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Recently, special attention has been paid to the theory of quasiidentities
developed by A.I. Mal'cev in the '60s of the past century, due to the fact that it
has various relations with the mathematical logic, theory of lattices and com-
puter programming. For the latter areas the following problem is of particular
importance: when has a given algebraic system with a �nite signature a �-
nite basis of quasiidentities? The importance of this problem is also mentioned
for theoretical programming by R. McKenzie in the summary of his work [1].
Currently the problem of the �nite basis is solved for �nite groups (A. Iu. Olis-
hanski [2]), �nite associative rings (V.P. Belkin [3]), �nitely generated Moufang
commutative loop and �nitely generated nilpotent Moufang loop (V.I. Ursu
[4, 5]). W. Dziobiak [6] extended the condition of the need for V.P. Belkin's
result in the case of �nite non-associative rings.

This paper proves that a �nitely generated nilpotent A-loop has a �nite
basis of quasiidentities if and only if it is a �nite Abelian group. Moreover, if
a �nite nilpotent A-loop is not commutative or associative, it has no basis of
quasiidentities from a �nite number of variables. On the basis of this result we
found that the lattice of all subquasivarieties of the quasivariety generated by
a �nitely generated nilpotent A-loop is �nite or continuum.

By loop we mean an algebra L with an operation of multiplication · and
two operations of division /, \, where there is an element e ∈ L, that for any
elements x, y ∈ L the following equalities hold true:
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ex = xe = x; (xy)/y = y\(yx) = (x/y)y = y(y\x) = x.

Further in this paper, the element e will represent a unit element of the
loop and x−1 = e/x.

Let L be a certain loop and H its subloop. H is called a normal subloop

in L, if for any x, y ∈ L the following equalities hold true

x ·H = H · x, x · yH = xy ·H, Hx · y = H · xy.

The set

Z(L) = {a ∈ L | ax · y = a · xy, x · ya = xy · a, ax = xa for any x, y ∈ L}

is called the centre of the loop L. It is easy to note that the centre Z(L) is a
normal subloop in the loop L.

Let a be a certain element of the loop L. The left and right translations
La and Ra are de�ned by the equalities

xLa = ax, xRa = xa; x ∈ L.

The group M(L), generated by all translations with the form La and Ra,
a ∈ L, is called multiplicative group of the loop L. The element α ∈ M(L)
is called an internal substitution, if eα = e, i.e. α applies the unit e of the
loop L on itself. All internal substitutions of the loop L form a subgroup in
M(L), called the group of internal substitutions of the loop L, which will be
denoted by J(L). It is known (see [7]) that the group J(L) is generated by all
substitutions of the form

Rx,y = RxRyR
−1
xy , Lx,y = LyLxL

−1
xy , Tx = RxL

−1
x (x, y ∈ L).

The subloop H of the loop L is normal when and only when Hα = H
for any α ∈ J(L) (see [7, 8]). If all internal substitutions of the loop L are
automorphisms, then L is called À-loop [7, 9].

Let

L0 ⊇ L1 ⊇ . . . ⊇ Ln ⊇ . . .

be the central descendant range of the loop L, i.e. L0 = L, and for any n > 0,
Ln/Ln+1 is the subloop from the centre of the factor loop L/Ln+1. The loop
L is called nilpotent (or centrally nilpotent) if there is such a natural number
n that Ln = {e}. The least natural number n for which Ln = {e} is called the
class of nilpotence of L.
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Let L be a nilpotent A-loop of class 2 and x, y and z elements from L.
The element (x, y, z)x\((xy ·z)/(yz)) is called the associator of the elements x,
y, z ∈ L; the element [x, y] = x/(y/xy) is called the commutator of elements
x, y ∈ L. The subloop of the loop L, generated by the set

{[x, y], (x, y, z) | x, y, z ∈ L}

is called the commutator of the A-loop L and will be denoted by L′.
For any loop L with the symbol Φ(L) we will mark the Frattini subloop

of the loop L, i.e. the intersection of all maximal subloops of the loop L [8].
We also remind that if L is a di-associative (i.e. any of its two elements

generate a group) and commutative A-loop, then L is a Moufang loop. [10].
According to [11] in any nilpotent A-loop of class 2 the following identities

hold true

[x · y, z] = [x, z] · [y, z],

[x, y · z] = [x, y] · [x, z],

(x, y, z) = (y, x, z) · (x, z, y),

(x, y, x) = e,

(x · y, z, t) = (x, z, t) · (y, z, t),

(x, y · z, t) = (x, y, t) · (x, z, t),

(x, y, z · t) = (x, y, z) · (x, y, t),

which will be used further by default.
For any class K of A-loops, we denote by P (K) the class of all Cartesian

products of loops from K, by S(K) we denote the class of all subloops of the
loops from K and by H(K) � the class of all homomorphic images of the loops
from the class K.

