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The a-adic numbers are those groups that arise as Hausdorff completions of
noncyclic subgroups of the rational numbers Q. We give a crossed product con-
struction of (stabilized) Cuntz-Li algebras coming from the a-adic numbers and
investigate the structure of the associated algebras. In particular, these algebras
are in many cases Kirchberg algebras in the UCT class. Moreover, we prove
an a-adic duality theorem, which links a Cuntz-Li algebra with a corresponding
dynamical system on the real numbers. This paper also contains an appendix
where a nonabelian version of the subgroup of dual theorem is given in the setting
of coactions.
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INTRODUCTION

In [3] Cuntz introduces the C*-algebra Oy associated with the az + b-
semigroup over the natural numbers, that is Z x N*, where N* acts on Z by
multiplication. It is defined as the universal C*-algebra generated by isometries
{Sn}nenx and a unitary u satisfying the relations

n—1
SmSn = Smn, SpU =u"S,, and Zuksnsflu_k =1, for m,n & N*.
k=0

On may be concretely realized on ¢?(Z) equipped with the standard or-
thonormal basis {d,, }nez by

Sm(0n) = Omn  and  u(dy) = Opy1.
Furthermore, Qp is shown to be simple and purely infinite and can also
be obtained as a semigroup crossed product

~

C(Z) x (Z x N*),

for the natural ax + b-semigroup action of Z x N* on the finite integral adeles
Z = 11, prime Zp (i-e. Z is the profinite completion of Z). Its stabilization Oy
is isomorphic to the ordinary crossed product

Co(Ay) x (@ % Q7F),
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where Q7 denotes the multiplicative group of positive rationals and Ay denotes
the finite adeles, i.e. the restricted product Hp prime @ = T, prime (Qps Zp).
The action of Q x QJ on Ay is the natural ax + b-action. This crossed product
is the minimal automorphic dilation of the semigroup crossed product above
(see Laca [12]).

Replacing N* with Z* gives rise to the C*-algebra Qz of the ring Z. This
approach is generalized to certain integral domains by Cuntz and Li [4] and
then to more general rings by Li [16].

In [14] Larsen and Li define the 2-adic ring algebra of the integers Qa,
attached to the semigroup Z x |2), where |2) = {2¢ : i > 0} C N* acts on Z by
multiplication. It is the universal C*-algebra generated by an isometry so and
a unitary u satisfying the relations

souf = u?sy and S985 + usesyu® = 1.

The algebra Qs shares many structural properties with Q. It is simple,
purely infinite and has a semigroup crossed product description. Its stabiliza-
tion Qs is isomorphic to its minimal automorphic dilation, which is the crossed

product .
1 Co(@) x (23] % 2). |
Here, Z[3] denotes the ring extension of Z by 3, (2) the subgroup of the

positive rationals Q) generated by 2 and the action of Z[3] x (2) on Qs is the
natural ax + b-action.

Both Ay and Q2 are examples of groups of so-called a-adic numbers,
defined by a doubly infinite sequence a = (...,a_2,a_1,a9,a1,az,...) with
a; > 2 for all 7 € Z. For example, if p is a prime number, the group Q, of
p-adic numbers is associated with the sequence a given by a; = p for all .

Our goal is to construct C*-algebras associated with the a-adic numbers
and show that these algebras provide a family of examples that under certain
conditions share many structural properties with Q», Oy and also the ring
C*-algebras of Cuntz and Li.

In particular, since N* is generated by the set of prime numbers, we can
associate Oy with the set of all primes, and Qo with the set consisting of
the single prime 2. In the same way, one can construct algebras Qp associated
with any nonempty subset P of the prime numbers, with similar generators and
relations as described above. The stabilized algebras Qp provide one interesting
class of C*-algebras coming from the a-adic numbers.

Our approach is inspired by [9], that is, we begin with a crossed product
and use the classical theory of C*-dynamical systems to prove our results in-
stead of the generators and relations as in the papers of Cuntz, Li, and Larsen.
Therefore, our construction only gives analogs of the stabilized algebras O
and Q5.
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Even though the C*-algebras associated with a-adic numbers are closely
related to the ring C*-algebras of Cuntz and Li, they are not a special case
of these (except in the finite adeles case). Also, our approach does not fit in
general into the framework of [9)].

One of the main results in this paper is an a-adic duality theorem (The-
orem 4.1), which generalizes the 2-adic duality theorem [14, Theorem 7.5] and
the analogous result of Cuntz [3, Theorem 6.5]. In the proof, we only apply
classical crossed product techniques, and not the groupoid equivalence as in
[14]. Another advantage with this strategy is that we, in a natural way, obtain
a concrete bimodule for the Morita equivalence.

In the first section, we describe the a-adic numbers € as the Hausdorff
completion of a subgroup N of Q and explain that this approach coincides
with the classical one in Hewitt and Ross [8]. Then we go on and introduce
the Cuntz-Li algebras associated with a sequence a, that is, coming from an
ax + b-action of N x H on €} for a certain multiplicative group H contained in
N, and show that these algebras in many cases have nice properties.

The proof of Theorem 4.1 relies especially on two other results; a duality
result for groups in Section 3 describing N for any noncyclic subgroup N of
@, and the “subgroup of dual group theorem”, that we prove in a more general
setting in Appendix A.

Finally, in Section 5 we characterize the a-adic numbers up to isomor-
phism, and give some isomorphism invariants for the associated Cuntz-Li alge-
bras.

1. THE a-ADIC NUMBERS

Leta=(...,a_2,a_1,a9,a1,as,...) be a doubly infinite sequence of nat-
ural numbers with a; > 2 for all ¢ € Z. Let the sequence a be arbitrary, but
fixed.

We use Hewitt and Ross [8, Sections 10 and 25| as our reference and define
the a-adic numbers ) as the group of sequences

o
{x:(wi)e H {O,l,...,ai—l}:xi:Ofori<jforsomej€Z}

1=—00

under addition with carry, that is, the sequences have a first nonzero entry
and addition is defined inductively. Its topology is generated by the subgroups
{0, : j € Z}, where

Oj:{ZCGQ:$i:0f0ri<j}.
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This makes 2 a totally disconnected, locally compact Hausdorff abelian group.
The set A of a-adic integers is defined as A = Oy. It is a compact, open
subgroup, and a maximal compact ring in € with product given by multipli-
cation with carry. On the other hand, Q itself is not a ring in general (see
Theorem 5.16).

Define the a-adic rationals N as the additive subgroup of Q given by

vo{ T —ijemnz).
a_1---Q_f

In fact, all noncyclic additive subgroups of QQ containing Z are of this form
(see Lemma 5.1 below). There is an injective homomorphism

t: N —=Q

(), =

Moreover, ¢(1) = 1 and ¢(N) is the dense subgroup of € comprising the
sequences with only finitely many nonzero entries. This map restricts to an
injective ring homomorphism (denoted by the same symbol)

L Zo— A

determined by

with dense range. Henceforth, we will suppress the ¢ and identify N and Z with
their image in  and A, respectively.
Now let U be the family of all subgroups of N of the form “*Z, where m
and n are natural numbers such that m divides ag - - - a; for some j > 0 and n
divides a_1 ---a_j for some k > 1. Then U
(i) is downward directed, that is, for all U,V € U there exists W € U such
that W CcUNV,
(ii) is separating, that is,
(U ={e}
vedd
(iii) has finite quotients, that is, |U/V| < oo whenever U,V € Y and V C U,
and the same is also true for

V={UNZ:U e€U}.

In fact, both U and V are closed under intersections, since
mo o EIZ: lem (m, m’)
n n' ged (n, n')
It is a consequence of (i)-(iii) above that the collection of subgroups U
induces a locally compact Hausdorff topology on N. Denote the Hausdorff



5 Cuntz-Li algebras from a-adic numbers 335

completion of N with respect to this topology by N. Then

N = hén N/U.
veud
Next, for j > 0 define

_—_— if j =0,
7 lao-a; 7 if §>1,

and set
W:{UjijZO}CVCU.

Note that W is also separating and closed under intersections. The closure
of Uj in Qis O, so

Q/O; = N/U; and AJO;=Z/U; forall j > 0.

Next, let
7 : Q= N/U;

denote the quotient map for j > 0, and identify 7;(x) with the truncated
sequence £V where () is defined for all j € Z by

0 fori>j.

We find it convenient to use the standard “sequence” construction of the
inverse limit of the system {N/U;, (mod a;)}:

oo
@N/Uj = {iL‘ = (:EZ) S HN/Uz T = Tigl (mod CL2>} s
Jj=0 i=0
and then the product 7: Q — @po N/Uj of the truncation maps 7;, given by

m(z) = (r0(2), 71(2), 72(2), ... ),
is an isomorphism.

Furthermore, we note that W is cofinal in Y. Indeed, for all U = " Z € U,
if we choose j > 0 such that m divides ag - - - a; then we have W > U;;1 C U.

Therefore, o
Q%“@N/Uj ~ @N/U§N,
7>0 Ueu
and similarly

A

I

ImZ/U; = lim Z/V = Z.
0 Vey

7=
In particular, A is a profinite group. In fact, every profinite group coming
from a completion of Z occurs this way (see Lemma 5.1 below).
The following should serve as motivation for our definition of U.
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LEMMA 1.1. Every open subgroup of Q) is of the form

Uu

veC

for some increasing chain C in U.
In particular, every compact open subgroup of Q) is of the form U for some

UclU.

