CUNTZ-LI ALGEBRAS FROM a-ADIC NUMBERS

S. KALISZEWSKI, TRON OMLAND and JOHN QUIGG

Communicated by Sorin Popa

Abstract

The a-adic numbers are those groups that arise as Hausdorff completions of noncyclic subgroups of the rational numbers \mathbb{Q}. We give a crossed product construction of (stabilized) Cuntz-Li algebras coming from the a-adic numbers and investigate the structure of the associated algebras. In particular, these algebras are in many cases Kirchberg algebras in the UCT class. Moreover, we prove an a-adic duality theorem, which links a Cuntz-Li algebra with a corresponding dynamical system on the real numbers. This paper also contains an appendix where a nonabelian version of the subgroup of dual theorem is given in the setting of coactions.

AMS 2010 Subject Classification: Primary 46L05, 46L55; Secondary 11R04, 11R56, 11S82.
Key words: C^{*}-dynamical system, a-adic number, Cuntz-Li algebra.

INTRODUCTION

In [3] Cuntz introduces the C^{*}-algebra $\mathcal{Q}_{\mathbb{N}}$ associated with the $a x+b$ semigroup over the natural numbers, that is $\mathbb{Z} \rtimes \mathbb{N}^{\times}$, where \mathbb{N}^{\times}acts on \mathbb{Z} by multiplication. It is defined as the universal C^{*}-algebra generated by isometries $\left\{s_{n}\right\}_{n \in \mathbb{N} \times}$ and a unitary u satisfying the relations

$$
s_{m} s_{n}=s_{m n}, \quad s_{n} u=u^{n} s_{n}, \quad \text { and } \quad \sum_{k=0}^{n-1} u^{k} s_{n} s_{n}^{*} u^{-k}=1, \quad \text { for } m, n \in \mathbb{N}^{\times} .
$$

$\mathcal{Q}_{\mathbb{N}}$ may be concretely realized on $\ell^{2}(\mathbb{Z})$ equipped with the standard orthonormal basis $\left\{\delta_{n}\right\}_{n \in \mathbb{Z}}$ by

$$
s_{m}\left(\delta_{n}\right)=\delta_{m n} \quad \text { and } \quad u\left(\delta_{n}\right)=\delta_{n+1}
$$

Furthermore, $\mathcal{Q}_{\mathbb{N}}$ is shown to be simple and purely infinite and can also be obtained as a semigroup crossed product

$$
C(\widehat{\mathbb{Z}}) \rtimes\left(\mathbb{Z} \rtimes \mathbb{N}^{\times}\right),
$$

for the natural $a x+b$-semigroup action of $\mathbb{Z} \rtimes \mathbb{N}^{\times}$on the finite integral adeles $\widehat{\mathbb{Z}}=\prod_{p \text { prime }} \mathbb{Z}_{p}$ (i.e. $\widehat{\mathbb{Z}}$ is the profinite completion of \mathbb{Z}). Its stabilization $\overline{\mathcal{Q}}_{\mathbb{N}}$ is isomorphic to the ordinary crossed product

$$
C_{0}\left(\mathcal{A}_{f}\right) \rtimes\left(\mathbb{Q} \rtimes \mathbb{Q}_{+}^{\times}\right),
$$

REV. ROUMAINE MATH. PURES APPL. 59 (2014), 3, 331-370
where \mathbb{Q}_{+}^{\times}denotes the multiplicative group of positive rationals and \mathcal{A}_{f} denotes the finite adeles, i.e. the restricted product $\prod_{p \text { prime }}^{\prime} \mathbb{Q}_{p}=\prod_{p \text { prime }}\left(\mathbb{Q}_{p}, \mathbb{Z}_{p}\right)$. The action of $\mathbb{Q} \rtimes \mathbb{Q}_{+}^{\times}$on A_{f} is the natural $a x+b$-action. This crossed product is the minimal automorphic dilation of the semigroup crossed product above (see Laca [12]).

Replacing \mathbb{N}^{\times}with \mathbb{Z}^{\times}gives rise to the C^{*}-algebra $\mathcal{Q}_{\mathbb{Z}}$ of the ring \mathbb{Z}. This approach is generalized to certain integral domains by Cuntz and Li [4] and then to more general rings by Li [16].

In [14] Larsen and Li define the 2-adic ring algebra of the integers \mathcal{Q}_{2}, attached to the semigroup $\mathbb{Z} \rtimes|2\rangle$, where $|2\rangle=\left\{2^{i}: i \geq 0\right\} \subset \mathbb{N}^{\times}$acts on \mathbb{Z} by multiplication. It is the universal C^{*}-algebra generated by an isometry s_{2} and a unitary u satisfying the relations

$$
s_{2} u^{k}=u^{2 k} s_{2} \quad \text { and } \quad s_{2} s_{2}^{*}+u s_{2} s_{2}^{*} u^{*}=1
$$

The algebra \mathcal{Q}_{2} shares many structural properties with $\mathcal{Q}_{\mathbb{N}}$. It is simple, purely infinite and has a semigroup crossed product description. Its stabilization $\overline{\mathcal{Q}}_{2}$ is isomorphic to its minimal automorphic dilation, which is the crossed product

$$
C_{0}\left(\mathbb{Q}_{2}\right) \rtimes\left(\mathbb{Z}\left[\frac{1}{2}\right] \rtimes\langle 2\rangle\right) .
$$

Here, $\mathbb{Z}\left[\frac{1}{2}\right]$ denotes the ring extension of \mathbb{Z} by $\frac{1}{2},\langle 2\rangle$ the subgroup of the positive rationals \mathbb{Q}_{+}^{\times}generated by 2 and the action of $\mathbb{Z}\left[\frac{1}{2}\right] \rtimes\langle 2\rangle$ on \mathbb{Q}_{2} is the natural $a x+b$-action.

Both A_{f} and \mathbb{Q}_{2} are examples of groups of so-called a-adic numbers, defined by a doubly infinite sequence $a=\left(\ldots, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots\right)$ with $a_{i} \geq 2$ for all $i \in \mathbb{Z}$. For example, if p is a prime number, the group \mathbb{Q}_{p} of p-adic numbers is associated with the sequence a given by $a_{i}=p$ for all i.

Our goal is to construct C^{*}-algebras associated with the a-adic numbers and show that these algebras provide a family of examples that under certain conditions share many structural properties with $\mathcal{Q}_{2}, \mathcal{Q}_{\mathbb{N}}$ and also the ring C^{*}-algebras of Cuntz and Li.

In particular, since \mathbb{N}^{\times}is generated by the set of prime numbers, we can associate $\mathcal{Q}_{\mathbb{N}}$ with the set of all primes, and \mathcal{Q}_{2} with the set consisting of the single prime 2 . In the same way, one can construct algebras \mathcal{Q}_{P} associated with any nonempty subset P of the prime numbers, with similar generators and relations as described above. The stabilized algebras $\overline{\mathcal{Q}}_{P}$ provide one interesting class of C^{*}-algebras coming from the a-adic numbers.

Our approach is inspired by [9], that is, we begin with a crossed product and use the classical theory of C^{*}-dynamical systems to prove our results instead of the generators and relations as in the papers of Cuntz, Li, and Larsen. Therefore, our construction only gives analogs of the stabilized algebras $\overline{\mathcal{Q}}_{\mathbb{N}}$ and $\overline{\mathcal{Q}}_{2}$.

Even though the C^{*}-algebras associated with a-adic numbers are closely related to the ring C^{*}-algebras of Cuntz and Li, they are not a special case of these (except in the finite adeles case). Also, our approach does not fit in general into the framework of [9].

One of the main results in this paper is an a-adic duality theorem (Theorem 4.1), which generalizes the 2-adic duality theorem [14, Theorem 7.5] and the analogous result of Cuntz [3, Theorem 6.5]. In the proof, we only apply classical crossed product techniques, and not the groupoid equivalence as in [14]. Another advantage with this strategy is that we, in a natural way, obtain a concrete bimodule for the Morita equivalence.

In the first section, we describe the a-adic numbers Ω as the Hausdorff completion of a subgroup N of \mathbb{Q} and explain that this approach coincides with the classical one in Hewitt and Ross [8]. Then we go on and introduce the Cuntz-Li algebras associated with a sequence a, that is, coming from an $a x+b$-action of $N \rtimes H$ on Ω for a certain multiplicative group H contained in N, and show that these algebras in many cases have nice properties.

The proof of Theorem 4.1 relies especially on two other results; a duality result for groups in Section 3 describing \widehat{N} for any noncyclic subgroup N of \mathbb{Q}, and the "subgroup of dual group theorem", that we prove in a more general setting in Appendix A.

Finally, in Section 5 we characterize the a-adic numbers up to isomorphism, and give some isomorphism invariants for the associated Cuntz-Li algebras.

1. THE a-ADIC NUMBERS

Let $a=\left(\ldots, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots\right)$ be a doubly infinite sequence of natural numbers with $a_{i} \geq 2$ for all $i \in \mathbb{Z}$. Let the sequence a be arbitrary, but fixed.

We use Hewitt and Ross [8, Sections 10 and 25] as our reference and define the a-adic numbers Ω as the group of sequences

$$
\left\{x=\left(x_{i}\right) \in \prod_{i=-\infty}^{\infty}\left\{0,1, \ldots, a_{i}-1\right\}: x_{i}=0 \text { for } i<j \text { for some } j \in \mathbb{Z}\right\}
$$

under addition with carry, that is, the sequences have a first nonzero entry and addition is defined inductively. Its topology is generated by the subgroups $\left\{\mathcal{O}_{j}: j \in \mathbb{Z}\right\}$, where

$$
\mathcal{O}_{j}=\left\{x \in \Omega: x_{i}=0 \text { for } i<j\right\}
$$

This makes Ω a totally disconnected, locally compact Hausdorff abelian group. The set Δ of a-adic integers is defined as $\Delta=\mathcal{O}_{0}$. It is a compact, open subgroup, and a maximal compact ring in Ω with product given by multiplication with carry. On the other hand, Ω itself is not a ring in general (see Theorem 5.16).

Define the a-adic rationals N as the additive subgroup of \mathbb{Q} given by

$$
N=\left\{\frac{j}{a_{-1} \cdots a_{-k}}: j \in \mathbb{Z}, k \geq 1\right\} .
$$

In fact, all noncyclic additive subgroups of \mathbb{Q} containing \mathbb{Z} are of this form (see Lemma 5.1 below). There is an injective homomorphism

$$
\iota: N \hookrightarrow \Omega
$$

determined by

$$
\left(\iota\left(\frac{1}{a_{-1} \cdots a_{-k}}\right)\right)_{-j}=\delta_{j k}
$$

Moreover, $\iota(1)=1$ and $\iota(N)$ is the dense subgroup of Ω comprising the sequences with only finitely many nonzero entries. This map restricts to an injective ring homomorphism (denoted by the same symbol)

$$
\iota: \mathbb{Z} \hookrightarrow \Delta
$$

with dense range. Henceforth, we will suppress the ι and identify N and \mathbb{Z} with their image in Ω and Δ, respectively.

Now let \mathcal{U} be the family of all subgroups of N of the form $\frac{m}{n} \mathbb{Z}$, where m and n are natural numbers such that m divides $a_{0} \cdots a_{j}$ for some $j \geq 0$ and n divides $a_{-1} \cdots a_{-k}$ for some $k \geq 1$. Then \mathcal{U}
(i) is downward directed, that is, for all $U, V \in \mathcal{U}$ there exists $W \in \mathcal{U}$ such that $W \subset U \cap V$,
(ii) is separating, that is,

$$
\bigcap_{U \in \mathcal{U}} U=\{e\}
$$

(iii) has finite quotients, that is, $|U / V|<\infty$ whenever $U, V \in \mathcal{U}$ and $V \subset U$, and the same is also true for

$$
\mathcal{V}=\{U \cap \mathbb{Z}: U \in \mathcal{U}\}
$$

In fact, both \mathcal{U} and \mathcal{V} are closed under intersections, since

$$
\frac{m}{n} \mathbb{Z} \cap \frac{m^{\prime}}{n^{\prime}} \mathbb{Z}=\frac{\operatorname{lcm}\left(m, m^{\prime}\right)}{\operatorname{gcd}\left(n, n^{\prime}\right)} \mathbb{Z}
$$

It is a consequence of (i)-(iii) above that the collection of subgroups \mathcal{U} induces a locally compact Hausdorff topology on N. Denote the Hausdorff
completion of N with respect to this topology by \bar{N}. Then

$$
\bar{N} \cong \lim _{U \in \mathcal{U}} N / U
$$

Next, for $j \geq 0$ define

$$
U_{j}= \begin{cases}\mathbb{Z} & \text { if } j=0 \\ a_{0} \cdots a_{j-1} \mathbb{Z} & \text { if } j \geq 1\end{cases}
$$

and set

$$
\mathcal{W}=\left\{U_{j}: j \geq 0\right\} \subset \mathcal{V} \subset \mathcal{U}
$$

Note that \mathcal{W} is also separating and closed under intersections. The closure of U_{j} in Ω is \mathcal{O}_{j}, so

$$
\Omega / \mathcal{O}_{j} \cong N / U_{j} \quad \text { and } \quad \Delta / \mathcal{O}_{j} \cong \mathbb{Z} / U_{j} \quad \text { for all } j \geq 0
$$

Next, let

$$
\tau_{j}: \Omega \rightarrow N / U_{j}
$$

denote the quotient map for $j \geq 0$, and identify $\tau_{j}(x)$ with the truncated sequence $x^{(j-1)}$, where $x^{(j)}$ is defined for all $j \in \mathbb{Z}$ by

$$
\left(x^{(j)}\right)_{i}= \begin{cases}x_{i} & \text { for } i \leq j \\ 0 & \text { for } i>j\end{cases}
$$

We find it convenient to use the standard "sequence" construction of the inverse limit of the system $\left\{N / U_{j},\left(\bmod a_{j}\right)\right\}$:

$$
\lim _{j \geq 0} N / U_{j}=\left\{x=\left(x_{i}\right) \in \prod_{i=0}^{\infty} N / U_{i}: x_{i}=x_{i+1} \quad\left(\bmod a_{i}\right)\right\}
$$

and then the product $\tau: \Omega \rightarrow \lim _{j \geq 0} N / U_{j}$ of the truncation maps τ_{j}, given by

$$
\tau(x)=\left(\tau_{0}(x), \tau_{1}(x), \tau_{2}(x), \ldots\right)
$$

is an isomorphism.
Furthermore, we note that \mathcal{W} is cofinal in \mathcal{U}. Indeed, for all $U=\frac{m}{n} \mathbb{Z} \in \mathcal{U}$, if we choose $j \geq 0$ such that m divides $a_{0} \cdots a_{j}$ then we have $\mathcal{W} \ni U_{j+1} \subset U$.

Therefore,

$$
\Omega \cong \lim _{\overleftarrow{j \geq 0}} N / U_{j} \cong{\underset{U \in \mathcal{U}}{ }}_{\lim _{U \in \mathcal{U}}} N / U \cong \bar{N}
$$

and similarly

$$
\Delta \cong \lim _{j \geq 0} \mathbb{Z} / U_{j} \cong \lim _{\overleftarrow{V \in \mathcal{V}}} \mathbb{Z} / V \cong \overline{\mathbb{Z}}
$$

In particular, Δ is a profinite group. In fact, every profinite group coming from a completion of \mathbb{Z} occurs this way (see Lemma 5.1 below).

The following should serve as motivation for our definition of \mathcal{U}.

Lemma 1.1. Every open subgroup of Ω is of the form

$$
\overline{\bigcup_{U \in \mathcal{C}} U}
$$

for some increasing chain \mathcal{C} in \mathcal{U}.
In particular, every compact open subgroup of Ω is of the form \bar{U} for some $U \in \mathcal{U}$.

Proof. Let $U, V \in \mathcal{U}$ and suppose there are $x \in \bar{U} \backslash \bar{V}$ and $y \in \bar{V} \backslash \bar{U}$. Then $x+y \notin \bar{U} \cup \bar{V}$, so $\bar{U} \cup \bar{V}=\overline{U \cup V}$ is a subgroup of Ω if and only if $U \subset V$ or $V \subset U$. Moreover, $\bigcup_{U \in \mathcal{C}} \bar{U}$ is open in Ω, hence, also closed whenever it is a subgroup $[8,5.5]$, so it equals $\overline{\bigcup_{U \in \mathcal{C}} U}$.

Note that \mathcal{U} is closed under intersections and $\bar{U} \cap \bar{V}=\overline{U \cap V}$ by construction. Indeed, since $\bar{U} \cap \bar{V}$ is open in Ω and N is dense in $\Omega,(\bar{U} \cap \bar{V}) \cap N=U \cap V$ is dense in $\bar{U} \cap \bar{V}$.

Notation 1.2. Whenever any confusion is possible, we write $\Omega_{a}, \Delta_{a}, N_{a}$, etc. for the structures associated with the sequence a. If a and b are two sequences such that $\mathcal{U}_{a}=\mathcal{U}_{b}$, we write $a \sim b$. In this case, also $N_{a}=N_{b}$. It is not hard to verify that $a \sim b$ if and only if there is an isomorphism $\Omega_{a} \rightarrow \Omega_{b}$ restricting to an isomorphism $\Delta_{a} \rightarrow \Delta_{b}$. The groups Ω_{a} and Ω_{b} can nevertheless be isomorphic even if $a \nsim b$ (see Example 1.6 and Corollary 5.4).

Example 1.3. Let p be a prime and assume $a=(\ldots, p, p, p, \ldots)$. Then $\Omega \cong \mathbb{Q}_{p}$ and $\Delta \cong \mathbb{Z}_{p}$, i.e. the usual p-adic numbers and p-adic integers.

Example 1.4. Let $a=(\ldots, 4,3,2,3,4, \ldots)$, i.e. $a_{i}=a_{-i}=i+2$ for $i \geq 0$. Then $\Omega \cong \mathcal{A}_{f}$ and $\Delta \cong \widehat{\mathbb{Z}}$, because every prime occurs infinitely often among both the positive and the negative tail of the sequence a.