The smallest quasivariety (respectively, variety) generated by A-loop L is
called quasivariety (respectively, variety) generated by A-loop L and is denoted
by Q(L) (respectively, V (L)).

It is said that the quasiidentities (respectively, identities) of the loop L
have a �nite basis if there is a �nite subset Σ of quasiidentities (respectively,
identities) of the signature of the loop so that if a in a loop B, any formula
from Σ, holds true, then B belongs to the quasivariety (respectively, variety)
generated by loop L.
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Let A and B be two A-loops, a ∈ Z(A) and b ∈ Z(B) � elements of the
same order. We will denote the factor-loop A × B/lp(a/b) by A × B(a = b).
It is easy to note that there are canonical isomorphisms of inclusion ϕ : A →
A×B(a = b) and ψ : B → A×B(a = b) so that

A×B(a = b) = Aϕ ·Bψ, Aϕ ∩Bψ = lp(aϕ),

In this case, we will consider A and Aϕ, B and Bψ the same loops and
instead of A×B(a = b) we will write AB.

Theorem. The quasiidentities of the �nitely generated nilpotent A-loop

have a �nite basis of quasiidentities if and only if it is a �nite Abelian group.

Proof. Indeed, if L is a �nite Abelian group, then according to Birkho�
Theorem [12] the variety V (L) = HSP (I(L)), where I(L) is the class of all
loops isomorphic to L. Any cyclic group C ∈ SP (I(L)) is �nite and therefore
any of its homomorphic images is isomorphic to one of its subgroups. There-
fore, all cyclic groups from V (L) belong to the quasivariety Q(L). Now if L is
a �nitely generated group from V (L), then L is �nite and (according to The-
orem 8.1.2 from [13]) L = L1 · . . . · Lm is a direct product of cyclic subgroups
Li, i = 1, . . ., m. As Li ∈ Q(L), i = 1, . . ., m, we have L ∈ Q(L). There-
fore Q(L) = V (L). Hence, the quasiidentities of L have a �nite basis and it
coincides with the �nite basis of the true quasiidentities in the �nite abelian
group L.

Conversely, let L be a �nitely generated nilpotent loop, whose quasiiden-
tities have a �nite basis. According to [11], the nilpotent A-loop is mono-
associative and the periodical nilpotent A-loop is locally �nite. Therefore, if
we suppose that L is not �nite, then L contains a cyclically in�nite group.

According to Theorem 2.6 [11], the loop L satis�es the condition of max-
imality for subloops and, thus, the total number of prime numbers p for which
L contains a p-cyclical group is �nite. This, in line with [14], means that the
quasiidentities, which hold true in L, have an in�nite and independent basis
of quasiidentities - contradiction with the hypothesis. Hence, the nilpotent A-
loop L is �nite. Suppose that L is non-associative or non-commutative. Then
L contains a non-associative or non-commutative p-subloop H. Suppose the
A-loop H is di-associative. If H is commutative, then, according to [10], H is
a Moufang loop; if, though, it is not commutative, then we can consider H as
generated by two elements, hence, a non-commutative p-group. In this case,
according to [4] and [2] respectively, it results that the quasiidentities of the
�nite loop L do not have a �nite basis - contradiction. Suppose now that the
subloop H is not di-associative and exp(H) = pα. Then we can consider H
�nitely represented as follows:
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H = lp(a, b || apα = e, bp
α

= e, (a, a, b)p
β

= e, (a, b, b)p
γ

= e, [a, b]p
δ

= e),

where the positive integers α, β, γ and δ satisfy the conditions α ≥ β, α ≥ γ,
α ≥ δ. Suppose β ≥ γ (the case β ≤ γ is veri�ed by analogy). If δ > β, then

for the elements a1 = a, a2 = abp
δ−1

the following equalities hold true

(a1, a1, a2) = (a, a, abp
δ−1

) = (a, a, b)p
δ−1

= e,

(a1, a2, a2) = (a, abp
δ−1

, abp
δ−1

) = (a, a, bp
δ−1

)(a, bp
δ−1

, bp
δ−1

)

= (a, a, b)p
δ−1 · (a, b, b)p2(δ−1)

= e,

[a1, a2]
p = [a, abp

δ−1
]p = [a, b]p

δ
= e.