Proof. Let U,V € U and suppose there are z € U\ V and y € V \ U.
Then 2 +y ¢ UUV,s0 UUV = U UV is a subgroup of Q if and only if U C V
or V. C U. Moreover, UUGCU is open in €, hence, also closed whenever it is a

subgroup [8, 5.5], so it equals (Jyee U.

Note that U is closed under intersections and UNV = U NV by construc-
tion. Indeed, since UNV is open in 2 and N is dense in , (UNV)NN =UNV
isdensein UNV. 0O

Notation 1.2. Whenever any confusion is possible, we write Q,, A4, Ng,
etc. for the structures associated with the sequence a. If a and b are two
sequences such that U, = Uy, we write a ~ b. In this case, also N, = Np. It is
not hard to verify that a ~ b if and only if there is an isomorphism 2, — €
restricting to an isomorphism A, — Ay. The groups €2, and 2, can nevertheless
be isomorphic even if a o b (see Example 1.6 and Corollary 5.4).

Ezample 1.3. Let p be a prime and assume a = (...,p,p,p,...). Then
0=Qp, and A =7Z,, i.e. the usual p-adic numbers and p-adic integers.

Ezample 1.4. Let a = (...,4,3,2,3,4,...), 4.e. a; =a_; =i+ 2 for i > 0.
Then Q = Ay and A = 7Z, because every prime occurs infinitely often among
both the positive and the negative tail of the sequence a.

Ezample 1.5. Let a; = 2 for ¢ # 0 and ag = 3, so that
N=2Z[}] and U={2'Z,2'3Z:i€cZ}.
Then €2 contains torsion elements. Indeed, let
z=(..,0,1,1,0,1,0,1,...), sothat 2z=(...,0,2,0,1,0,1,0,...),

where the first nonzero entry is 9. Then 3z = 0 and {0, z, 2z} forms a subgroup
of © isomorphic with Z/3Z. Hence, Q 2 Q2 since Q9 is a field.

Ezample 1.6. Assume a is as in the previous example and let b be given
by b; = a;11, that is, b; = 2 for i # —1 and b_y = 3. Then

Ny =1Z[}] and Uy ={2'2,2'1Z:ic 7).

We have Q, = O (as additive groups; see Lemma 5.1 and Proposition 5.2),
but a % b since Ay 2 Ay.
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Remark 1.7. Instead of thinking about the a-adic numbers as coming from
a sequence of numbers, one may consider them as coming from two chains
of ideals. Indeed, every downward directed chain of ideals of Z (ordered by
inclusion) has the form
7 D apl O apgarZ D agarasli D - - -

for some sequence (ag, a1, az,...) of integers a; > 2. In this way, it may be
possible to generalize the concept of a-adic numbers to other rings, for example
to rings of integers of global fields.

2. THE a-ADIC ALGEBRAS

Next, we want to define a multiplicative action on 2, of some suitable
subset of N, that is compatible with the natural multiplicative action of Z on
Q. Let S consist of all s € Q such that the map U — U given by U — sU is
well-defined and bijective.

Clearly, the map U +— sU is injective if it is well-defined and it is surjective
if the map U — s~ 'U is well-defined. In other words, S consists of all s € Qx
such that both the maps U — U given by U +— sU and U +— s~ U are well-
defined.

LEMMA 2.1. Ifs1,80 € N, s = 152, and the map U — U given by U — sU
1s well-defined and bijective, then the maps U — s1U and U — s3U are also
well-defined and bijective.

Proof. First, we pick t € N. Then ¢7*7Z € U whenever 27 € U if and only
if tm/Z € U whenever m'Z € U. One direction is obvious, so assume tm'Z € U
for all m'Z € U and pick 7Z € U (with m and n coprime). Since mZ € U as
well, tmZ € U, so tm divides ag - - - a; for some j > 0, and thus, the numerator of
i (after simplifying) also divides ag - - - a;. And since n divides a_y - --a_y, for
some k > 1, the denominator of %” (after simplifying) also divides a_j ---a_p.

Similarly, t_l%Z € U whenever 7 € U if and only if #Z € U whenever
L7Zel.

Therefore, to show that the map U > s;U is well-defined and bijective for
1= 1,2, it is enough to show that s;mZ, S%HZ € U whenever mZ, %Z € U. But
this follows immediately since s;m divides sm, which again divides ag - - - a; for
some j > 0, and s;n divides sn, which divides a_1 ---a_j for some kK > 1. [0

COROLLARY 2.2. The set S is a subgroup of Q% and may also be described
in the following way. Define a set of prime numbers by
P = {p prime : p divides ay, for infinitely many k <0
and infinitely many k >0}.
Then S coincides with the subgroup (P) of QX generated by P.
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Proof. The first statement is obvious from the previous argumentation,
since if s belongs to S, then s’ belongs to S for all i € Z.

If s € SNN, it follows from the previous lemma that all its prime factors
must be in S. Hence, p’ belongs to S for all i € Z whenever p is a prime factor
of some s € SNN. [

Therefore, S consists of elements s € N such that the multiplicative
actions of both s and s~ on N are well-defined and continuous with respect
to U. It is well-defined since all ¢ € N belongs to some U € U. If g+ U
is a basic open set in N, then its inverse image under multiplication by s,
s Y q+U) = s"1¢+ 571U, is also open in N as s~'U € U. By letting S be
discrete, it follows that the action is continuous.

We will not always be interested in the action of the whole group S on
N, but rather a subgroup of S. So henceforth, we fix a subgroup H of S.
Furthermore, let G be the semidirect product of N by H, i.e. G = N x H,
where H acts on N by multiplication. This means that there is a well-defined
ax + b-action of G on N given by

(r,h)-q=r+hq, forq,re Nandhe H.

This action is continuous with respect to U, and can therefore be extended
to an action of G on 2, by uniform continuity.

Ezxample 2.3. To see why the primes in P must divide infinitely many
terms of both the positive and negative tail of the sequence, consider the fol-
lowing example. Let a; =2 for ¢ < 1 and a; = 3 for ¢« > 1 and let « be defined
by z; =0 for i < 0 and x; = 1 for ¢ > 0. Then

%.(2.:1;‘):%.O:O#x:l.z:(%-2).$‘

Here N = Z[%] is a ring, but the problem is that multiplication by % is not
continuous on N. In particular zU+Y = 320), so %(z:(j“) —z)) =20 40,
hence (%x(j)) is not Cauchy.

Note that P = & in this case.

PROPOSITION 2.4. The action of G = N x H on § is munimal, locally
contractive and topologically free.

Proof. For the minimality, just observe that for any = € € the orbit
{g-x: g € G} is dense because it contains x + N, which is dense in 2+ Q = Q.

Next, note that for all U € U there is an s € H such that sU C U. In fact,
since sU € U for all s € H, any s € H with s > 1 will do the job. Therefore,
for all open ¢ + U C Q, ¢ € N, pick s € H such that s-U C U and put
r=q—sq € N. Then

(5,7) - (q+U)=s5-(¢q+U)+r=sq+s-U+r=q+s-UZq+U,
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which means that the action is locally contractible.

Finally, suppose that {x € Q: g - = x} has nonempty interior for some
g = (s,r). Since N is dense in 2, this implies that there is some open set U in
N such that g-x = x for all x € U. Assume that two distinct elements z,y € U
both are fixed by g = (s,r), thatis, g-x =sr+r=xand g-y=sy+r =y.
Then x —y = s(x — y), so s = 1 since x # y, and hence, r = 0, which means
that g = (s,7) = (1,0) =e. O

Definition 2.5. Suppose P # @, that is, S # {1}. If H is a nontrivial
subgroup of S, we define the C*-algebra Q = Q(a, H) by

0 = Cy(Q) 1 G,

where
(@) = fF(B1 - (z—n)).

Notation 2.6. The bar-notation on Q is used so that it agrees with the
notation for stabilized Cuntz-Li algebras in [3] and [14].

THEOREM 2.7. The C*-algebra Q is simple and purely infinite.

Proof. This is a direct consequence of Proposition 2.4. Indeed, Q is simple
since the action o is minimal and topologically free [1], and Q is purely infinite

since o is locally contractive [13]. [

COROLLARY 2.8. The C*-algebra Q is a nonunital Kirchberg algebra in
the UCT class.

Proof. The algebra is clearly nonunital and separable. It is also nuclear
since the dynamical system consists of an amenable group acting on a com-
mutative C*-algebra. Finally, Q may be identified with the C*-algebra of the
transformation groupoid attached to (€2, G). This groupoid is amenable and
hence, the associated C*-algebra belongs to the UCT class [19]. O

Remark 2.9. We should note the difference between the setup described

here and the one in [9]. Here, we do not assume that the family of subgroups U
is generated by the action of H on some subgroup M of N. That is, we do not
assume that U = Uyy = {h-M : h € H} for any M, only that Uy; C U. In light
of this, we were lead to convince ourselves that the results in [9, Section 3| also
hold under the following slightly weaker conditions on U. Let G = N x H be a
discrete semidirect product group with normal subgroup N # G and quotient
group H. Let U be a family of normal subgroups of N satisfying the following
conditions:

(i) U is downward directed, separating, and has finite quotients.

