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A LETTER ON THE KADISON-SINGER PROBLEM

BET�UL TANBAY

Let H be a separable Hilbert space with a �xed orthonormal basis (en)n≥1

and B(H) be the von Neumann algebra of all bounded linear operators on H.
Identifying `∞ = C(βN) with the diagonal operators, we consider C(βN) as a
subalgebra of B(H). In 1959, Kadison and Singer raised the following question:
Does every pure state of `∞ extend in a unique way to a pure state of B(H)?
Since then, a lot of mathematicians thought on this problem, contributing with
partial results of di�erent impact until the question was positively answered in
2013. This letter intends to trace one story among many, emphazising on the set
theory and operator algebras connections. A proof in the language of operator
algebras is yet to come.
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1. PRELUDE

Dear �Serban,

I congratulate you for your 70th birthday. You were not even in your �fties,
my age today, when we met at the Department of Mathematics of the Bo	gazi�ci
University. You already knew about the Kadison-Singer Problem (hereinafter
KS), I had just received my thesis thanks to a minor partial result on KS
(see [13]). Kadison-Singer had shown that pure states on continuous maximal
abelian subalgebras (masas) of B(H) do not extend uniquely to pure states on
the full algebra and conjectured the same for discrete masas in [10]. In the
next 54 years, the problem has expanded to a very large number of equivalent
problems in various �elds (see [8] for an extensive discussion) and partial re-
sults pointed mostly in the direction that extensions were unique for discrete
masas. Identifying `∞ = C(βN) with the diagonal operators, the question had
boiled down to the so-called �paving conjecture� on matrices after Anderson
(see [6]) and Akemann-Anderson (see [1]) papers. A few months ago, Marcus,
Spielman and Srivastava proved indeed that extensions were unique, working on
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Weaver's discrepancy theoretic versions of the problem [16] and using charac-
teristic polynomials of matrices. It was a beautiful present to the mathematics
community, announced in blogs of many well-known mathematicians such as
Gowers or Tao. There is still a lot of work to do for the experts on the problem.
Understanding the proof, making the connections with equivalent versions and
now that we know extensions are unique, writing an operator algebraic proof
of the result. In this letter of birthday, I shall try to retrace the road from KS
to today, from a set theoretic approach.

Happy birthday,
Bet�ul

2. TO START THE ROAD

Let us introduce the vocabulary and notations involved to trace the road.
A basic course in operator algebras should be enough to follow. If H denotes
a separable in�nite dimensional complex Hilbert space and A is a unital C*-
subalgebra of B(H), the algebra of all bounded linear operators, then the set
of states of A is a convex subset of the dual of A and is compact in the w*-
topology on the dual. By the Krein-Milman theorem, the set of states is the
closed convex hull of its extreme points ( which are the pure states of A). One
can extend a state from a C*-subalgebra of A to B(H) using the Hahn-Banach
theorem. The set of extensions of such a state forms a convex compact subset
of the dual. If the state of the C*-subalgebra is pure, then the set of extensions
has extreme points, which are pure states of A. Hence, if a pure state has a
unique pure state extension, then the closed convex hull of its extension (which
consists of the extension itself), is the set of all state extensions of the given
pure state. So, a pure state has a unique state extension if and only if it has
a unique pure state extension. If A is abelian, the set of pure states, which is
the set of non-zero multiplicative linear functionals, is compact. The Gelfand
map T 7→ T̂ , where T̂ (ρ) = ρ(T ) for any pure state ρ on A, is an isometric
*-isomorphism from A onto the continuous functions on the set of pure states
of A. Notice that any hope for unicity needs maximality, because by Zorn's
lemma, A is contained in a maximal abelian C*-subalgebra (masa) of B(H),
and by the Stone-Weierstrass theorem, there must be two distinct pure states
of the masa which agree on A. For example, if < X,µ > is a σ-�nite measure
space, then L∞(X,µ) represented as an algebra of multiplication operators on
L2(X,µ) is a maximal abelian C*-subalgebra of B(L2(X,µ)). In particular,
when X = [0, 1], and µ is the Lebesgue measure, the masa we obtain is called
the �continuous masa�. When X = N , with µ the counting measure, we get,
`∞, the �discrete masa�. In case H is of �nite dimension n, one replaces N by
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{1, ..., n}. Any masa on a separable Hilbert space is unitarily equivalent to one
of these three, or to the direct sum of the continuous masa with one of the two
discrete types. The problem of extensions of pure states from masas of B(H) is
therefore reduced to the study of extensions from continuous masas and from
discrete masas.