Hence, the subloop N = lp(a1, a2) of the loop L is a nilpotent non-
commutative p-group and as in the previous case we come to a contradiction.
Let β ≥ δ. In this case for elements a1 = a, a2 = abp

β−1
we have

(a1, a1, a2)
p = (a, a, a · bpβ−1

)p = (a, a, bp
β−1

)p = (a, a, b)p
β

= e,

(a1, a2, a2)
p = (a, a · bpβ−1

, a · bpβ−1
)p = (a, a, bp

β−1
)p · (a, bpβ−1

, bp
β−1

)p

= (a, a, b)p
β · (a, b, b)p2β−1

= e

and
[a1, a2]

p = [a, a · bpβ−1
]p = [a, b]p

β
= e.

Hence, the subloop N = lp(a1, a2) of the loop L is a non-associative
A-loop, whose generators a1, a2 satifsy the conditions (a1, a1, a2) 6= e, ap

α

1 = e,

ap
α

2 = e, (a1, a1, a2)
p = e, (a1, a2, a2)

p = e, [a1, a2]
p = e. Obviously, the

non-associative A-loop N is commutative if [a1, a2] = e, which holds true if
β > δ.

Further we will mark as Fn (or Fn(x1, . . ., xn)) the free loop in the
quasivariety Q(N), of the rank m (with free generators x1, . . ., xn).

Lemma 1. The commutator F ′n of the Q(N)-free loop Fn(x1, . . ., xn)) is

a free Abelian group with the exponent p, with the following free generators:

a)(xi, xi, xj), (xi, xj, xj), 1 ≤ i < j ≤ n; (xl, xj, xk), 1 ≤ i < j < k ≤ n;
[xi, xj ], 1 ≤ i < j ≤ n,
if Fn is non-commutative;

b)(xi, xi, xj), (xi, xj, xj), 1 ≤ i < j ≤ n; (xl, xj, xk), 1 ≤ i < j < k ≤ n,
if Fn is commutative.
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Proof. To prove the lemma it is su�cient to show that any relation of
equality between the generators of the group F ′n shown in a) (for b) the proce-
dure is similar) is a trivial identity in the variety V (N). Indeed, let
(1)∏
1≤i<j≤n

(xi, xj , xk)
αij ·

∏
1≤i<j≤n

(xi, xi, xj)
βij ·

∏
1≤i<j<k≤n

(xi, xj , xj)
γijk ·

∏
1≤i<j≤n

[xi, xj ]
δij = e

be a such a relation of equality.
As x1, . . ., xn are free generators of the Q(N)-free loop Fn(x1, . . ., xn),

(1) is a true identity in any loop from the variety V (N). We will consider two
cases depending on the prime number p.

Case p = 2. We will show �rst that all exponents aij from (1) are equal to
zero, i.e. αij = 0 mod 2, 1 ≤ i < j ≤ n. For simplicity, suppose α12 6= 0 mod 2.
From the identity (1) for xi = e, i = 3, 4, . . ., n we obtain the identity

(2) (xi, xi, x2) · (xi, x2, x2)γ12 · [x1, x2]δ12 = e,

true in the A-loop N . If we suppose β12 = 0 mod 2 and δ12 = 0 mod 2, then,
according to (2), in the A-loop N the identity (x1, x1, x2) = e is true, which
means that N is di-associative - contradiction. Suppose that β12 6= 0mod2 and
δ12 = 0 mod 2. Then, from (2), we obtain the identity

(3) (x1, x1, x2) · (x1, x2, x2) = e.

