p ∈ [1, γ + 1), and ξ ∈ U . Then by
following similar arguments as in the proof of Theorem 22, one can prove that,
any solution, in the sense of Def 10.17 in [8], to the rough di�erential equation

dy = f (y) dX, y0 = ξ,

satis�es the estimates in Theorem 22.

Theorem 24. Suppose f ∈ L (V, Cγ (V,U)) for γ > 1, and X is a geo-

metric p-rough path for some p ∈ [1, γ + 1). Let Y : [0, T ] → G[p] (U) denote

the rough integral (in the sense of De�nition 11):

Yt =

∫ t

0
f (X) dX, t ∈ [0, T ] .

Then there exists constant Cp,γ, which only depends on p and γ and is

�nite whenever γ > p− 1, such that, for any 0 ≤ s ≤ t ≤ T ,

(1) ,
∥∥∥π1 (Yt)− ys,t1

∥∥∥ ≤ Cp,γ |f |Lip(γ) ‖X‖γ+1
p−var,[s,t] ,(19)

(2) ,

∥∥∥∥∥∥π1 (Ys,t)−
bγc+1∑
k=1

(
Dk−1f

)
πk

(
Sbγc+1 (X)s,t

)
(π1 (Ys))

∥∥∥∥∥∥(20)

≤ Cp,γ |f |Lip(γ) ‖X‖
γ+1
p−var,[s,t] ,

where ys,t : [0, 1]→ U satis�es the ordinary di�erential equation:

dys,tu =

bγc∑
k=1

(
Dk−1f

)
πk

(
logbγc+1

(
Sbγc+1 (X)s,t

))
(π1(Xs) + u (π1(Xs,t))) du,

ys,t0 = π1 (Ys) +
(
Dbγcf

)
πbγc+1

(
logbγc+1

(
Sbγc+1 (X)s,t

))
(π1 (Xs)) .

Actually, (20) is part of the de�nition of rough integral as seen in De�ni-
tion 11 (on page 6), and (19) can be obtained by combining (20) and Lemma 26
(on page 15).

Alternatively, Theorem 24 can be proved similarly as Theorem 22, the
only di�erence is that we consider the rough di�erential equation

d

(
X, δ|f |−1

Lip(γ)
Y

)
=

(
1V ,

f

|f |Lip(γ)
(X)

)
dX, (X,Y )0 = (X0, 0) ∈ V ⊕ U ,

and uses Thm 4.12 [13] instead of the universal limit theorem.

1A continuous path X : [0, T ] → G[p] (V) is called a weak geometric p-rough path, if
‖X‖p−var,[0,T ] < ∞.
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4. PROOF

We made explicit the dependence of constants (e.g. Cp,γ), but the exact
value of constants may change from line to line. Recall Cγ (U ,U) in De�nition 8
on page 5.

Lemma 25. Suppose k ≥ 1 is an integer, and f ∈ L
(
V, Ck−1 (U ,U)

)
.

Recall f◦k ∈ L
(
V⊗k,

(
Dk (U) , |·|k

))
de�ned in De�nition 18 (on page 9). Then

for any v ∈ [V]k (de�ned in De�nition 2 on page 3), f◦k (v) is a �rst order

di�erential operator, which satis�es (with Id : U → U denotes the identity

function)

f◦k (v) (r) = (Dr)
(
f◦k (v) (Id)

)
, ∀r ∈ C1 (U ,U) .

Proof. To prove that f◦k (v) is a �rst order di�erential operator, we de�ne
another �rst order di�erential operator, and will prove that they coincide.

Suppose V1 and V2 are two Banach spaces, and pi ∈ L
(
V i,
(
Dki (U) , |·|ki

))
,

i = 1, 2. De�ne
[
p1, p2

]
∈ L

(
V1 ⊗ V2,

(
D1 (U) , |·|1

))
as the unique continuous

linear operator, which satis�es that, for any v1 ∈ V1, any v2 ∈ V2, and any
r ∈ C1 (U ,U),

(21)
[
p1, p2

] (
v1 ⊗ v2

)
(r) = (Dr)

(
p1
(
v1
)
◦ p2

(
v2
)
− p2

(
v2
)
◦ p1

(
v1
))

(Id) .

For integer k ≥ 1 and f ∈ L
(
V, Ck−1 (U ,U)

)
, de�ne [f ]◦k ∈ L

(
V⊗k,(

D1 (U) , |·|1
))

as (with f◦1 de�ned in De�nition 18)

(22) [f ]◦1 (v) := f◦1 (v) , ∀v ∈ V, and [f ]◦k :=
[
f◦1, [f ]◦(k−1)

]
for k ≥ 2.

Then by de�nition, for any k ≥ 1 and any v ∈ V⊗k, [f ]◦k (v) is a �rst
order di�erential operator.

If we can prove that f◦k
(
vk
)
is a �rst order di�erential operator for any

vk in the form

(23) vk =

{
v1, if k = 1

[v1, . . . , [vk−1, vk]] , if k ≥ 2
, with {vj}kj=1 ⊂ V,

then since any v ∈ [V]k can be approximated by linear combinations of vk in the
form of (23), by using that f◦k : V⊗k →

(
Dk (U) , |·|k

)
is linear and continuous

(De�nition 18), and that [V]k is a closed subspace of V⊗k, we can prove that
f◦k (v) is a �rst order di�erential operator for any v ∈ [V]k.

We de�ne the linear map σ : [V]k → V⊗k by assigning

σ (v1) : = v1, ∀v1 ∈ V, if k = 1,(24)

σ ([v1, . . . , [vk−1, vk]]) : = v1 ⊗ · · · ⊗ vk−1 ⊗ vk, ∀ {vj}kj=1 ⊂ V, if k ≥ 2.
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For any vk in the form of (23) with σ de�ned at (24), we want to prove

(25) f◦k
(
vk
)

(r) = [f ]◦k
(
σ
(
vk
))

(r) , ∀r ∈ C1 (U ,U) .

