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In this paper, we give some sufficient conditions which guarantee practical uni-
form exponential stability of nonlinear time-varying cascade systems using the
Lyapunov functional method. In this way, we extend some existing results under
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1. INTRODUCTION

In this paper, we study the practical stability of nonlinear time-varying
system of the form

(1.1) 1 = filt,x1) + g(t, z)z2,
(1.2) Ty = fa(t,x2),

where z1 € R, 29 € R™, and x := col(x1,x2). The function fi, fo and g
are continuous, locally Lipschitz in x uniformly in ¢, and f; is continuously
differentiable in both arguments.

For related works in the autonomous case, see the papers |17, 18] by
Sontag and further bibliography cited therein. See also [6, 12-15, 19]. In
particular, Sontag showed that the input to state stability (ISS) is closed under
composition. It is also worth noticing that Jiang et al. |5, 8, 9] generalized the
concept of the ISS to the concept of input to state to practical stability (ISPS).

Recently, Chaillet and Loria in [2| and [3] studied the uniform semi-global
practical asymptotic stability of the cascade system under some hypotheses. In
[1] Benabdallah et al. investigated global practical uniform exponential stability
of such dynamical systems by using a known result by Corless which appeared
in [4]. Some good results related to the subject have been obtained, see [1-19].

The purpose of this paper is to establish sufficient conditions for the prac-
tical exponential stability of a class of nonlinear nonautonomous systems. In
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the spirit of a result of [4], we develop the practical exponential stability with
more general assumptions. We obtain a new theorem with more general com-
parable conditions which will allow us to generalize some results by Benabdal-
lah et al. [1].

This paper is organized as follows. First in Section 2, we give some def-
initions and results about practical uniform exponential stability. Then, in
Section 3, after giving some sufficient conditions to guarantee that a nonlinear
time-varying is practically uniformly exponentially stable system:

(1.3) &y = fi(t, z1),

we introduce suitable conditions on function g(¢,x) and we show that if both
systems (1.2) and (1.3) are practically uniformly exponentially stable, then
(1.1)—(1.2) is practically uniformly exponentially stable.

2. PRELIMINARIES

We consider the following system

(2.1) x(t) = f(t, x(t)), x(to) = o
where ¢t € Ry and « € R". We denote by

B, ={x eR":|z|| <r},and B" = {x € R": ||z| > r}.

2.1. Exponential Convergence to a Ball

Definition 2.1. The system (2.1) is (globally, uniformly) exponentially
convergent to B, (or B, is globally uniformly exponentially stable) iff there
exists ¢ > 0 with the property that, for any initial conditions tg € R and
zo € R", there exists C(xg) > 0 such that, if z(.) : Ry — R" is any solution of
(2.1) with z(t9) = xo, then

(2.2) |lz(@®)|| <7+ C(zo)exp|—a(t — to)] for all t > t.

System (2.1) is globally practically uniformly exponentially stable
(G.U.P.A.S.) if there exists » > 0 such that B, is globally uniformly expo-
nentially stable.

Note that (2.2) implies that
|lz(@®)|| <7+ C(zg) for all t > to.

Hence, the solutions of (2.1) are bounded and can be extended indefinitely.
In the above definition, a is called an exponential rate of convergence; the
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number 7 is called an asymptotic (norm). If the system (2.1) satisfies the
conditions of the above definition with limo C(xg) = 0, then the system is said
To—r

to be (globally, uniformly) exponentially stable to within B,. If, in addition,
r = 0, then the system is exponentially stable about zero.

2.2. Comparison principle

Quite often when we study the equation & = f(t,x) we need to compute
bounds on the solution x(¢) without computing the solution it self. The com-
paraison lemma is one tool that can be used toward that goal. It applies to
a situation where the derivative of scalar differentiable function V() satisfies
inequality of the form V'(t) < f(t,V(t)) for all ¢ in certain interval.

LEMMA 2.2. Let V(t) a continuous function whose derivative V (t) satisfies
the differential inequality

V(t) < —a(t)V(t) + b(t),

where a and b are continuous functions. Then

t
V() <e”DV(ty) + / e )p(s)ds,

to

where o(t) = — ftto a(s)ds.

3. MAIN RESULTS
3.1. Practical exponential stability of nonautonomous systems

We present in this section our contribution. Our first theorem gives suf-
ficient conditions for convergence exponential of B,. We start this section by
giving a result from [4] on the exponential stability of (2.1), with the existence
of a uniform Lyapunov function.