If we make the substitution x1 → x1 · x2 in (3), we obtain

(x1x2, x1x2, x2) · (x1x2, x2, x2) = (x1, x1, x2) · (x1, x2, x2) · (x1, x2,
x2) = (x1, x1, x2) = e,

and hence, again we obtain that in the A-loop N the identity (x1, x1, x2) = e
holds true, which is impossible. Now suppose β12 = 0 mod 2 and δ12 6= 0 mod 2.
Then from (2) we obtain the identity

(4) (x1, x1, x2) · [x1, x2] = e,

true in the A-loop N . In (4) we make the substitution x1 → x1 · x2 and obtain
(x1x2, x1x2, x2) · [x1x2, x2] = (x1, x1, x2)(x1, x2, x2) · [x1, x2] = (x1, x2,

x2) · (x1, x1, x2)[x1, x2] = (x1, x2, x2) = e,
i.e. (x1, x2, x2) = e. By changing the variable in the latter identity, again we
�nd that in N the identity (x1, x1, x2) = e, holds true, which is impossible.
Finally, let there be β12 6= 0 mod 2 and δ12 6= 0 mod 2. Then (2) has the form

(5) (x1, x1, x2)(x1, x2, x2)[x1, x2] = e.

If in (5) we make the substitution x1 → x1 · x2, then we have
(x1x2, x1x2, x2)(x1x2, x2, x2)[x1x2, x2] = (x1, x1, x2)(x1, x2, x2)(x1, x2,

x2)[x1, x2] = (x1, x2, x2)·(x1, x1, x2)(x1, x2, x2)[x1, x2] = (x1, x2, x2) = e, i.e.
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(x1, x2, x2) = e. From here, as previously, we come to a contradiction. Hence,
the assumption α12 6= 0mod2 is wrong. So we can conclude that αij = 0mod2,
1 ≤ i < j ≤ n. Similarly we can deduce βij = 0 mod 2, 1 ≤ i < j ≤ n. Then
the identity (1) takes the form

(6)
∏

1≤i<j<k≤n
(xi, xj , xk)

γijk ·
∏

1≤i<j≤n
[xi, xj ]

δij = e.

We show that δij = 0 mod 2, 1 ≤ i < j ≤ n. For simplicity we assume
that δ12 6= 0 mod 2. For xi = e, i = 3, 4, . . ., n, from (6) we obtain that in
the A-loop N the identity [x1, x2] = e holds true, which is impossible since
N is a non-commutative loop. Hence, the assumption that δ12 6= 0 mod 2 is
wrong. Therefore, we can conclude that δij = 0 mod 2, 1 ≤ i < j ≤ n. Then
the identity (6), equivalent to (1), takes the form

(7)
∏

1≤i<j<k≤n
(xi, xj , xk)

γijk = e.

Finally, we show that γijk = 0 mod 2, 1 ≤ i < j < k ≤ n. For simplicity
let us assume γ123 6= 0mod2. For xi = e, i = 4, 5, . . ., n, from (7) we obtain that
in the A-loop N the identity (x1, x2, x3) = e, holds true, i.e. N is associative,
which is impossible. Therefore, the assumption that γ123 6= 0 mod 2 is wrong
and, hence, we can conclude that γijk = 0 mod 2, 1 ≤ i < j < k ≤ n.

Case p > 2. As in previous case we will show �rst that all exponents αij
from (1) are equal to zero. For simplicity, let us assume that α12 6= 0 mod p.
From the identity (1) for xi = e, i = 3, 4, . . ., n we obtain the identity

(8) (x1, x1, x2)
α12(x1, x2, x2)

β12 · [x1, x2]δ12 = e,

true in the A-loop N . If we assume that β12 = 0 mod p and δ12 = 0 mod p,
then, according to (8) in the A-loop N the identity (x1, x1, x2)

α12 = e, holds
true. As p does not divide α12, the latter identity implies the identity (x1, x1,
x2) = e, which means that N is di-associative contradiction. Let us assume
that β12 6= 0 mod p and δ12 = 0 mod p. Then, from (8), we obtain the identity

(9) (x1, x1, x2)
α12 · (x1, x2, x2)β12 = e.

If in (9) we make the substitution x1 → x−11 , we obtain

(x1, x1, x2)
α12 · (x1, x2, x2)−β12 = e.

Multiplying the latter identity by identity (9), we obtain

(x1, x1, x2)
2α12 = e.
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Since p does not divide 2α12, the latter identity implies (x1, x1, x2) = e.
Hence, we obtained that in the non-di-associative A-loop N the identity (x1,
x1, x2) = e holds true, which is impossible. Let us assume that β12 = 0 mod p
and δ12 6= 0 mod p. Then from (8) we obtain the identity

(10) (x1, x1, x2)
α12 · [x1, x2]δ12 = e.