By de�nition, [f ]◦k
(
σ
(
vk
))

is a �rst order di�erential operator, and

[f ]◦k
(
σ
(
vk
))

(r) = (Dr)
(

[f ]◦k
(
σ
(
vk
))

(Id)
)
, ∀r ∈ C1 (U ,U) .

If we can prove (25), then

f◦k
(
vk
)

(r)=(Dr)
(

[f ]◦k
(
σ
(
vk
))

(Id)
)

=(Dr)
(
f◦k

(
vk
)

(Id)
)
, ∀r ∈ C1(U ,U) .

Thus, in the following, we concentrate on proving (25).
It is clear that, (25) is true when k = 1. Indeed, for any v1 ∈ V, since

[f ]◦1
(
v1
)

:= f◦1
(
v1
)
(see (22)) and σ

(
v1
)

:= v1 (see (24)), we have

[f ]◦1
(
v1
)

= f◦1
(
v1
)

= f◦1
(
σ
(
v1
))

, ∀v1 ∈ V.
Then we prove (25) by using mathematical induction. Suppose that for

integer K ≥ 1, k = 1, 2, . . . ,K and any vk in the form of (23), we have

(26) f◦k
(
vk
)

= [f ]◦k
(
σ
(
vk
))

.

We want to prove that, for any v0 ∈ V, and any vK in the form of (23),

f◦(K+1)
([
v0, v

K
])

= [f ]◦(K+1) (v0 ⊗ σ (vK)) .
Based on the de�nitions in (21) and (22), we have, for any r ∈ C1 (U ,U),

[f ]◦(K+1) (v0 ⊗ σ (vK)) (r) =
[
f◦1 (v0) , [f ]◦K

(
σ
(
vK
))]

(r)(27)

= (Dr)
(
f◦1 (v0) ◦ [f ]◦K

(
σ
(
vK
))
− [f ]◦K

(
σ
(
vK
))
◦ f◦1 (v0)

)
(Id) .

If we assume in addition that r ∈ C2 (U ,U), then by using that f◦1 (v0)
and [f ]◦K

(
σ
(
vK
))

are �rst order di�erential operators, we have

(Dr)
(
f◦1 (v0) ◦ [f ]◦K

(
σ
(
vK
)))

(Id)(28)

=
(
f◦1 (v0) ◦ [f ]◦K

(
σ
(
vK
)))

(r)−
(
D2r

)(
[f ]◦K

(
σ
(
vK
))

(Id)
)(
f◦1 (v0)(Id)

)
,

and

(Dr)
(

[f ]◦K
(
σ
(
vK
))
◦ f◦1 (v0)

)
(Id)(29)

=
(

[f ]◦K
(
σ
(
vK
))
◦ f◦1 (v0)

)
(r)−

(
D2r

)(
f◦1 (v0) (Id)

)(
[f ]◦K

(
σ
(
vK
))

(Id)
)
.

Using inductive hypothesis (26) and the de�nition of f◦(K+1) in De�nition
18, we have

f◦1 (v0) ◦ [f ]◦K
(
σ
(
vK
))
− [f ]◦K

(
σ
(
vK
))
◦ f◦1 (v0)(30)
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= f◦1 (v0) ◦ f◦K
(
vK
)
− f◦K

(
vK
)
◦ f◦1 (v0)=f◦(K+1)

(
v0 ⊗ vK − vK ⊗ v0

)
= f◦(K+1)

([
v0, v

K
])
.

Since our di�erentiability is in Fr�echet's sense and r ∈ C2 (U ,U), we have

(31)
(
D2r

)
(u1 ⊗ u2) =

(
D2r

)
(u2 ⊗ u1) ,∀u1 ∈ U , ∀u2 ∈ U .

Thus, combining (27), (28), (29), (30) and (31), we have,

(32) [f ]◦(K+1) (v0 ⊗ σ (vK)) (r) = f◦(K+1)
([
v0, v

K
])

(r) , ∀r ∈ C2 (U ,U) .

Since [f ]◦(K+1) (v0 ⊗ σ (vK)) :=
[
f◦1 (v0) , [f ]◦K

(
σ
(
vK
))]

has the ex-

plicit form (21), by comparing the "coe�cients" of
{
Djr

}K+1

j=0
for any r ∈

CK+1 (U ,U), we get that (32) holds for any r ∈ C1 (U ,U). �

Lemma 26. Suppose f ∈ L (V, Cγ (U ,U)) for some γ > 1 and ξ ∈ U .
Denote bγc as the largest integer which is strictly less than γ. Suppose g ∈
Gbγc+1 (V). Then, there exists a constant Cγ, which only depends on γ, such
that, the unique solution of the ordinary di�erential equation

dyu =

bγc∑
k=1

f◦kπk

(
logbγc+1 g

)
(Id) (yu) du, u ∈ [0, 1] ,(33)

y0 = ξ + f◦(bγc+1)πbγc+1

(
logbγc+1 (g)

)
(Id) (ξ) ,

satis�es ∥∥∥∥∥∥y1 − ξ −
bγc+1∑
k=1

f◦kπk (g) (Id) (ξ)

∥∥∥∥∥∥ ≤ Cγ
(
|f |Lip(γ) ‖g‖

)γ+1
.

Proof. Let {γ} := γ − bγc, and N := bγc + 1. We assume |f |Lip(γ) = 1.

Otherwise, we replace f by |f |−1Lip(γ) f and replace g by δ|f |Lip(γ)g (with δλg :=

1 +
∑N

k=1 λ
kπk (g)).

For integer k = 1, 2, . . . , bγc + 1 and v ∈ V⊗k, based on De�nition of
di�erential operator f◦k (v) in De�nition 18, f◦k (v) (Id) ∈ Cγ−k+1 (U ,U) and
(by using |f |Lip(γ) = 1)

(34)
∣∣∣f◦k (v) (Id)

∣∣∣
Lip(γ−k+1)

= ‖v‖
∣∣∣∣f◦k ( v

‖v‖

)
(Id)

∣∣∣∣
Lip(γ−k+1)

≤ Cγ ‖v‖ .