Example 1.5. Let $a_{i}=2$ for $i \neq 0$ and $a_{0}=3$, so that

$$
N=\mathbb{Z}\left[\frac{1}{2}\right] \quad \text { and } \quad \mathcal{U}=\left\{2^{i} \mathbb{Z}, 2^{i} 3 \mathbb{Z}: i \in \mathbb{Z}\right\}
$$

Then Ω contains torsion elements. Indeed, let

$$
x=(\ldots, 0,1,1,0,1,0,1, \ldots), \quad \text { so that } 2 x=(\ldots, 0,2,0,1,0,1,0, \ldots),
$$

where the first nonzero entry is x_{0}. Then $3 x=0$ and $\{0, x, 2 x\}$ forms a subgroup of Ω isomorphic with $\mathbb{Z} / 3 \mathbb{Z}$. Hence, $\Omega \not \approx \mathbb{Q}_{2}$ since \mathbb{Q}_{2} is a field.

Example 1.6. Assume a is as in the previous example and let b be given by $b_{i}=a_{i+1}$, that is, $b_{i}=2$ for $i \neq-1$ and $b_{-1}=3$. Then

$$
N_{b}=\frac{1}{3} \mathbb{Z}\left[\frac{1}{2}\right] \quad \text { and } \quad \mathcal{U}_{b}=\left\{2^{i} \mathbb{Z}, 2^{i} \frac{1}{3} \mathbb{Z}: i \in \mathbb{Z}\right\}
$$

We have $\Omega_{a} \cong \Omega_{b}$ (as additive groups; see Lemma 5.1 and Proposition 5.2), but $a \nsim b$ since $\Delta_{a} \not \approx \Delta_{b}$.

Remark 1.7. Instead of thinking about the a-adic numbers as coming from a sequence of numbers, one may consider them as coming from two chains of ideals. Indeed, every downward directed chain of ideals of \mathbb{Z} (ordered by inclusion) has the form

$$
\mathbb{Z} \supset a_{0} \mathbb{Z} \supset a_{0} a_{1} \mathbb{Z} \supset a_{0} a_{1} a_{2} \mathbb{Z} \supset \cdots
$$

for some sequence ($a_{0}, a_{1}, a_{2}, \ldots$) of integers $a_{i} \geq 2$. In this way, it may be possible to generalize the concept of a-adic numbers to other rings, for example to rings of integers of global fields.

2. THE a-ADIC ALGEBRAS

Next, we want to define a multiplicative action on Ω, of some suitable subset of N, that is compatible with the natural multiplicative action of \mathbb{Z} on Ω. Let S consist of all $s \in \mathbb{Q}_{+}^{\times}$such that the map $\mathcal{U} \rightarrow \mathcal{U}$ given by $U \mapsto s U$ is well-defined and bijective.

Clearly, the map $U \mapsto s U$ is injective if it is well-defined and it is surjective if the map $U \mapsto s^{-1} U$ is well-defined. In other words, S consists of all $s \in \mathbb{Q}_{+}^{\times}$ such that both the maps $\mathcal{U} \rightarrow \mathcal{U}$ given by $U \mapsto s U$ and $U \mapsto s^{-1} U$ are welldefined.

Lemma 2.1. If $s_{1}, s_{2} \in \mathbb{N}, s=s_{1} s_{2}$, and the map $\mathcal{U} \rightarrow \mathcal{U}$ given by $U \mapsto s U$ is well-defined and bijective, then the maps $U \mapsto s_{1} U$ and $U \mapsto s_{2} U$ are also well-defined and bijective.

Proof. First, we pick $t \in \mathbb{N}$. Then $t \frac{m}{n} \mathbb{Z} \in \mathcal{U}$ whenever $\frac{m}{n} \mathbb{Z} \in \mathcal{U}$ if and only if $t m^{\prime} \mathbb{Z} \in \mathcal{U}$ whenever $m^{\prime} \mathbb{Z} \in \mathcal{U}$. One direction is obvious, so assume $t m^{\prime} \mathbb{Z} \in \mathcal{U}$ for all $m^{\prime} \mathbb{Z} \in \mathcal{U}$ and pick $\frac{m}{n} \mathbb{Z} \in \mathcal{U}$ (with m and n coprime). Since $m \mathbb{Z} \in \mathcal{U}$ as well, $t m \mathbb{Z} \in \mathcal{U}$, so $t m$ divides $a_{0} \cdots a_{j}$ for some $j \geq 0$, and thus, the numerator of $\frac{t m}{n}$ (after simplifying) also divides $a_{0} \cdots a_{j}$. And since n divides $a_{-1} \cdots a_{-k}$ for some $k \geq 1$, the denominator of $\frac{t m}{n}$ (after simplifying) also divides $a_{-1} \cdots a_{-k}$.

Similarly, $t^{-1} \frac{m}{n} \mathbb{Z} \in \mathcal{U}$ whenever $\frac{m}{n} \mathbb{Z} \in \mathcal{U}$ if and only if $\frac{1}{t n^{\prime}} \mathbb{Z} \in \mathcal{U}$ whenever $\frac{1}{n^{\prime}} \mathbb{Z} \in \mathcal{U}$.

Therefore, to show that the map $U \mapsto s_{i} U$ is well-defined and bijective for $i=1,2$, it is enough to show that $s_{i} m \mathbb{Z}, \frac{1}{s_{i} n} \mathbb{Z} \in \mathcal{U}$ whenever $m \mathbb{Z}, \frac{1}{n} \mathbb{Z} \in \mathcal{U}$. But this follows immediately since $s_{i} m$ divides $s m$, which again divides $a_{0} \cdots a_{j}$ for some $j \geq 0$, and $s_{i} n$ divides $s n$, which divides $a_{-1} \cdots a_{-k}$ for some $k \geq 1$.

Corollary 2.2. The set S is a subgroup of \mathbb{Q}_{+}^{\times}and may also be described in the following way. Define a set of prime numbers by

$$
\begin{array}{r}
P=\left\{p \text { prime }: p \text { divides } a_{k} \text { for infinitely many } k<0\right. \\
\text { and infinitely many } k \geq 0\} .
\end{array}
$$

Then S coincides with the subgroup $\langle P\rangle$ of \mathbb{Q}_{+}^{\times}generated by P.

Proof. The first statement is obvious from the previous argumentation, since if s belongs to S, then s^{i} belongs to S for all $i \in \mathbb{Z}$.

If $s \in S \cap \mathbb{N}$, it follows from the previous lemma that all its prime factors must be in S. Hence, p^{i} belongs to S for all $i \in \mathbb{Z}$ whenever p is a prime factor of some $s \in S \cap \mathbb{N}$.

Therefore, S consists of elements $s \in N$ such that the multiplicative actions of both s and s^{-1} on N are well-defined and continuous with respect to \mathcal{U}. It is well-defined since all $q \in N$ belongs to some $U \in \mathcal{U}$. If $q+U$ is a basic open set in N, then its inverse image under multiplication by s, $s^{-1}(q+U)=s^{-1} q+s^{-1} U$, is also open in N as $s^{-1} U \in \mathcal{U}$. By letting S be discrete, it follows that the action is continuous.

We will not always be interested in the action of the whole group S on N, but rather a subgroup of S. So henceforth, we fix a subgroup H of S. Furthermore, let G be the semidirect product of N by H, i.e. $G=N \rtimes H$, where H acts on N by multiplication. This means that there is a well-defined $a x+b$-action of G on N given by

$$
(r, h) \cdot q=r+h q, \quad \text { for } q, r \in N \text { and } h \in H
$$

This action is continuous with respect to \mathcal{U}, and can therefore be extended to an action of G on Ω, by uniform continuity.

Example 2.3. To see why the primes in P must divide infinitely many terms of both the positive and negative tail of the sequence, consider the following example. Let $a_{i}=2$ for $i<1$ and $a_{i}=3$ for $i \geq 1$ and let x be defined by $x_{i}=0$ for $i<0$ and $x_{i}=1$ for $i \geq 0$. Then

$$
\frac{1}{2} \cdot(2 \cdot x)=\frac{1}{2} \cdot 0=0 \neq x=1 \cdot x=\left(\frac{1}{2} \cdot 2\right) \cdot x .
$$

Here $N=\mathbb{Z}\left[\frac{1}{2}\right]$ is a ring, but the problem is that multiplication by $\frac{1}{2}$ is not continuous on N. In particular $x^{(j+1)}=3 x^{(j)}$, so $\frac{1}{2}\left(x^{(j+1)}-x^{(j)}\right)=x^{(j)} \nrightarrow 0$, hence $\left(\frac{1}{2} x^{(j)}\right)$ is not Cauchy.

Note that $P=\varnothing$ in this case.
Proposition 2.4. The action of $G=N \rtimes H$ on Ω is minimal, locally contractive and topologically free.

Proof. For the minimality, just observe that for any $x \in \Omega$ the orbit $\{g \cdot x: g \in G\}$ is dense because it contains $x+N$, which is dense in $x+\Omega=\Omega$.

Next, note that for all $U \in \mathcal{U}$ there is an $s \in H$ such that $s U \subsetneq U$. In fact, since $s U \in \mathcal{U}$ for all $s \in H$, any $s \in H$ with $s>1$ will do the job. Therefore, for all open $q+\bar{U} \subset \Omega, q \in N$, pick $s \in H$ such that $s \cdot \bar{U} \subsetneq \bar{U}$ and put $r=q-s q \in N$. Then

$$
(s, r) \cdot(q+\bar{U})=s \cdot(q+\bar{U})+r=s q+s \cdot \bar{U}+r=q+s \cdot \bar{U} \subsetneq q+\bar{U}
$$

which means that the action is locally contractible.
Finally, suppose that $\{x \in \Omega: g \cdot x=x\}$ has nonempty interior for some $g=(s, r)$. Since N is dense in Ω, this implies that there is some open set U in N such that $g \cdot x=x$ for all $x \in U$. Assume that two distinct elements $x, y \in U$ both are fixed by $g=(s, r)$, that is, $g \cdot x=s x+r=x$ and $g \cdot y=s y+r=y$. Then $x-y=s(x-y)$, so $s=1$ since $x \neq y$, and hence, $r=0$, which means that $g=(s, r)=(1,0)=e$.

Definition 2.5. Suppose $P \neq \varnothing$, that is, $S \neq\{1\}$. If H is a nontrivial subgroup of S, we define the C^{*}-algebra $\overline{\mathcal{Q}}=\overline{\mathcal{Q}}(a, H)$ by

$$
\overline{\mathcal{Q}}=C_{0}(\Omega) \rtimes_{\alpha^{\text {aff }}} G,
$$

where

$$
\alpha^{\mathrm{aff}}{ }_{(n, h)}(f)(x)=f\left(h^{-1} \cdot(x-n)\right) .
$$

Notation 2.6. The bar-notation on $\overline{\mathcal{Q}}$ is used so that it agrees with the notation for stabilized Cuntz-Li algebras in [3] and [14].

Theorem 2.7. The C^{*}-algebra $\overline{\mathcal{Q}}$ is simple and purely infinite.
Proof. This is a direct consequence of Proposition 2.4. Indeed, $\overline{\mathcal{Q}}$ is simple since the action $\alpha^{\text {aff }}$ is minimal and topologically free [1], and $\overline{\mathcal{Q}}$ is purely infinite since $\alpha^{\text {aff }}$ is locally contractive [13].

Corollary 2.8. The C^{*}-algebra $\overline{\mathcal{Q}}$ is a nonunital Kirchberg algebra in the UCT class.

Proof. The algebra is clearly nonunital and separable. It is also nuclear since the dynamical system consists of an amenable group acting on a commutative C^{*}-algebra. Finally, $\overline{\mathcal{Q}}$ may be identified with the C^{*}-algebra of the transformation groupoid attached to (Ω, G). This groupoid is amenable and hence, the associated C^{*}-algebra belongs to the UCT class [19].

Remark 2.9. We should note the difference between the setup described here and the one in [9]. Here, we do not assume that the family of subgroups \mathcal{U} is generated by the action of H on some subgroup M of N. That is, we do not assume that $\mathcal{U}=\mathcal{U}_{M}=\{h \cdot M: h \in H\}$ for any M, only that $\mathcal{U}_{M} \subset \mathcal{U}$. In light of this, we were lead to convince ourselves that the results in [9, Section 3] also hold under the following slightly weaker conditions on \mathcal{U}. Let $G=N \rtimes H$ be a discrete semidirect product group with normal subgroup $N \neq G$ and quotient group H. Let \mathcal{U} be a family of normal subgroups of N satisfying the following conditions:
(i) \mathcal{U} is downward directed, separating, and has finite quotients.
(ii) For all $U \in \mathcal{U}$ and $h \in H, h \cdot U \in \mathcal{U}$.
(iii) For all $V \in \mathcal{U}$, the family

$$
\mathcal{U}_{V}=\{h \cdot V: h \in H\}
$$

is downward directed and separating.
(iv) For all $h \in H$ and $U \in \mathcal{U}, U$ is not fixed pointwise by the action of h.

In particular, the conditions do not depend on any particular subgroup M of N.

Example 2.10. If $a=(\ldots, 2,2,2, \ldots)$ and $H=S=\langle 2\rangle$, then $\overline{\mathcal{Q}}$ is the algebra $\overline{\mathcal{Q}}_{2}$ of Larsen and $\operatorname{Li}[14]$. More generally, if p is a prime, $a=(\ldots, p, p, p, \ldots)$ and $H=S=\langle p\rangle$, we are in the setting of Example 1.3 and get algebras similar to $\overline{\mathcal{Q}}_{2}$.

If $a=(\ldots, 4,3,2,3,4, \ldots)$ and $H=S=\mathbb{Q}_{+}^{\times}$, then we are in the setting of Example 1.4. In this case, $\overline{\mathcal{Q}}$ is the algebra $\overline{\mathcal{Q}}_{\mathbb{N}}$ of Cuntz.

Both these algebras are special cases of the most well-behaved situation, namely where $H=S$ and $a_{i} \in H \cap \mathbb{N}$ for all $i \in \mathbb{Z}$. The algebras arising this way are completely determined by the set (finite or infinite) of primes P, and are precisely the kind of algebras that fit into the framework of [9]. The cases described above are the two extremes where P consists of either one single prime or all primes.

Remark 2.11. If $a \sim b$, then $S_{a}=S_{b}$ and $\overline{\mathcal{Q}}(a, H)=\overline{\mathcal{Q}}(b, H)$, for all nontrivial $H \subset S_{a}=S_{b}$.

Example 2.12. If $a=(\ldots, 2,2,2, \ldots)$ and $b=(\ldots, 4,4,4, \ldots)$, then $a \sim b$. Hence, for all nontrivial $H \subset S=\langle 2\rangle$ we have $\overline{\mathcal{Q}}(a, H)=\overline{\mathcal{Q}}(b, H)$. However, if $H=\langle 4\rangle$, then $\overline{\mathcal{Q}}(a, S) \not \not 二 \overline{\mathcal{Q}}(a, H)$, as remarked after Question 5.14.

In light of this example, it could also be interesting to investigate the $a x+b$-action of other subgroups of G on Ω. Let G^{\prime} be a subgroup of $N \rtimes S$. It follows from the proof of Proposition 2.4 that the action of G^{\prime} on Ω is minimal, locally contractive and topologically free if and only if $G^{\prime}=M \rtimes H$, where $M \subset N$ is dense in Ω and $H \subset S$ is nontrivial.

LEmma 2.13. A proper subgroup M of N is dense in Ω if and only if $M=q N$ for some $q \geq 2$ such that q and a_{i} are relatively prime for all $i \in \mathbb{Z}$.

Proof. First note that $\bar{M} \subsetneq \bar{N}=\Omega$ if and only if there exists a subfamily $\mathcal{U}^{\prime} \subset \mathcal{U}$ so that

$$
M \subset \bigcup_{U \in \mathcal{U}^{\prime}} U \subsetneq N
$$

This holds if and only if M is contained in a subgroup of N of the form

$$
\left\{\frac{L \cdot j}{a_{-1}^{\prime} \cdots a_{-k}^{\prime}}: j \in \mathbb{Z}, k \geq 1\right\} \subsetneq N
$$

where $a_{-1}^{\prime}, a_{-2}^{\prime}, \ldots$ is a sequence of natural numbers such that for all $i \geq 1$ there is $k \geq 1$ such that $a_{-1}^{\prime} a_{-2}^{\prime} \ldots a_{-i}^{\prime}$ divides $a_{-1} a_{-2} \ldots a_{-k}$, and where L divides $a_{0} \cdots a_{j}$ for some $j \geq 0$, but L does not divide $a_{-1} a_{-2} \ldots a_{-k}$ for any $k \geq 1$.

If $M \subsetneq N$ and M is not contained in any subgroup of N of this form, then the only possibility is that $M=q N$ for some $q \geq 2$ such that q and a_{i} are relatively prime for all $i \in \mathbb{Z}$.

Of course, M and N are isomorphic if the condition of Lemma 2.13 is satisfied (see Remark 5.8).

Remark 2.14. Let p be a prime and let $U, V \in \mathcal{U}$. Then the map $\Omega \rightarrow \Omega$ given by $x \mapsto p x$ is continuous and open. Thus, $p \bar{U}=\overline{p U}=\bar{U}$ if $p U \notin \mathcal{U}$. If $p \bar{U}=\bar{V}$ and $p U \in \mathcal{U}$, then $p^{-1} V \in \mathcal{U}$. Set

$$
Q=\left\{p \text { prime : } p \text { does not divide any } a_{i}\right\} .
$$

Then multiplication by p is an automorphism of Ω if and only if $p \in P \cup Q$. Indeed, if $p \in Q$, then $p \bar{U}=\bar{U}$ for all $U \in \mathcal{U}$ (see also Remark 5.20).