We mentioned that the set of states on a C*-algebra provided with the
w*-topology is a compact Hausdor� space. Hence if {fn}n∈N is a family of
states on the algebra, the map n 7→ fn from N , endowed with the discrete
topology, into the set of states has a unique continuous extension to β(N), the
Stone-�Cech compacti�cation of N . The elements of β(N) can be regarded as
the set of ultra�lters on N , where N is identi�ed with the �xed ultra�lters. For
`∞, there is a 1-1 correspondence between pure states (as said, the non-zero
multiplicative linear functionals) and ultra�lters on N , i.e. `∞ = C(βN). The
vector states correspond to �xed ultra�lters.

When we �x an orthonormal basis (en)n≥1 on H, we can identify each
bounded sequence with a diagonal operator and see the discrete masa `∞ as
the C*-subalgebra D of diagonal operators with respect to the �xed basis. For
each operator T in B(H), denote by DT the diagonal matrix obtained from
T considering only its diagonal entries. With a �xed basis, we can also say
something more precise about the above mentioned connection between pure
states on D and ultra�lters on N .

For any subset σ of N , let Pσ be the projection onto the span of {ei : i ∈
σ}. Notice that a diagonal operator is a projection i� it is of the form Pσ, for
some σ ⊆ N .

Given a pure state f on D, since f is multiplicative, every projection in
D is mapped either to 0 or to 1. Now let U = {σ ⊆ N : f(Pσ) = 1}. It is easy
to check that U is an ultra�lter on N .

On the other hand, given an ultra�lter U on N , let f be the map de�ned
on the diagonal projections by f(Pσ) = 1 i� σ ∈ U ; The linear span of diagonal
projections is norm-dense in D by the Stone-Weierstrass theorem applied to
the function representation of D , so extend f by linearity and norm-density
to D. It is again easy to check that f is a pure state on D (by showing it is
multiplicative).

Also, we can look at pure vector states on D, which are exactly the vector
states given by the basis vectors. The set S(D) of states on D is compact, so
the map f : n 7→ fn from N into S(D), where fn(D) =< Ten, en > for all T
in D, has a unique continuous extension g to β(N), with g(U)(T ) = limU <
Ten, en >. Hence the pure vector states correspond to �xed ultra�lters, and all
other pure states are given by free ultra�lters. Notice that every pure vector
state on D has a unique pure state extension to B(H).
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3. THOSE WERE THE KADISON-SINGER DAYS, MY FRIEND

�I received an early copy of Heisenberg's �rst work a little before publi-
cation and I studied it for a while and within a week or two I saw that the
noncommutation was really the dominant characteristic of Heisenberg's new
theory... So I was led to concentrate on the idea of noncommutation and to see
how the ordinary dynamics which people had been using until then should be
modi�ed to include it.� (P. Dirac)

In his fundamental work on quantum mechanics [9], Dirac wants to �nd a
representation for a family of observables (a commutative family of self-adjoint
operators) which is completely determined by the observables that are diagonal.
What Dirac called a complete commuting set, is a masa in today's language.
In other words, we obtain a maximal set of observables that can be measured
simultaneously. Physicists who are familiar with the Heisenberg's Uncertainty
principle would not be surprised to hear that �randomness� is involved in the
�nal solution! Observables are operators and pure states are probability distri-
butions. For an observable T , the average of values measured for T , with the
system in the state corresponding to a unit vector ξ, is the expectation value
of T , given by the vector pure state wξ with wξ(T ) =< Tξ, ξ >. When ξ is
a basis vector en, the pure state is completely determined by its values on D,
hence has a unique extension to B(H). Dirac claims that any pure state on
any masa will behave so.