When ‖g‖ > 1, it can be computed that (|f |Lip(γ) = 1)∥∥∥∥∥
N−1∑
k=1

f◦k (Id) (ξ)πk (g)

∥∥∥∥∥ ≤ Cγ ‖g‖N−1
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and ‖y1 − ξ‖ ≤ ‖y0 − ξ‖+ ‖y‖1−var,[0,1] ≤ Cγ ‖g‖
N .

Thus, (‖g‖ > 1, N ≤ γ + 1)∥∥∥∥∥y1 − ξ −
N∑
k=1

f◦k (Id) (ξ)πk (g)

∥∥∥∥∥ ≤ Cγ ‖g‖N ≤ Cγ ‖g‖γ+1 ,

and lemma holds. In the following, we assume |f |Lip(γ) = 1 and ‖g‖ ≤ 1.
It is clear that, the solution y of the ordinary di�erential equation (33)

satis�es (since |f |Lip(γ) = 1 and ‖g‖ ≤ 1)

(35) sup
u∈[0,1]

‖yu − ξ‖ ≤ ‖y0 − ξ‖+ ‖y‖1−var,[0,1] ≤ Cγ ‖g‖ .

For k = 1, . . . , N , denote the di�erential operator F k by

F k := f◦kπk (logN (g)) .

Based on Lemma 25,
{
F k
}N
k=1

are �rst order di�erential operators, and
satisfy

F k (r) = (Dr)F k (Id) , ∀r ∈ C1 (U ,U) .

Similarly to (34), since we assumed |f |Lip(γ) = 1, for k = 1, 2, . . . , N − 1,
we have

(36)
∣∣∣DF k (Id)

∣∣∣
Lip(γ−k)

≤ Cγ ‖g‖k ;

for ki ≥ 1,
∑j

i=1 ki = k ≤ N , we have

(37)
∣∣∣(F kj ◦ · · · ◦ F k1) (Id)

∣∣∣
Lip(γ+1−k)

≤ Cγ ‖g‖k .

By using the fact that y satis�es (33), we have

y1 − ξ − f◦NπN (logN (g)) (Id) (ξ)−
N−1∑
k=1

F k (Id) (ξ)(38)

=

N−1∑
k=1

(
F k (Id) (y0)− F k (Id) (ξ)

)
+

∑
1≤ki≤N−1,i=1,2

∫∫
0≤u1≤u2≤1

DF k1 (Id)F
k2 (Id) (yu1) du1du2.

Since y0 = ξ+f◦NπN (logN g) (Id) (ξ), by using (37), we have (|f |Lip(γ) =
1, ‖g‖ ≤ 1 and γ ≤ N)

(39)
N−1∑
k=1

∥∥∥F k (Id) (y0)− F k (Id) (ξ)
∥∥∥ ≤ Cγ ‖g‖1+N ≤ Cγ ‖g‖1+γ .
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When k1 ≥ 1, k2 ≥ 1, k1 + k2 ≤ N , using that F k2 is a �rst order
di�erential operator, we have DF k1 (Id)F

k2 (Id) =
(
F k2 ◦ F k1

)
(Id). Thus,

(40)

∫∫
0≤u1≤u2≤1

DF k1 (Id)F
k2 (Id) (yu1) du1du2

=

∫∫
0≤u1≤u2≤1

(
F k2 ◦ F k1

)
(Id) (yu1) du1du2.

When 1 ≤ k1 ≤ N − 1, 1 ≤ k2 ≤ N − 1, k1 + k2 ≥ N + 1, by combining
(36) and (37), we get

(41)

∥∥∥∥∫∫
0≤u1≤u2≤1

DF k2 (Id)F
k1 (Id) (yu1) du1du2

∥∥∥∥
≤ Cγ ‖g‖k1+k2 ≤ Cγ ‖g‖N+1 ≤ Cγ ‖g‖γ+1 .

Therefore, by combining (38), (39), (40) and (41), we get∥∥∥∥∥∥y1−ξ−
N∑
k=1

F k(Id)(ξ)−
∑

1≤ki≤N−1,k1+k2≤N

∫∫
0≤u1≤u2≤1

(
F k2◦F k1

)
(Id)(yu1)du1du2

∥∥∥∥∥∥
≤ Cγ ‖g‖γ+1 .

Then we continue to estimate∑
1≤ki≤N−1,k1+k2≤N

∫∫
0≤u1≤u2≤1

(
F k2 ◦ F k1

)
(Id) (yu1) du1du2.

When 1 ≤ k1 ≤ N − 1, 1 ≤ k2 ≤ N − 1, k1 + k2 = N , by using (37) and
(35), we have∥∥∥∥∫∫

0≤u1≤u2≤1

((
F k2 ◦ F k1

)
(Id) (yu1)−

(
F k2 ◦ F k1

)
(Id) (ξ)

)
du1du2

∥∥∥∥
≤ Cγ ‖g‖N sup

u∈[0,1]
‖yu − ξ‖{γ} ≤ Cγ ‖g‖γ+1 .

When k1 ≥ 1, k2 ≥ 1 and k1 + k2 ≤ N − 1, we have∑
ki≥1,k1+k2≤N−1

∫∫
0≤u1≤u2≤1

((
F k2◦F k1

)
(Id)(yu1)−

(
F k2◦F k1

)
(Id)(ξ)

)
du1du2

=
∑

ki≥1,k1+k2≤N−1

1

2

((
F k2 ◦ F k1

)
(Id) (y0)−

(
F k2 ◦ F k1

)
(Id) (ξ)

)
+

∑
ki≥1,k1+k2≤N−1,k3≤N−1

∫∫∫
0<u1<u2<u3

D
(
F k2◦F k1

)
(Id)F

k3(Id)(yu1) du1du2du3.
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Then since y0 = ξ + f◦NπN (logN g) (Id) (ξ), by using (37), we have∑
ki≥1,k1+k2≤N

∥∥∥(F k2 ◦ F k1) (Id) (y0)−
(
F k2 ◦ F k1

)
(Id) (ξ)

∥∥∥
≤ Cγ ‖g‖2 ‖y0 − ξ‖ ≤ Cγ ‖g‖γ+1 .