Proposition 2.15. Suppose M is a subgroup of N that is dense in Ω, and let H be a nontrivial subgroup of S. As usual, let $G=N \rtimes H$ and set $G^{\prime}=M \rtimes H$. Then

$$
\begin{equation*}
C_{0}(\Omega) \rtimes_{\alpha^{\text {aff }}} G \cong C_{0}(\Omega) \rtimes_{\alpha^{\text {aff }}} G^{\prime} . \tag{2.1}
\end{equation*}
$$

Proof. Assume that $M=q N$, where q and a_{i} are relatively prime for all i. Then an isomorphism is determined by the map $\varphi: C_{c}\left(G^{\prime}, C_{0}(\Omega)\right) \rightarrow$ $C_{c}\left(G, C_{0}(\Omega)\right)$ given by

$$
\varphi(f)(n, h)(x)=f(q n, h)(q x)
$$

Remark 2.16. We complete this discussion by considering the $a x+b$-action on Ω of potentially larger groups than $N \rtimes S$. By Remark $2.14, \frac{1}{p} \in \Omega$ when $p \in Q$, and it is possible to embed the subgroup

$$
\begin{equation*}
N_{Q}=\left\{\left.\frac{n}{q} \right\rvert\, n \in N, q \in\langle Q\rangle\right\} \subset \mathbb{Q} \tag{2.2}
\end{equation*}
$$

in Ω, where $\langle Q\rangle$ denotes the multiplicative subgroup of \mathbb{Q}_{+}^{\times}generated by Q. The largest subgroup of $\mathbb{Q} \rtimes \mathbb{Q}_{+}^{\times}$that can act on Ω through an $a x+b$-action is $N_{Q} \rtimes\langle P \cup Q\rangle$.

For example, \mathbb{Q} itself can be embedded into \mathbb{Q}_{p} for all primes p, but it is not hard to see that Lemma 3.1 of the next section fails in this case since the image of the diagonal map $\mathbb{Q} \rightarrow \mathbb{R} \times \mathbb{Q}_{p}$ is not closed. In fact, the only groups $N \subset M \subset N_{Q}$ that give rise to the duality theorem (Theorem 3.3) are of the form $M=\frac{1}{q} N$ for $q \in\langle Q\rangle$. Moreover, S is the largest subgroup of $\langle P \cup Q\rangle$ that acts on $M=\frac{1}{q} N$, and of course (2.1) also holds for all $G^{\prime}=M \rtimes H, H \subset S$ in this case.

It is possible to adjust the way we apply Theorem 3.3 so that we also can consider the action of larger subgroups. For this to work, we have to "compensate" in the duality theorem, as we explain more precisely in Remark 4.5.

Finally, we remark that one may also involve the roots of unity of \mathbb{Q}^{\times}in the multiplicative action, that is, replace H with $\{ \pm h: h \in H\}=\{ \pm 1\} \times H$ as in [4]. The associated algebras will then be of the form $\overline{\mathcal{Q}} \rtimes \mathbb{Z} / 2 \mathbb{Z}$. However, we restrict to the action of the torsion-free part of \mathbb{Q}^{\times}in this paper.

3. A DUALITY THEOREM FOR a-ADIC GROUPS

In this section, we first give the duality result (Theorem 3.3) for the group of a-adic numbers following the approach of [8], after which we outline a slightly modified approach that has some advantage.

For any a, let a^{*} be the sequence given by $a_{i}^{*}=a_{-i}$. In particular, $\left(a^{*}\right)^{*}=a$. We now fix a and write Ω and Ω^{*} for the a-adic and a^{*}-adic numbers, respectively. Let $x \in \Omega$ and $y \in \Omega^{*}$ and for $j \in \mathbb{N}$ put

$$
z_{j}=e^{2 \pi i x^{(j)} y^{(j)} / a_{0}}
$$

where the truncated sequences $x^{(j)}=\tau_{j}(x)$ and $y^{(j)}=\tau_{j}(y)$ are treated as their corresponding rational numbers in N. Then z_{j} will eventually be constant. Indeed, note that

$$
x^{(j)}=\frac{x_{-k}}{a_{-1} \cdots a_{-k}}+\cdots+\frac{x_{-1}}{a_{-1}}+x_{0}+a_{0} x_{1}+\cdots+a_{0} \cdots a_{j-1} x_{j}
$$

for some $k>0$. Therefore, $a_{0} a_{-1} \cdots a_{-j+1} x^{(j)} \in a_{0} \mathbb{Z}$ for all $j>k$. Similarly, there is an $l>0$ such that $a_{0} a_{1} \cdots a_{j-1} y^{(j)} \in a_{0} \mathbb{Z}$ for all $j>l$. Hence, for all $j>\max \{k, l\}$

$$
x^{(j+1)} y^{(j+1)}-x^{(j)} y^{(j)}=0 \quad\left(\bmod a_{0} \mathbb{Z}\right)
$$

i.e. $z_{j+1}=z_{j}$. We now define the pairing $\Omega \times \Omega^{*} \rightarrow \mathbb{T}$ by

$$
\langle x, y\rangle_{\Omega}=\lim _{j \rightarrow \infty} e^{2 \pi i x^{(j)} y^{(j)} / a_{0}} .
$$

The pairing is a continuous homomorphism in each variable separately and gives an isomorphism $\Omega^{*} \rightarrow \widehat{\Omega}$. Indeed, to see that our map coincides with the one in $[8,25.1]$, note the following. Suppose k and l are the largest numbers such that $x_{i}=0$ for $i<-k$ and $y_{j}=0$ for $j<-l$. Then

$$
\langle x, y\rangle_{\Omega}= \begin{cases}e^{2 \pi i x^{(l)} y^{(k)} / a_{0}} & \text { if } k+l \geq 0 \\ 1 & \text { if } k+l<0\end{cases}
$$

From this it should also be clear that if $x \in N$ and $y \in N^{*}$, then

$$
\langle x, y\rangle_{\Omega}=e^{2 \pi i x y / a_{0}}
$$

Furthermore, for each j, the pairing of Ω and Ω^{*} restricts to an isomorphism $\mathcal{O}_{-j+1}^{*} \rightarrow\left(\mathcal{O}_{j}\right)^{\perp}$. This is also explained in [8, 25.1]. Hence, for all $j \in \mathbb{Z}$

$$
\Omega^{*} / \mathcal{O}_{-j+1}^{*} \cong \widehat{\Omega} /\left(\mathcal{O}_{j}\right)^{\perp} \cong \widehat{\mathcal{O}_{j}} .
$$

Lemma 3.1. The injection $\iota: N \rightarrow \mathbb{R} \times \Omega$ given by $q \mapsto(q, q)$ has discrete range, and N may be considered as a closed subgroup of $\mathbb{R} \times \Omega$.

Proof. Since $(-1,1)$ is open in \mathbb{R} and Δ is open in Ω, we have $U=$ $(-1,1) \times \Delta$ is open in $\mathbb{R} \times \Omega$. Moreover, $\iota(N) \cap U=\{0\}$ as $N \cap \Delta=\mathbb{Z}$. Therefore, $\{0\}$ is an isolated point in $\iota(N)$, hence, the image of ι is discrete by [$8,5.8$] which means it is closed in $\mathbb{R} \times \Omega$ by [8, 5.10].

Similarly, N^{*} may be considered as a closed subgroup of $\mathbb{R} \times \Omega^{*}$. By applying the facts about the pairing of Ω and Ω^{*} stated above, the pairing of $\mathbb{R} \times \Omega$ and $\mathbb{R} \times \Omega^{*}$ given by

$$
\langle(u, x),(v, y)\rangle=e^{-2 \pi i u v / a_{0}} \lim _{j \rightarrow \infty} e^{2 \pi i x^{(j)} y^{(j)} / a_{0}}=\langle u, v\rangle_{\mathbb{R}}\langle x, y\rangle_{\Omega}
$$

defines an isomorphism $\varphi: \mathbb{R} \times \Omega^{*} \rightarrow \widehat{\mathbb{R} \times \Omega}$.
Lemma 3.2. The map φ restricts to an isomorphism $\iota\left(N^{*}\right) \rightarrow \iota(N)^{\perp}$.
Proof. First, for $r \in N^{*}$ we have

$$
\langle(q, q),(r, r)\rangle=e^{-2 \pi i q r / a_{0}} e^{2 \pi i q r / a_{0}}=1 \quad \text { for all } q \in N
$$

so $\iota(r) \in \iota(N)^{\perp}$.
On the other hand, let $(v, y) \in \iota(N)^{\perp}$, so that

$$
\langle(q, q),(v, y)\rangle=1 \text { for all } q \in N
$$

Then

$$
\frac{1}{a_{0}} q\left(y^{(j)}-v\right)=0 \quad(\bmod \mathbb{Z}) \text { for all } q \in N \text { and sufficiently large } j .
$$

In particular, this must hold for $q=\frac{1}{a_{-1} \cdots a_{-k}}$ for all $k \geq 1$, so
$y^{(j)}-v=0 \quad\left(\bmod a_{0} \cdots a_{-k} \mathbb{Z}\right)$ for all $k \geq 1$ and sufficiently large j.
Since $y^{(j)}$ is rational for all j, the real number v must also be rational. Moreover, $y^{(j)}=v$ for sufficiently large j, so the sequence $\left\{y^{(j)}\right\}_{j}$ must eventually be constant. That is, $y=y^{(j)}$ for large j, hence, $y \in N^{*}$ and $y=v$, so

$$
(v, y)=(y, y) \in \iota\left(N^{*}\right)
$$

Thus, we get the following theorem.

Theorem 3.3. There are isomorphisms

$$
\left(\mathbb{R} \times \Omega^{*}\right) / N^{*} \cong \widehat{\mathbb{R} \times \Omega} / N^{\perp} \cong \widehat{N}
$$

and the isomorphism $\omega:\left(\mathbb{R} \times \Omega^{*}\right) / N^{*} \rightarrow \widehat{N}$ is given by

$$
\omega\left((v, y)+N^{*}\right)(q)=\langle(q, q),(v, y)\rangle \quad \text { for }(v, y) \in \mathbb{R} \times \Omega^{*} \text { and } q \in N
$$

In particular, by this result one can describe the dual of all noncyclic subgroups of \mathbb{Q}. These groups are compact and connected and are called the solenoids. For example, $\left(\mathbb{R} \times \mathcal{A}_{f}\right) / \mathbb{Q} \cong \widehat{\mathbb{Q}}$.

Remark 3.4. Let M be a subgroup of N that is dense in Ω, so that by Lemma 2.13, M is of the form $q N$ for some $q \geq 2$. Then $M^{*}=q N^{*} \cong N^{*}$ is a subgroup of N^{*} that is dense in Ω^{*}. By replacing M with N, the above argument gives $\left(\mathbb{R} \times \Omega^{*}\right) / M^{*} \cong \widehat{M}$.

3.1. Modified duality results for a-adic groups

For any a and integer n, let $a^{(n)}$ denote the sequence given by $a_{i}^{(n)}=$ a_{-i+n}. We have $\left(a^{(n)}\right)_{i}^{(n)}=a_{-i+n}^{(n)}=a_{-(-i+n)+n}=a_{i}$, so $\left(a^{(n)}\right)^{(n)}=a$. In particular, we set $a^{*}=a^{(0)}$ and $a^{\#}=a^{(-1)}$.

Now we fix some sequence a, and our goal is to explain why $a^{\#}$ might be a better choice than a^{*} for our purposes. First of all, note that if $\Omega^{(n)}$ and $\Omega^{(m)}$ are the a-adic numbers coming from $a^{(n)}$ and $a^{(m)}$, respectively, then $\Omega^{(n)}$ and $\Omega^{(m)}$ are isomorphic (as additive topological groups) by Proposition 5.2 and the succeeding remark.

Let $x \in \Omega$ and $y \in \Omega^{\#}$ and put

$$
z_{j}=e^{2 \pi i x^{(j)} y^{(j)}}
$$

where $x^{(j)}$ and $y^{(j)}$ are the truncations of x and y. Then z_{j} will eventually be constant. Indeed, note that

$$
x^{(j)}=\frac{x_{-k}}{a_{-1} \cdots a_{-k}}+\cdots+\frac{x_{-1}}{a_{-1}}+x_{0}+a_{0} x_{1}+\cdots+a_{0} \cdots a_{j-1} x_{j}
$$

for some $k>0$. Therefore, $a_{-1} \cdots a_{-j+1} x^{(j)} \in \mathbb{Z}$ for all $j>k$. Similarly, there is an $l>0$ such that $a_{0} a_{1} \cdots a_{j-1} y^{(j)} \in \mathbb{Z}$ for all $j>l$. Hence, for all $j>\max \{k, l\}$

$$
x^{(j+1)} y^{(j+1)}-x^{(j)} y^{(j)}=0 \quad(\bmod \mathbb{Z})
$$

i.e. $z_{j+1}=z_{j}$. We now define the pairing $\Omega \times \Omega^{\#} \rightarrow \mathbb{T}$ by

$$
\langle x, y\rangle_{\Omega}^{\#}=\lim _{j \rightarrow \infty} e^{2 \pi i x^{(j)} y^{(j)}}
$$

The pairing is also in this case a continuous homomorphism in each variable separately and gives an isomorphism $\Omega^{\#} \rightarrow \widehat{\Omega}$ by a similar method as in [8, 25.1]. From this it should also be clear that if $x \in N$ and $y \in N^{\#}$, then

$$
\langle x, y\rangle_{\Omega}^{\#}=e^{2 \pi i x y}
$$

Moreover, for all j

$$
\Omega^{\#} / \mathcal{O}_{-j}^{\#} \cong \widehat{\Omega} /\left(\mathcal{O}_{j}\right)^{\perp} \cong \widehat{\mathcal{O}_{j}}
$$

and there is an isomorphism $\omega:\left(\mathbb{R} \times \Omega^{\#}\right) / N^{\#} \rightarrow \widehat{N}$ given by

$$
\left.\omega\left((v, y)+N^{\#}\right)(q)=\langle(q, q),(v, y)\rangle\right) \quad \text { for }(v, y) \in \mathbb{R} \times \Omega^{\#} \text { and } q \in N .
$$

Remark 3.5. Let a and b be two sequences. Then $a \sim b$ if and only $a^{\#} \sim b^{\#}$. On the other hand, $a \sim b$ does not imply $a^{*} \sim b^{*}$ in general (see Remark 5.5 and the preceding comments).

Remark 3.6. Let $x \in \Omega$ and $y \in \Omega^{(n)}$ and put

$$
z_{j}= \begin{cases}e^{2 \pi i a_{-1} \cdots a_{n+1} x^{(j)} y^{(j)}} & n \leq-2 \\ e^{2 \pi i x^{(j)} y^{(j)}} & n=-1 \\ e^{2 \pi i \frac{1}{a_{0} \cdots a_{n}} x^{(j)} y^{(j)}} & n \geq 0\end{cases}
$$

where $x^{(j)}$ and $y^{(j)}$ are the truncations of x and y. Then z_{j} will eventually be constant, and we may argue as above to get a pairing.

Finally, it is not hard to see that $N^{(n)} \cong N^{(m)}$ for all n, m. In particular, $a_{0} N^{\#}=N^{*}$.

4. THE a-ADIC DUALITY THEOREM

In general, note that $P^{*}=P$ and $S^{*}=S$. Hence, every subgroup $H \subset S$ acting on N and Ω also acts on N^{*} and Ω^{*}. In particular, $\overline{\mathcal{Q}}(a, S)$ is well-defined if and only if $\overline{\mathcal{Q}}\left(a^{*}, S^{*}\right)$ is.

Theorem 4.1. Assume that $P \neq \varnothing$ and that H is a nontrivial subgroup of S. Set $G=N \rtimes H$ and $G^{*}=N^{*} \rtimes H$. Then there is a Morita equivalence

$$
C_{0}(\Omega) \rtimes_{\alpha^{\text {aff }}} G \sim_{M} C_{0}(\mathbb{R}) \rtimes_{\alpha^{\text {aff }}} G^{*},
$$

where the action on each side is the $a x+b$-action.
Proof. It will improve the clarity of notation in this proof if we switch the stars; thus, we want to prove

$$
C_{0}\left(\Omega^{*}\right) \rtimes_{\alpha^{\mathrm{aff}}} G^{*} \sim_{M} C_{0}(\mathbb{R}) \rtimes_{\alpha^{\mathrm{aff}}} G .
$$

By [20, Corollary 3.11], we can decompose both sides as iterated crossed products:

$$
\begin{gathered}
C_{0}\left(\Omega^{*}\right) \rtimes_{\alpha^{\text {aff }}} G^{*} \cong\left(C_{0}\left(\Omega^{*}\right) \rtimes_{\alpha^{\text {afff }}}^{\left.\right|_{N^{*}}} N^{*}\right) \rtimes_{\alpha^{\mathrm{aff}}} H, \\
C_{0}(\mathbb{R}) \rtimes_{\alpha^{\mathrm{aff}}} G \cong\left(C_{0}(\mathbb{R}) \rtimes_{\left.\alpha^{\mathrm{aff}}\right|_{N}} N\right) \rtimes_{\alpha^{\mathrm{afff}}} H,
\end{gathered}
$$

where in the first case

$$
\begin{aligned}
{\widetilde{\alpha^{\mathrm{aff}}}}_{h} \circ i_{C_{0}\left(\Omega^{*}\right)} & =i_{C_{0}\left(\Omega^{*}\right)} \circ \alpha^{\mathrm{aff}}{ }_{h}, \\
{\widetilde{\alpha^{\mathrm{afff}}}}_{h} \circ i_{N^{*}} & =i_{N^{*}} \circ{\widetilde{\alpha^{\mathrm{aff}}}}_{h}^{2},
\end{aligned}
$$

where in turn ${\widetilde{\alpha^{\text {aff }}}}^{2}$ is the action of H on $C^{*}\left(N^{*}\right)$ given by

$$
{\widetilde{\alpha^{\mathrm{aff}}}}_{h}^{2}(g)(n)=g\left(h^{-1} n\right) \quad \text { for } g \in C_{c}\left(N^{*}\right) \subset C^{*}\left(N^{*}\right) \text { and } n \in N^{*}
$$

(observe that the action of H on N^{*} preserves Haar measure because N^{*} is discrete), and similarly for $C_{0}(\mathbb{R}) \rtimes G$.