In [10], in 1959, Kadison and Singer showed that there are pure states
on the continuous masa that do not extend uniquely. In 1979, [6], Anderson
strengthened the result by showing that no pure state extends uniquely in the
continuous case.

The discrete case remained open and was to live more than half a century
under the name �Kadison-Singer problem (KS)�. More and more people touched
�KS�, leaving many �dead corpses� as Dick Kadison jokingly called them (us!).
He also emphasized that the improvements to come were announced in their
famous �lemma �ve� in [10]:

Lemma 3.1. If A is a maximal abelian algebra then there exists a sequence

of projections {En} in A such that B|E1|...|En converges to an operator of A in

the uniform topology if and only if ρ1(B) = ρ2(B) for each pair of states, ρl,
ρ2 of all bounded operators such that ρ1|A = ρ2|A is a pure state of A.

(B|E denotes EBE + (I − E)B(I − E))

Indeed, a signi�cant step was taken using this Lemma, by Anderson ([6])
when he introduced the notion of �compressible� operators, today known as
�paveable� operators.
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4. ANDERSON AND AKEMANN HIT THE ROAD

Joel Anderson had set-theorist friends (Alexander Kechris was one of
them, I think), and he was not scared of ultra�lters. In 1979, he introduces the
notion of �compressibility� (paving) and states an equivalent version of KS [6].
Small world, he exposes them at the 5th International Conference on Operator
Theory, held in Timisoara in 1980.

For an operator T in B(H), let us denote the operator Pσ(T −DT )Pσ by
Tσ, the �block� reduction of the N ×N matrix T −DT to the subset σ × σ.

The �rst version said that extensions are unique i� for any operator
T , for any ultra�lter U , for any ε > 0, there is a subset σ of N in U
such that ||Tσ|| < ε.

A triple universal statement! Here is a great source for partial results!
In the years to come, some took basic operators and tried, some looked at
�touchable� ultra�lters even if one had to assume not only the axiom of choice
but also the continuum hypothesis (P-points, Q-points, Ramsey ultra�lters..),
some played with ε... For those who hated ultra�lters a user-friendly version
was ready with a so-called elegant proof [1, 14]:

Extensions are unique i� for any operator T , for any ε > 0, there
is a partition σ1, ..., σm of N such that ||Tσj || < ε for all j = 1, ...,m.

A more descriptive word turned out to be �paving�, mostly expressed in
terms of projections instead of partitions:

De�nition 4.1. An operator T in B(H) is said to be paveable if for all
ε > 0, there exist a natural number m and projections Pσ1 , ..., Pσm ∈ D with∑
Pσj = 1 such that ||Tσj || < ε for all j = 1, ...,m.

So, KS became equivalent to the statement �every operator is paveable�.
It was shown quickly that the class of paveable operators were a closed subspace
of B(H) [13]. The �nite version was even more irresistible and also had quite
a nice proof using K�onig's In�nity lemma which beautifully states that any
�nitely branching in�nite tree has an in�nite branch [13]:

Extensions are unique i� there is a natural number m such that

every �nite-dimensional matrix is paveable into m blocks.

Notice of course that this natural number m must be independent of
the dimension of the matrix. The term �m-paved� is also used, and everyone
knew that m must be greater than two. To the surprise of many, Marcus,
Spielman and Srivastasva show in the recent solution that two is su�cient for
their projections.

From the eighties on, Charles Akemann (hit the road, Chuck!) is supposed
to have given this version to his graduate students as a week-end homework!
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Beginner's luck did not occur, and the problem outlived many many week-
ends... It was hard not to be tempted! The land was free, paving one matrix
could turn into a paper, a reasonable bunch into a thesis!