If in (10) we make the substitution x1 → x−11 , we obtain

(x1, x1, x2)
α12 · [x1, x2]−δ12 = e.

Multiplying the latter identity by identity (10), we obtain

(x1, x1, x2)
2α12 = e,

which, in its turn, implies (x1, x1, x2) = e. Hence, in this case we also obtain
that in N the identity (x1, x1, x2) = e holds true, which is impossible. Finaly,
we assume that β12 6= 0 mod p and δ12 6= 0 mod p. If in (8) we make the
substitution x1 → x−11 , we obtain

(x1, x1, x2)
α12(x1, x2, x2)

−β12 · [x1, x2]−δ12 = e.

Multiplying the latter identity by identity (8), we obtain

(x1, x1, x2)
2α12 = e,

which again means that (x1, x1, x2) = e. Hence, in the non-di-associative A-
loop N the identity (x1, x1, x2) = e holds true. We have again a contradiction.
Therefore, the assumption that α12 6= 0modp is wrong. Thus, we can conclude
that αij = 0 mod p, 1 ≤ i < j ≤ n. Similarly we can deduce βij = 0 mod p,
1 ≤ i < j ≤ n. Then the identity (1) has the form (6). Now we show that
δij = 0 mod p, 1 ≤ i < j ≤ n. For simplicity we assume δ12 6= 0 mod p. For
xi = e, i = 3, 4, . . ., n, from (6) we obtain that in the A-loop N the identity [x1,
x2]

δ12 = e holds true. Since p does not divide δ12, the latter identity implies
that [x1, x2] = e. Hence, we obtained that in the non-commutative A-loop
N the identity [x1, x2] = e holds true, which is a contradiction. Therefore,
the assumption that δ12 6= 0 mod 2 is wrong. Hence, we can conclude that
δij = 0 mod p, 1 ≤ i < j ≤ n. Then the identity (6), equivalent to (1), obtains
the form (7). Finally, we show that αijk = 0 mod p, 1 ≤ i < j < k ≤ n. For
simplicity we assume α123 6= 0 mod p. For xi = e, i = 4, 5, . . ., n, from (8) we
obtain that in the A-loop N the identity (x1, x2, x3)

α123 = e holds true. Since p
does not divide α123, the latter identity implies (x1, x2, x3) = e. Therefore, we
have that in the non-associative A-loop N the identity (x1, x2, x3) = e holds
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true, which is a contradiction. Hence, the assumption that α123 6= 0 mod p is
wrong and thus, we can conclude that αijk = 0 mod p, 1 ≤ i < j < k ≤ n. In
this way we obtained that (1) is a trivial identity, i.e. true in any loop from
the variety V (N). �

Lemma 2. The element x = (x1, x1, x2)(x3, x3, x4) . . . (x2n−1, x2n−1,
x2n) ∈ F2n(x1, . . ., x2n) cannot be represented as a product by a smaller number

of n associators.

Proof. We assume that x can be written as a product by a smaller number
of n associators, i.e. for certain terms t1, . . ., t3k of the loop signature, the
following holds true

(x1, x1, x2) . . . (x2n−1, x2n−1, x2n) =
∏k
i=1(ti(x1, . . ., x2n), tk+i(x1, . . ., x2n),

t2k+i(a1, . . ., a2n)),

where k < n. Any relation of equality between the generators of A-loop F2n is a
true identity in the variety V (N), i.e. the obtained equality can be considered as
identity in V (N). The fact that this identity holds true in any loop B ∈ V (N),
means that any element g ∈ B′ with the following form

(11) s = (u1, u1, u2) · (u3, u3, u4) . . . (u2l−1, u2l−1, u2l)

can be written as a product of associators, whose number does not exceed the
number k. Since the number of elements with the form (u, v, w) from the loop
Fs is at most p3s, then the number of elements with the form (u1, v1, w1, . . .,
(uk, vk, wk in the A-loop Fs is not higher than p

3ks. This implies that the total
number of elements that can be written in the form (11) does not exceed the
number p3k·s. On the other hand, according to Lemma 1, F ′s is free Abelian
group with the exponent p and has s(s − 1)/2 free generators with the form
(xi, xi, xj), 1 ≤ i < j ≤ s. Therefore, the total number of elements with the
form (11) cannot be smaller than ps(s−1)/2. Therefore, for s > 6k + 1 we have
a contradiction. �

Let's establish a family of {Bm|m = 1, 2, . . .} A-loops, isomorphic to the
Q(N)-free A-loop F2n. Let A-loop Bm be generated by the elements

x1,m, x2,m, . . ., x2n,m and cm =
∏n
i=1(xi,m, xi,m, xn+i,m) ∈ Z(Bm),

then, by de�nition, we have

C1,n = B1, C2,n = C1,n ×B2(c1 = c2), . . ., Cm,n = Cm−1,n ×Bm(cm−1 = cm).