Our strategy is to find a Morita equivalence

$$
C_{0}(T / \Omega) \rtimes_{\mathrm{lt}} N \sim_{M} C_{0}(N \backslash T) \rtimes_{\mathrm{rt}} \Omega
$$

where $T=\mathbb{R} \times \Omega$, that is equivariant for actions α and β of H on $C_{0}(T / \Omega) \rtimes_{\text {lt }} N$ and $C_{0}(N \backslash T) \rtimes_{\mathrm{rt}} \Omega$, respectively, and then find isomorphisms

$$
\begin{aligned}
& \left(C_{0}(T / \Omega) \rtimes_{\mathrm{lt}} N\right) \rtimes_{\alpha} H \cong\left(C_{0}(\mathbb{R}) \rtimes_{\alpha_{\mathrm{aff}}} N\right) \rtimes_{N} \widetilde{\alpha_{\mathrm{aff}}} H \\
& \left(C_{0}(N \backslash T) \rtimes_{\mathrm{rt}} \Omega\right) \rtimes_{\beta} H \cong\left(C_{0}\left(\Omega^{*}\right) \rtimes_{\left.\alpha^{\mathrm{aff}}\right|_{N^{*}}} N^{*}\right) \rtimes_{\alpha^{\mathrm{aff}}} H
\end{aligned}
$$

Step 1. Recall that N and Ω sit inside T as closed subgroups. All the groups are abelian, and therefore, by "Green's symmetric imprimitivity theorem" (see for example [20, Corollary 4.11]) we get a Morita equivalence

$$
\begin{equation*}
C_{0}(T / \Omega) \rtimes_{\mathrm{lt}} N \sim_{M} C_{0}(N \backslash T) \rtimes_{\mathrm{rt}} \Omega \tag{4.1}
\end{equation*}
$$

via an imprimitivity bimodule X that is a completion of $C_{c}(T)$. Here N acts on the left of T / Ω by $n \cdot((t, y) \cdot \Omega)=(n+t, n+y) \cdot \Omega$ and Ω acts on the right of $N \backslash T$ by $(N \cdot(t, y)) \cdot x=N \cdot(t, y+x)$, and the induced actions on C_{0}-functions are given by

$$
\begin{aligned}
\operatorname{lt}_{n}(f)(p \cdot \Omega) & =f(-n \cdot(p \cdot \Omega)) \\
\operatorname{rt}_{x}(g)(N \cdot p) & =g((N \cdot p) \cdot x)
\end{aligned}
$$

for $n \in N, f \in C_{0}(T / \Omega), p \in T, x \in \Omega$, and $g \in C_{0}(N \backslash T)$.
Moreover, H acts by multiplication on N, hence, on Ω, and also on \mathbb{R}. Thus, H acts diagonally on $T=\mathbb{R} \times \Omega$ by $h \cdot(t, x)=(h t, h \cdot x)$.

We will show that the Morita equivalence (4.1) is equivariant for appropriately chosen actions of H. Define actions α, β, and γ of H on $C_{c}\left(N, C_{0}(T / \Omega)\right)$, $C_{c}\left(\Omega, C_{0}(T \backslash N)\right.$, and $C_{c}(T)$ by

$$
\begin{aligned}
\alpha_{h}(f)(n)((t, y) \cdot \Omega) & =f(h n)((h t, h \cdot y) \cdot \Omega), \\
\beta_{h}(g)(x)(N \cdot(t, y)) & =\delta(h) g(h \cdot x)(N \cdot(h t, h \cdot y)), \\
\gamma_{h}(\xi)(t, y) & =\delta(h)^{\frac{1}{2}} \xi(h t, h \cdot y),
\end{aligned}
$$

where δ is the modular function for the multiplicative action of H on Ω, i.e. δ satisfies

$$
\begin{equation*}
\int_{\Omega} \psi(x) \mathrm{d} x=\delta(h) \int_{\Omega} \psi(h \cdot x) \mathrm{d} x \quad \text { for } \psi \in C_{c}(\Omega) . \tag{4.2}
\end{equation*}
$$

Note that α, β, γ are actions only because H is abelian.
We want α, β, γ to extend to give an action of H on the $C_{0}(T / \Omega) \rtimes_{\text {lt }} N-$ $C_{0}(N \backslash T) \rtimes_{\mathrm{rt}} \Omega$ imprimitivity bimodule X, and we must check the conditions [20, (4.41)-(4.44)]. First, for all $h \in H, f \in C_{c}\left(N, C_{0}(T / \Omega)\right), \xi \in C_{c}(T)$, and $(t, y) \in T$ we have

$$
\begin{aligned}
& \left(\alpha_{h}(f) \cdot \gamma_{h}(\xi)\right)(t, y) \\
& \quad=\sum_{n \in N} \alpha_{h}(f)(n)((t, y) \cdot \Omega) \gamma_{h}(\xi)(-n \cdot(t, y)) \\
& \quad=\sum_{n \in N} f(h n)((h t, h \cdot y) \cdot \Omega) \delta(h)^{\frac{1}{2}} \xi(h(t-n), h \cdot(y-n)) \\
& \quad=\sum_{n \in N} f(n)((h t, h \cdot y) \cdot \Omega) \delta(h)^{\frac{1}{2}} \xi(h t-n, h \cdot y-n) \\
& \quad=\delta(h)^{\frac{1}{2}} \sum_{n \in N} f(n)((h t, h \cdot y) \cdot \Omega) \xi(-n \cdot(h t, h \cdot y)) \\
& \quad=\delta(h)^{\frac{1}{2}}(f \cdot \xi)(h t, h \cdot y) \\
& \quad=\gamma_{h}(f \cdot \xi)(t, y)
\end{aligned}
$$

where the substitution $h n \mapsto n$ is made in the third equality.
Secondly, for all $h \in H, \xi \in C_{c}(T), g \in C_{c}\left(\Omega, C_{0}(N \backslash T)\right)$, and $(t, y) \in T$ we have

$$
\begin{aligned}
& \left(\gamma_{h}(\xi) \cdot \beta_{h}(g)\right)(t, y) \\
& \quad=\int_{\Omega} \gamma_{h}(\xi)((t, y) \cdot x) \beta_{h}(g)(-x)(N \cdot(t, y) \cdot x) \mathrm{d} x \\
& \quad=\int_{\Omega} \delta(h)^{\frac{1}{2}} \xi(h t, h \cdot(y+x)) \delta(h) g(-h \cdot x)(N \cdot(h t, h \cdot(y+x))) \mathrm{d} x \\
& \quad=\int_{\Omega} \delta(h)^{\frac{1}{2}} \xi(h t, h \cdot y+x) g(-x)(N \cdot(h t, h \cdot y+x)) \mathrm{d} x
\end{aligned}
$$

$$
\begin{aligned}
& =\delta(h)^{\frac{1}{2}} \int_{\Omega} \xi((h t, h \cdot y) \cdot x) g(-x)(N \cdot(h t, h \cdot y) \cdot x) \mathrm{d} x \\
& =\delta(h)^{\frac{1}{2}}(\xi \cdot g)(h t, h \cdot y) \\
& =\gamma_{h}(\xi \cdot g)(t, y)
\end{aligned}
$$

where in the third equality we shift $h \cdot x \mapsto x$ according to (4.2).
For the third equation, for all $h \in H, \xi, \eta \in C_{c}(T), n \in N$, and $(t, y) \in T$ we have

$$
\begin{aligned}
\alpha_{h} & \left(L_{L}\langle\xi, \eta\rangle\right)(n)((t, y) \cdot \Omega) \\
& ={ }_{L}\langle\xi, \eta\rangle(h n)((h t, h \cdot y) \cdot \Omega) \\
& =\int_{\Omega} \xi((h t, h \cdot y) \cdot x) \overline{\eta(-h n \cdot(h t, h \cdot y) \cdot x)} \mathrm{d} x \\
& =\int_{\Omega} \delta(h) \xi(h t, h \cdot y+h \cdot x) \overline{\eta(h t-h n, h \cdot y+h \cdot x-h n)} \mathrm{d} x \\
& =\int_{\Omega} \delta(h)^{\frac{1}{2}} \xi(h t, h \cdot(y+x)) \delta(h)^{\frac{1}{2}} \overline{\eta(h(t-n), h \cdot(y+x-n))} \mathrm{d} x \\
& =\int_{\Omega} \gamma_{h}(\xi)((t, y) \cdot x) \overline{\gamma_{h}(\eta)(-n \cdot(t, y) \cdot x)} \mathrm{d} x \\
& ={ }_{L}\left\langle\gamma_{h}(\xi), \gamma_{h}(\eta)\right\rangle(n)((t, y) \cdot \Omega),
\end{aligned}
$$

where the substitution $x \mapsto h \cdot x$ is made in the fourth equality according to (4.2).

Finally, for all $h \in H, \xi, \eta \in C_{c}(T), x \in \Omega$, and $(t, y) \in T$ we have

$$
\begin{aligned}
& \beta_{h}\left(\langle\xi, \eta\rangle_{R}\right)(x)(N \cdot(t, y)) \\
& \quad=\delta(h)\langle\xi, \eta\rangle_{R}(h \cdot x)(N \cdot(h t, h \cdot y)) \\
& \quad=\delta(h) \sum_{n \in N} \overline{\xi(-n \cdot(h t, h \cdot y))} \eta((-n) \cdot(h t, h \cdot y) \cdot(h \cdot x)) \\
& \quad=\delta(h) \sum_{n \in N} \overline{\xi(h t-h n, h \cdot y-h n)} \eta(h t-h n, h \cdot y+h \cdot x-h n) \\
& \quad=\sum_{n \in N} \delta(h)^{\frac{1}{2}} \overline{\xi(h(t-n), h \cdot(y-n))} \delta(h)^{\frac{1}{2}} \eta(h(t-n), h \cdot(y+x-n)) \\
& \quad=\sum_{n \in N} \overline{\gamma_{h}(\xi)(-n \cdot(t, y))} \gamma_{h}(\eta)((-n) \cdot(t, y) \cdot x) \\
&=\left\langle\gamma_{h}(\xi), \gamma_{h}(\eta)\right\rangle_{R}(x)(N \cdot(t, y)),
\end{aligned}
$$

where we shift $n \mapsto h n$ in the fourth equality. Hence, we can conclude that there is a Morita equivalence

$$
\begin{equation*}
\left(C_{0}(T / \Omega) \rtimes_{\mathrm{lt}} N\right) \rtimes_{\alpha} H \sim_{M}\left(C_{0}(N \backslash T) \rtimes_{\mathrm{rt}} \Omega\right) \rtimes_{\beta} H \tag{4.3}
\end{equation*}
$$

(see $[2,6]$).
In our use of this equivariant Morita equivalence below, it will be convenient to see what the actions α and β do to generators: for $h \in H$ we have

- $\overline{\alpha_{h}} \circ i_{C_{0}(T / \Omega)}=i_{C_{0}(T / \Omega)} \circ \alpha_{h}^{1}$, where α^{1} is the action of H on $C_{0}(T / \Omega)$ given by

$$
\alpha_{h}^{1}(f)(p \cdot \Omega)=f(h \cdot p \cdot \Omega)
$$

- $\overline{\overline{\alpha_{h}}} \circ i_{N}(n)=i_{N}(h n)$ for $n \in N$;
- $\overline{\beta_{h}} \circ i_{C_{0}(N \backslash T)}=i_{C_{0}(N \backslash T)} \circ \beta_{h}^{1}$, where β^{1} is the action of H on $C_{0}(N \backslash T)$ given by

$$
\beta_{h}^{1}(g)(N \cdot p)=g(N \cdot(h \cdot p))
$$

- $\overline{\beta_{h}} \circ i_{\Omega}=i_{\Omega} \circ \beta_{h}^{2}$, where β^{2} is the action of H on $C^{*}(\Omega)$ given by

$$
\begin{equation*}
\beta_{h}^{2}(g)(x)=\delta(h) g(h \cdot x) \quad \text { for } g \in C_{c}(\Omega) \text { and } x \in \Omega \tag{4.4}
\end{equation*}
$$

Step 2. The isomorphism $\psi: T / \Omega \rightarrow \mathbb{R}$ given by

$$
\psi((t, y) \cdot \Omega)=t
$$

transforms the action of N on T / Ω to an action on \mathbb{R} : for $n \in N$ and $(t, y) \in T$ we have

$$
\begin{aligned}
n \cdot \psi((t, y) \cdot \Omega) & =\psi(n \cdot((t, y) \cdot \Omega)) \\
& =\psi(((n, n)+(t, y)) \cdot \Omega) \\
& =\psi((n+t, n+y) \cdot \Omega) \\
& =n+t .
\end{aligned}
$$

The isomorphism ψ induces an isomorphism $\psi_{*}: C_{0}(T / \Omega) \rightarrow C_{0}(\mathbb{R})$:

$$
\psi_{*}(f)(t)=f\left(\psi^{-1}(t)\right) \quad \text { for } f \in C_{0}(\mathbb{R}) \text { and } t \in \mathbb{R}
$$

The isomorphism ψ_{*} transforms the action lt of N on $C_{0}(T / \Omega)$ to an action ρ on $C_{0}(\mathbb{R})$: for $n \in N, f \in C_{0}(\mathbb{R})$, and $t \in \mathbb{R}$ we have

$$
\begin{aligned}
\rho_{n}(f)(t) & =\psi_{*} \circ \mathrm{lt}_{n} \circ \psi_{*}^{-1}(f)(t) \\
& =l \mathrm{t}_{n} \circ \psi_{*}^{-1}(f)\left(\psi^{-1}(t)\right) \\
& =l \mathrm{t}_{n} \circ \psi_{*}^{-1}(f)((t, 0) \cdot \Omega) \\
& =\psi_{*}^{-1}(f)(-n \cdot(t, 0) \cdot \Omega) \\
& =\psi_{*}^{-1}(f)((t-n,-n) \cdot \Omega) \\
& =f(\psi((t-n,-n) \cdot \Omega)) \\
& =f(t-n),
\end{aligned}
$$

and so

$$
\rho=\left.\mathrm{lt}\right|_{N},
$$

and we continue to denote this action by lt.
By construction, this isomorphism is N-equivariant, and we have a corresponding isomorphism

$$
\psi_{*} \times N: C_{0}(T / \Omega) \rtimes_{\mathrm{lt}} N \stackrel{\cong}{\cong} C_{0}(\mathbb{R}) \rtimes_{\mathrm{lt}} N
$$

determined by

$$
\begin{aligned}
& \overline{\psi_{*} \times N} \circ i_{C_{0}(T / \Omega)}=i_{C_{0}(T / \Omega)} \circ \psi_{*}, \\
& \overline{\psi_{*} \times N} \circ i_{N}^{C_{0}(T / \Omega)}=i_{N}^{C_{0}(\mathbb{R})} .
\end{aligned}
$$

We will compute the associated action of H on $C_{0}(\mathbb{R}) \rtimes_{1 \mathrm{t}} N$ by considering what H does on the generators. First, ψ transforms the action of H on T / Ω to an action on \mathbb{R} : for $h \in H$ and $(t, y) \in T=\mathbb{R} \times \Omega$ we have

$$
\begin{aligned}
h \cdot \psi((t, y) \cdot \Omega) & =\psi(h \cdot(t, y) \cdot \Omega) \\
& =\psi((h t, h \cdot y) \cdot \Omega) \\
& =h t
\end{aligned}
$$

The isomorphism $\psi_{*} \times N$ transforms the action α of H on $C_{0}(T / \Omega) \rtimes_{\text {lt }} N$ to an action α^{\prime} on $C_{0}(\mathbb{R}) \rtimes_{\text {lt }} N$, and we compute this action on the generators. Due to how α acts on the generators from $C_{0}(T / \Omega)$, for $h \in H$ we have

$$
\overline{\alpha_{h}} \circ i_{C_{0}(T / \Omega)}=i_{C_{0}(T / \Omega)} \circ \alpha_{h}^{\prime 1},
$$

where α^{11} is the action of H on $C_{0}(\mathbb{R})$ given by

$$
\alpha_{h}^{\prime 1}(f)(t)=f(h t) \quad \text { for } f \in C_{0}(\mathbb{R}) \text { and } t \in \mathbb{R}
$$

On the other hand, the action α^{\prime} behaves the same way on generators from N as α does:

$$
\alpha_{h}^{\prime} \circ i_{N}(n)=i_{N}(h n) \quad \text { for } n \in N .
$$

Step 3. To complete the work on the crossed product $C_{0}(\mathbb{R}) \rtimes_{\alpha^{\text {aff }}} G$, we would like to know that our actions $\left.1 \mathrm{t}\right|_{N}$ of N on $C_{0}(\mathbb{R})$ and α^{\prime} of H on $C_{0}(\mathbb{R}) \rtimes_{\mathrm{lt}}$ N agree with the decomposition of the $a x+b$-action, so that the isomorphism

$$
\psi_{*} \times N: C_{0}(T / \Omega) \rtimes_{\mathrm{lt}} N \stackrel{\cong}{\cong} C_{0}(\mathbb{R}) \rtimes_{\mathrm{lt}} N
$$

would give an H-equivariant isomorphism

$$
C_{0}(T / \Omega) \rtimes_{\mathrm{lt}} N \stackrel{\cong}{\Longrightarrow} C_{0}(\mathbb{R}) \rtimes_{\left.\alpha^{\mathrm{aff}}\right|_{N}} N,
$$

as desired. Unfortunately, we will need to tweak the action α^{\prime} a little bit to make this come out right, as we will see below.