Condition 3.1. There exists a continuously differentiable function V :
Ry x R® — R and scalars ¢y, co > 0 which satisfy

o ||z]* <Vt 2) < eaf|z))?,
for all z € R", such that, for some scalars c3 > 0 and &k >0

V(t,z) > k= V(t,z) < —2c3(V(t,x) — k).
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THEOREM 3.2 ([4]). Suppose that the system (2.1) satisfies Condition 3.1.
Then (2.1) is exponentially convergent to B, with rate c3, where
0 Zf V(to,ﬂ?o) < ka
c(zo) = V(to, o) — k

C1

if V(tg, SUQ) > k‘,

| k
with p = | —. Also, (2.1) is exponentially stable to within B,,.
1
In the theorem below, we give sufficient conditions for the exponential
stability of (2.1) with a more general Lyapunov-like function.

Condition 3.3. There exists a continuously differentiable function V :
Ry x R® — R and scalars ¢y, ¢o, c3,p, q, 7, k > 0 which satisfy

(3.1) ct[[z]]” <V (t,2) < cafl]|?,
(3.2) V(t,a) < —esp(|l]|” = k),
1
Bs if p>q where d = <02>p q,
forallz e W = a/
. c1\P¢
B" if p<qwheren:<> .
C2

THEOREM 3.4. Suppose that the system (2.1) satisfies condition 3.3. Then,

(2.1) is exponentially convergent to B,, where
1

62 E .
<> if p>q,
c1
keo ‘
— <qg<rm,
p pp—— f p<q<r
k)7, V(to, .
ij/mam{@( )c (fo, o)} if p<qandq>r.
1

Proof. We first prove that the solutions are bounded. Then, we prove the
exponentially stability of B,.

a) Boundedness of solutions. We distinguish three cases of the behavior
of V.

(1) IfV(t) <0, since V is a positive definite function, then V is a decreasing
function. Hence, V is necessarily bounded and from (3.1) we have
V(to, .To)

B < | —————.
l=(e)] < {2
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(2) If V(t) > 0, from Condition 3.3 it follows that
|lz(t)]| < V.

(3) If V is oscillatory, there exists (tn)n>0, tn > 0 and lim ¢, = 400

n—+o0o
such that V(t,) = 0. Without loss of generality we assume that for
t € [tn;tny1] we have V(t) > 0 which implies that ||z(t)|| < Vk. For
t € [tpy1;tnyo] we have V(t) < 0 implies that V(t) < V(t,41). Hence,

=)l < VE.

b) Practical exponential stability of solutions. If p > ¢, from (3.1) we get
2] [e1 [|l=][P~ = e2] < 0.

Hence,
1

Jall < () _s,
C1

lz()]| < p+ c(ag)e 2,
with p = d and c(zg) = 0.
If p < q, from (3.1) we have

witch implies that

1

|z||” [er — e |l2[|T77] < 0= ||| > <2> o
Using (3.2), we treat two cases:

1) For r > ¢ : we have

V(t,z) < —esp([l||? |l=]|"™ — k), for||z]| = n,

then
V(t,z) < —eap(n|z]|” = k)
r—q
< _6377 p(V(th)_K)a
C2
CQk
such that K = p—t We conclude by Theorem 3.2 that
n

lz(®)]l < p+ elag)e ),

K r—q t - K
where p={/— , a = il , and c(zg) = i)/(V( 0; Z0) )

C1 C2 C1
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2) For r < g : we have
V(t,x) < max{es (k)7 , V(to, 20)},

then
||.1‘(t)“ <p+ C(xo)e“)‘(t—to)’

9
with p = iJ/maX{CQ (k)r,V(to, o)} and ¢(zg) =0. O
C1

THEOREM 3.5. Suppose that the system (2.1) satisfies condition 3.3 with
p=q=rand W = R". Then, (2.1) is globally exponentially convergent to

Bp, where
kCQ
p= </ -
C1

Proof. Our proof starts with the observation that using condition 3.3

we get

V(t,z) = 8fv+a%f(t7x>

IN N
4
(o)
w
€<
= T
==
8
S~—
| =
X
Q
N

We conclude by Theorem 3.2 that
—Sp(t—to)
V(t, l‘) < ke + (V(t07$0) — ]{362)6 €2 .
Since for all a, b >0 and p>1,
(a+b)7 <av+bv,

then
|z (t)]] < p + c(age"),
k
with p = ﬂy o= 97 and
c1 C2
0 if V(to,l‘o) < keo,
c(xo) = -
( 0) (/(V(to, 1’0) ]4302) if V(to,l'o) > keg. O
C1