(ii) Foral U e Y and he H, h-U € U.
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(iii) For all V' € U, the family
Uy ={h-V:he H}

is downward directed and separating.
(iv) For all h € H and U € U, U is not fixed pointwise by the action of h.
In particular, the conditions do not depend on any particular subgroup
M of N.

Example 2.10. Ifa = (...,2,2,2,...)and H = S = (2), then Q is the alge-
bra Qs of Larsen and Li [14]. More generally, if p is a prime, a = (..., p,p,p,...)
and H = S = (p), we are in the setting of Example 1.3 and get algebras similar
to @2.

Ifa=1(..,4,3,2,3,4,...) and H =S = Qf, then we are in the setting
of Example 1.4. In this case, Q is the algebra Oy of Cuntz.

Both these algebras are special cases of the most well-behaved situation,
namely where H = S and a; € H NN for all ¢ € Z. The algebras arising this
way are completely determined by the set (finite or infinite) of primes P, and
are precisely the kind of algebras that fit into the framework of [9]. The cases
described above are the two extremes where P consists of either one single
prime or all primes.

Remark 2.11.If a ~ b, then S, = S, and Q(a, H) = Q(b, H), for all
nontrivial H C S, = Sp.

Ezample 2.12. lfa=(...,2,2,2,...)and b= (...,4,4,4,...), thena ~ b.
Hence, for all nontrivial H C S = (2) we have Q(a, H) = Q(b, H). However, if
H = (4), then Q(a, S) % Q(a, H), as remarked after Question 5.14.

In light of this example, it could also be interesting to investigate the
ax + b-action of other subgroups of G on Q. Let G’ be a subgroup of N x S. It
follows from the proof of Proposition 2.4 that the action of G’ on 2 is minimal,
locally contractive and topologically free if and only if G’ = M x H, where
M C N is dense in Q and H C S is nontrivial.

LEMMA 2.13. A proper subgroup M of N is dense in Q if and only if
M = gN for some q > 2 such that q and a; are relatively prime for all i € 7.

Proof. First note that M C N = Q if and only if there exists a subfamily
U C U so that
Mc |JUCN.
veu’
This holds if and only if M is contained in a subgroup of NV of the form

L-j
S jez k=17 CN,
a’_l...a/_k
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where o’ ;,a’ ,,... is a sequence of natural numbers such that for all i > 1
there is k& > 1 such that o’ ja’,...a’; divides a_ja_2...a_j, and where L
divides ag - - - a; for some j > 0, but L does not divide a_ja_s...a_j for any
k>1.

If M C N and M is not contained in any subgroup of N of this form,
then the only possibility is that M = ¢V for some ¢ > 2 such that ¢ and a; are
relatively prime for all ¢ € Z. O

Of course, M and N are isomorphic if the condition of Lemma 2.13 is
satisfied (see Remark 5.8).

Remark 2.14. Let p be a prime and let U,V € U. Then the map 2 —
given by x + px is continuous and open. Thus, pU = pU = U if pU ¢ U. If
pU =V and pU € U, then p~'V € U. Set

Q@ = {p prime : p does not divide any a;}.

Then multiplication by p is an automorphism of Q if and only if p € PUQ.
Indeed, if p € Q, then pU = U for all U € U (see also Remark 5.20).

PROPOSITION 2.15. Suppose M is a subgroup of N that is dense in €,
and let H be a nontrivial subgroup of S. As usual, let G = N x H and set
G' =M x H. Then
(2.1) C()(Q) N qaff G= Co(Q) X qaff e

Proof. Assume that M = N, where ¢ and a; are relatively prime for
all 2. Then an isomorphism is determined by the map ¢ : C.(G',Co(Q2)) —
C.(G,Cy(R2)) given by

e(f)(n, h)(x) = f(gn,h)(qz). O
Remark 2.16. We complete this discussion by considering the ax+b-action
on § of potentially larger groups than N x .S. By Remark 2.14, % €  when
p € @, and it is possible to embed the subgroup

(2.2) No={7IneNqe(Q)}cCQ

in Q, where (Q) denotes the multiplicative subgroup of QF generated by Q.
The largest subgroup of Q x Q} that can act on § through an ax + b-action is
Ng > (PUQ).

For example, Q itself can be embedded into Q, for all primes p, but it is
not hard to see that Lemma 3.1 of the next section fails in this case since the
image of the diagonal map Q — R x Q) is not closed. In fact, the only groups
N C M C Ng that give rise to the duality theorem (Theorem 3.3) are of the
form M = %N for ¢ € (Q). Moreover, S is the largest subgroup of (PUQ) that

acts on M = éN, and of course (2.1) also holds for all G" = M x H, H C S in
this case.
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It is possible to adjust the way we apply Theorem 3.3 so that we also can
consider the action of larger subgroups. For this to work, we have to “compen-
sate” in the duality theorem, as we explain more precisely in Remark 4.5.

Finally, we remark that one may also involve the roots of unity of Q* in
the multiplicative action, that is, replace H with {+h:h € H} = {£1} x H as
in [4]. The associated algebras will then be of the form Q x Z/2Z. However,
we restrict to the action of the torsion-free part of Q* in this paper.

3. A DUALITY THEOREM FOR a-ADIC GROUPS

In this section, we first give the duality result (Theorem 3.3) for the group
of a-adic numbers following the approach of [8], after which we outline a slightly
modified approach that has some advantage.

For any a, let a* be the sequence given by a; = a_;. In particular,
(a*)* = a. We now fix a and write Q and Q* for the a-adic and a*-adic
numbers, respectively. Let x € 2 and y € Q" and for j € N put

i p2mizy) Jao.
where the truncated sequences 2\9) = 7;(z) and y) = 7;(y) are treated as their
corresponding rational numbers in N. Then z; will eventually be constant.
Indeed, note that
() = Tk e .
T = +-- 4+ + 2o+ apry + -+ ap - aj—17;
a_1---a_p a_q
for some k > 0. Therefore, aga_1 -- -a,ﬁlx(j) € aopZ for all j > k. Similarly,
there is an [ > 0 such that aga; - ~-aj_1y(j) € aoZ for all j > [. Hence, for all
j > max{k,l}
Dy _ 2y = 0 (mod agZ),

i.e. zj41 = zj. We now define the pairing 0 x Q* — T by

(x,y)q = lim 62mw<j)y(j)/“0.
J—00
The pairing is a continuous homomorphism in each variable separately
and gives an isomorphism 2* — 2. Indeed, to see that our map coincides with
the one in [8, 25.1], note the following. Suppose k and [ are the largest numbers

such that z; = 0 for ¢ < —k and y; = 0 for j < —I. Then
iy M a0 if |1 >0,
<x’y>92{1 if k41 < 0.
From this it should also be clear that if x € N and y € N*, then

<x,y>ﬂ _ e?m’zy/ao_
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Furthermore, for each j, the pairing of {2 and Q* restricts to an isomor-
phism O*, | — (O;)~. This is also explained in [8, 25.1]. Hence, for all
JEZL R .

Q0" = Q/(0)F = 0;.

LEMMA 3.1. The injection  : N — R x Q given by q — (q,q) has discrete

range, and N may be considered as a closed subgroup of R x €.

Proof. Since (—1,1) is open in R and A is open in 2, we have U =
(=1,1) x A is open in R x . Moreover, t(N)NU = {0} as NNA = Z.
Therefore, {0} is an isolated point in ¢(V), hence, the image of ¢ is discrete by
[8, 5.8] which means it is closed in R x Q by [8, 5.10]. O

Similarly, N* may be considered as a closed subgroup of R x Q*. By
applying the facts about the pairing of 2 and Q* stated above, the pairing of
R x © and R x Q* given by

<(U,, .T), (’U, y)> = 6*2”“”/“0 Jllgolo €2ﬂix(j)y(j)/a0 = <U, U>R<'I7 y>Q

defines an isomorphism ¢ : R x Q* — R x Q.
LEMMA 3.2. The map ¢ restricts to an isomorphism t(N*) — o(N)* .
Proof. First, for r € N* we have
(q,q), (r,r)) = e~ 2riar/aog2miar/ao — 1 for all g € N,
so u(r) € u(N)*.
On the other hand, let (v,y) € t(N)*, so that

((q,q), (v,y)) =1 for all ¢ € N.

1

a—oq(y(j) —v) =0 (mod Z) for all ¢ € N and sufficiently large j.

In particular, this must hold for g = ﬁ for all £k > 1, so

y9) —v =0 (mod ag---a_xZ) for all k > 1 and sufficiently large j.

Since y\) is rational for all j, the real number v must also be rational.
Moreover, y\) = v for sufficiently large j, so the sequence {y(j)}j must even-
tually be constant. That is, y = y¥) for large j, hence, y € N* and y = v,
SO

(v,9) = (y,y) € L(N¥). O

Thus, we get the following theorem.
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THEOREM 3.3. There are isomorphisms
(Rx Q)/N* 2R x Q/N*t =N
and the isomorphism w : (R x QO*)/N* = N is given by
w((v.y) +N)(a) = {(g,9), (v,y)) Jor (v,y) ERX Q" and g € N.

In particular, by this result one can describe the dual of all noncyclic
subgroups of Q. These groups are compact and connected and are called the
solenoids. For example, (R x Af)/Q = Q.