Then similar as in (40) and (41), when k1 + k2 + k3 ≤ N , we have∫∫∫
0<u1<u2<u3

D
(
F k2 ◦ F k1

)
(Id)F

k3 (Id) (yu1) du1du2du3

=

∫∫∫
0<u1<u2<u3

(
F k3 ◦ F k2 ◦ F k1

)
(Id) (yu1) du1du2du3;

when k1 + k2 + k3 ≥ N + 1, we have∫∫∫
0<u1<u2<u3

D
(
F k2 ◦ F k1

)
(Id)F

k3 (Id) (yu1) du1du2du3 ≤ Cγ ‖g‖γ+1 .

Repeating this �subtraction and estimation� process for N times, we get∥∥∥∥∥∥y1 − ξ −
N∑
j=1

1

j!

∑
ki≥1,k1+···+kj≤N

(
F kj ◦ · · · ◦ F k1

)
(Id) (ξ)

∥∥∥∥∥∥ ≤ Cγ ‖g‖γ+1 .

Since f◦k is linear in V⊗k (De�nition 18 on page 9), we have

N∑
j=1

1

j!

∑
ki≥1,k1+···+kj≤N

(
F kj ◦ · · · ◦ F k1

)
(Id) (ξ)

=

N∑
j=1

1

j!

∑
ki≥1,k1+···+kj≤N

f◦(k1+···+kj)πkj (logN (g))⊗ · · · ⊗ πk1(logN (g))(Id)(ξ)

=
N∑
k=1

f◦k

 ∑
ki≥1,k1+···+kj=k

1

j!
πkj (logN (g))⊗ · · · ⊗ πk1 (logN (g))

 (Id) (ξ)

=

N∑
k=1

f◦kπk (g) (Id) (ξ) .

Therefore, we have∥∥∥∥∥y1 − ξ −
(

N∑
k=1

f◦kπk (g) (Id) (ξ)

)∥∥∥∥∥ ≤ Cγ ‖g‖γ+1 . �

Lemma 27. Suppose f ∈ L (V, Cγ (U ,U)) for some γ > 1 and ξ ∈ U .
Suppose g ∈ Gbγc+1 (V). Then, the unique solution of the ordinary di�erential
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equation

dyu =

bγc∑
k=1

f◦kπk

(
logbγc+1 (g)

)
(Id) (yu) du, u ∈ [0, 1] ,

y0 = ξ + f◦(bγc+1)πbγc+1

(
logbγc+1 (g)

)
(Id) (ξ) ,

satis�es, for k = 1, 2, . . . , bγc+ 1, and any v ∈ V⊗k,
(42)∥∥∥∥∥∥f◦k (v)(Id)(y1)−

bγc+1−k∑
j=0

f◦(j+k)(πj (g)⊗ v)(Id)(ξ)

∥∥∥∥∥∥≤Cγ ‖v‖ |f |γ+1
Lip(γ) ‖g‖

γ+1−k .

Proof. This lemma can be proved similarly as Lemma 26. �

Lemma 28. Suppose f ∈ L (V, Cγ (U ,U)) for some γ > 1 and ξ ∈ U .
Denote N := bγc + 1, and suppose g ∈ GN (V). Let yg be the solution of the

ordinary di�erential equation:

dygu =

(
N−1∑
k=1

f◦kπk (logN (g)) (Id) (ygu)

)
du, u ∈ [0, 1] ,

yg0 = ξ + f◦NπN (logN (g)) (Id) (ξ) .

For g, h ∈ GN (V), denote by yg,h the unique solution to the integral equa-

tion:

yg,ht =



ξ+f◦NπN (logN (g))(Id)(ξ)

+
t∫
0

(
N−1∑
k=1

f◦kπk(logN (g))(Id)
(
yg,hu

))
du, t ∈ [0, 1]

yg,h1 + f◦NπN (logN (h)) (Id)
(
yg,h1

)
+

t∫
1

(
N−1∑
k=1

f◦kπk (logN (h)) (Id)
(
yg,hu

))
du, t ∈ (1, 2]

.

Then we have∥∥∥yg,h2 − yg⊗h1

∥∥∥ ≤ Cγ |f |γ+1
Lip(γ) (‖g‖ ∨ ‖h‖ ∨ ‖g ⊗ h‖)γ+1 .

Proof. We only prove the Lemma when |f |Lip(γ) = 1. Otherwise, we

replace f by |f |−1Lip(γ) f , and replace g and h by δ|f |Lip(γ)g and δ|f |Lip(γ)h, respec-

tively.

Since
∑N−1

k=1 f
◦kπk (logN (g)) (Id) ∈ C1 (U ,U), based on the de�nition of

yg,h and yg, we have yg,ht = ygt , t ∈ [0, 1]. For g, h ∈ GN (V), by using Lemma 26,
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we get∥∥∥yg,h2 − yg⊗h1

∥∥∥
=
∥∥∥yg1 − ξ + yg,h2 − yg1 −

(
yg⊗h1 − ξ

)∥∥∥
≤

∥∥∥∥∥
N∑
k=1

f◦kπk (g) (Id) (ξ) +
N∑
k=1

f◦kπk (h) (Id) (yg1)−
N∑
k=1

f◦kπk (g ⊗ h) (Id) (ξ)

∥∥∥∥∥
+Cγ (‖g‖ ∨ ‖h‖ ∨ ‖g ⊗ h‖)γ+1 .

Based on Lemma 27, for k = 1, 2, . . . , N ,∥∥∥∥∥∥f◦kπk (h) (Id) (yg1)−
N−k∑
j=0

f◦(j+k) (πj (g)⊗ πk (h)) (Id) (ξ)

∥∥∥∥∥∥≤Cγ ‖h‖k ‖g‖γ+1−k .