3.2. Practical exponential stability of cascade systems

In this section, we give sufficient conditions that guarantee the practical
uniform exponential stability of system (1.1)-(1.2). We start this section by
giving a result from [1] on the practical exponential stability of nonlinear time-
varying cascade systems, with the existence of a uniform Lyapunov function.
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THEOREM 3.6 ([1]). If assumptions (H1) and (H2) below hold and the in-
terconnection term is bounded, i.e., there exists a constant M > 0 such that
llg(t,x)|| < M for all (t,x), then system (1.1)-(1.2) is practically globally uni-
formly exponentially stable.

H1) There exists a continuously differentiable function V; and some positive
numbers c1, co, c3, ¢4, and k; such that

cllzm|? < Vilt,z) < ez,

ovy  o0vy

R P < —

5 + 8x1fl(t’m1) < —c3Vi(t, z1) + K,
ovi
R < .
e Y

H2) There exists a continuously differentiable function V5 and some positive
numbers by, b, b3, and ks such that

b llwa)? < Va(t,wa) < by la2)?,
oVy OV,
— 4+ —fo(t,za) < —bsVa(t,x2) + ko.
5 8x2f2( 2) < 3Va(t, x) + ko

We propose in this part to state theorems generalizing Theorem 3.6.
Indeed, in Theorem 3.6 we assume that the term of interconnection verifies
llg(t,z)|| < M, there are therefore the upper boundedness of g(¢, ), whereas in
the following theorem we suppose that the perturbation term g(t,z) satisfies
the linear growth bound

(3.3) lg(t,z)|| <ellz| + M, for all t > 0,
where M is a positive constant and € > 0 .

THEOREM 3.7. If the assumptions (H1) and (H2) hold and the intercon-
nection term is bounded, i.e. there exists a constants M, € > 0 such that
lg(t,x)|| < ellz|| + M for all (t,x), then system (1.1)-(1.2) is practically uni-
formly exponentially stable.

Proof. The time derivative of Vi (¢, x) along the trajectories of (1.1)—(1.2) is

. 150% oV oV
Vi(t, o) = 87; + aTcifl(t’xl) + ——g(t, x)Ts

(9351
Using assumption (H1) and (3.3) we obtain

Vi(t,z1) < —esVi(t,z1) + ky + ca ||z || |22 (e ||=]| + M).
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From assumption (H2) @9 = fo(t, z2) is practically exponentially stable
by Theorem 3.2. Hence, there exists A such that ||z2| < A. Using ||z|| <
llz1|| + ||z2|| we obtain

Vito) < —esen ol + by + eade |2 + ead(eh + M) o

< —(czer — cade) [[z1]]? + car(eX + M) ||| + k.
¢ is chosen such that p; = c3c; — cahe > 0. Therefore, one obtains
Vilt,a1) < —p ||ml” + cad(eX + M) [z + Ky
—pir 1] + a0 21 |* = a6 21 |2 + cad(ed + M) ||| + ka
—p (1= 0) [[21]* = 8 |21 ]* + cad( @A + M) [|z1]| + ki,
car(ed + M)
w1t

VANVAN

where 0 < 6 < 1. If ||z1] > , then

1—-6 CaN(eEN+ M
M%(t, 21) + ki, V|ai] > M_

V; t,r1) < —
i{tm) < c1 pt
Setting W (t, z1,x2) = Vi(t,x1)+aVa(t, x2) where « is a positive constant.
The derivative of W along the trajectories of system (1.1)—(1.2) is

. . 6V1 8V1 8V 8‘/2 8V2 69@
W) = + —fi(t,z1) + g(t x)xe + a —— 5 + — s O

ot ox1 ox1 o)
Vl(t, a:l) + k1 + O((—b3V2(t7 xg) + kz)

m(1—0)
c1
1-6

—M1<C)V1(t, :Ul) — Ozb3V2(t, SUQ) + k1 + akg

1
pi(1—0)
c1

(/’Ll(l — 6)

C1
W(t) < —uW (t) + k1 + aks.

Hence, by Lemma 2.2, system (1.1)—(1.2) is practically uniformly expo-
nentially stable. [

IN

< — min( ,b3)W (t) + ki + aks.