Remark 3.4. Let M be a subgroup of N that is dense in €1, so that by
Lemma 2.13, M is of the form ¢N for some ¢ > 2. Then M* = ¢N* &£ N*
is a subgroup of N* that is dense in Q*. By replacing M with N, the above
argument gives (R x Q*)/M* = M.

3.1. Modified duality results for a-adic groups

For any a and integer n, let a™ denote the sequence given by ain) =

a—it+n. We have (a(”))gn) = a(fi)Jrn = G_(—itn)tn = i, SO (™)™ = g, In
particular, we set a* = a(® and o = o=,

Now we fix some sequence a, and our goal is to explain why a* might be
a better choice than a* for our purposes. First of all, note that if Q™ and Q™)
are the a-adic numbers coming from a(™ and a(™), respectively, then Q™) and
Q) are isomorphic (as additive topological groups) by Proposition 5.2 and
the succeeding remark.

Let z € Q and y € Q7 and put

i (3) 4y (3)
zj :627”307 y\

where () and y@) are the truncations of z and y. Then zj will eventually be
constant. Indeed, note that
, x_ T_
2 = 7164‘”'4‘71+x0+a0x1+"'+ao"'aj—1xj
a_1-*--a_g a—q
for some k > 0. Therefore, a,l---a,jﬂm(j) € Z for all j > k. Similarly,
there is an [ > 0 such that apa; - -‘aj_ly(j) € Z for all j > [. Hence, for all
j > max{k,l}
2Dy _ 2Dy = 0 (mod Z),
i.e. zj41 = zj. We now define the pairing {2 x O#F T by

(o) = lim ¢
j—}OO

27iz () 4 (9)



15 Cuntz-Li algebras from a-adic numbers 345

The pairing is also in this case a continuous homomorphism in each vari-
able separately and gives an isomorphism Q% — by a similar method as in
[8, 25.1]. From this it should also be clear that if 2 € N and y € N, then

@ = e,

Moreover, for all j
0% 0%, = 0)(0)" 2 0;,
and there is an isomorphism w : (R x Q#)/N# — N given by
w((v,y) + N*) (@) = (¢, 9). (v,9))) for (v,y) € R x QF and g € N.

Remark 3.5. Let a and b be two sequences. Then a ~ b if and only
a® ~ b#. On the other hand, a ~ b does not imply a* ~ b* in general (see
Remark 5.5 and the preceding comments).

Remark 3.6. Let z € Q and y € Q™ and put
627ria71---an+1w(j)y(j) n < _27
egm‘x(j)ym n— _17

n >0,

Zj:

2mi—L— 2y ()
e agan

where 2(9) and y9) are the truncations of 2 and y. Then zj will eventually be
constant, and we may argue as above to get a pairing.

Finally, it is not hard to see that N 2 N(™) for all n,m. In particular,
agN# = N*.

4. THE a-ADIC DUALITY THEOREM

In general, note that P* = P and S* = S. Hence, every subgroup H C S
acting on IV and (2 also acts on N* and 2*. In particular, 9(a, S) is well-defined
if and only if Q(a*, S*) is.

THEOREM 4.1. Assume that P # & and that H is a nontrivial subgroup
of S. Set G=N x H and G* = N* x H. Then there is a Morita equivalence

Co(Q) Naaﬁ G ~ M Co(R) Xaaﬁ G*,
where the action on each side is the ax + b-action.

Proof. Tt will improve the clarity of notation in this proof if we switch the
stars; thus, we want to prove

Co(Q*) N qaff G* ~ M CQ(R) N aff G.
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By [20, Corollary 3.11|, we can decompose both sides as iterated crossed
products:

CQ(Q*) N qaff G" = (Co(Q*) X N*) No;?f
CO(R) NaaffG = (Co(R) Naaff‘N N) N&;ﬁ H,

H,

aafle*

where in the first case

. . aff
aaﬂh o ZCO(Q*) = /LC()(Q*) o p,

ol oins =iy ol

2
where in turn o2 is the action of H on C*(N*) given by

—2
o, (g)(n) = g(h~'n) for g € Co(N*) C C*(N*) and n € N*

(observe that the action of H on N* preserves Haar measure because N* is
discrete), and similarly for Cp(R) x G.
Our strategy is to find a Morita equivalence

CO(T/Q) At N ~ M Co(N\T) At Q,

where T' = R x Q, that is equivariant for actions « and S of H on Cy(T/Q) X1y N
and Co(N\T') x4 2, respectively, and then find isomorphisms
(CO(T/Q) A1t N) X H= (C()(R) Naaﬁf|N N) Nar;?f H
(Co(N\T) xxt Q) x5 H = (Co(Q) Xgan. N*) x—5 H
Step 1. Recall that N and  sit inside T as closed subgroups. All the

groups are abelian, and therefore, by “Green’s symmetric imprimitivity theo-
rem” (see for example [20, Corollary 4.11]) we get a Morita equivalence

(4.1) Co(T/) 31y N ~pr Co(N\T) iy

via an imprimitivity bimodule X that is a completion of C.(T"). Here N acts
on the left of T/Q by n- ((t,y)-Q) = (n+t,n+y)-Q and Q acts on the right of
N\T by (N -(t,y))-x = N -(t,y+ ), and the induced actions on Cp-functions
are given by

o (f)(p- Q) = f(—n- (p-Q)),
rtz(g)(N -p) = g((N - p) - ),
forme N, feCo(T/Q),peT, xz €, and g € Co(N\T).

Moreover, H acts by multiplication on N, hence, on €2, and also on R.
Thus, H acts diagonally on T =R x Q by h- (t,z) = (ht,h - x).
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We will show that the Morita equivalence (4.1) is equivariant for appropri-
ately chosen actions of H. Define actions «, /3, and v of H on C.(N, Co(T/?)),
Ce(Q,Co(T\N), and C.(T) by

an(f)(n)((t,y) - Q) = f(hn)((ht, b -y) - Q),
Br(g)(@) (N - (t,y)) = 6(h)g(h - z) (N - (ht, ] - y)),
1
W)t y) = 6(h)2&(ht, b - y),

where § is the modular function for the multiplicative action of H on €, i.e. §
satisfies

(4.2) /Qw(m) dz = d(h) /Q P(h-x)de for ¢ € C.(Q).

Note that «, 8, are actions only because H is abelian.

We want «, 3,7 to extend to give an action of H on the Cy(T/2) Xy N —
Co(N\T) %y © imprimitivity bimodule X, and we must check the conditions
20, (4.41)-(4.44)]. First, for all h € H, f € Co(N, Co(T/Q)), € € Co(T), and
(t,y) € T we have

neN

=" Fhn) ((ht, b y) - Q)8(h) € (h(t —n), b+ (y — n))
neN

=" rm)((at, h-y) - Q)8(R)2E(ht —n,h -y — n)
neN

0 S fn)((ht,h-y) - Q)E(—n- (At h-y))

neN
= 5(h)2(f - &) (ht,h-y)
= f)/h(f . 5)(t7y)7

where the substitution hn — n is made in the third equality.
Secondly, for all h € H, £ € C.(T), g € C.(,Co(N\T)), and (t,y) € T

we have

(W (&) - Br(9)) (¢, v)
- /Q () (ty) - 2)Bu(g) (~2) (N - (t.y) - z) da

_ /Q 5(h)
_ /Q 5(h)

NI

E(ht,h- (y+2))d(h)g(—h-x)(N - (ht,h- (y + x))) dz

D=

Eht,h-y+a)g(—x)(N - (ht,h-y +2)) de
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za(h)éAg((ht,h.y)-x)g(—x)(N-(ht,h.y)-m) dz
= 3(h)2 (¢ - g)(ht,h-y)
=€ 9)(t,y),

where in the third equality we shift h - z — z according to (4.2).

For the third equation, for all h € H, {,n € C.(T), n € N, and (t,y) € T
we have

an (L& m) () ((t,y) - Q)
= (& n)(hn)((ht,h-y) - Q)

= /Qf((ht,h cy)-x)n(—hn- (ht,h-y) z)dz

:/5h E(ht,h-y+h-z)n(ht —hn,h-y+h-z —hn)dz

1

/6 )2&(ht, b (y +2))0(h)

N /mh(ﬁ)(( ) @) ) (—n- (ty) - z) do
= L) mm)) (n) ((t,y) - Q),

where the substitution = — h -« is made in the fourth equality according to
(4.2).