But we can verify immediately what we need for $\alpha^{\text {aff }}{ }_{N}$: if $n \in N, f \in$ $C_{0}(\mathbb{R})$, and $t \in \mathbb{R}$ then

$$
\left(\left.\alpha^{\mathrm{aff}}\right|_{N}\right)_{n}(f)(t)=\alpha^{\mathrm{aff}}{ }_{n}(f)(t)
$$

$$
\begin{aligned}
& =f(t-n) \\
& =\operatorname{lt}_{n}(f)(t),
\end{aligned}
$$

so that

$$
\left.\alpha^{\mathrm{aff}}\right|_{N}=\left.\mathrm{lt}\right|_{N} .
$$

On the other hand, if $h \in H$ then

$$
\widetilde{\alpha^{\mathrm{aff}}}{ }_{h} \circ i_{C_{0}(\mathbb{R})}=i_{C_{0}(\mathbb{R})} \circ \alpha^{\mathrm{aff}_{h}},
$$

where for $f \in C_{0}(\mathbb{R})$ and $t \in \mathbb{R}$ we have

$$
\alpha^{\text {aff }}{ }_{h}(f)(t)=f\left(h^{-1} t\right)
$$

while

$$
\alpha_{h}^{\prime} \circ i_{C_{0}(\mathbb{R})}=i_{C_{0}(\mathbb{R})} \circ \alpha^{\prime} 1_{h},
$$

where

$$
\alpha_{h}^{\prime 1}(f)(t)=f(h t)
$$

Similarly,

$$
\widetilde{\alpha^{\mathrm{aff}}}{ }_{h} \circ i_{N}(n)=i_{N}\left(h^{-1} n\right),
$$

while

$$
\alpha_{h}^{\prime} \circ i_{N}(n)=i_{N}(h n)
$$

Thus, we see that

$$
{\widetilde{\alpha^{\mathrm{aff}}}}_{h}=\alpha_{h^{-1}}^{\prime} .
$$

Therefore, to fix things up we only need to make the following adjustment to the action α^{\prime} : we compose with the inverse map on H, which, because H is abelian, gives an action $\alpha^{\prime \prime}$ of H on $C_{0}(\mathbb{R}) \rtimes_{\text {lt }} N$, and now the above computations show that

$$
\alpha^{\prime \prime}=\widetilde{\alpha^{\mathrm{aff}}}
$$

Since the isomorphism $\psi_{*} \times N$ is equivariant for the actions α and α^{\prime} of H on $C_{0}(T / \Omega) \rtimes_{\text {lt }} N$ and $C_{0}(\mathbb{R}) \rtimes_{\left.\alpha^{\text {aff }}\right|_{N}} N$, respectively, and since the crossed products

$$
\left(C_{0}(\mathbb{R}) \rtimes_{\left.\alpha^{\mathrm{aff}}\right|_{N}} N\right) \rtimes_{\alpha^{\prime}} H
$$

and

$$
\left(C_{0}(\mathbb{R}) \rtimes_{\left.\alpha^{\mathrm{aff}}\right|_{N}} N\right) \rtimes_{\alpha^{\prime \prime}} H
$$

are isomorphic (because $\alpha^{\prime \prime}$ is gotten from α^{\prime} by composing with an automorphism of H), we conclude that

$$
\left(C_{0}(T / \Omega) \rtimes_{\mathrm{lt}} N\right) \rtimes_{\alpha} H \cong\left(C_{0}(\mathbb{R}) \rtimes_{\left.\alpha^{\mathrm{aff}}\right|_{N}} N\right) \rtimes_{\alpha^{\prime \prime}} H
$$

as desired.
Step 4. The isomorphism $\omega: N \backslash T \rightarrow \widehat{N^{*}}$ of Theorem 3.3 transforms the action of Ω on $N \backslash T$ to an action on $\widehat{N^{*}}$: for $p \in T, x \in \Omega$, and $n \in N^{*}$ we have

$$
\begin{aligned}
(\omega(N \cdot p) \cdot x)(n) & =\omega((N \cdot p) \cdot x)(n) \\
& =\omega(N \cdot(p \cdot x))(n) \\
& =\langle p \cdot x,(n, n)\rangle_{T} \\
& =(p+(0, x),(n, n)\rangle_{T} \\
& =\langle p,(n, n)\rangle_{T}\langle(0, x),(n, n)\rangle_{T} \\
& =\omega(N \cdot p)(n)\langle x, n\rangle_{\Omega}
\end{aligned}
$$

and, letting $\phi: N^{*} \hookrightarrow \Omega^{*}$ be the inclusion, with dual homomorphism $\hat{\phi}$, we can continue the above as

$$
\begin{aligned}
& =\omega(N \cdot p)(n)\langle x, \phi(n)\rangle_{\Omega} \\
& =\omega(N \cdot p)(n) \hat{\phi}(x)(n) \\
& =(\omega(N \cdot p) \hat{\phi}(x))(n),
\end{aligned}
$$

and hence, the action of Ω on the right of $\widehat{N^{*}}$ is given by

$$
\chi \cdot x=\chi \hat{\phi}(x) \quad \text { for } \chi \in \widehat{N^{*}} .
$$

The isomorphism ω induces an isomorphism $\omega_{*}: C_{0}(N \backslash T) \rightarrow C_{0}\left(\widehat{N^{*}}\right)$:

$$
\omega_{*}(f)(\chi)=f\left(\omega^{-1}(\chi)\right) \quad \text { for } f \in C_{0}\left(\widehat{N^{*}}\right) \text { and } \chi \in \widehat{N^{*}} .
$$

The isomorphism ω_{*} transforms the action rt of Ω on $C_{0}(N \backslash T)$ to an action κ on $C_{0}\left(\widehat{N^{*}}\right)$: for $x \in \Omega, f \in C_{0}\left(\widehat{N^{*}}\right)$, and $\chi \in \widehat{N^{*}}$ we have

$$
\begin{aligned}
\kappa_{x}(f)(\chi) & =\omega_{*} \circ \mathrm{rt}_{x} \circ \omega_{*}^{-1}(f)(\chi) \\
& =\mathrm{rt}_{x} \circ \omega_{*}^{-1}(f)\left(\omega^{-1}(\chi)\right) \\
& =\omega_{*}^{-1}(f)\left(\omega^{-1}(\chi) \cdot x\right) \\
& =\omega_{*}^{-1}(f)\left(\omega^{-1}(\chi \cdot x)\right) \\
& =f(\chi \hat{\phi}(x)),
\end{aligned}
$$

and so

$$
\kappa=\mathrm{rt} \circ \hat{\phi},
$$

as in Corollary 5.1.
By construction this isomorphism is Ω-equivariant, and we have a corresponding isomorphism

$$
\omega_{*} \times \Omega: C_{0}(N \backslash T) \rtimes_{\mathrm{rt}} \Omega \stackrel{\cong}{\cong} C_{0}\left(\widehat{N^{*}}\right) \rtimes_{\kappa} \Omega
$$

determined by

$$
\begin{aligned}
& \overline{\omega_{*} \times \Omega} \circ i_{C_{0}(N \backslash T)}=i_{C_{0}\left(\widehat{N^{*}}\right)} \circ \omega_{*}, \\
& \overline{\omega_{*} \times \Omega} \circ i_{\Omega}^{C_{0}(N \backslash T)}=i_{\Omega}^{C_{0}\left(\widehat{\left.N^{*}\right)}\right.} .
\end{aligned}
$$

We will compute the associated action of H on $C_{0}\left(\widehat{N^{*}}\right) \rtimes_{\kappa} \Omega$ by considering what H does on the generators. First, ω transforms the action of H on $N \backslash T$ to an action on $\widehat{N^{*}}$: for $h \in H,(t, y) \in T=\mathbb{R} \times \Omega$, and $n \in N^{*}$ we have

$$
\begin{aligned}
(h \cdot \omega(N \cdot(t, y)))(n) & =\omega(N \cdot h \cdot(t, y))(n) \\
& =\omega(N \cdot(h t, h \cdot y))(n) \\
& =\langle(h t, h \cdot y),(n, n)\rangle_{T} \\
& =\langle h t, n\rangle_{\mathbb{R}}\langle h \cdot y, n\rangle_{\Omega} \\
& =\langle t, h n\rangle_{\mathbb{R}}\langle y, h n\rangle_{\Omega} \\
& =\langle(t, y),(h n, h n)\rangle_{\Omega} \\
& =\omega(N \cdot(t, y))(h n),
\end{aligned}
$$

and so the action of H on $\widehat{N^{*}}$ is given by

$$
(h \cdot \chi)(n)=\chi(h n) \quad \text { for } \chi \in \widehat{N^{*}} \text { and } n \in N^{*} .
$$

The isomorphism $\omega_{*} \times \Omega$ transforms the action β of H on $C_{0}(N \backslash T) \rtimes_{\mathrm{rt}} \Omega$ to an action β^{\prime} on $C_{0}\left(\widehat{N^{*}}\right) \rtimes_{\kappa} \Omega$, and we compute this on the generators. Due to how β acts on the generators from $C_{0}(N \backslash T)$, for $h \in H$ we have

$$
\overline{\beta_{h}^{\prime}} \circ i_{C_{0}\left(\widehat{N^{*}}\right)}=i_{C_{0}\left(\widehat{\left.N^{*}\right)}\right.} \circ \beta_{h}^{\prime 1}
$$

where $\beta^{\prime 1}$ is the action of H on $C_{0}\left(\widehat{N^{*}}\right)$ given by

$$
\beta_{h}^{\prime 1}(f)(\chi)=f(h \cdot \chi) \quad \text { for } f \in C_{0}\left(\widehat{N^{*}}\right) \text { and } \chi \in \widehat{N^{*}}
$$

On the other hand, the action β^{\prime} behaves the same way on generators from Ω as β does:

$$
\beta_{h}^{\prime} \circ i_{\Omega}=i_{\Omega} \circ \beta_{h}^{2},
$$

where β^{2} is the action of H on $C^{*}(\Omega)$ from (4.4).
Step 5. We can now apply Corollary 5.1, with the roles of H and G being played here by N^{*} and Ω^{*}, respectively. Thus, N^{*} is a locally compact (discrete) group and the inclusion map $\phi: N^{*} \hookrightarrow \Omega^{*}$ is continuous. The action ϵ of the subgroup N^{*} on $C_{0}\left(\Omega^{*}\right)$ is left translation lt composed with the inclusion ϕ, and the action κ of Ω on $C_{0}\left(\widehat{N^{*}}\right)$ is right translation rt composed with the dual homomorphism $\hat{\phi}$. Thus, Corollary 5.1 gives an isomorphism

$$
\tau: C_{0}\left(\Omega^{*}\right) \rtimes_{\epsilon} N^{*} \xrightarrow{\cong} C_{0}\left(\widehat{N^{*}}\right) \rtimes_{\kappa} \Omega
$$

such that

$$
\tau \circ i_{C_{0}\left(\Omega^{*}\right)}=i_{\Omega} \circ \mathcal{F}_{\Omega}^{-1} \quad \text { and } \quad \tau \circ i_{N^{*}}=i_{C_{0}\left(\widehat{\left.N^{*}\right)}\right.} \circ \mathcal{F}_{N^{*}}
$$

The action β^{\prime} of H on $C_{0}\left(\widehat{N^{*}}\right) \rtimes_{\kappa} \Omega$ corresponds under τ to an action $\beta^{\prime \prime}$ on $C_{0}\left(\Omega^{*}\right) \rtimes_{\epsilon} N^{*}$, which we compute on the generators. For $h \in H$ we have

$$
\begin{aligned}
\overline{\beta_{h}^{\prime \prime}} \circ i_{C_{0}\left(\Omega^{*}\right)} & =\overline{\tau^{-1}} \circ \overline{\beta_{h}^{\prime}} \circ \bar{\tau} \circ i_{C_{0}\left(\Omega^{*}\right)} \\
& =\overline{\tau^{-1}} \circ \overline{\beta_{h}^{\prime}} \circ i_{\Omega} \circ \mathcal{F}_{\Omega}^{-1} \\
& =\overline{\tau^{-1}} \circ i_{\Omega} \circ \beta_{h}^{2} \circ \mathcal{F}_{\Omega}^{-1} \\
& =i_{C_{0}\left(\Omega^{*}\right)} \circ \mathcal{F}_{\Omega} \circ \beta_{h}^{2} \circ \mathcal{F}_{\Omega}^{-1}
\end{aligned}
$$

and we compute, for $g \in C_{c}\left(\Omega^{*}\right) \subset C_{0}\left(\Omega^{*}\right)$ and $x \in \Omega^{*}$, that

$$
\begin{aligned}
\mathcal{F}_{\Omega} \circ \beta_{h}^{2} \circ \mathcal{F}_{\Omega}^{-1}(g)(x) & =\int_{\Omega}\langle y, x\rangle_{\Omega} \beta_{h}^{2} \circ \mathcal{F}_{\Omega}^{-1}(g)(y) \mathrm{d} y \\
& =\int_{\Omega}\langle y, x\rangle_{\Omega} \delta(h) \mathcal{F}_{\Omega}^{-1}(g)(h \cdot y) \mathrm{d} y \\
& =\int_{\Omega}\left\langle h^{-1} \cdot y, x\right\rangle_{\Omega} \mathcal{F}_{\Omega}^{-1}(g)(y) \mathrm{d} y \\
& =\int_{\Omega}\left\langle y, h^{-1} \cdot x\right\rangle_{\Omega} \mathcal{F}_{\Omega}^{-1}(g)(y) \mathrm{d} y \\
& =g\left(h^{-1} \cdot x\right)
\end{aligned}
$$

so that $\overline{\beta_{h}^{\prime \prime}} \circ i_{C_{0}\left(\Omega^{*}\right)}=i_{C_{0}\left(\Omega^{*}\right)} \circ \beta_{h}^{\prime \prime 1}$, where $\beta^{\prime \prime 1}$ is the action of H on $C_{0}\left(\Omega^{*}\right)$ given by

$$
\beta_{h}^{\prime \prime 1}(g)(x)=g\left(h^{-1} \cdot x\right)
$$

On the other hand, we have

$$
\begin{aligned}
\overline{\beta_{h}^{\prime \prime}} \circ i_{N^{*}} & =\overline{\tau^{-1}} \circ \overline{\beta_{h}^{\prime}} \circ \bar{\tau} \circ i_{N^{*}} \\
& =\overline{\tau^{-1}} \circ \overline{\beta_{h}^{\prime}} \circ i_{C_{0}\left(\widehat{N^{*}}\right)} \circ \mathcal{F}_{N^{*}} \\
& =\overline{\tau^{-1}} \circ i_{C_{0}\left(\widehat{N^{*}}\right)} \circ \beta_{h}^{\prime 1} \circ \mathcal{F}_{N^{*}} \\
& =i_{N^{*}} \circ \mathcal{F}_{N^{*}}^{-1} \circ \beta_{h}^{\prime 1} \circ \mathcal{F}_{N^{*}},
\end{aligned}
$$

so we see that

$$
\overline{\beta_{h}^{\prime \prime}} \circ i_{N^{*}}=i_{N^{*}} \circ \beta_{h}^{\prime \prime 2}
$$

where $\beta^{\prime \prime 2}$ is the action of H on $C^{*}\left(N^{*}\right)$ determined by the following: for $g \in C_{c}\left(N^{*}\right)$ we have

$$
\begin{aligned}
\mathcal{F}_{N^{*}}\left(\beta_{h}^{\prime \prime 2}(g)\right)(\chi) & =\beta_{h}^{\prime 1}\left(\mathcal{F}_{N^{*}}(g)\right)(\chi) \\
& =\mathcal{F}_{N^{*}}(g)(h \cdot \chi) \\
& =\sum_{n \in N^{*}}(h \cdot \chi)(n) g(n)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n \in N^{*}} \chi(h n) g(n) \\
& =\sum_{n \in N^{*}} \chi(n) g\left(h^{-1} n\right)
\end{aligned}
$$

so we see that

$$
\beta_{h}^{\prime \prime 2}(g)(n)=g\left(h^{-1} n\right) \quad \text { for } g \in C_{c}\left(N^{*}\right) \text { and } n \in N^{*} .
$$

Step 6. To complete the work on the crossed product $C_{0}\left(\Omega^{*}\right) \rtimes_{\alpha^{\text {aff }}} G^{*}$, we show that our actions ϵ and $\beta^{\prime \prime}$ agree with the decomposition of the $a x+b$ action, so that the composition

$$
\tau^{-1} \circ\left(\omega_{*} \times \Omega\right): C_{0}(N \backslash T) \rtimes_{\mathrm{rt}} \Omega \stackrel{\cong}{\Longrightarrow} C^{*}\left(\Omega^{*}\right) \rtimes_{\epsilon} N^{*}
$$

gives an H-equivariant isomorphism
which will finish the proof.
For the first, if $n \in N^{*}, f \in C_{0}\left(\Omega^{*}\right)$, and $x \in \Omega^{*}$ then

$$
\begin{aligned}
\left(\left.\alpha^{\mathrm{aff}}\right|_{N^{*}}\right)_{n}(f)(x) & =\alpha^{\text {aff }}{ }_{n}(f)(x) \\
& =f(x-n) \\
& =\operatorname{lt}_{n}(f)(x),
\end{aligned}
$$

so that

$$
\left(\left.\alpha^{\mathrm{aff}}\right|_{N^{*}}\right)_{n}=1 \mathrm{lt}_{n}=\mathrm{lt}_{\phi(n)}=\epsilon_{n}
$$

For the second, if $h \in H$ then

$$
{\widetilde{\alpha^{\mathrm{aff}}}}_{h} \circ i_{C_{0}\left(\Omega^{*}\right)}=i_{C_{0}\left(\Omega^{*}\right)} \circ \alpha^{\mathrm{aff}_{h}}
$$

and

$$
\beta_{h}^{\prime \prime} \circ i_{C_{0}\left(\Omega^{*}\right)}=i_{C_{0}\left(\Omega^{*}\right)} \circ \beta_{h}^{\prime \prime 1}
$$

and we see immediately from the definitions that $\alpha^{\text {aff }}{ }_{h}=\beta_{h}^{\prime \prime 1}$, and for the generators from N^{*} we have

$$
{\widetilde{\alpha^{\mathrm{aff}}}}_{h} \circ i_{N^{*}}=i_{N^{*}} \circ{\widetilde{\alpha^{\mathrm{aff}}}}_{h}^{2}
$$

and

$$
\beta_{h}^{\prime \prime} \circ i_{N^{*}}=i_{N^{*}} \circ \beta_{h}^{\prime \prime 2}
$$

and again it follows immediately from the definitions that ${\widetilde{\alpha^{\text {aff }}}}_{h}^{2}=\beta_{h}^{\prime \prime 2}$. Thus, we have shown that

$$
\widetilde{\alpha^{\text {aff }}}{ }_{h}=\beta_{h}^{\prime \prime 2}
$$

and the proof is complete.