As a result,∥∥∥yg,h2 − yg⊗h1

∥∥∥
≤

∥∥∥∥∥∥
N∑
k=1

f◦kπk (g) (Id) (ξ) +

N∑
k=1

N−k∑
j=0

f◦(j+k) (πj (g)⊗ πk (h)) (Id) (ξ)

−
N∑
k=1

f◦kπk (g ⊗ h) (Id) (ξ)

∥∥∥∥∥+ Cγ (‖g‖ ∨ ‖h‖ ∨ ‖g ⊗ h‖)γ+1

+Cγ

N∑
k=1

‖h‖k ‖g‖γ+1−k ≤ Cγ (‖g‖ ∨ ‖h‖ ∨ ‖g ⊗ h‖)γ+1 . �

Lemma 29. Suppose x : [0, T ] → V is a continuous bounded variation

path, and f ∈ L (V, Cγ (U ,U)) for γ ≥ 1. Let y : [0, T ] → U denote as the

unique solution of the ordinary di�erential equation

(43) dy = f (y) dx, y0 = ξ ∈ U .
Then for any p ∈ [1, γ + 1), there exists a constant Cp,γ (which only de-

pends on p and γ), such that for any interval [s, t] ⊂ [0, T ] satisfying

|f |Lip(γ)
∥∥S[p] (x)

∥∥
p−var,[s,t] ≤ 1, we have

(44)
∥∥S[p] (y)

∥∥
p−var,[s,t] ≤ Cp,γ |f |Lip(γ)

∥∥S[p] (x)
∥∥
p−var,[s,t] .

Proof. De�ne h : V ⊕ U →L (V ⊕ U ,V ⊕ U) as

h (v1, u1) (v2, u2) = (v2, f (v2) (u1 + ξ)) , ∀v1, v2 ∈ V, ∀u1, u2 ∈ U .
We de�ne geometric p-rough paths Z (n) : [0, T ] → G[p] (V ⊕ U), n ≥ 0,

recursively as the rough integral (in the sense of De�nition 11 on page 6):

Z (0)t : =
(
S[p] (x)t , 0

)
∈ G[p] (V ⊕ U) , t ∈ [0, T ] ,(45)
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Z (n+ 1)t : =

∫ t

0
h (Z (n)) dZ (n) , t ∈ [0, T ] , n ≥ 0,

and de�ne Y (n) : [0, T ] → G[p] (U) as Y (n) := πG[p](U)Z (n). Then based
on Prop 5.9 [13], there exists constant Cp,γ , which only depends on p and γ
and is �nite whenever γ > p − 1, such that, for any interval [s, t] satisfying
|f |Lip(γ)

∥∥S[p] (x)
∥∥
p−var,[s,t] ≤ 1, we have

(46) sup
n
‖Y (n)‖p−var,[s,t] ≤ Cp,γ |f |Lip(γ)

∥∥S[p] (x)
∥∥
p−var,[s,t] .

(Indeed, by properly scaling f and S[p] (x), the constant Cp,γ in (46) can be
chosen to be independent of |f |Lip(γ) and

∥∥S[p] (x)
∥∥
p−var,[0,T ], as we did after

Theorem 14.) On the other hand, since x is continuous with bounded variation,
it can be checked that, if we de�ne continuous bounded variation paths y (n) :
[0, T ]→ U , n ≥ 1, recursively as

y (0)t ≡ 0 ∈ U , t ∈ [0, T ] ,

y (n+ 1)t =

∫ t

0
f (y (n) + ξ) dx, t ∈ [0, T ] ,(47)

then based on the de�nition of rough integral in De�nition 11 on page 6, it can
be checked that,

(48) Y (n) = S[p] (y (n)) , ∀n ≥ 0.

Combined with (46), for interval [s, t] satisfying |f |Lip(γ)
∥∥S[p] (x)

∥∥
p−var,[s,t]

≤ 1, we have

(49) sup
n

∥∥S[p] (y (n))
∥∥
p−var,[s,t] ≤ Cp,γ |f |Lip(γ)

∥∥S[p] (x)
∥∥
p−var,[s,t] .

On the other hand, since f is Lip (γ) for γ ≥ 1, by using (47), we have,
for any [s, t] ⊂ [0, T ] and any integers n,m ≥ 0,

(50) ‖y (n+m+ 1)− y (n+ 1)‖1−var,[s,t]
≤|f |Lip(γ) ‖x‖1−var,[s,t]

(
‖y (n+m)− y (n)‖1−var,[s,t] + ‖y (n+m)s − y (n)s‖

)
.

Then we divide [0, T ] := ∪l−1j=0 [tj , tj+1] in such a way that

|f |Lip(γ) ‖x‖1−var,[tj ,tj+1]
≤ c < 1, j = 0, 1, . . . , l − 1.

Then, for [tj , tj+1], j = 0, 1, . . . , l − 1, we take supremum (in (50)) over
m ≥ 1, let n tend to in�nity, then

limn→∞ sup
m≥1
‖y (n+m+ 1)− y (n+ 1)‖1−var,[tj ,tj+1]

≤ c limn→∞ sup
m≥1
‖y (n+m)− y (n)‖1−var,[tj ,tj+1]
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+ c limn→∞ sup
m≥1

∥∥∥y (n+m)tj − y (n)tj

∥∥∥ .
Since y (n)0 ≡ 0, ∀n ≥ 0, and c ∈ (0, 1), we can prove inductively that

limn→∞ sup
m≥1
‖y (n+m)− y (n)‖1−var,[tj ,tj+1]

= 0, j = 0, 1, . . . , l − 1.

Thus,

lim
n→∞

sup
m≥1
‖y (n+m)− y (n)‖1−var,[0,T ]

≤
l−1∑
j=0

lim
n→∞

sup
m≥1
‖y (n+m)− y (n)‖1−var,[tj ,tj+1]

= 0.

As a result, y (n) converge in 1-variation as n tends to in�nity (denote the
limit by ỹ), and we have

(51) lim
n→∞

max
k=1,2,...,[p]

sup
0≤s≤t≤T

∥∥∥πk (S[p] (y (n))s,t

)
− πk

(
S[p] (ỹ)s,t

)∥∥∥ = 0.