For more simplicity, further on we will write Cm instead of Cm,n.
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Lemma 3. The element

c = cm =
∏n
i=1(xi,m, xi,m, xn+i,m) ∈ Cm(m = 1, 2, . . .)

cannot be represented as a product of fewer than n associators.

Proof. We will apply induction by m. If m = 1, then according to
Lemma 1, the statement holds true. Let m > 1 and let us assume that the
statement of the lemma is not true. Then for a l < n and certain elements d1,
d2, . . ., d3l ∈ Cm, the following equality holds true

c =
∏l
i=1(di, dl+i, d2l+i).

Then for certain elements a1, . . ., a3t ∈ Cm−1, and b1, . . ., b3t ∈ Bm, we
have

c =
∏l
i=1(ai, al+i, a2l+i) ·

∏l
i=1(bi, bl+i, b2l+i).

From this equality it results that the elements

∏l
i=1(ai, al+i, a2l+i) and

∏l
i=1(bi, bl+i, b2l+i)

belong to the intersection Cm−1 ∩Bm = lp(c). By the hypothesis of induction
this is possible only if both indicated elements are equal to unit, and thus, c is
also equal to unit, which is not true. �

Lemma 4. The Frattini subloop Φ(Cm) of the A-loop Cm(m = 1, 2, . . .) is

the direct product of the subloops C ′m and Cpm = lp(xp|x ∈ Cm), i.e. Φ(Cm) =
C ′m · C

p
m and C ′m ∩ C

p
m = lp(e).

Proof. Let H be a maximal subloop of the A-loop Cm. Since the commu-
tator C ′m is in the centre of Z(Cm), then (H ·C ′m)′ = H ′. From here it follows
that C ′m ⊆ H. Therefore, the subloop H is normal in the A-loop Cm and,
obviously, has the index p. But then xp ∈ H for any x ∈ Cm, i.e. Cpm ⊆ H.
But Φ(Cm), by de�nition, is the intersection of all maximal subloops of the
loop Cm, that is why C

′
m · C

p
m ⊆ Φ(Cm).

The factor loop Cm/C
′
mC

p
m is an elementary abelian group, and thus,

it can decompose into a product of cyclic groups of p order. Therefore, it is
obvious that the Frattini subloop of the loop Cm/C

′
mC

p
m coincides with the

unit of the loop. Then, according to Lemma 2.1 ([8], p.97)

Φ(Cm)/C ′pC
p
m ⊆ Φ(Cb/C

′
mC

p
m),
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and, thus, C ′b · C3
b ⊇ Φ(Cm). Therefore, Φ(Cb) = C ′b · C3

b .
Now, we show that C ′m ∩ C

p
m = lp(e). First we note that if a p-loop L

satis�es the condition L′ ∩ Lp = lp(e), then this condition is also satis�ed by
any �nite Cartesian power Lm of L and by any factor-loop L/H, where H ⊆ L′.
Indeed, the equalities (Lm)′ = (L′)m and (Lm)p = (Lp)m lead to the equality
(Lm)′∩ (Lm)p = lp(e). Now let H be a normal subloop of the loop L contained
in L′. Then we have (L/H)′ = L′/H and (L/H)p = LpH/H. Therefore, if we
assume that (L/H)′∩(L/H)p 6= lp(e), then for certain elements e 6= a ∈ Lp and
h ∈ L′, we have aH = hH. Which results in a ∈ hH ⊆ L′, which contradicts
the quality L′ ∩ Lp = lp(e).

Hence, to show that C ′m ∩ C
p
m = lp(e), it is su�cient to show that the

Q(N)-free loop F = F (x1, x2, . . .) of any rank s (�nite or in�nite) the relation
F ′ ∩F p = lp(e) holds. Indeed, let u ∈ F ′ ∩F p hence, u = u(x1, . . ., xs) can be
written in a canonical form, as follows

u(x1, . . ., xs) = xpm1
1 xpm2

2 . . . xpmss .