5. I DID IT MY WAY

What is a graduate student in set theory doing in this land? This can only
be explained by the rich proliferic atmosphere of the last three �oors of Evans
Hall, Berkeley. Logicians were on the 7th �oor, but certainly closer to the sky
than all the others, Solovay was pushing me towards very large cardinals, so
when I heard the word C*-algebras at the tea time in the 10th �oor, I thought
this was the most concrete thing I had touched in a long time! One question
led to another and I found myself with KS, asking the �rst �natural� questions
a set-theorist-to-be would ask: can I do the magic �forcing� on KS?? The
initial statement was quantifying over ultra�lters, so the complexity of the task
seemed high, but it did not take too long to bring the complexity down to a
so-called Π1

2-statement and feel proud about it, until I had to discover that
Joel Anderson had gone this way ten years earlier!! (Today it is a question
of minutes, but literature search in the eighties was a task to learn in the
basement of libraries.) Later Anderson and Akemann were generous enough to
like my proofs and promote them here and there. Given the low complexity, set
theory techniques were probably unnecessary, due to what is called Shoen�eld's
Absoluteness Lemma and the big boss (Solovay) declared that the problem was
�doable� (which meant to solve it in ZFC) and I found myself in C*-algebras
knowing about them a little more than my sister-dancer!

What seemed approachable was almost untouchable: the operator norm!
Even for a �nite matrix! Instead of struggling with the operator norm, I tried
�l1-bounded� matrices and paved them using a method I called �splitting in
two�. (Does this have anything to do with the recent solution of KS where
families interlace and split in two? Afterall, as we knew that general matri-
ces cannot be two-paved, it wasn't so expected that projections with �small
diagonal� could be two-paved) The result was a C*-subalgebra of B(H) of rea-
sonable size upto which extensions were unique. This algebra also contained
my favourite projection baptized pB by Chuck: if Mn denotes the complex
n×n matrices, the projection pB is de�ned on the direct sum of theMn by the
condition that (pB)n has 1/n in each of its entries. This projection had been
studied in [15], and motivated by KS, we had unsuccessfully tried to see how
much the operator norm of pB (namely 1) is a�ected by perturbing a �small�
fraction of its entries. In a recent paper, appeared in 2012, [2], we showed that
it can be a�ected more than we thought, thanks to a graph-theoretic technique
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due to Joel Friedman. We were still not tired of partial results, and some recent
work is obsolete before being printed [3]!

So much tells why it is not a surprise to some �dead corpses� that KS
had so many di�erent analogues, in so many di�erent branches of mathematics
ending with random matrices. But the end of the road was not yet to come in
the early nineties:

6. BOURGAIN AND TZAFRIRI BLOCK THE ROAD

As we said, lots of paved operators were swimming around until Bourgain
and Tzafriri came up in 1991 with a paper [7] noone could understand, but
swept almost all these operators into one bucket. They showed the existence
of a constant c > 0 such that for any ε > 0, n ≥ 1/c and for any n× n-matrix
T , there is a subset σ of {1, ..., n} of cardinality greater or equal to cε2n for
which ||Tσ|| < ε||T ||. Also using their Random Paving Principle, they showed
that matrices with �relatively small� entries were paveable.

This remained as the best partial result for the years to come, maybe due
to an intimidation. Each time he gave a look at KS, Sorin Popa had something
relevant to add, and his last paper [12] was heading for a major contribution.
Rumors are that he was in contact with Bourgain and they were about to
combine their techniques! On the more humble �my way�, it was also clear
that besides operator algebras and von Neumann algebras, Banach spaces and
harmonic analysis expertise was important for KS. With the contribution of Ali
�Ulger, we had been once again convinced that extensions were unique when we
showed that for each t ∈ β(N), the set of states extending the Dirac measure
δt is a �nite-dimensional space or else it would contain a homeomorphic copy
of β(N) [4].

We hope not to be unfair to anyone by saying that after the Bourgain-
Tzafriri blockage, the next interesting movement was the work of Nik Weaver
more than 10 years after.