Based on (47) and let n tends to in�nity, we have

ỹt =

∫ t

0
f (ỹu + ξ) dxu.

As a result, if y denotes the unique solution of the ordinary di�erential
equation (43), then we have

(52) y = ỹ + ξ.

Therefore, by combining (49), (51), (52) and using lower semi-continuity of
p-variation, we get, for interval [s, t] satisfying |f |Lip(γ)

∥∥S[p] (x)
∥∥
p−var,[s,t] ≤ 1,∥∥S[p] (y)

∥∥
p−var,[s,t] =

∥∥S[p] (ỹ + ξ)
∥∥
p−var,[s,t] =

∥∥S[p] (ỹ)
∥∥
p−var,[s,t]

≤ limn→∞
∥∥S[p] (y (n))

∥∥
p−var,[s,t] ≤ Cp,γ |f |Lip(γ)

∥∥S[p] (x)
∥∥
p−var,[s,t] . �

Then, we state Lemma 19 (on page 10) and give a proof.

Lemma 19. Suppose x : [0, T ] → V is a continuous bounded variation

path, f ∈ L (V, Cγ (U ,U)) for γ > 1, and ξ ∈ U . Suppose y : [0, T ] → U is the

unique solution of the ordinary di�erential equation:

(53) dy = f (y) dx, y0 = ξ ∈ U .

Then, for any p ∈ [1, γ + 1), there exists a constant Cp,γ, which only

depends on p and γ, such that, for any 0 ≤ s < t ≤ T ,

(1) ,
∥∥∥yt − ys,t1

∥∥∥ ≤ Cp,γ |f |γ+1
Lip(γ)

∥∥S[p] (x)
∥∥γ+1

p−var,[s,t] ,(54)
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(2) ,

∥∥∥∥∥∥yt−ys−
bγc+1∑
k=1

f◦kπk

(
Sbγc+1(x)s,t

)
(Id)(ys)

∥∥∥∥∥∥≤Cp,γ |f |γ+1
Lip(γ)

∥∥S[p](x)
∥∥γ+1

p−var,[s,t] ,

(55)

where ys,t : [0, 1] → U denotes the unique solution of the ordinary di�erential

equation (with ys denotes the value of y in (53) at point s):

dys,tu =

 bγc∑
k=1

f◦kπk

(
logbγc+1

(
Sbγc+1 (x)s,t

))
(Id)

(
ys,tu
)du, u ∈ [0, 1] ,(56)

ys,t0 = ys + f◦(bγc+1)πbγc+1

(
logbγc+1

(
Sbγc+1 (x)s,t

))
(Id) (ys) .

Proof. We only prove (54); (55) follows from (54) and Lemma 26 on page
15. We prove the result when |f |Lip(γ) = 1. The general case can be proved by

replacing f by |f |−1Lip(γ) f and replacing S[p] (x) by δ|f |Lip(γ)
(
S[p] (x)

)
(in which

case both y in (53) and ys,t in (56) would stay unchanged).
Denote N := bγc+ 1. De�ne ω : {(s, t) |0 ≤ s ≤ t ≤ T} → R+ as

ω (s, t) :=
∥∥S[p] (x)

∥∥p
p−var,[s,t] .

Then it can be checked that, ω is continuous and is super-additive, i.e.

(57) ω (s, u) + ω (u, t) ≤ ω (s, t) , ∀0 ≤ s ≤ u ≤ t ≤ T .

With ys,t de�ned at (56), we de�ne Γ : {(s, t) |0 ≤ s ≤ t ≤ T} → U as

Γs,t := yt − ys,t1 = yt − ys −
(
ys,t1 − ys

)
.

For 0 ≤ s ≤ u ≤ t ≤ T , with ys,u de�ned at (56) and x in (53), we denote
ỹu,t as the unique solution of the ordinary di�erential equation:

dỹu,tr =

(
N−1∑
k=1

f◦k (Id)
(
ỹu,tr
)
πk

(
logN

(
SN (x)u,t

)))
dr, r ∈ [0, 1] ,

ỹu,t0 = ys,u1 + f◦N (Id) (ys,u1 )πN

(
logN

(
SN (x)u,t

))
.

For 0 ≤ s ≤ u ≤ t ≤ T , we denote piecewise continuous path ys,u,t :
[0, 2]→ U by assigning

(58) ys,u,tr := ys,ur when r ∈ [0, 1] and ys,u,tr := ỹu,tr−1 when r ∈ (1, 2].

Firstly, suppose that [s, t] is an interval satisfying ω (s, t) ≤ 1 and u ∈
(s, t). It can be computed that,

‖Γs,u + Γu,t − Γs,t‖ =
∥∥∥ys,u1 − ys + yu,t1 − yu −

(
ys,t1 − ys

)∥∥∥
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≤
∥∥∥ys,u,t2 − ys,t1

∥∥∥+
∥∥∥(ys,u,t2 − ys,u1

)
−
(
yu,t1 − yu

)∥∥∥ .
Then, Lemma 28 and Lemma 26 imply that, (|f |Lip(γ) = 1 and ω (s, t) ≤ 1,

{γ} := γ − bγc)

(59) ‖Γs,u + Γu,t − Γs,t‖

≤ Cγω (s, t)
γ+1
p +

∥∥∥∥∥
N∑
k=1

f◦kπk

(
S[p] (x)u,t

)
((Id) (ys,u1 )− (Id) (yu))

∥∥∥∥∥
≤ Cγω (s, t)

γ+1
p +Cγω (s, t)

1
p ‖Γs,u‖+Cγ ‖yu − ys − (ys,u1 − ys)‖

{γ}
ω (s, t)

N
p .

Based on the de�nition of ys,u (at (56)), when ω (s, t) ≤ 1, we have

(60) ‖ys,u1 − ys‖ ≤ ‖y
s,u‖1−var,[0,1] + ‖ys,u0 − ys‖ ≤ Cγω (s, t)

1
p .