Finally, for all h € H, §,n € C.(T), z € Q, and (t,y) € T we have
Br (& mr)(x) (N - (t,y))
= ( )& mr(h- )(N‘(ht h-y))

() S €(=n- (ht, h-g))n((—n) - (ht, h-y) - (h - 2))

NI

n(h(t—n),h-(y+z—n))dx

neN
h) Z§(ht—hn,h-y—hn)n(ht—hn,h-y+h-x—hn)
neN
= > 6(r)2E (At —n), b+ (y = n)8(h)2n(h(t = n),h- (y + = — )
neN
= > wm©) t.y)m(m ((=n) - (ty) - z)
neN

= (&), 1m()) (@) (N - (t,9)),

where we shift n — hn in the fourth equality. Hence, we can conclude that
there is a Morita equivalence

(4.3) (Co(T/R2) 1y N) o H ~ong (Co(N\T) 511, ) 5 H
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(see [2, 6]).
In our use of this equivariant Morita equivalence below, it will be conve-
nient to see what the actions a and g do to generators: for h € H we have
® ap 0icy(T/Q) = iCy(T/Q) © a}, where o' is the action of H on Co(T/)
given by
ap(f)(p-Q) = f(h-p-Q);
o apoin(n) =iy(hn) for n € N;
o Bhoicyn\r) = icy(v\1) © Bf, where 1 is the action of H on Co(N\T)
given by
- Bh(g)(N - p) = g(N - (h - p));
e BLoing=1ino ﬂ%, where 32 is the action of H on C*(f2) given by

(4.4) B2(g)(xz) = 8(h)g(h-x) for g € C.(Q) and x € .
Step 2. The isomorphism ¢ : T/ — R given by

transforms the action of N on T'/€ to an action on R: forn € N and (t,y) € T
we have

n-¥((ty) Q) = w(n' (& y) - Q))

=4 (((n,m) + (1,9)) - 2)
=¢((n+t,n+y)- Q)
=n+t.
The isomorphism v induces an isomorphism 1, : Co(T/2) — Cp(R):
Gu(F)t) = F(B) for f € Co(R) and £ € R

The isomorphism 1, transforms the action 1t of N on Co(T/Q) to an
action p on Cy(R): for n € N, f € Cp(R), and t € R we have

pr()(t) = Pu o1t 0 71 (f)(1)

=1ltn 0 (/) (7' (1)
=lt, o, ' (£)((£,0) - Q)
=, (f)( n: t70) Q)

= (f)((t—n,—n) - Q)
:f<w((t—n,—n)-Q))
= f(t—n),

and so
p= lt|N,
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and we continue to denote this action by lt.
By construction, this isomorphism is N-equivariant, and we have a corre-
sponding isomorphism
?/)* X N : CU(T/Q) At N — CQ(R) A1t N
determined by

Vi X N oicy(1/9) = ico(T/Q) © s
Y xNo igo(T/Q) _ i%O(R)~
We will compute the associated action of H on Cp(R) %1y N by considering

what H does on the generators. First, ¢ transforms the action of H on T/
to an action on R: for h € H and (¢t,y) € T =R x Q we have

=¢((ht,h-y) - Q)
= ht.

The isomorphism 1, x N transforms the action o of H on Cy(T'/Q2) xyy N
to an action o’ on Cy(R) xj; N, and we compute this action on the generators.
Due to how « acts on the generators from Cy(7'/S2), for h € H we have

an o dcy(r/a) = icy(r)/a) © s
where o/l is the action of H on Cy(R) given by
g (f)(t) = f(ht) for f € Co(R) and t € R.

On the other hand, the action o/ behaves the same way on generators
from N as a does:

apoin(n) =in(hn) forn € N.

Step 3. To complete the work on the crossed product Cy(R) X .6 G, we
would like to know that our actions lt|; of N on Cy(R) and o/ of H on Cy(R) Xy
N agree with the decomposition of the ax + b-action, so that the isomorphism

Py x N : Co(T/Q) 3114 N —» Co(R) 31y N
would give an H-equivariant isomorphism
Co(T/Q) > N — Co(R) x

as desired. Unfortunately, we will need to tweak the action o' a little bit to
make this come out right, as we will see below.

But we can verify immediately what we need for o®f|y: if n € N, f €
Co(R), and ¢ € R then

N,

o]y

(), (F)(1) = 0™, (F)(0)
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= f(t—n)
= ltn(f) (t),
so that
aaff‘N = lt‘N.
On the other hand, if h € H then

. . aff
ol o iy m) = icym) © &' h,

where for f € Cp(R) and t € R we have
o (f)(8) = f(h1E),

while
0 i) = Gcy(®) © @' 1n,
where
ol (£)(t) = f(ht).
Similarly, -
oy oin(n) = in(hin),
while

ap oin(n) =in(hn).
Thus, we see that -

oaft, = a%_l.

Therefore, to fix things up we only need to make the following adjustment
to the action o’: we compose with the inverse map on H, which, because
H is abelian, gives an action o” of H on Cp(R) xy; N, and now the above

computations show that

o = o,
Since the isomorphism v, x N is equivariant for the actions a and o’ of
H on Cy(T/Q2) xy; N and Cy(R) x

aafi|y IV, respectively, and since the crossed
products
(Co(R) X qaft| N) X H
and

(Co(R) X gaft| N) Xt H
are isomorphic (because o’ is gotten from o by composing with an automor-
phism of H), we conclude that

(C()(T/Q) X1t N) NaH = (CO(R) X N) Xt H,

aaff‘ N
as desired.

Step 4. The isomorphism w : N\T — N* of Theorem 3.3 transforms the
action of Q on N\T to an action on N*: for p e T, x € Q, and n € N* we have
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(w(N-p)'az)(n):w( ) n
=w(N z))(n)
=(p -z, (n,n >T
= (p+ (0,z), (n,n >T
= (p, (n,1)) (0, 2), (n,n)).
=w(N - p)(n)(z,n)q,

and, letting ¢ : N* — Q* be the inclusion, with dual homomorphism gﬁ, we can
continue the above as

= w(N - p)(n)(z, d(n))a
= w(N - p)(n)d(@)(
= (W(V - p)d(x)) (n),
and hence, the action of 2 on the right of N* is given by
X-xzxqﬁ(az) foer](f\*.
The isomorphism w induces an isomorphism w, : Co(N\T) — C’o(ﬁf\* ):
wi(H)0) = fw () for f € Co(N*) and x € N*.

The isomorphism w, transforms the action rt of {2 on Co(N\T) to an
action K on C’O(N*) forz e, fe C'O(N*) and x € N* we have

Ra(f)(X) = we ortg 0w (f)(x)
=ty 0w, (f) (@™ (X))
=w, () (w ™ (x) =)
=w, (f)(w ' (x2))
= f(xd()),

n)

and so R
Kk =r1t o0 ¢,
as in Corollary 5.1.

By construction this isomorphism is €2-equivariant, and we have a corre-

sponding isomorphism
we X Q0 Co(N\T) 311 © —> Co(N*) x,,
determined by
Wi X QoigynT) = Co () © Wes

TR0 0 SN _ go<N*>.
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We will compute the associated action of H on Cy (N\*) X €2 by considering
what H does on the generators. First, w transforms the action of H on N\T
to an action on N*: for h € H, (t,y) € T =R x Q, and n € N* we have

(h-w(N-(t,9))(n) =w(N-h-(t,y))(n)
= w(N - (ht, h - y))(n)
= <(ht, h-y),(n, n)>T
= (ht,n)r(h - y,n)q

(t,hn)r(y, hn)q

<(t,y), (hn,hn)>Q

w(N - (t,y))(hn),

and so the action of H on N* is given by
(h-x)(n) = x(hn) for x € N* and n € N*.

The isomorphism w, x § transforms the action 5 of H on Co(N\T') Xy §2
to an action 8" on Cp(IN*) x, 2, and we compute this on the generators. Due
to how f acts on the generators from Co(N\T), for h € H we have

Y . _ /1
Bl © gy = lop(x) © Ph
where (! is the action of H on C’O(]/V\*) given by

5;11(f)(X) = f(h-x) for fe C’o(]v\*) and y € N*.

On the other hand, the action 3’ behaves the same way on generators
from 2 as 8 does:

By, 0 i = iq o B,
where 32 is the action of H on C*(Q) from (4.4).

Step 5. We can now apply Corollary 5.1, with the roles of H and G being
played here by N* and Q*, respectively. Thus, N* is a locally compact (discrete)
group and the inclusion map ¢ : N* — Q* is continuous. The action € of the
subgroup N* on Cy(€2*) is left translation 1t composed with the inclusion ¢,
and the action « of 2 on Cp(N*) is right translation rt composed with the dual
homomorphism ¢. Thus, Corollary 5.1 gives an isomorphism

71 Co(Q0) xe N* =5 Co(N*) %1,
such that

ToiCO(Q*):iQo}El and TOiN*:iCO(ﬁ*)O}-N*-
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The action 5’ of H on CO(N\*) X 2 corresponds under 7 to an action 3"
on Cp(2*) x. N*, which we compute on the generators. For h € H we have

BhOZCO Q%) —;05710?0@'00(9*)
:;o@oiﬂo}};l
:ﬁoiﬂoﬁ%o}};l
= icy () o}—goﬁ%o}—él,

and we compute, for g € Co(Q2*) C Co(€2*) and z € Q*, that
Fao B0 Fa'o)la) = [ (r.hadh o Fa'(0)(0) dy
= [ ta)as )7 @) 0-9) dy
—/Q<h‘1 y,2)aFg (9)(y) dy

- /Q (b ) (9) () dy
= g(h_l : J")a

so that 87 o ico(r) = lcy(ae) © By, where 8”1 is the action of H on Co(2*)
given by

1 —1
Bh (9)(x) = g(h™" - z).
On the other hand, we have

707;]\1* =71 oﬁizo?oiN*
= 7T By o i) 0 T
=71"lo U0y (W) © Bt o Fie
ey ’LN* OF&}: O/B;ll OfN*,

so we see that

an . "2
hOZN*:ZN*OBh s

where (3”2 is the action of H on C*(N*) determined by the following: for
g € C.(N*) we have
F- (B12(9)) () = By (Fa=(9)) ()
= I+ (9)(h- x)
= > (h-x)(n)g(n)

neN*
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= > x(hn)g(n)

neN*

= 3 x(m)g(h"n),

neN*

so we see that
B2 (g)(n) = g(h~'n) for g € C(N*) and n € N*.