Remark 4.2. A related result appeared in a preprint of Li and Lück [15], but was left out of the final version. Recall that two separable C^{*}-algebras are Morita equivalent if and only if they are stably isomorphic. Hence the C^{*} algebras will actually be isomorphic by Zhang's dichotomy: a separable, simple, purely infinite C^{*}-algebra is either unital or stable.

If a is defined by $a_{i}=2$ for all i and $H=\langle 2\rangle$, then Theorem 4.1 coincides with [14, Theorem 7.5], and if a is the sequence described in Example 1.4, it coincides with [3, Theorem 6.5].

Remark 4.3. Without any condition on P (or by taking $H=\{1\}$) there is a Morita equivalence

$$
C_{0}(\Omega) \rtimes_{\mathrm{lt}} N \sim_{M} C_{0}(\mathbb{R}) \rtimes_{\mathrm{lt}} N^{*} .
$$

These algebras are also isomorphic as indicated for the 2 -adic case in $[10, \mathrm{Sec}$ tion 5]. This holds since both algebras are stable, which is seen by describing the left and right hand side as a certain increasing union and as an inductive limit, respectively. In fact, it was explained to us by Jack Spielberg that it is in general possible to construct an explicit isomorphism between these algebras. Whether this isomorphism can be extended to the Kirchberg algebras is currently unclear.

Remark 4.4. Let M be a subgroup of N that is dense in Ω, so that by Lemma $2.13 M$ is of the form $q N$ for some $q \geq 2$. By applying Remark 3.4 to the above argument, we see that when H is a nontrivial subgroup of S there is a Morita equivalence

$$
C_{0}(\Omega) \rtimes_{\alpha^{\text {aff }}}(M \rtimes H) \sim_{M} C_{0}(\mathbb{R}) \rtimes_{\alpha^{\text {aff }}}\left(M^{*} \rtimes H\right),
$$

where the action on each side is the $a x+b$-action.
Remark 4.5. Note that if A is any closed subgroup of $\mathbb{R} \times \Omega$ and $B=$ $(\mathbb{R} \times \Omega) / A$, then

$$
C_{0}(A) \rtimes(N \rtimes H) \sim_{M} C_{0}(\widehat{B}) \rtimes\left(N^{*} \rtimes H\right) .
$$

In particular, $C^{*}(N \rtimes H) \sim_{M} C_{0}\left(\mathbb{R} \times \Omega^{*}\right) \rtimes\left(N^{*} \rtimes H\right)$. Moreover, with the notation from (2.2), any group $M \rtimes H$, where $H \subset\langle P \cup Q\rangle$ acts on $M \subset N_{Q}$ such that $H \cap\langle P\rangle \neq\{1\}$ and $\bar{M}=N$, also gives rise to a Kirchberg algebra. In the duality theorem, we now have to compensate on the right hand side by using a larger group than \mathbb{R}.

For example, if $a=(\cdots, 2,2,2, \cdots)$ and $M=\mathbb{Z}\left[\frac{1}{6}\right]$ we have

$$
C_{0}\left(\mathbb{Q}_{2}\right) \rtimes_{\alpha^{\text {aff }}}\left(\mathbb{Z}\left[\frac{1}{6}\right] \rtimes\langle 2\rangle\right) \sim_{M} C_{0}\left(\mathbb{R} \times \mathbb{Q}_{3}\right) \rtimes_{\alpha^{\text {aff }}}\left(\mathbb{Z}\left[\frac{1}{6}\right] \rtimes\langle 2\rangle\right)
$$

and

$$
C_{0}\left(\mathbb{Q}_{2}\right) \rtimes_{\alpha^{\text {aff }}}\left(\mathbb{Z}\left[\frac{1}{6}\right] \rtimes\langle 3\rangle\right) \sim_{M} C_{0}\left(\mathbb{R} \times \mathbb{Q}_{3}\right) \rtimes_{\alpha^{\text {aff }}}\left(\mathbb{Z}\left[\frac{1}{6}\right] \rtimes\langle 3\rangle\right),
$$

where the algebras in the first line are Kirchberg algebras, while the actions in the second line are no longer locally contractive. This is the case since $P=\{2\}$ and $\langle 3\rangle \cap\langle 2\rangle=\{1\}$. Indeed, on the right hand side, the action of $\frac{1}{3}$ is contractive on \mathbb{R} but expansive on \mathbb{Q}_{3} and vice versa for 3 .

5. INVARIANTS AND ISOMORPHISM RESULTS

Let \mathbb{P} be the set of prime numbers. A supernatural number is a function

$$
\lambda: \mathbb{P} \rightarrow \mathbb{N} \cup\{0, \infty\}
$$

such that $\sum_{p \in \mathbb{P}} \lambda(p)=\infty$. Denote the set of supernatural numbers by \mathbb{S}. It may sometimes be useful to consider a supernatural number as an infinite formal product

$$
\lambda=2^{\lambda(2)} 3^{\lambda(3)} 5^{\lambda(5)} 7^{\lambda(7)} \ldots .
$$

Let λ and ρ be two supernatural numbers associated with the sequence a in the following way:

$$
\begin{aligned}
& \lambda(p)=\sup \left\{i: p^{i} \text { divides } a_{0} \ldots a_{j} \text { for some } j \geq 0\right\} \in \mathbb{N} \cup\{0, \infty\} \\
& \rho(p)=\sup \left\{i: p^{i} \text { divides } a_{-1} \ldots a_{-k} \text { for some } k \geq 1\right\} \in \mathbb{N} \cup\{0, \infty\}
\end{aligned}
$$

Lemma 5.1. Let a and b be two sequences. The following hold:
(i) $\Delta_{a} \cong \Delta_{b}$ if and only if $\lambda_{a}=\lambda_{b}$.
(ii) $N_{a}=N_{b}$ if and only if $\rho_{a}=\rho_{b}$.
(iii) $\mathcal{U}_{a}=\mathcal{U}_{b}$ if and only if both $\lambda_{a}=\lambda_{b}$ and $\rho_{a}=\rho_{b}$.

Proof. From [8, Theorem 25.16] we have

$$
\Delta \cong \prod_{p \in \lambda^{-1}(\infty)} \mathbb{Z}_{p} \times \prod_{p \in \lambda^{-1}(\mathbb{N})} \mathbb{Z} / p^{\lambda(p)} \mathbb{Z}
$$

and hence, (i) holds. It is not difficult to see that condition (ii) and (iii) also hold.

This means that there is a one-to-one correspondence between supernatural numbers and noncyclic (additive) subgroups of \mathbb{Q} containing \mathbb{Z}, and also between supernatural numbers and Hausdorff completions of \mathbb{Z}.

Condition (iii) is equivalent to $a \sim b$, which means that there exists an isomorphism $\Omega_{a} \rightarrow \Omega_{b}$ that maps 1 to 1 . More generally, for two sequences a and b, the following result clarifies when Ω_{a} and Ω_{b} are isomorphic.

Proposition 5.2. Let a and b be two sequences. Then $\Omega_{a} \cong \Omega_{b}$ if and only if there are natural numbers p and q such that

$$
a^{\prime}=\left(\ldots, a_{-2}, q a_{-1}, p a_{0}, a_{1}, \ldots\right) \sim\left(\ldots, b_{-2}, p b_{-1}, q b_{0}, b_{1}, \ldots\right)=b^{\prime}
$$

Proof. If $a^{\prime} \sim b^{\prime}$, then the map $1 \mapsto \frac{p}{q}$ gives an isomorphism $\Omega_{a} \rightarrow \Omega_{b}$.
Suppose that there exists an isomorphism $\varphi: \Omega_{a} \rightarrow \Omega_{b}$. Then $\varphi(0)=0$, so open neighborhoods around $0 \in \Omega_{a}$ map to open neighborhoods around $0 \in \Omega_{b}$. In particular, $\varphi\left(\Delta_{a}\right)$ must be a compact open subgroup of Ω_{b}, that is $\varphi\left(\Delta_{a}\right)=\bar{V}$ for some $V=\frac{p}{q} \mathbb{Z} \in \mathcal{U}_{b}$ by Lemma 1.1. Hence, for all $U=\frac{m}{n} \mathbb{Z} \in \mathcal{U}_{a}$ we have

$$
n \cdot \varphi(\bar{U})=m \cdot \varphi\left(\Delta_{a}\right)=m \cdot \bar{V}=\overline{m^{\frac{p}{q}} \mathbb{Z}}
$$

If m^{\prime} divides m and n^{\prime} divides n, then $\frac{m^{\prime}}{n^{\prime}} \mathbb{Z} \in \mathcal{U}_{a}$ as well. Thus, the injectivity of φ implies that $m \frac{p}{q} \mathbb{Z} \in \mathcal{U}_{b}$ and thus, also that $\frac{p m}{q n} \mathbb{Z} \in \mathcal{U}_{b}$, after applying Remark 2.14. Consequently,

$$
\varphi\left(\overline{\frac{m}{n} \mathbb{Z}}\right)=\overline{\frac{p m}{q n}} \mathbb{Z},
$$

and $\frac{m}{n} \mathbb{Z}$ belongs to \mathcal{U}_{a} if and only if $\frac{p m}{q n} \mathbb{Z}$ belongs to \mathcal{U}_{b}. Hence, $\mathcal{U}_{b}=\left\{\frac{p}{q} U\right.$: $\left.U \in \mathcal{U}_{a}\right\}$, so we conclude that

$$
\mathcal{U}_{a}^{\prime}=\left\{\frac{m}{n} U: m|p, n| q, U \in \mathcal{U}_{a}\right\}=\left\{\frac{m}{n} V: m|q, n| p, V \in \mathcal{U}_{b}\right\}=\mathcal{U}_{b}^{\prime} .
$$

Remark 5.3. We can now see that the structure of Ω is preserved under the following operations:

- factoring out entries, that is, for $a_{i}=c d$,
$\left(\ldots, a_{i-1}, a_{i}, a_{i+1}, \ldots\right) \mapsto\left(\ldots, a_{i-1}, c, d, a_{i+1}, \ldots\right)$.
- multiplying entries, that is,
$\left(\ldots, a_{i-1}, a_{i}, a_{i+1}, a_{i+2} \ldots\right) \mapsto\left(\ldots, a_{i-1}, a_{i} a_{i+1}, a_{i+2}, \ldots\right)$.
- interchanging entries, that is,
$\left(\ldots, a_{i-1}, a_{i}, a_{i+1}, a_{i+2} \ldots\right) \mapsto\left(\ldots, a_{i-1}, a_{i+1}, a_{i}, a_{i+2}, \ldots\right)$.
- shifting the sequence, that is, $a \mapsto b$, where $b_{i}=a_{i+n}$ for some $n \in \mathbb{Z}$.

However, the following operations on the sequence do not in general preserve the structure of Ω :

- removing an entry, that is, $\left(\ldots, a_{i-1}, a_{i}, a_{i+1}, a_{i+2} \ldots\right) \mapsto\left(\ldots, a_{i-1}, a_{i+1}, a_{i+2}, \ldots\right)$.
- adding an entry, that is,

$$
\left(\ldots, a_{i-1}, a_{i}, a_{i+1}, \ldots\right) \mapsto\left(\ldots, a_{i-1}, a_{i}, c, a_{i+1}, \ldots\right)
$$

- reflecting the sequence, that is, $a \mapsto b$, where $b_{i}=a_{-i+n}$ for some $n \in \mathbb{Z}$.

The first two operations preserve the structure of Ω if and only if the prime factors of the entries removed or added occur infinitely many times in the sequence. When Ω is self-dual, reflections will preserve the structure (see Proposition 5.7).

Note that if $\Omega_{a} \cong \Omega_{b}$, then $\lambda_{a}(p)+\rho_{a}(p)=\lambda_{b}(p)+\rho_{b}(p)$ for all primes p. In particular, $\lambda_{a}^{-1}(0) \cap \rho_{a}^{-1}(0)=\lambda_{b}^{-1}(0) \cap \rho_{b}^{-1}(0)$, that is, $Q_{a}=Q_{b}$. That means that if $q \geq 2, q N_{a}$ is dense in Ω_{a} if and only if $q N_{b}$ is dense in Ω_{b}.

Corollary 5.4. We have $\Omega_{a} \cong \Omega_{b}$ if and only if there exists a $\left(\mathcal{U}_{a}, \mathcal{U}_{b}\right)$ continuous isomorphism $N_{a} \rightarrow N_{b}$.

In particular, if $\Omega_{a} \cong \Omega_{b}$, then $S_{a}=S_{b}$ and $N_{a} \cong N_{b}$.
Proof. This second statement holds since both $\lambda_{a}^{-1}(\infty)=\lambda_{b}^{-1}(\infty)$ and $\rho_{a}^{-1}(\infty)=\rho_{b}^{-1}(\infty)$ and thus,

$$
S_{a}=\left\langle\lambda_{a}^{-1}(\infty) \cap \rho_{a}^{-1}(\infty)\right\rangle=\left\langle\lambda_{b}^{-1}(\infty) \cap \rho_{b}^{-1}(\infty)\right\rangle=S_{b}
$$

The first statement is a consequence of the proof of Proposition 5.2. If p and q are as in that proof, then $N_{b}=\frac{p}{q} N_{a}$. Moreover, the isomorphism $N_{a} \rightarrow N_{b}$ given by $r \mapsto \frac{p}{q} r$ is continuous with respect to $\left(\mathcal{U}_{a}, \mathcal{U}_{b}\right)$ and therefore extends to an isomorphism $\Omega_{a} \rightarrow \Omega_{b}$ of the completions.

If λ is a supernatural number and p is a prime, let $p \lambda$ denote the supernatural number given by $(p \lambda)(p)=\lambda(p)+1$ (with the convention that $\infty+1=\infty$) and $(p \lambda)(q)=\lambda(q)$ if $p \neq q$. The definition of $p \lambda$ extends to all natural numbers by prime factorization.

For a sequence a, we let λ^{*} and ρ^{*} be the supernatural numbers associated with a^{*}. Note that in general one has $\lambda^{*}=a_{0} \rho$, so $a \sim a^{*}$ if and only if $\lambda=a_{0} \rho$.

Remark 5.5. With the notation of Section 3.1, we have $\lambda=\rho$ if and only if $a \sim a^{\#}$.

Corollary 5.6 (of Proposition 5.2). Let a and b be two sequences. Then $\Omega_{a} \cong \Omega_{b}$ if and only if there are natural numbers p and q such that $p \lambda_{a}=q \lambda_{b}$ and $q \rho_{a}=p \rho_{b}$.

Proposition 5.7. The group of a-adic numbers Ω is self-dual if and only if there are integers p and q such that $p \lambda=q \rho$.

Proof. From Section 3, with reference to [8, 25.1], we get $\Omega \cong \widehat{\Omega}$ if and only if $\Omega \cong \Omega^{*}$. Thus, Proposition 5.2 and the comment above imply that $\Omega \cong \widehat{\Omega}$ if and only if there are natural numbers p^{\prime}, q^{\prime} such that $p^{\prime} \lambda=q^{\prime} a_{0} \rho$. Clearly, this is equivalent to the existence of natural numbers p and q such that $p \lambda=q \rho$.

We now discuss how the supernatural numbers are related to isomorphism invariants for the a-adic duality theorem.

Remark 5.8. If M_{1} and M_{2} are two subgroups of \mathbb{Q}, then $M_{1} \cong M_{2}$ if and only if $M_{1}=r M_{2}$ for some positive rational r. Indeed, every homomorphism $M_{i} \rightarrow \mathbb{Q}$ is completely determined by its value at one point.

Thus, if M_{1} and M_{2} are noncyclic subgroups of \mathbb{Q}, with associated supernatural numbers λ_{1} and λ_{2}, then $M_{1} \cong M_{2}$ if and only if there are natural numbers r_{1} and r_{2} such that $r_{1} \lambda_{1}=r_{2} \lambda_{2}$. We write $\lambda_{1} \sim \lambda_{2}$ in this case.

Remark 5.9. Since \mathbb{Q}_{+}^{\times}is a free abelian group (on the set of primes), this is also the case for all its subgroups. In particular, both S and all $H \subset S$ are free abelian groups.

Proposition 5.10. Suppose $\Omega_{a} \cong \Omega_{b}$. Assume that H is a subgroup of $S_{a}=S_{b}$. Then $\overline{\mathcal{Q}}(a, H) \cong \overline{\mathcal{Q}}(b, H)$.

Proof. Since $\Omega_{a} \cong \Omega_{b}$, there exists an isomorphism $\omega: \Omega_{a} \rightarrow \Omega_{b}$ restricting to an isomorphism $N_{a} \rightarrow N_{b}$. Then the map $\varphi: C_{c}\left(N_{a} \rtimes H, C_{0}\left(\Omega_{a}\right)\right) \rightarrow$ $C_{c}\left(N_{b} \rtimes H, C_{0}\left(\Omega_{b}\right)\right)$ given by

$$
\varphi(f)(n, h)(x)=f\left(\omega^{-1}(n), h\right)\left(\omega^{-1}(x)\right)
$$

determines the isomorphism $\overline{\mathcal{Q}}(a, H) \cong \overline{\mathcal{Q}}(b, H)$.
For two pairs of supernatural numbers $\left(\lambda_{1}, \rho_{1}\right)$ and $\left(\lambda_{2}, \rho_{2}\right)$, we write $\left(\lambda_{1}, \rho_{1}\right) \sim\left(\lambda_{2}, \rho_{2}\right)$ if there exist natural numbers p and q such that $p \lambda_{1}=$ $q \lambda_{2}$ and $q \rho_{1}=p \rho_{2}$. Then the set of isomorphism classes of a-adic numbers coincides with $\mathbb{S} \times \mathbb{S} / \sim$. Moreover, the pair $([(\lambda, \rho)], H)$, where H is a nontrivial subgroup of $\left\langle\lambda^{-1}(\infty) \cap \rho^{-1}(\infty)\right\rangle$, is an isomorphism invariant for the a-adic algebra $\overline{\mathcal{Q}}(a, H)$.