On the other hand, according to Lemma 29, there exists constant Cp,γ
(which only depends on p and γ, and is �nite whenever γ > p − 1), such that
for any interval [s, t] that satis�es ω (s, t) ≤ 1, we have

(61) ‖yu − ys‖ ≤ Cp,γω (s, t)
1
p .

As a result, by combining (60) and (61), we get, when ω (s, t) ≤ 1,

‖(yu − ys)− (ys,u1 − ys)‖
{γ}

ω (s, t)
N
p ≤ Cp,γω (s, t)

γ+1
p .

Then, continuing with (59), we get, for any interval [s, t] satisfying ω (s, t)
≤ 1 and any u ∈ (s, t),

(62) ‖Γs,t‖ ≤
(

1 + Cγω (s, t)
1
p

)
(‖Γs,u‖+ ‖Γu,t‖) + Cp,γω (s, t)

γ+1
p .

With Cγ and Cp,γ in (62), suppose [s, t] is an interval satisfying ω (s, t) ≤
1, denote

δ :=

(
Cpγ ∨ C

p
γ+1
p,γ

)
ω (s, t) .

Then since ω is super-additive (i.e. (57)), by setting [t00, t
0
1) = [s, t) and

recursively dividing [tnj , t
n
j+1) = [tn+1

2j , tn+1
2j+1) ∪ [tn+1

2j+1, t
n+1
2j+2) in such a way that

ω
(
tn+1
2j , tn+1

2j+1

)
= ω

(
tn+1
2j+1, t

n+1
2j+2

)
≤ 1

2
ω
(
tnj , t

n
j+1

)
, j = 0, 1, . . . , 2n − 1, n ≥ 0,

we have, based on (62),

(63) ‖Γs,t‖ ≤ limn→∞

 n∑
k=0

 k∏
j=0

(
1 + 2

− j
p δ

1
p

)(1

2

)(
γ+1
p
−1

)
k
 δ

γ+1
p

+ limn→∞

 n∏
j=0

(
1 + 2

− j
p δ

1
p

)2n−1∑
j=0

∥∥∥Γtnj ,tnj+1

∥∥∥

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≤ exp

(
2

1
p

2
1
p − 1

δ
1
p

) 2
γ+1
p
−1

2
γ+1
p
−1 − 1

δ
γ+1
p + limn→∞

2n−1∑
j=0

∥∥∥Γtnj ,tnj+1

∥∥∥
 .

Then we prove that limn→∞
∑2n−1

j=0

∥∥∥Γtnj ,tnj+1

∥∥∥ = 0. Since x : [0, T ]→ V is

a continuous bounded variation path and y : [0, T ] → U is the solution of the
ordinary di�erential equation

dy = f (y) dx, y0 = ξ,

we have that (|f |Lip(γ) = 1, γ > 1)

‖y‖1−var,[s,t] ≤ ‖x‖1−var,[s,t] , ∀0 ≤ s ≤ t ≤ T .
Thus,∥∥∥∥∥yt − ys −

N∑
k=1

f◦kπk

(
S[p] (x)s,t

)
(Id) (ys)

∥∥∥∥∥(64)

=

∥∥∥∥∫ · · · ∫
s<u1<···<uN<t

f◦N (dxu1 ⊗ · · · ⊗ dxuN ) ((Id) (yu1)− (Id) (ys))

∥∥∥∥
≤ Cγ

∫
· · ·
∫
s<u1<···<uN<t

‖yu1 − ys‖
{γ} ‖dxu1‖ · · · ‖dxuN ‖

≤ Cγ sup
u∈[s,t]

‖yu − ys‖{γ} ‖x‖N1−var,[s,t] ≤ Cγ ‖x‖
γ+1
1−var,[s,t] .

On the other hand, based on Lemma 26,
(65)∥∥∥∥∥ys,t1 −ys−

N∑
k=1

f◦kπk

(
S[p] (x)s,t

)
(Id)(ys)

∥∥∥∥∥≤Cγ ∥∥∥S[p] (x)s,t

∥∥∥γ+1
≤Cp,γ ‖x‖γ+1

1−var,[s,t] .

Thus, combining (64) and (65), we get∥∥∥Γtnj ,tnj+1

∥∥∥ ≤ Cp,γ ‖x‖γ+1

1−var,[tnj ,tnj+1]
, j = 0, 1, . . . , 2n − 1, n ≥ 0,

and we have (γ ≥ 1)

limn→∞

2n−1∑
j=0

∥∥∥Γtnj ,tnj+1

∥∥∥ = 0.

Thus, continuing with (63), we get that, there exists constant Cp,γ , which
only depends on p and γ, and is �nite whenever γ > p − 1, such that, for any
interval [s, t] satisfying ω (s, t) ≤ 1,

(66)
∥∥∥yt − ys,t1

∥∥∥ = ‖Γs,t‖ ≤ Cp,γω (s, t)
γ+1
p .

For [s, t] satisfying ω (s, t) > 1, as in Prop 5.10 [8], we decompose [s, t) =
∪n−1j=0 [tj , tj+1) in such a way that ω (tj , tj+1) = 1, j = 0, 1, . . . , n − 2, and
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ω (tn−1, tn) ≤ 1. Then by using super-additivity of ω, we have n− 1 ≤ ω (s, t),
and

‖yt − ys‖ ≤
n−1∑
j=0

∥∥ytj+1 − ytj
∥∥ ≤ Cp,γ (n− 1 + ω (tn−1, tn)

1
p

)
≤ Cp,γn ≤ Cp,γ (ω (s, t) + 1) ≤ 2Cp,γω (s, t) .

On the other hand, when ω (s, t) ≥ 1,∥∥∥ys,t1 − ys
∥∥∥ ≤

∥∥∥ys,t1 − y
s,t
0

∥∥∥+
∥∥∥ys,t0 − ys

∥∥∥
≤ Cγ

∥∥∥S[p] (x)s,t

∥∥∥N−1 + Cγ

∥∥∥S[p] (x)s,t

∥∥∥N ≤ Cγω (s, t)
N
p .