Step 6. To complete the work on the crossed product Co(2*) x an G*, we
show that our actions € and (3" agree with the decomposition of the ax + b-
action, so that the composition

77 0 (W X Q) 1 Co(N\T) 3114 Q —> C*(Q*) xc N*
gives an H-equivariant isomorphism
Co(N\T) x5t Q —> Co(2) %

which will finish the proof.
For the first, if n € N*, f € Cp(2*), and = € Q* then

(@®+),, (N(x) = a*T(f)(2)
= [z —mn)
= ltn(f)(fﬂ),

N~

ot

so that
(Oza‘ﬂ‘N*)n = ltn = ltqb(n) = €n.
For the second, if h € H then

oAff i

h © iCo(Q*) = iCo(Q*) o Oéa h
and
. . 1
Bh © icy@r) = icy+) © Bh s
and we see immediately from the definitions that o?f, = 5;{17 and for the
generators from N* we have

aaﬂh 0N+ =GN+ O aaﬂh
and
Bl oine = in+ o B2,

2
and again it follows immediately from the definitions that a2ff, = ﬂ,’l’Q. Thus,
we have shown that

a2t = 312,
and the proof is complete. [
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Remark 4.2. A related result appeared in a preprint of Li and Liick [15],
but was left out of the final version. Recall that two separable C*-algebras
are Morita equivalent if and only if they are stably isomorphic. Hence the C*-
algebras will actually be isomorphic by Zhang’s dichotomy: a separable, simple,
purely infinite C*-algebra is either unital or stable.

If a is defined by a; = 2 for all i and H = (2), then Theorem 4.1 coincides
with [14, Theorem 7.5], and if a is the sequence described in Example 1.4, it
coincides with [3, Theorem 6.5].

Remark 4.3. Without any condition on P (or by taking H = {1}) there
is a Morita equivalence

Co(Q) xy N ~pr Co(R) xy N*.

These algebras are also isomorphic as indicated for the 2-adic case in [10, Sec-
tion 5|. This holds since both algebras are stable, which is seen by describing
the left and right hand side as a certain increasing union and as an inductive
limit, respectively. In fact, it was explained to us by Jack Spielberg that it
is in general possible to construct an explicit isomorphism between these alge-
bras. Whether this isomorphism can be extended to the Kirchberg algebras is
currently unclear.

Remark 4.4. Let M be a subgroup of N that is dense in €2, so that by
Lemma 2.13 M is of the form ¢N for some ¢ > 2. By applying Remark 3.4 to
the above argument, we see that when H is a nontrivial subgroup of S there is
a Morita equivalence

Co(Q2) X et (M x H) ~pp Co(R) X e (M™% H),
where the action on each side is the ax + b-action.

Remark 4.5. Note that if A is any closed subgroup of R x Q and B =
(R x Q)/A, then

Co(A) X (N X H) ~M C()(B) X (N* A H)

In particular, C*(N x H) ~ps Co(R x Q) x (N* x H). Moreover, with the
notation from (2.2), any group M x H, where H C (P UQ) acts on M C Ng
such that H N (P) # {1} and M = N, also gives rise to a Kirchberg algebra.
In the duality theorem, we now have to compensate on the right hand side by
using a larger group than R.

For example, if a = (--,2,2,2,--+) and M = Z[}] we have

Co(Q2) X qan (Z[g] % (2)) ~ar Co(R x Q3) ¥ qam (Z[5] % (2))

and
Co(Q2) X gar (Z[g] » (3)) ~nr Co(R x Q3) X qan (Z[5] % (3)),
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where the algebras in the first line are Kirchberg algebras, while the actions in
the second line are no longer locally contractive. This is the case since P = {2}
and (3)N(2) = {1}. Indeed, on the right hand side, the action of 3 is contractive
on R but expansive on Q3 and vice versa for 3.

5. INVARIANTS AND ISOMORPHISM RESULTS

Let P be the set of prime numbers. A supernatural number is a function
A:P— NU{0,00}

such that »° cpA(p) = co. Denote the set of supernatural numbers by S.
It may sometimes be useful to consider a supernatural number as an infinite
formal product
A\ = 2M2)3AB)5AG)7A(T) L
Let A and p be two supernatural numbers associated with the sequence a
in the following way:

A(p) = sup {i : p’ divides ag...a; for some j > 0} € NU {0, 00}
p(p) = sup {i : p* divides a_1 ...a_y, for some k > 1} € NU {0, 00}
LEMMA 5.1. Let a and b be two sequences. The following hold:
(1) Ag = Ay if and only if Ay = Np.
(ii) Ny = Ny if and only if pa = pp-
(i) U, = Uy if and only if both N\, = Ny and p, = pp.

Proof. From |8, Theorem 25.16] we have
Az [ zox [ z/*Pz

pEA~1(00) peEA~L(N)

and hence, (i) holds. It is not difficult to see that condition (ii) and (iii) also
hold. O

This means that there is a one-to-one correspondence between supernat-
ural numbers and noncyclic (additive) subgroups of Q containing Z, and also
between supernatural numbers and Hausdorff completions of Z.

Condition (iii) is equivalent to a ~ b, which means that there exists an
isomorphism €, — € that maps 1 to 1. More generally, for two sequences a
and b, the following result clarifies when Q, and 2 are isomorphic.

PROPOSITION 5.2. Let a and b be two sequences. Then Q4 = Qp if and
only if there are natural numbers p and q such that

a=(..,a_9,qa_1,pag,a1,...) ~ (..., b_o,pb_1,qbg,b1,...) = V.
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Proof. If ' ~ V', then the map 1 g gives an isomorphism €, — €.
Suppose that there exists an isomorphism ¢ : Q, — . Then ¢(0) = 0,
so open neighborhoods around 0 € €, map to open neighborhoods around
0 € Qp. In particular, p(A,) must be a compact open subgroup of €, that is
©(A,) =V for some V = gZ € Uy by Lemma 1.1. Hence, for all U = Z € U,
we have
n-pU)=m-p(A,) :m‘V:miza’Z.

If m’ divides m and n’ divides n, then ™7 € U, as well. Thus, the
injectivity of ¢ implies that m%Z € Uy and thus, also that Z—ZZ € Uy, after
applying Remark 2.14. Consequently,

o(ZD) = 772,

and 7 belongs to U, if and only if Z—ZLZ belongs to Up. Hence, U, = {gU :
U € U,}, so we conclude that

U, = {2U :mlp,nlq,U € Uy} = {2V :m|q,nlp,V e Up} = U,. O

Remark 5.3. We can now see that the structure of €2 is preserved under
the following operations:
e factoring out entries, that is, for a; = cd,
(covs@im1, @5 Q3415 ) > (s @i, 6, ds g ).
e multiplying entries, that is,
(o @1, @iy i1, Qi o) = (e @im1, i1, G2, - - )-
e interchanging entries, that is,
(cos@im1, iy Qi1 Qg2 ) = (o s i, Qi Gy g, - ).
e shifting the sequence, that is, a — b, where b; = a;,, for some n € Z.
However, the following operations on the sequence do not in general pre-
serve the structure of §2:
e removing an entry, that is,
(coes@im1,G5, Qi 1, Qi) > (oo, Qim1, Qig5 Qig2, - - ).
e adding an entry, that is,
(. ey Qi—1, Q5 Qg1 - - ) — ( cey Ai—1,Q5,Cy At 1, - - - )
o reflecting the sequence, that is, a — b, where b; = a_;4,, for some n € Z.
The first two operations preserve the structure of € if and only if the
prime factors of the entries removed or added occur infinitely many times in
the sequence. When € is self-dual, reflections will preserve the structure (see
Proposition 5.7).

Note that if Q4 = Q, then Ao(p) + pa(p) = Mo(p) + pp(p) for all primes
p. In particular, A\;2(0) N p;1(0) = A, '(0) N p, ' (0), that is, Qu = Qp. That
means that if ¢ > 2, ¢V, is dense in §Q, if and only if q/Vy is dense in .
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COROLLARY 5.4. We have Q4 = Qy if and only if there exists a (Uy, Up)-
continuous i1somorphism N, — Np.
In particular, if Qg = Qp, then S, = Sy and Ny = Ny,

Proof. This second statement holds since both A;!(co) = A, '(c0) and
pat(00) = py ' (00) and thus,

Sa = (A (20) N 5 (00)) = (4, 1(20) N 5 (00)) = i

The first statement is a consequence of the proof of Proposition 5.2. If
p and ¢ are as in that proof, then N, = %Na. Moreover, the isomorphism
Ny, — Ny given by r — gr is continuous with respect to (U,,Uy) and therefore
extends to an isomorphism €, — € of the completions. [

If )\ is a supernatural number and p is a prime, let pA denote the supernat-
ural number given by (pA)(p) = A(p)+1 (with the convention that co+1 = 00)
and (pA)(q) = A(g) if p # g. The definition of pA extends to all natural numbers
by prime factorization.

For a sequence a, we let A* and p* be the supernatural numbers associated
with a*. Note that in general one has A* = agp, so a ~ a* if and only if A = agp.

Remark 5.5. With the notation of Section 3.1, we have A\ = p if and only
if a ~ a.