Lemma 5.11. For all $H \subset S$ and rational numbers r we have

$$
C_{0}(\mathbb{R}) \rtimes(N \rtimes H) \cong C_{0}(\mathbb{R}) \rtimes(r N \rtimes H)
$$

Proof. The isomorphism is determined by the map

$$
\varphi: C_{c}\left(r N \rtimes H, C_{0}(\mathbb{R})\right) \rightarrow C_{c}\left(N \rtimes H, C_{0}(\mathbb{R})\right)
$$

given by

$$
\varphi(f)(n, h)(x)=f(r n, h)(r x)
$$

Remark 5.12. Let a be a sequence, and N the associated a-adic rationals. Let M be a subgroup of N that is dense in Ω. Let $N^{(m)}$ be the group of rationals corresponding to $a^{(m)}$. Let a^{\prime} be another sequence, with associated group Ω^{\prime} and associated rationals N^{\prime}. Suppose $\Omega \cong \Omega^{\prime}$. Then

$$
\begin{aligned}
& C_{0}(\mathbb{R}) \rtimes\left(N^{*} \rtimes H\right) \cong C_{0}(\mathbb{R}) \rtimes\left(M^{*} \rtimes H\right) \\
& C_{0}(\mathbb{R}) \rtimes\left(N^{*} \rtimes H\right) \cong C_{0}(\mathbb{R}) \rtimes\left(N^{(m)} \rtimes H\right) \\
& C_{0}(\mathbb{R}) \rtimes\left(N^{*} \rtimes H\right) \cong C_{0}(\mathbb{R}) \rtimes\left(\left(N^{\prime}\right)^{*} \rtimes H\right) .
\end{aligned}
$$

Hence, $([\lambda], H)$, where H is a nontrivial subgroup of $\left\langle\lambda^{-1}(\infty) \cap \rho^{-1}(\infty)\right\rangle$, is an isomorphism invariant for the right hand side of the a-adic duality theorem (Theorem 4.1).

Moreover, by Theorem 4.1 and Remark 4.2, it should be clear that $\overline{\mathcal{Q}}(a, H)$ $\cong \overline{\mathcal{Q}}(b, K)$ if $N_{a}^{*} \cong N_{b}^{*}$ and $H=K$, even though the isomorphism is in general not canonical. Therefore, $([\lambda], H)$ is an isomorphism invariant also for $\overline{\mathcal{Q}}(a, H)$.

Example 5.13. Let a and b be the sequences of Examples 1.5 and 1.6, and let $H=\langle 2\rangle$. Then $\overline{\mathcal{Q}}(a, H) \cong \overline{\mathcal{Q}}(b, H)$. Moreover, these algebras are also isomorphic to $\overline{\mathcal{Q}}_{2}$, but this isomorphism is not canonical.

Question 5.14. Given two sequences a and b and subgroups $H \subset S_{a}$ and $K \subset S_{b}$. When is $\overline{\mathcal{Q}}(a, H) \not \approx \overline{\mathcal{Q}}(b, K)$?

To enlighten the question, consider the following situation. Let $a=$ $(\cdots, n, n, n, \ldots)$ and $H=\langle n\rangle$ (note that $H=S$ if and only if n is prime; see also Example 2.12 above). Then $\mathcal{Q}(a, H)$ is the $\mathcal{O}\left(E_{n, 1}\right)$ of [11, Example A.6]. Thus,

$$
\left(K_{0}(\mathcal{Q}(a, H)),[1], K_{1}(\mathcal{Q}(a, H))\right)=(\mathbb{Z} \oplus \mathbb{Z} /(n-1) \mathbb{Z},(0,1), \mathbb{Z})
$$

Moreover, since all $\mathcal{Q}(a, H)$ are Kirchberg algebras in the UCT class, they are classifiable by K-theory.

In a future work, we hope to be able to compute the K-theory of $\overline{\mathcal{Q}}(a, H)$ using the following strategy (see [5, Remark 3.16]). Since $C_{0}(\Omega) \rtimes N$ is stably isomorphic to the Bunce-Deddens algebra $C(\Delta) \rtimes \mathbb{Z}$, its K-theory is well-known, in fact

$$
\begin{equation*}
\left.\left(K_{0}(C(\Delta) \rtimes \mathbb{Z}),[1], K_{1}(C(\Delta) \rtimes \mathbb{Z})\right)\right)=\left(N^{\#}, 1, \mathbb{Z}\right) \tag{5.1}
\end{equation*}
$$

As H is a free abelian group, we can apply the Pimsner-Voiculescu sixterm exact sequence iteratively by adding the action of one generator of H at a time. For this to work out, we will need to apply Theorem 4.1 and use homotopy arguments with \mathbb{R} to compute the action of H on the K-groups.

Remark 5.15 . It is possible to compute the topological K-theory (in terms of complex vector bundles) of the solenoids by applying (5.1):

$$
\begin{aligned}
K_{i}(C(\Delta) \rtimes \mathbb{Z}) & \cong K_{i}\left(C_{0}(\Omega) \rtimes N\right) \stackrel{\text { Rem.4.3 }}{\cong} K_{i}\left(C_{0}(\mathbb{R}) \rtimes N^{*}\right) \\
& \stackrel{\text { Cor.5. }}{\cong} K_{i}\left(C\left(\widehat{N^{*}}\right) \rtimes \widehat{\mathbb{R}}\right) \stackrel{\text { Thom }}{\cong} K_{1-i}\left(C\left(\widehat{N^{*}}\right)\right) \cong K_{\text {top }}^{1-i}\left(\widehat{N^{*}}\right) .
\end{aligned}
$$

That is, if N is any subgroup of \mathbb{Q}, then

$$
K_{\text {top }}^{i}(\widehat{N})= \begin{cases}\mathbb{Z} & \text { if } i=0 \\ N & \text { if } i=1\end{cases}
$$

5.1. The ring structure of Ω

THEOREM 5.16 (E. Herman, see $[18,12.3 .35])$. The a-adic numbers Ω can be given the structure of a topological (commutative) ring with multiplication inherited from $N \subset \mathbb{Q}$ if and only if

$$
\begin{equation*}
N=\bigcup_{h \in S} h \mathbb{Z} \quad\left(=\mathbb{Z}\left[\left\{\frac{1}{p}: p \in P\right\}\right]\right) \tag{5.2}
\end{equation*}
$$

Again, by the a-adic duality theorem (Theorem 4.1) and Zhang's dichotomy (Remark 4.2):

Corollary 5.17. For every sequence a, there is a sequence b such that Ω_{b} is a ring and $\overline{\mathcal{Q}}(a, H) \cong \overline{\mathcal{Q}}(b, H)$.

Warning: $\overline{\mathcal{Q}}(b, H)$ is still not a ring algebra in the sense of [16].
Proof. Given a, we can find another sequence b such that $S_{a}=S_{b}, N_{a}^{*}=$ N_{b}^{*} and Ω_{b} is a ring. More precisely, b can be constructed by setting $\lambda_{b}=\lambda_{a}$ and defining ρ_{b} by $\rho_{b}(p)=\infty$ if $p \in S_{a}$ and $\rho_{b}(p)=0$ if $p \notin S_{a}$. Then Ω_{b} is a ring by Theorem 5.16. By Theorem 4.1 and Remark 4.2 (see also the comment above) we have $\overline{\mathcal{Q}}(a, H) \cong \overline{\mathcal{Q}}(b, H)$.

LEmma 5.18. If both Ω_{a} and Ω_{b} are rings, then $\Omega_{a} \cong \Omega_{b}$ as topological rings if and only if $a \sim b$.

Remark 5.19. Suppose Ω is a ring. Then Ω is an integral domain if and only if there is a prime p such that a_{i} is a power of p for all i. In this case, Ω is actually the field \mathbb{Q}_{p}.

Finally, Ω is both a ring and self-dual precisely when $\lambda(p)=\rho(p)=0$ or ∞ for all primes p. In this case, Ω is completely determined by the set of primes P.

Remark 5.20. Set $\mathcal{U}_{P}=\left\{\frac{m}{n} \mathbb{Z} \in \mathcal{U}: n \in S\right\}=\left\{U \in \mathcal{U}: U \subset \mathbb{Z}\left[\left\{\frac{1}{p}: p \in\right.\right.\right.$ $P\}]\}$. Then the open subgroup

$$
R=\overline{\mathbb{Z}\left[\left\{\frac{1}{p}: p \in P\right\}\right]}=\overline{\bigcup_{U \in \mathcal{U}_{P}} U}
$$

in Ω is the maximal open (and closed) ring contained in Ω. Indeed, by Theorem $5.16, R$ is a ring contained in Ω. Moreover, every open ring in Ω must be of the form described in Lemma 1.1. We recall from Remark 2.14 that multiplication with $\frac{1}{p} \in N$ in an open subgroup of Ω is well-defined only if it contains $\mathbb{Z}\left[\frac{1}{p}\right]$ and continuous only if $p \in P$. Hence, every open ring in Ω must be a subring of R.

Furthermore, every automorphism of Ω is completely determined by its value at 1 . Hence, $\operatorname{Aut}(\Omega)$ is the subgroup of the multiplicative group R^{\times}of R consisting of all $x \in R^{\times}$that has a "unique inverse" in Ω. To illustrate what this means, consider Example 1.6 again and let

$$
x=(\ldots, 0,1,1,0,1,0,1, \ldots)
$$

where the first nonzero entry is x_{0}, and let y be given by $y_{-1}=1$ and $y_{i}=0$ else. In this case $R=\overline{\mathbb{Z}}\left[\frac{1}{2}\right]$ and $3 \in R^{\times}, x \in R^{\times}$and $3 x=1$. However, since $3 y=1$ as well, $3 \notin \operatorname{Aut}(\Omega)$

Following the notation of Remark 2.14, $\{ \pm r: r \in\langle P \cup Q\rangle\}$ is a subgroup of $\operatorname{Aut}(\Omega)$.

APPENDIX A. CUNTZ-LI'S "SUBGROUP OF DUAL GROUP THEOREM"

Our aim in this appendix is to show that [5, Lemma 4.3] is a special case of the following result about coactions, which is probably folklore. First, observe that if $\phi: H \rightarrow G$ is a continuous homomorphism of locally compact groups, then lt $\circ \phi: H \rightarrow$ Aut $C_{0}(G)$ is an action of H on $C_{0}(G)$ and $\mathrm{id} \otimes \pi_{\phi} \circ \delta_{H}$ is a coaction of G on $C^{*}(H)$, where

$$
\pi_{\phi}: C^{*}(H) \rightarrow M\left(C^{*}(G)\right)
$$

is the integrated form of ϕ. The only property of coactions that is perhaps not obvious is injectivity, but this follows by computing that

$$
\overline{\mathrm{id} \otimes \pi_{1_{G}}} \circ \overline{\mathrm{id} \otimes \pi_{\phi}} \circ \delta_{H}=\overline{\mathrm{id} \otimes \pi_{1_{H}}} \circ \delta_{H}=\mathrm{id}_{C^{*}(H)}
$$

where 1_{G} denotes the trivial character of G and $\pi_{1_{G}}: C^{*}(G) \rightarrow \mathbb{C}$ denotes the integrated form (and similarly for $\pi_{1_{H}}$).

Theorem A.1. Let $\phi: H \rightarrow G$ be a continuous homomorphism of locally compact groups, and let

$$
\epsilon=\mathrm{lt} \circ \phi \quad \text { and } \quad \delta=\overline{\mathrm{id} \otimes \pi_{\phi}} \circ \delta_{H}
$$

be the associated action of H on $C_{0}(G)$ and coaction of G on $C^{*}(H)$, respectively. Then there is an isomorphism

$$
C_{0}(G) \rtimes_{\epsilon} H \xrightarrow[\cong]{\cong} C^{*}(H) \rtimes_{\delta} G
$$

such that

$$
\bar{\theta} \circ i_{C_{0}(G)}=j_{G} \quad \text { and } \quad \bar{\theta} \circ i_{H}=j_{C^{*}(H)} .
$$

Proof. It suffices to show that, given nondegenerate homomorphisms

$$
\mu: C_{0}(G) \rightarrow M(D) \quad \text { and } \quad \pi: C^{*}(H) \rightarrow M(D)
$$

the pair (μ, π) is covariant for the action $\left(C_{0}(G), H, \epsilon\right)$ if and only if the pair (π, μ) is covariant for the coaction $\left(C^{*}(H), G, \delta\right)$. First assume that (μ, π) is covariant, i.e.

$$
\mu \circ \epsilon_{t}=\operatorname{Ad} \bar{\pi}_{t} \circ \mu \quad \text { for } t \in H .
$$

We must show that for $t \in H$ we have

$$
\operatorname{Ad} \overline{\mu \otimes \mathrm{id}}\left(w_{G}\right)\left(\bar{\pi}_{t} \otimes 1\right)=\overline{\pi \otimes \mathrm{id}} \circ \bar{\delta}(t)
$$

where $w_{G} \in C_{b}^{\beta}\left(G, M\left(C^{*}(G)\right)\right)=M\left(C_{0}(G) \otimes C^{*}(G)\right)$ denotes the canonical embedding of G into $U M\left(C^{*}(G)\right.$) (and " $C_{b}^{\beta \text { " }}$ denotes norm-bounded functions that are strictly continuous), or equivalently

$$
\overline{\mu \otimes \mathrm{id}}\left(w_{G}\right)\left(\bar{\pi}_{t} \otimes 1\right)=\overline{\pi \otimes \mathrm{id}} \circ \bar{\delta}(t) \overline{\mu \otimes \mathrm{id}}\left(w_{G}\right)
$$

Since the slice maps $\overline{\overline{\mathrm{id}} \otimes h}$ for h in the Fourier-Stieltjes algebra $B(G)$ separate points in $M\left(D \otimes C^{*}(G)\right)$, it suffices to compute that

$$
\begin{aligned}
\overline{\mathrm{id} \otimes h}\left(\overline{\mu \otimes \mathrm{id}}\left(w_{G}\right)\left(\bar{\pi}_{t} \otimes 1\right)\right) & =\overline{\mathrm{id} \otimes h} \circ \overline{\mu \otimes \mathrm{id}}\left(w_{G}\right) \bar{\pi}_{t} \\
& =\mu(h) \bar{\pi}_{t},
\end{aligned}
$$

while

$$
\begin{aligned}
\overline{\mathrm{id} \otimes h}\left(\overline{\pi \otimes \mathrm{id}} \circ \bar{\delta}(t) \overline{\mu \otimes \operatorname{id}}\left(w_{G}\right)\right) & =\overline{\mathrm{id} \otimes h}\left(\left(\bar{\pi}_{t} \otimes \phi(t)\right) \overline{\mu \otimes \mathrm{id}}\left(w_{G}\right)\right) \\
& =\bar{\pi}_{t} \overline{\overline{\mathrm{id} \otimes h}\left((1 \otimes \phi(t)) \overline{\mu \otimes \operatorname{id}}\left(w_{G}\right)\right)} \\
& =\bar{\pi}_{t} \overline{\mathrm{id} \otimes h}\left(\overline{\mu \otimes \mathrm{id}}\left((1 \otimes \phi(t)) w_{G}\right)\right) \\
& =\bar{\pi}_{t} \overline{\mathrm{id} \otimes h}\left(\overline{\mu \otimes \mathrm{id}}\left(\overline{\mathrm{lt}_{\phi(t))^{-1} \otimes \mathrm{id}}}\left(w_{G}\right)\right)\right) \\
& =\bar{\pi}_{t} \overline{\mathrm{id} \otimes h}\left(\overline{\mu \otimes \mathrm{id}}\left(\overline{\epsilon_{t^{-1}} \otimes \mathrm{id}}\left(w_{G}\right)\right)\right) \\
& =\bar{\pi}_{t} \mu \circ \epsilon_{t^{-1}}\left(\overline{\mathrm{id} \otimes h}\left(w_{G}\right)\right) \\
& =\bar{\pi}_{t} \operatorname{Ad} \bar{\pi}_{t^{-1}} \circ \mu(h) \\
& =\mu(h) \bar{\pi}_{t} .
\end{aligned}
$$

Conversely, assuming that (π, μ) is a covariant homomorphism of the coaction $\left(C^{*}(H), G, \delta\right)$, we can use much of the above computation, but now with ω in the Fourier algebra $A(G)$, getting (after replacing t by t^{-1})

$$
\mu \circ \epsilon_{t}(\omega)=\operatorname{Ad} \bar{\pi}(t) \circ \mu(\omega)
$$

which implies that (μ, π) is covariant for the action $\left(C_{0}(G), H, \epsilon\right)$ because $A(G)$ is dense in $C_{0}(G)$.

Now we want to make the connection with Cuntz-Li's "subgroup of dual group theorem" [5, Lemma 4.3]. So, suppose G is abelian. We will want to work with the dual group of G, and to make the closest connection with [5] it will be better, for Corollary 5.1 only, to switch the roles of G and \widehat{G} : so after this switch we have a continuous homomorphism $\phi: H \rightarrow \widehat{G}$. Actually, for the Cuntz-Li theorem ϕ will be injective, and in [5] H is identified with its image in \widehat{G}.