Let 1 = min ,b3), it follows that

Remark 3.8. Note that Theorem 3.6 is a special case of Theorem 3.7 when
e=0.

For the proof of Theorem 3.10 below we will use the next lemma.

LEMMA 3.9. Let V be a positive definite and continuously differentiable
function defined such that

V(t) < —aV(t)+ BY V() +k,

where «, B, k are positives constants, and s > 1. Then V is bounded.
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Proof. Take
f(V)=—aV 4+ 8VV +k.
There are three possibilities for the behavior of V' (t).
Case 1) If V(t) < 0, since V is a positive definite function, then V is a
decreasing function. Hence, V is necessarily bounded.
—saV1™s + 8

Case 2) If V(t) > 0, in this case f(V) > 0 and f'(V) = I
sV=75

It is easy to see that

s

F(V)=0and f(V) = =2 <f) +k>0,

s—1

)= and f/(V) < 0 for V(¢) > V and lim f(V) = —oc.
V—+o00

Thus, there exists & > V such that f(¢) = 0. Consequently
f(V)>0 forall V(t)<E&.

Hence, V' is bounded.
Case 3) If V is oscillatory. There exists the sequence (t,)n>0 such that
tn, >0, and lim ¢, =400 with V(t,) =0, Vn. Without loss of generality,

n—-+00

where V = ( b
so

we suppose that on [t;tn41] : V(t) > 0, from case 2 there exists finite constant
&n > 0 such that V(t) < &, for all t € [tpi1;tnta).

Ift € [tpy1;tnaz) : V() <0and V(t) < V(tye1) < & so V(t) < &, for
all t € [ty; tny2], consequently , V(t) < sup,>g &, forallt > tp. O

THEOREM 3.10. If assumptions (H3) and (H4) below hold and the in-
terconnection term is bounded, i.e., there exists a constant M > 0 such that
llg(t,z)|| < M for all (t,z) , then system (1.1)-(1.2) is practically uniformly
exponentially stable.

H3) There exists a continuously differentiable function V; and some positive
numbers c1, co, €3, ¢4, k1, and p, g, r > 1 such that

allzilf < Vit x) < coflz|?,
ov;  ov;
A 0 < - T4k
oV
8701 cy ||zl -

H4) There exists a continuously differentiable function V5 and some positive
numbers by, by, b3, ko, and p, g, r > 1 such that

by l|lz2|P < Va(t,xo) < bo |29,
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e | Ve
8t 8%2

Proof. a) Boundedness of V.
Case 1) Ifp=gq=r

fa(t,z2) < —bs||za]l” + ko.

: ovy oV o,
ta) = G+ Gt + g et o

IN

—@mﬂ+m+ﬂﬁ s

< —eslla|]” + k1 +aaM ||$1|| [[z2]] -

From assumption (H4) we have that 29 = fo(¢, x2) is practically exponen-
tially stable. Hence, by Theorem 3.5, there exists A > 0 such that ||z2| < A
Then

Vl(t,.l‘l) S —?Vi(t,xl \ V1 t ZL’1
2
M
Take f(V1) = —aVi + B/ V1 + ky with a = ?, and 8 = c Ca. We conclude
2 v C1

by Lemma 3.9 (s = r) that V; is bounded.
Case 2) If p > ¢ Vi is bounded (see the proof of Theorem 3.4).
Case 3) If p < ¢, we have

1
co \ 1P
HxIH > <Cl> =,

. oV oV oV
Vit,z) = aTl + 5 1f 1t 1) +a—g(t )2

and

IN

~alall + b+ M | 2 o]

< —eslla|]” + ki A+ ca ||| ||z -

2
Since for all £ > 0, ||z1| |22 < (”9;15” + 2¢ ||lz2|?), we get
Vit 1) < —cg [l || + 2= H |IP +
We discuss two cases.
1) For r > g : we have
. . Cq f
_ T—q q p 2
Vi(t,z1) < —egn™ o ]|? + e 2|| || + ==+
c3n” 4 caM caM
< S Tyt + vt a) + éu)\2+k

2 2¢1&np—2
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c3n” 4 cuM caM§ o
< - — Val(t —— X"+ k.
s ) 201577p_2) ite) + 2 th
We choose £ such that
r—q M
e B > 0.
Co 2c16nP~2
It follows that
Vi(t,z1) < —BiVi(t, 1) + K,
where M g Me
C2C4 c3n C4 2
= — = K —— X+ k.
g ClcSHT_q+p_2, /81 202 ’ 1= +

We conclude by Lemma 2.2, that V] is bounded.
2) For r < ¢ : we have

Vi(t,z1) < —cs||l2al|” + k1 + cal |z | ||22]|

< —czllz1]|” + AeaM ||z || + ko
< el + S5 ol + ke
< =B ||zl + ki,
where By = c3 — ACT# and M is chosen such that o > 0. Hence, by

Theorem 3.4, V; is bounded.

b) Practical uniform exponential stability of system (1.1)—(1.2).