COROLLARY 5.6 (of Proposition 5.2). Let a and b be two sequences. Then
Qo = Qp if and only if there are natural numbers p and q such that pA, = q\p

and qpa = ppo-

PROPOSITION 5.7. The group of a-adic numbers Q) is self-dual if and only
if there are integers p and q such that pA = qp.

Proof. From Section 3, with reference to [8, 25.1|, we get 2 = Q if and
only if 0 = Q*. Thus, Proposition 5.2 and the comment above imply that
Q = Q if and only if there are natural numbers p/, ¢’ such that p’A = ¢agp.
Clearly, this is equivalent to the existence of natural numbers p and ¢ such that
pA=gqp. U

We now discuss how the supernatural numbers are related to isomorphism
invariants for the a-adic duality theorem.

Remark 5.8. If M1 and My are two subgroups of Q, then M; =2 Ms if and
only if My = rMs for some positive rational r. Indeed, every homomorphism
M; — Q is completely determined by its value at one point.

Thus, if My and M, are noncyclic subgroups of QQ, with associated su-
pernatural numbers Ay and Ao, then M; = My if and only if there are natural
numbers r; and r9 such that r1 A1 = ro9Xg. We write A\ ~ A9 in this case.
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Remark 5.9. Since Q7 is a free abelian group (on the set of primes), this
is also the case for all its subgroups. In particular, both .S and all H C S are
free abelian groups.

PROPOSITION 5.10. Sﬁppose Qo =2 Q. Assume that H is a subgroup of
Sa = Sp. Then Qa,H) = 9Q(b, H).
Proof. Since Q, = (), there exists an isomorphism w : Q, —  restricting

to an isomorphism N, — Nj. Then the map ¢ : C.(Ng x H,Cy(Qy)) —
Ce(Np x H, Co(p)) given by

e(f)(n,h)(@) = fw (n), h)(w ™ (z))
determines the isomorphism Q(a, H) = Q(b,H). O
For two pairs of supernatural numbers (A1, p1) and (Ag, p2), we write
(A1, p1) ~ (A2, p2) if there exist natural numbers p and ¢ such that pA; =
g2 and gp; = ppa. Then the set of isomorphism classes of a-adic numbers
coincides with SxS/ ~. Moreover, the pair ([(\, p)], H), where H is a nontrivial

subgroup of (A7!(co) N p~1(c0)), is an isomorphism invariant for the a-adic
algebra Q(a, H).

LEMMA 5.11. For all H C S and rational numbers r we have

Co(R) x (N x H) = Co(R) x (rN x H).
Proof. The isomorphism is determined by the map
¢ : CorN x H,Co(R)) =+ Co(N » H,Co(R))
given by
p(f)(n, h)(x) = f(rn, h)(rz). O

Remark 5.12. Let a be a sequence, and N the associated a-adic rationals.

Let M be a subgroup of N that is dense in Q. Let N be the group of

rationals corresponding to a™). Let a/ be another sequence, with associated
group ' and associated rationals N’. Suppose Q = Q'. Then

Co(R) x (N* x H) = Cyp(R) x (M* x H)
Co(R) x (N* x H) = Co(R) x (N™ x H)
Co(R) x (N* x H) = Co(R) x (N')* x H).

Hence, ([A], H), where H is a nontrivial subgroup of (A\~*(c0) N p~1(c0)),
is an isomorphism invariant for the right hand side of the a-adic duality theorem
(Theorem 4.1). B

Moreover, by Theorem 4.1 and Remark 4.2, it should be clear that Q(a, H)
>~ 9(b,K) if N} = Ny and H = K, even though the isomorphism is in general
not canonical. Therefore, ([A], H) is an isomorphism invariant also for Q(a, H).
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Ezample 5.13. Let a and b be the sequences of Examples 1.5 and 1.6,
and let H = (2). Then Q(a, H) = Q(b, H). Moreover, these algebras are also
isomorphic to Qs, but this isomorphism is not canonical.

Question 5.14. Given two sequences a and b and subgroups H C S, and
K C Sy. When is Q(a, H) % 9(b, K)?

To enlighten the question, consider the following situation. Let a =
(-«+-,n,n,n,...) and H = (n) (note that H = S if and only if n is prime;
see also Example 2.12 above). Then Q(a, H) is the O(E, 1) of [11, Example
A.6]. Thus,

(Ko(Q(a, H)), [1], K1(Q(a, H))) = (Z® Z/(n — 1)Z, (0, 1), Z).

Moreover, since all Q(a, H) are Kirchberg algebras in the UCT class, they
are classifiable by K-theory.

In a future work, we hope to be able to compute the K-theory of Q(a, H)
using the following strategy (see [5, Remark 3.16]). Since Cy(2) x N is stably
isomorphic to the Bunce-Deddens algebra C'(A)xZ, its K-theory is well-known,
in fact

(5.1) (Ko(C(A) x Z), [1], K1 (C(A) x 2))) = (N#,1,Z).
As H is a free abelian group, we can apply the Pimsner-Voiculescu six-
term exact sequence iteratively by adding the action of one generator of H

at a time. For this to work out, we will need to apply Theorem 4.1 and use
homotopy arguments with R to compute the action of H on the K-groups.

Remark 5.15. 1t is possible to compute the topological K-theory (in terms
of complex vector bundles) of the solenoids by applying (5.1):

K(C(A) 1 Z) = Ki(Co() x N) 2 Ki(Co(R) x N¥)
Cor.5.1 —~ ~_ Thom — .~
=~ Ki(C(N*)xR) = K (C(N*) =Kl J(NY).

That is, if IV is any subgroup of Q, then

Lo Jzoiti=o0
K“)p(N):{N ifi=1

5.1. The ring structure of (2

THEOREM 5.16 (E. Herman, see [18, 12.3.35]). The a-adic numbers 2 can
be given the structure of a topological (commutative) ring with multiplication
inherited from N C Q if and only if

(5.2) N=|Jhnz <:ZH%:pEP}]).

hes
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Again, by the a-adic duality theorem (Theorem 4.1) and Zhang’s di-
chotomy (Remark 4.2):

COROLLARY 5.17. For every sequence a, there is a sequence b such that
QO is a ring and Q(a, H) = Q(b, H).

Warning: Q(b, H) is still not a ring algebra in the sense of [16].

Proof. Given a, we can find another sequence b such that S, = Sy, N} =
Ny and Q3 is a ring. More precisely, b can be constructed by setting A\, = Aq
and defining p, by pp(p) = 0o if p € Sy and pp(p) = 01if p ¢ S,. Then § is a
ring by Theorem 5.16. By Theorem 4.1 and Remark 4.2 (see also the comment
above) we have Q(a, H) = Q(b, H). [

LEMMA 5.18. If both Q, and Q are rings, then Q4 = Qy as topological
rings if and only if a ~ b.

Remark 5.19. Suppose 2 is a ring. Then € is an integral domain if and
only if there is a prime p such that a; is a power of p for all 7. In this case, 2
is actually the field Q,.

Finally, © is both a ring and self-dual precisely when A(p) = p(p) = 0

or oo for all primes p. In this case, €2 is completely determined by the set of
primes P.

Remark 5.20.SetL{p:{%ZEZ/I:n€S}:{UEL{:UCZ[{% :p €
P}]}. Then the open subgroup

R=7z[{{:peP}=J U
UelUp

in Q is the maximal open (and closed) ring contained in €. Indeed, by Theo-
rem 5.16, R is a ring contained in 2. Moreover, every open ring in {2 must be
of the form described in Lemma 1.1. We recall from Remark 2.14 that multipli-
cation with 1% € N in an open subgroup of €2 is well-defined only if it contains
Z[%] and continuous only if p € P. Hence, every open ring in {2 must be a
subring of R.

Furthermore, every automorphism of € is completely determined by its
value at 1. Hence, Aut (£2) is the subgroup of the multiplicative group R* of
R consisting of all z € R* that has a “unique inverse” in Q. To illustrate what
this means, consider Example 1.6 again and let

z=(..,0,1,1,0,1,0,1,...),

where the first nonzero entry is g, and let y be given by y_1 =1 and y; =0

else. In this case R = Z[%] and 3 € R*, 2 € R* and 3z = 1. However, since
3y =1 as well, 3 ¢ Aut (Q2)
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Following the notation of Remark 2.14, {+r : r € (PUQ)} is a subgroup
of Aut (Q).

APPENDIX A. CUNTZ-LI'S “SUBGROUP OF DUAL GROUP THEOREM”

Our aim in this appendix is to show that [5, Lemma 4.3] is a special case of
the following result about coactions, which is probably folklore. First, observe
that if ¢ : H — G is a continuous homomorphism of locally compact groups,
then lt o ¢ : H — Aut Cy(G) is an action of H on Cy(G) and id @ my 0 6y is a
coaction of G on C*(H), where

g : C*(H) = M(C*(G))

is the integrated form of ¢. The only property of coactions that is perhaps not
obvious is injectivity, but this follows by computing that

id®7T1G Oid®7l’¢ ody = id®7TlH ody = idc*(H),
where 1g denotes the trivial character of G and 7, : C*(G) — C denotes the
integrated form (and similarly for 7y, ).