7. DISCREPANCY ON THE ROAD AND HAPPY END

For those familiar with the subject, wanting to approximate a continuous
object by a discrete one, with respect to some measure of uniformity involves
discrepancy theory. One tries to study deviations from uniformity, to measure
how far a situation can be from where we would like it to be. In measure-
theoretic or combinatorial settings, one studies the inevitable irregularities of
distributions. In other words, one is concerned with coloring elements of a
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ground set such that each set is as balanced as possible, namely it has approxi-
mately the same number of elements in each color. The Beck-Fiala theorem, a
major theorem in discrepancy theory gives a bound for the imbalance in func-
tion of the times each element appears across all sets. Working essentially on
the AA-Conjecture (see Conjecture 7.1.3 in [1]), Nik Weaver showed that KS
has a positive solution if and only if his Conjecture (KSr) is true for some r ≥ 2
(see [16]):

Conjecture 7.1. (KSr). There exist universal constants N ≥ 2 and

ε > 0 such that the following holds: Let v1, ..., vn ∈ Ck satisfy ||vi|| ≤ 1 for all

i ≤ n, and suppose ∑
i

|〈u, vi〉|2 ≤ N

for every unit vector u ∈ Ck. Then there exists a partition σ1, . . . , σr of

{1, ..., n} such that ∑
i∈σj

|〈u, vi〉|2 ≤ N − ε

for every unit vector u ∈ Ck and all j ≤ r.

Marcus, Spielman and Srivastava have proven in their recent article [11] a
generalization of KSr by showing that if all vectors have su�ciently small norm
then an appropriately low discrepancy partition must exist. Their result, given
below, implies KSr for r = 2 and hence shows that projections with �small
diagonal� are paveable, and actually paved into two blocks:

Corollary 7.2. Let v1, ..., vn ∈ Ck be column vectors satisfying
∑

i viv
∗
i =

I and ||vi||2 ≤ ε for all i ≤ n. Then there exists a partition σ1, σ2 of {1, ..., n}
such that for j ∈ {1, 2},

||
∑
i∈σj

viv
∗
i || ≤

(1 +
√

2ε)2

2
.

Translations in various approaches already follow, let us cite a very recent
one into operator algebras language, by Akemann-Weaver [5]:

Theorem 7.3. For any �nite-dimensional (say n is the dimension) pro-

jection matrix P whose diagonal entries are at most ε (a positive number), there

is a subset σ of {1, ..., n} such that ||PPσP || ≤ 1
2 + o(ε) and ||PP{1,..,n}\σP || ≤

1
2 + o(ε) where o(ε) =

√
2ε+ ε.

Note that, in the Marcus-Spielman-Srivastava result, the estimate de-
pends only on the size of the vectors and not on the number of vectors or
the dimension of the space. Consequently, their result can be generalized to
in�nite-dimensional Hilbert spaces (again for a straightforward proof, see [5]).
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Theorem 7.4. For any projection P of B(H) whose diagonal entries with

respect to a �xed basis are at most ε (a positive number), there is a subset σ of N
such that ||PPσP || ≤ 1

2 +o(ε) and ||PPN\σP || ≤ 1
2 +o(ε) where o(ε) =

√
2ε+ ε.

Discrepancy turned the paving problem into a �sharing� problem.

8. PAVING OR SHARING THE ROAD?

So, although pure state extension from a continuous masa to the full
algebra are never unique, they are always unique from a discrete masa. Of
course, questions remain! Who is going to get us an operator theoretic proof?
We cannot pave all matrices into 2 blocks [13], can we pave into 3? What would
the ε approximation be? Chuck already adapted himself to the new situation
and changed his vocabulary from �paving� to �sharing� and asks us: How likely
is a random sharing to be a �good sharing�?

Sharing the solution of a long-standing problem is a nice birthday present
Tsoutsou, I wish all of us many more!

Acknowledgments. The author wishes to thank the Istanbul Center for Mathemat-
ical Sciences for their hospitality.
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