Remark A.2. There is a small difference between Corollary 5.1 and [5, Lemma 4.3]: we require H to have a stronger topology than it inherits from \widehat{G}, while [5] only requires the topology to make it a locally compact group such that the above μ and ν are continuous actions of G and H on the C^{*}-algebras $C^{*}(H)$ and $C^{*}(G)$, respectively. As Cuntz and Li mention in [5], they are interested in the case where the topology on H is discrete, so our formulation of the result is sufficient for their purposes.

To prepare for the formulation of the "subgroup of dual group theorem", we briefly recall a bit of the theory of noncommutative duality from [7, Appendix A]. By [7, Example A.23] there is a bijective correspondence between coactions of \widehat{G} and actions of G : given a coaction δ of \widehat{G} on a C^{*}-algebra A, the associated action μ of G is given by

$$
\mu_{x}(a)=\overline{\mathrm{id} \otimes \mathcal{F}^{*}\left(e_{x}\right)} \circ \delta
$$

where $e_{x} \in C_{0}(G)^{*}$ is evaluation at x and $\mathcal{F}=\mathcal{F}_{\widehat{G}}: C^{*}(\widehat{G}) \rightarrow C_{0}(G)$ is the Fourier transform, with dual map \mathcal{F}^{*}. Warning: in [7, Example A.23] the convention for the Fourier transform is that $\overline{\mathcal{F}}(\chi)(x)=\chi(x)$ for $\chi \in \widehat{G}$ and $x \in G$; consequently, $\mathcal{F}^{*}\left(e_{x}\right)$ coincides with the function in the Fourier-Stieltjes algebra $B(\widehat{G})=C^{*}(\widehat{G})^{*}$ given by the character x of \widehat{G}. As explained in [7, Section A.5], the covariant representations of the coaction (A, \widehat{G}, δ) and the action (A, G, μ) are the same modulo the isomorphism $\mathcal{F}_{G}: C^{*}(G) \rightarrow C_{0}(\widehat{G})$, so there is an isomorphism

$$
\Upsilon: A \rtimes_{\delta} \widehat{G} \stackrel{\cong}{\leftrightarrows} A \rtimes_{\mu} G
$$

such that

$$
\Upsilon \circ j_{A}=i_{A} \quad \text { and } \quad \Upsilon \circ j_{\widehat{G}}=i_{G} \circ \mathcal{F}_{\widehat{G}}^{-1} .
$$

Corolarry A. 3 ([5, Lemma 43]). Let G be a locally compact abelian group, and let H be a subgroup of the dual group \widehat{G}. Let H have a topology, stronger than the one it inherits from \widehat{G}, that makes it a locally compact group. Then there are actions ν of H on $C^{*}(G)$ and μ of G on $C^{*}(H)$, given by

$$
\begin{equation*}
\nu_{t}(g)(x)=t(x) g(x) \quad \text { for } t \in H, g \in C_{c}(G) \subset C^{*}(G), \text { and } x \in G \tag{5.3}
\end{equation*}
$$

and
(5.4) $\quad \mu_{x}(f)(t)=\overline{t(x)} f(t) \quad$ for $x \in G, f \in C_{c}(H) \subset C^{*}(H)$, and $t \in H$,
respectively.
Moreover there is an isomorphism

$$
\sigma: C^{*}(G) \rtimes_{\nu} H \stackrel{\cong}{\rightrightarrows} C^{*}(H) \rtimes_{\mu} G
$$

such that for $g \in C_{c}(G)$ and $f \in C_{c}(H)$ the image $\sigma\left(i_{C^{*}(G)}(g) i_{H}(f)\right)$ coincides with the element of

$$
C_{c}\left(G, C_{c}(H)\right) \subset C_{c}\left(G, C^{*}(H)\right)
$$

given by

$$
\sigma\left(i_{C^{*}(G)}(g) i_{H}(f)\right)(x)(t)=\overline{t(x)} g(x) f(t)
$$

Proof. This will follow quickly from Theorem 5.1 and the above facts relating coactions and actions, modulo one extra step: we will need to compose with the inverse in both H and G to get the actions in the precise form of
the statement of the corollary. We do this in order to get as close as possible to Cuntz-Li's "subgroup of dual group theorem", and this extra adjustment is necessitated by our nonstandard convention for the Fourier transform.

The hypotheses tell us that, in the notation of Theorem 5.1 (but again with G replaced by \widehat{G}), the homomorphism $\phi: H \rightarrow \widehat{G}$ is the inclusion map, so the action ϵ of H on $C_{0}(\widehat{G})$ is just the restriction of lt to H. The Fourier transform

$$
\mathcal{F}_{G}^{-1}: C_{0}(\widehat{G}) \stackrel{\cong}{\Longrightarrow} C^{*}(G)
$$

transforms the action ϵ to an action $\tilde{\nu}$ of H on $C^{*}(G)$. We compute that for $t \in$ H the automorphism $\tilde{\nu}_{t}$ of $C^{*}(G)$ is the integrated form of the homomorphism $V_{t}: G \rightarrow M\left(C^{*}(G)\right)$ given by

$$
V_{t}(x)=\mathcal{F}_{G}^{-1} \circ \epsilon_{t} \circ \overline{\mathcal{F}}_{G}(x)=\mathcal{F}_{G}^{-1}\left(\overline{t(x)} \mathcal{F}_{G}(x)\right)=\overline{t(x)} x
$$

Thus, for $g \in C_{c}(G) \subset C^{*}(G)$ we have

$$
\tilde{\nu}_{t}(g)=\int_{G} g(x) V_{t}(x) \mathrm{d} x=\int_{G} g(x) \overline{t(x)} x \mathrm{~d} x
$$

so

$$
\tilde{\nu}_{t}(g)(x)=\overline{t(x)} g(x)
$$

On the other hand, we can let $\tilde{\mu}$ be the action of G on $C^{*}(H)$ corresponding to the coaction δ of \widehat{G}. Then for $x \in G$ the automorphism $\tilde{\mu}_{x}$ of $C^{*}(H)$ is the integrated form of the homomorphism $U_{x}: H \rightarrow M\left(C^{*}(H)\right)$ given by

$$
\begin{aligned}
U_{x}(t) & =\overline{\operatorname{id} \otimes \mathcal{F}_{\widehat{G}}^{*}\left(e_{x}\right)} \circ \bar{\delta}(t)=\overline{\operatorname{id} \otimes \mathcal{F}_{\widehat{G}}^{*}\left(e_{x}\right)}(t \otimes t) \\
& =\mathcal{F}_{\widehat{G}}^{*}\left(e_{x}\right)(t) t=t(x) t .
\end{aligned}
$$

Thus, for $f \in C_{c}(H) \subset C^{*}(H)$ we have

$$
\tilde{\mu}_{x}(f)(t)=t(x) f(t)
$$

We now compose with the inverse in both H and G to get actions ν of H on $C^{*}(G)$ and μ of G on $C^{*}(H)$ as in (5.3) and (5.4), respectively.

Finally, for $g \in C_{c}(G)$ and $f \in C_{c}(H)$ we have

$$
\begin{aligned}
\sigma\left(i_{C^{*}(G)}(g) i_{H}(f)\right) & =i_{G}(g) i_{C^{*}(H)}(f) \\
& =\int_{G} g(x) i_{G}(x) i_{C^{*}(H)}(f) \mathrm{d} x \\
& =\int_{G} g(x) i_{C^{*}(H)}\left(\mu_{x}(f)\right) i_{G}(x) \mathrm{d} x \\
& =\int_{G} i_{C^{*}(H)}\left(g(x) \mu_{x}(f)\right) i_{G}(x) \mathrm{d} x
\end{aligned}
$$

so $\sigma\left(i_{C^{*}(G)}(g) i_{H}(f)\right)$ coincides with the element of $C_{c}\left(G, C_{c}(H)\right)$ given by

$$
\sigma\left(i_{C^{*}(G)}(g) i_{H}(f)\right)(x)=g(x) \mu_{x}(f)
$$

and evaluating this function at $t \in H$ gives

$$
\sigma\left(i_{C^{*}(G)}(g) i_{H}(f)\right)(x)(t)=g(x) \mu_{x}(f)(t)=\overline{t(x)} g(x) f(t)
$$

Now we will present a third version of the "subgroup of dual group theorem". In contrast to the Cuntz-Li version, which involves actions on the group C^{*}-algebras of G and H, for our purposes it will be more convenient to have a version of Theorem 5.1 with actions on the C_{0}-functions on both sides. Also, we will now switch the roles of G and \widehat{G} back, and we will not require H to embed injectively into G :

Corolarry A.4. Let $\phi: H \rightarrow G$ be a continuous homomorphism of locally compact abelian groups, with dual homomorphism

$$
\hat{\phi}: \widehat{G} \rightarrow \widehat{H}
$$

Let

$$
\epsilon=\mathrm{lt} \circ \phi \quad \text { and } \quad \kappa=\mathrm{rt} \circ \hat{\phi}
$$

be the associated actions of H on $C_{0}(G)$ and \widehat{G} on $C_{0}(\widehat{H})$, respectively, Then there is an isomorphism

$$
\begin{gather*}
C_{0}(G) \rtimes_{\epsilon} H \xrightarrow[\cong]{\tau} C_{0}(\widehat{H}) \rtimes_{\kappa} \widehat{G} \tag{5.5}\\
\bar{\tau} \circ i_{C_{0}(G)}=i_{\widehat{G}} \circ \mathcal{F}_{\widehat{G}}^{-1} \quad \text { and } \quad \bar{\tau} \circ i_{H}=i_{C_{0}(\widehat{H})} \circ \mathcal{F}_{H} .
\end{gather*}
$$

such that

Proof. From Theorem 5.1 we have a coaction δ of G on $C^{*}(H)$ and an isomorphism

$$
\begin{equation*}
\theta: C_{0}(G) \rtimes_{\epsilon} H \stackrel{\cong}{\cong} C^{*}(H) \rtimes_{\delta} G \tag{5.6}
\end{equation*}
$$

such that

$$
\theta \circ i_{C_{0}(G)}=j_{G} \quad \text { and } \quad \theta \circ i_{H}=j_{C^{*}(H)} .
$$

As we explained above Corollary 5.1, the coaction δ of G corresponds to an action of G on $C^{*}(H)$. We used this in Corollary 5.1, but there were a couple of differences between the contexts there and here, so to avoid confusion we do the computation anew, with fresh notation: we denote the associated action by κ^{0}, and compute that for $\chi \in \widehat{G}$ the automorphism κ_{χ}^{0} of $C^{*}(H)$ is the integrated form of the homomorphism $R_{\chi}: H \rightarrow M\left(C^{*}(H)\right)$ given by

$$
\begin{aligned}
R_{\chi}(t) & =\left(\operatorname{id} \otimes \mathcal{F}_{G}^{*}\left(e_{\chi}\right)\right) \circ \delta(t) \\
& =\left(\operatorname{id} \otimes \mathcal{F}_{G}^{*}\left(e_{\chi}\right)\right)(t \otimes \phi(t)) \\
& =\chi(\phi(t)) t
\end{aligned}
$$

so that for $f \in C_{c}(H) \subset C^{*}(H)$ we have

$$
\kappa_{\chi}^{0}(f)=(\chi \circ \phi) f
$$

Now, due to our convention regarding the Fourier transform, for $\zeta \in \widehat{H}$ and $f \in C_{c}(H)$ we have

$$
\mathcal{F}_{H}(\zeta f)=\operatorname{rt}_{\zeta} \circ \mathcal{F}_{H}(f)
$$

Thus, the isomorphism $\mathcal{F}_{H}: C^{*}(H) \rightarrow C_{0}(\widehat{H})$ carries the action κ^{0} to an action κ^{1} of G on $C_{0}(\widehat{H})$ given by

$$
\begin{aligned}
\kappa_{\chi}^{1}\left(\mathcal{F}_{H}(f)\right) & =\mathcal{F}_{H}\left(\kappa_{\chi}^{0}(f)\right) \\
& =\mathcal{F}_{H}((\chi \circ \phi) f) \\
& =\mathrm{rt}_{\chi \circ \phi}\left(\mathcal{F}_{H}(f)\right),
\end{aligned}
$$

so that κ^{1} is given on $g \in C_{0}(\widehat{H})$ by

$$
\kappa_{\chi}^{1}(g)=\mathrm{rt}_{\hat{\phi}(\chi)}(g)
$$

and hence, κ^{1} agrees with the action $\kappa=\mathrm{rt} \circ \hat{\phi}$ defined in the statement of the corollary.

Now we trace the effects of the various transformations as we convert the isomorphism θ of (5.6) to the isomorphism τ of (5.5): we have

$$
\begin{aligned}
\tau \circ i_{C_{0}(G)} & =\left(\mathcal{F}_{H} \times \widehat{G}\right) \circ \Upsilon \circ \theta \circ i_{C_{0}(G)} \\
& =\left(\mathcal{F}_{H} \times \widehat{G}\right) \circ \Upsilon \circ j_{G} \\
& =\left(\mathcal{F}_{H} \times \widehat{G}\right) \circ i_{\widehat{G}(H)}^{C^{*}(H)} \mathcal{F}_{\widehat{G}}^{-1} \\
& =i_{\widehat{G}}^{C_{0}(\widehat{H})} \circ \mathcal{F}_{\widehat{G}}^{-1}
\end{aligned}
$$

and

$$
\begin{aligned}
\tau \circ i_{H} & =\left(\mathcal{F}_{H} \times \widehat{G}\right) \circ \Upsilon \circ \theta \circ i_{H} \\
& =\left(\mathcal{F}_{H} \times \widehat{G}\right) \circ \Upsilon \circ j_{C^{*}(H)} \\
& =\left(\mathcal{F}_{H} \times \widehat{G}\right) \circ i_{C^{*}(H)} \\
& =i_{C_{0}(\widehat{H})} \circ \mathcal{F}_{H}
\end{aligned}
$$

Acknowledgments. This work was initiated during the second author's visit at Arizona State University, Spring 2012, and he would like to thank the other authors for their hospitality. The second author was partially supported by the Research Council of Norway (NFR). A summary of the results of this paper is published in the conference proceedings [14].

REFERENCES

[1] R.J. Archbold and J.S. Spielberg, Topologically free actions and ideals in discrete C^{*} dynamical systems. Proc. Edinburgh Math. Soc. (2) 37 (1994), 1, 119-124.
[2] F. Combes, Crossed products and Morita equivalence. Proc. London Math. Soc. 49 (1984), 289-306.
[3] J. Cuntz, C^{*}-algebras associated with the $a x+b$-semigroup over \mathbb{N}, K-theory and noncommutative geometry. EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 201-215.
[4] J. Cuntz and X. Li, The regular C^{*}-algebra of an integral domain. Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 149-170.
[5] J. Cuntz and X. Li, C ${ }^{*}$-algebras associated with integral domains and crossed products by actions on adele spaces. J. Noncommut. Geom. 5 (2011), 1, 1-37.
[6] R. Curto, P. Muhly and D.P. Williams, Cross products of strongly Morita equivalent C^{*}-algebras. Proc. Amer. Math. Soc. 90 (1984), 4, 528-530.
[7] S. Echterhoff, S. Kaliszewski, J. Quigg and I. Raeburn, A Categorical Approach to Imprimitivity Theorems for C^{*}-Dynamical Systems. vol. 180, Mem. Amer. Math. Soc., no. 850, American Mathematical Society, Providence, RI, 2006.
[8] E. Hewitt and K.A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations. Die Grundlehren der mathematischen Wissenschaften, Bd. 115, Academic Press Inc., Publishers, New York, 1963.
[9] S. Kaliszewski, M.B. Landstad and J. Quigg, A crossed-product approach to the Cuntz-Li algebras. Proc. Edinburgh Math. Soc. 55 (2012), 429-459.
[10] J. Kaminker, I. Putnam and J.S. Spielberg, Operator algebras and hyperbolic dynamics. Operator algebras and quantum field theory (Rome, 1996), Int. Press, Cambridge, MA, 1997, pp. 525-532.
[11] T. Katsura, A class of C^{*}-algebras generalizing both graph algebras and homeomorphism C^{*}-algebras. IV. Pure infiniteness. J. Funct. Anal. 254 (2008), 5, 1161-1187.
[12] M. Laca, From endomorphisms to automorphisms and back: dilations and full corners. J. London Math. Soc. (2) 61 (2000), 3, 893-904.
[13] M. Laca and J.S. Spielberg, Purely infinite C^{*}-algebras from boundary actions of discrete groups. J. Reine Angew. Math. 480 (1996), 125-139.
[14] N. S. Larsen and X. Li, The 2-adic ring C^{*}-algebra of the integers and its representations. J. Funct. Anal. 262 (2012), no. 4, 1392-1426.
[15] X. Li and W. Lück, K-theory for ring C^{*}-algebras - the case of number fields with higher roots of unity. J. Topol Anal. 4 (2012), 4, 449-479.
[16] X. Li, Ring C^{*}-algebras. Math. Ann. 348 (2010), 4, 859-898.
[17] T. Omland, C^{*}-algebras associated with a-adic numbers. Operator algebra and Dynamics, NordForsk Network Closing Conference, Faroe Islands, May 2012. Springer Proceedings in Mathematics \& Statistics 58 (2013), 223-238.
[18] T.W. Palmer, Banach algebras and the general theory of *-algebras. Vol. 2. Encyclopedia of Mathematics and its Applications, Vol. 79, Cambridge University Press, Cambridge, 2001, *-algebras. MR 1819503 (2002e:46002)
[19] J.-L. Tu, La conjecture de Baum-Connes pour les feuilletages moyennables. K-Theory 17 (1999), 3, 215-264.
[20] D. P. Williams, Crossed products of C^{*}-algebras. Mathematical Surveys and Monographs, Vol. 134, American Mathematical Society, Providence, RI, 2007.

Received 19 July 2013
Arizona State University, School of Mathematical and Statistical Sciences, Tempe, Arizona 85287
kaliszewski@asu.edu
Norwegian University of Science and Technology (NTNU)
Department of Mathematical Sciences, NO-7491 Trondheim, Norway tron.omland@math.ntnu.no

Arizona State University, School of Mathematical and Statistical Sciences, Tempe, Arizona 85287 quigg@asu.edu