Therefore, when ω (s, t) ≥ 1,∥∥∥yt − ys,t1

∥∥∥ =
∥∥∥yt − ys − (ys,t1 − ys

)∥∥∥
≤ Cp,γω (s, t) + Cγω (s, t)

N
p ≤ Cp,γω (s, t)

γ+1
p . �

Lemma 30. Suppose f ∈ L (V, Cγ (U ,U)) for some γ > 1. For g ∈
Gbγc+1 (V) and ξ ∈ U , de�ne y (g, ξ) : [0, 1] → U as the unique solution of

the ordinary di�erential equation:

dyu =

bγc∑
k=1

f◦kπk

(
logbγc+1 (g)

)
(Id) (yu) du, u ∈ [0, 1] ,

y0 = ξ + f◦(bγc+1)πbγc+1

(
logbγc+1 (g)

)
(Id) (ξ) ∈ U ,

If there exist
{
gl
}
l≥1 ⊂ G

bγc+1 (V) and
{
ξl
}
≥1 ⊂ U such that

lim
l→∞

max
k=1,2,...,bγc+1

∥∥∥πk (gl)− πk (g)
∥∥∥ = 0 and lim

l→∞

∥∥∥ξl − ξ∥∥∥ = 0,

then
lim
l→∞

sup
t∈[0,1]

∥∥∥y (gl, ξl)
t
− y (g, ξ)t

∥∥∥ = 0.

Proof. Since
∑bγc

k=1 f
◦k (Id) ∈ C1 (U ,U), based on Thm 3.15 [8] (their

result extends naturally to ordinary di�erential equations in Banach spaces),
we get

sup
t∈[0,1]

∥∥∥y (gl, ξl)
t
− y (g, ξ)t

∥∥∥
≤ Cf

∥∥∥y (gl, ξl)
0
− y (g, ξ)0

∥∥∥+

bγc∑
k=1

∥∥∥f◦k (πk (logbγc+1

(
gl
))
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−πk
(

logbγc+1 (g)
))

(Id)
∥∥∥
∞

)
≤ Cf

(∥∥∥ξl − ξ∥∥∥+
∥∥∥πbγc+1

(
logbγc+1 (g)

)∥∥∥∥∥∥ξl − ξ∥∥∥{γ}
+

bγc+1∑
k=1

∥∥∥πk (logbγc+1

(
gl
))
− πk

(
logbγc+1 (g)

)∥∥∥
 . �

Proof of Theorem 22. Based on the de�nition of geometric p-rough path
(De�nition 7 on page 5), there exists a sequence of continuous bounded variation
paths

{
xl
}

: [0, T ]→ V, such that

lim
l→∞

dp

(
S[p]

(
xl
)
, X
)

= 0.

As a result, we have (combined with Thm 3.1.3 [14] when bγc ≥ [p])
(67)

lim
l→∞

max
n=1,2,...,bγc+1

∥∥∥∥πn(Sbγc+1

(
xl
)
s,t

)
−πn

(
Sbγc+1(X)s,t

)∥∥∥∥=0, ∀0 ≤ s ≤ t ≤ T ,

and

(68) lim
l→∞

∥∥∥S[p] (xl)∥∥∥
p−var,[s,t]

= ‖X‖p−var,[s,t] , ∀0 ≤ s ≤ t ≤ T .

On the other hand, denote yl : [0, T ] → U as the unique solution of the
ordinary di�erential equation

(69) dyl = f
(
yl
)
dxl, yl0 = ξ,

and denote Y := πG[p](U) (Z) with Z denotes the unique solution (in the sense
of De�nition 13 on page 6) of the rough di�erential equation

(70) dY = f (Y ) dX, Y0 = ξ.

Then, based on the universal limit theorem (Thm 5.3 [13]), we have

(71) lim
l→∞

∥∥∥ylt − π1 (Yt)
∥∥∥ = 0, ∀t ∈ [0, T ] .

For 0 ≤ s ≤ t ≤ T and l ≥ 1, with yl in (69), denote by ys,t,l : [0, 1]→ U
the unique solution of the ordinary di�erential equation:

dys,t,lu =

bγc∑
k=1

f◦kπk

(
logbγc+1

(
Sbγc+1

(
xl
)
s,t

))
(Id)

(
ys,t,lu

)
du, u ∈ [0, 1] ,

ys,t,l0 = yls + f◦(bγc+1)πbγc+1

(
logbγc+1

(
Sbγc+1

(
xl
)
s,t

))
(Id)

(
yls

)
∈ U .
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For 0 ≤ s ≤ t ≤ T , with Y in (70), denote by ys,t : [0, 1]→ U the unique
solution of the ordinary di�erential equation:

dys,tu =

bγc∑
k=1

f◦kπk

(
logbγc+1

(
Sbγc+1 (X)s,t

))
(Id)

(
ys,tu
)
du, u ∈ [0, 1] ,

ys,t0 = π1 (Ys) + f◦(bγc+1)πbγc+1

(
logbγc+1

(
Sbγc+1 (X)s,t

))
(Id) (π1 (Ys)) ∈ U .

Then, according to Lemma 30,

(72) lim
l→∞

∥∥∥ys,t,l1 − ys,t1

∥∥∥ = 0.

Based on Lemma 19, for each l ≥ 1,

(73)
∥∥∥ylt − ys,t,l1

∥∥∥ ≤ Cp,γ (|f |Lip(γ) ∥∥∥S[p] (xl)∥∥∥
p−var,[s,t]

)γ+1

,

(74)

∥∥∥∥∥∥ylt − yls −
bγc+1∑
k=1

f◦kπk

(
Sbγc+1

(
xl
)
s,t

)
(Id)

(
yls

)∥∥∥∥∥∥
≤ Cp,γ

(
|f |Lip(γ)

∥∥∥S[p] (xl)∥∥∥
p−var,[s,t]

)γ+1

.

By combining (67), (68), (71) and (72), we let l → ∞ in (73) and (74),
and get Theorem 22. �
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