Set W (t,z1,z2) = Vi(t,z1) + aVa(t, z2) where « is a positive constant.
The derivative of W along the trajectories of system (1.1)—(1.2) is

. oV, oV, oV; 194% 5A%

Wit) = i+ g filtm) + 5t )z +a(E + 52 falt )
< —czal + k1 + caM ||z || |zl + co(—bs [|z2]|" + k2)
< —b’uslH + k1 — abz ||lz2" +a’f2
< —,u1V1 (t,x1) + k1 — oeugVQ (t, z2) + ko,

b
where 3 = min(f1, B2,¢3), p1 = ﬁi and o = —i We remark that
¢ by

W(t) < — i Vilt,o1) — aps Va(t,x2) + pur (Vi(t,a1) — Vi° (t, 1))

+ O[,LLQ(‘/Q(t, Ig) - Vza (t, .TQ)) + ]{21 + Ozk:g.
Let p = min(ug, u2), we obtain

W (t) < —puW ()4 (Vit, 1) =V (t, 21)) +oua(Va(t, x2) =V (¢, 22))+ki+aks.
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The boundedness of Vi and V5 implies that there exists k3 > 0 such that
i (Vi(t,z1) = V2 (t,21)) + ape(Va(t, x2) — Vil (t,22)) < ks,

thus, W(t) < *MW(t) + k1 + aks + k3.

By Lemma 2.2, system (1.1)-(1.2) is practically uniformly exponentially
stable. [

Remark 3.11. We can give a different proof of the boundedness of V; for

p=q=r>1. Indeed
. ovy o

A%
Vi(t = — 4+ —f —g(t
1( >$1) ot + 8$1f1( ,$1)+ axlg( 733)'%'2
< —csllaall” + o+ ea | [l
< —c3 ||$1||T + cg M A ||£L‘1H + k1
< —esllen]”+ Bes [laa]” — bes o]+ cadIA ]| + by
_ ] AeaM

< —a(l=0) ol +h, Ve > Y5

where 0 < 6 < 1. We conclude by Theorem 3.5, that V7 is bounded.

The example below illustrates our results.
Ezample. Consider the system

7
1 3 xd 2 1
) 1 —x7
(3.4) nET TS T e™
3 1
Zo = —x5 +2e "2
In this case, 7
1 2 r} 2
t frng 2 1 -y
3 ;s
fo(t,za) = —x3 +2e 2,
1
tr) = —.
Set Vi(t,x1) = xli and Va(t, z2) = z3.
Verification of assumption H3). We have
5 3
ol < Vit z1) < [l
7
oVy oV 5 1 3 xiz .2
- - _ = t < _ 4 (2 R J)l
ot +ax1f1(7x1) — 4.',5'1( 4x1+1+x%€ )
< —pad 4 2Tl 42
——zx - < —— = -
= 16t e et T
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5 7 5 5 5
1t p 4’ q , T 4761 , C2 y C3 16’ Cq 47k1 4 and
|21l = 1 =n.

Verification of assumption H4). We have

NN GV

5 3
[zall < Va(t, w2) < |lz2]

Ot Mot < Seb(af 42
L
S 4$2—|-2
< =2 agllt + 2,
4 2
Withp:;q:g,rzg,bl:1,b2:1,b322,04:;1{2:;&1@

lx1]| > 1 = n. Therefore, we can apply Theorem 3.10 to prove that system
(3.4) is practically uniformly exponentially stable.

THEOREM 3.12. If assumptions (H3) and (H4) hold and the intercon-
nection term is bounded, i.e., there exists a constants M,e > 0 such that
llg(t,z)|| < ellz||+ M for all (t,x), then system (1.1)-(1.2) is practically uni-
formly exponentially stable.