THEOREM A.1l. Let ¢ : H — G be a continuous homomorphism of locally
compact groups, and let
e=ltogp and 0=id®myody

be the associated action of H on Co(G) and coaction of G on C*(H), respec-
tively. Then there is an isomorphism

Co(G) % H —2= C*(H) %5 G
such that B B
QOiC[)(G) :jG and OOiH :jC*(H)-
Proof. Tt suffices to show that, given nondegenerate homomorphisms
w:Co(G) - M(D) and w:C*(H)— M(D),

the pair (u,7) is covariant for the action (Co(G), H,€) if and only if the pair
(m, ) is covariant for the coaction (C*(H),G,d). First assume that (u,n) is

covariant, i.e.
poe =Admopn forte H.
We must show that for ¢ € H we have

Adp @id(wg)(Tr ® 1) = 7 ®@id 0 §(¢),
where wg € Cbﬁ(G,M(C*(G))) = M(Cy(G) ® C*(G)) denotes the canonical

embedding of G into UM (C*(G)) (and “Cbﬁ” denotes norm-bounded functions
that are strictly continuous), or equivalently

pRid(wg) (T ®@1) =1 ®id o (t)p ® id(wg).
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Since the slice maps id ® h for h in the Fourier-Stieltjes algebra B(G)
separate points in M (D ® C*(@)), it suffices to compute that

id®@h(p@id(we) (T ®1)) =id® ho p®id(we)T
= :u(h>ﬁtv

while

id@h(r®idod(t)p®@id(we)) =id @ h((T: ® ¢(t))p ® id(we))

=T id ® h(u ®@id(g-1 ® id(wG))>

= ﬁt MO €—1 (m(wG))
=7 Ad 7,1 0 pu(h)

Conversely, assuming that (7, 1) is a covariant homomorphism of the coac-
tion (C*(H), G, ), we can use much of the above computation, but now with
w in the Fourier algebra A(G), getting (after replacing t by t~1)

po€(w) = Adm(t) o p(w),

which implies that (u,7) is covariant for the action (Co(G), H, €) because A(G)
is dense in Cy(G). O

Now we want to make the connection with Cuntz-Li’s “subgroup of dual

group theorem” [5, Lemma 4.3]. So, suppose G is abelian. We will want to
work with the dual group of G, and to make the closest connection with [5] it
will be better, for Corollary 5.1 only, to switch the roles of G and G: so after
this switch we have a continuous homomorphism ¢ : H — G. Actually, for the
Cuntz-Li theorem ¢ will be injective, and in [5] H is identified with its image
in G.

Remark A.2. There is a small difference between Corollary 5.1 and [5,
Lemma 4.3|: we require H to have a stronger topology than it inherits from @,
while [5] only requires the topology to make it a locally compact group such
that the above p and v are continuous actions of G and H on the C*-algebras
C*(H) and C*(G), respectively. As Cuntz and Li mention in [5], they are
interested in the case where the topology on H is discrete, so our formulation
of the result is sufficient for their purposes.
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To prepare for the formulation of the “subgroup of dual group theorem?”,
we briefly recall a bit of the theory of noncommutative duality from [7, Ap-
pendix A|. By [7, Example A.23] there is a bijective correspondence between
coactions of G and actions of G: given a coaction § of G on a C* algebra A,
the associated action p of G is given by

pe(a) =1id @ F*(ez) 0 9,

where e, € Cp(G)" is evaluation at x and F = Fg : C*((A}) — Cy(G) is the
Fourier transform, with dual map F*. Warning: in [7, Example A.23| the
convention for the Fourier transform is that F(x)(z) = x(z) for y € G and
z € G; consequently, F* (ey) coincides with the function in the Fourier-Stieltjes
algebra B(G) = C*(G)* given by the character x of G. As explained in [7,
Section A.5], the covariant representations of the coaction (A,G,d) and the
action (A4, G, ) are the same modulo the isomorphism Fg : C*(G) — Co(G),
so there is an isomorphism

o

T ANgG—)ANNG

such that
Toja=1i4 and Toj@:igo]:él.

COROLARRY A.3 ([5, Lemma 43]). Let G be a locally compact abelian
group, and let H be a subgroup of the dual group G. Let H have a topology,
stronger than the one it inherits from @, that makes it a locally compact group.
Then there are actions v of H on C*(G) and p of G on C*(H), given by

(5.3) v(g)(x) =t(z)g(z) forte H, g€ C.(G) C C*(G), and z € G,
and

(5.4)  p(f)(t) =t(x)f(t) forzeG, feC.(H)C C*(H), andt € H,

respectively.
Moreover there 1s an isomorphism

o: C*(G) %, H = C*(H) %, G
such that for g € Co(G) and f € C.(H) the image o(ic=(q)(9)in(f)) coincides
with the element of
Ce(G,Ce(H)) C Ce(G, C7(H))
given by
o(ic=(c)(9)in(f)) (@) (t) = t(x)g(x)f(?)-

Proof. This will follow quickly from Theorem 5.1 and the above facts
relating coactions and actions, modulo one extra step: we will need to compose
with the inverse in both H and G to get the actions in the precise form of
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the statement of the corollary. We do this in order to get as close as possible
to Cuntz-Li’s “subgroup of dual group theorem”, and this extra adjustment is
necessitated by our nonstandard convention for the Fourier transform.

The hypotheses tell us that, in the notation of Theorem 5.1 (but again
with G replaced by @), the homomorphism ¢ : H — G is the inclusion map,
so the action € of H on Co(é) is just the restriction of 1t to H. The Fourier
transform

Fil:Co(G) = C* (@)

transforms the action € to an action 7 of H on C*(G). We compute that for ¢ €
H the automorphism 7, of C*(@G) is the integrated form of the homomorphism
Vi : G — M(C*(G)) given by

Vi(z) = Floe o Faln) = F5' (15(7).?@(.%‘)) = t(z)z.

Thus, for g € C.(G) C C*(G) we have

mmzémwm@wz/mwmnm,

G
SO

vi(g)(x) = t(z)g(x).
On the other hand, we can let i be the action of G on C*(H) correspond-
ing to the coaction & of G. Then for # € G the automorphism fi, of C* (H) is
the integrated form of the homomorphism U, : H — M(C*(H)) given by

U(t) =id ® Fi(ea) 0 0(t) = id @ Fj(ea)(t @ 1)
= F5(ea)(t)t = t(2)t.
Thus, for f € C.(H) C C*(H) we have
fia(f)(t) = () f(t).

We now compose with the inverse in both H and G to get actions v of H
on C*(G) and p of G on C*(H) as in (5.3) and (5.4), respectively.
Finally, for g € C.(G) and f € C.(H) we have

o (ic=)(9)iu(f)) = ia(9)icm)(f)
= | s@ic(eyic-uny( o

—Aﬂ@%mMMUWd@M
=£gmm@wmumd@m,
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s0 0 (icw(c)(9)in(f)) coincides with the element of Ce(G, Ce(H)) given by
o (icc)(9)in () (x) = g(@)pa(f),

and evaluating this function at ¢t € H gives

o (ic)(9)in(f))(2)(t) = g(a)ua (f)(t) = t(x)g(x) f(t). O
Now we will present a third version of the “subgroup of dual group theo-
rem”. In contrast to the Cuntz-Li version, which involves actions on the group
C*-algebras of G and H, for our purposes it will be more convenient to have a
version of Theorem 5.1 with actions on the Cy-functions on both sides. Also,
we will now switch the roles of G and G back, and we will not require H to
embed injectively into G:

COROLARRY A4. Let ¢ : H — G be a continuous homomorphism of
locally compact abelian groups, with dual homomorphism

6:G— H.
Let

e=ltogp and kK=rtog

be the associated actions of H on Co(G) and G on Co(H), respectively, Then
there is an isomorphism

(5.5) Co(G) xe H—L= Co(H) x,, G
such that
T O iCo(G) = l@ O‘/'—‘E1 and Toig = iCo(fI) oFy.
Proof. From Theorem 5.1 we have a coaction ¢ of G on C*(H) and an

isomorphism

(5.6) 0:Co(G) x. H— C*(H) x5 G

such that

QOiCO(G) = jG and 6 ol = ]C*(H)

As we explained above Corollary 5.1, the coaction § of G corresponds to
an action of G on C*(H). We used this in Corollary 5.1, but there were a
couple of differences between the contexts there and here, so to avoid confusion
we do the computation anew, with fresh notation: we denote the associated
action by k%, and compute that for y € G the automorphism /{?( of C*(H) is
the integrated form of the homomorphism R, : H — M (C*(H)) given by

R\ (t) = (id ®}—5(€x)) 0 d(t)
= (id ® F&(ey)) (t @ o(2))
= x(o(t)t,
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so that for f € C.(H) C C*(H) we have
Ry () = (xo 9)f.

Now, due to our convention regarding the Fourier transform, for ¢ € H
and f € C.(H) we have

Fu(Cf) =rt¢ o Fu(f).

Thus, the isomorphism Fp : C*(H) — Co(H) carries the action £° to an
action k! of G on Co(H) given by

b (Fr(f) = Fu(s(f))
=Fu((xeo)f)
= rtxoqb(fH(f));

so that k! is given on g € Co(H) by

1
ki (9) =185, (9)
and hence, k! agrees with the action x = rt o gg defined in the statement of the
corollary.

Now we trace the effects of the various transformations as we convert the
isomorphism 6 of (5.6) to the isomorphism 7 of (5.5): we have

_ .C*(H) —1
= (-FH X OZ@ O‘Fé’
_ .Co(H) 1
=tig ot

and

7y O.FH O
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