Proof. a) Boundedness of Vi:

1) If p=gq=r>2, we have

. ovy oV, oy
Vi(t @) = 8t1 lfl(t 16‘1)4'879@ )2
§<wﬂmH+kﬁwMMMWﬂ@Wﬂ+M)
< —esllen]l” + ka + eallen] ozl (e laall + ¢ o2l + M)
< —esllan]” + ka - eallo ]| a2ll (e ] + X + M)
< —esllen]” + by + ea(ed+ M) | 1z + cah o |
ca(eEA+ M
< eyl + S 2 a4 4
A+ M
where A = 04(624_))\2 + k1. For 0 < 8 < 1, we obtain
: 3caeN + ca M
Vilt,rn) < —esllml” +esbllen]” = esb | + 5= | |* + A
3cqed + eaM
< —ea(1 =) anll” — s [l | + g [l |* + 4,

SO

' 3ciEN M
mmxns%umme+AvVWN>Tﬁ[%3:f4'
3
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From Theorem 3.5 V; is bounded.
2) If p < ¢, we have

. ovy oV ovi
Vilta) = 55+ 5 faltswn) + 5 gt o)
< el o+ el ol el + )
< —clle1|" + k1 + caleh + M) [z |22 + cagh [l |
- ca(eA+ M caleEA+ M
< eyl +hy+ AEAFID o 2 AL 12 e

for r > ¢ > 2, we have
ca(eX+ M) 046)\

k) < ~(ea = LI~ S o+ 4.
If € is chosen such that
c4(3eX+ M
p1=c3— 4(2777,_2) >0,

then by Theorem 3.4, V; is bounded.

b) Practical uniform exponential stability of system (1.1)—(1.2):

Set W (t,z1,z2) = Vi(t,z1) + aVa(t, x2) where « is a positive constant.
The derivative of W along the trajectories of system (1.1)—(1.2) is

. ovi 3V1 ovi oV 9V,
t) = t —q(t —= t
W) = 20 O e+ Ot vms + a2 + O ot m2)
< - Hale + ki + ca(e [zl + M) |1 [[22]] + (b3 |zl + k2)
< =Bllz||" + A= abs ||z2||” + ko
< _Mlvla(t7$1) _aMQVYQE(tv'rQ) +B7
b
with 8 = min(f,c3), p1 = ﬁz, M2 = % and B = A+ aky. By the same
C3 by

procedure of the previous theorem we obtain

W(t) < —puW + i (Vi(t,21) — Vi (t,21)) + app(Va(t, z2) — V5! (t,22)) + B.

The boundedness of V7 and V5 implies that there exists a finite constant
C' such that

pr(Vi(t, 21) — Vi (t, 1)) + apa(Va(t, 22) — Vi (t,22)) + B < C.

Hence,
W(t) < —uW(t) + C.
By Lemma 2.2, system (1.1)—(1.2) is practically uniformly exponentially
stable. [
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Ezxample. Consider the system
15

. 1 g+4a:186_2t+(10 Spe? 1)
1 =—=x =)z
(3.5) P79 T 91+ a?) 1+ 12 572
5 .8
To = —x5 + —e 2
In this case,
¥ L
1 3 4dxfPe 2
t — _ 2 1
filt, 1) 9" T o0y ad)
517 .
f?(t7$2) - *2722 + 56_3&87
(t.2) 1073ze %" 1
r) =
g 1+ 5
9 9
Set Vi(t,z1) = z{ and Va(t, 22) = 5.
Verification of assumption H3): We have
9
lzills < Vat,a) <l )
L 1
ovy oy 9 1 1 3 4x186 2t
e s t < 8 2
o T am 1@ = gEigEi o)
sor 5 <=5 el ¥+ 5
—= — < —|z —.
= g7t 2= gl 2
| ”Withp—g,q—Q,r—i},cl1,02—1,03—é,04—g,k1—2and
z1||=>1=mn.
Verification of assumption H4): We have
9
lz2l|® < Valt,x2) < |lz2|?
oV 8V2 9 1 3 17 __%
r fZ(t x1) < émg(—xé" T5¢ )
9 2 17 17
< —gof +g<—lml¥ + 3.

With p=g ¢=2r=7% b =1b=10b=gk =7y ad
2] =1 =n.

We have also ||g(t,z)|| <e ||z || +M where M = - < ——— = — and
e=10"%"2

Therefore, we can apply Theorem 3.12 to prove that system (3.5) is prac-
tically uniformly exponentially stable.
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