Since the latter expression is an identity in the Q(N)-free loop F , after
the successive substitution of xi in it by the unit element e, we obtain the
equalities xpmii = e, i = 1, . . ., s. Therefore u = e. �

Continuation of the proof of the theorem. Further we will show that the
�nite A-loop L does not have a basis of quasiidentities from a �nite number of
variables and, particularly, it does not have a �nite basis of quasiidentities. For
this it is su�cient to have a A-loop At for any natural number t, which does
not belong to the quasivariety qL, but all its t-generated subloops to belong to
the quasivariety qL.

Indeed, let t > 1 be a natural number and Ft � a free A-loop of the rank
t of the quasivariety Q(N). We denote by g(t) the total number of generators
with the form (x, y, z) of the subloop F ′t . Then it is clear that for any loop
K ∈ V (N), generated by t elements, any element from the subloop generated
by all associators from K are expressed by a product of g(t) associators with
the form [x, y, z]. Now consider that n = g(t) + 1 and let M be a subloop of
the loop Cm(≡ Cm,n), generated by t elements. We denote by ϕ the natural
homomorphism of loop B = B1 × . . . × Bm on loop Cm, whose kern Kerϕ =
lp(c1c

−1
2 , . . ., cm−1c

−1
m ). Let K be a minimal pro-image through ϕ of the

subloop M . It is clear that K is generated by t generators. Let us show that
K∩Kerϕ ⊆ K ′. Indeed, let there be such an element d ∈ K∩Kerϕ and d /∈ K ′.
If we admit that d ∈ Φ(K), then according to Lemma 4, d = a ·b, where a ∈ K ′
and b ∈ Kp ⊆ Bp. This results in b = a\d ∈ K ′ ⊆ B′. Hence, b ∈ B′ ∩Bp and,
according to Lemma 4, b = e. Hence, d = a and, thus, d ∈ K ′ - contradiction.
Therefore, d /∈ Φ(K). Then in K there is a maximal subloop H so as d /∈ H.
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Then K = (K ∩Kerϕ) ·H, which results in Kϕ = Hϕ. Thus, we obtained that
K is not a minimal pro-image through ϕ of M . Hence, K ∩ Kerϕ ⊆ K ′ and,
since g(t) < n it follows that any element from the intersection K ∩ Kerϕ is
expressed as a product of n− 1 simple associators with the form (x, y, z). On
the other hand, according to Lemmas 2 and 3, the elements that are di�erent
from the unit from Kerϕ cannot be expressed as a product of fewer than n
associators. Therefore, K ∩ Kerϕ = lp(e) and K ≡ M , but then M ∈ Q(N).
Hence, any subloop generated by t elements of the loop Cm(m = 1, 2, . . .)
belongs to the quasivariety Q(N). Particularly, if we consider s = |L|+ 1 and
At = Cs then any t-generated subloop of the loop At belongs to the quasivariety
Q(N).

Let us show that At /∈ qL. Since the loop At is �nite, then according
to Theorem 8 ([13], p. 294), it is su�cient to show that At is not included
isomorphically in any Cartesian power of the loop L.

Let us assume that the loop At is included isomorphically in a Cartesian
power of loop L. Then there is such an isomorphism ψ : At → L so that
cψs 6= e. If we suppose that for any j ∈ {1, 2, . . ., m} the set {xψi,j |i = 1,
2, . . ., 2n} contains an element aj , which does not belong to the subloop
(B1 . . . Bj−1Bj+1 . . . Bs)

ψ, then L contains s di�erent elements, which is im-
possible.

Therefore, there is such a j ∈ {1, 2, . . ., m} so that any element of the set

{xψi,j |i = 1, 2, . . ., 2n} belongs to the subloop (B1 . . . Bj−1Bj+1 . . . Bs)
ψ. Then

we will have

(xi,j , xi,j , xn+i,j)
ψ = (xψi,j , x

ψ
i,j , x

ψ
n+1 ∈ ((B1 . . . Bj−1Bj+1 . . . Bs)

ψ, xψi,j ,

xψn+i,j) = (B1 . . . Bj−1Bj+1 . . . Bs, xi,j , xn+i,j)
ψ = lp(e),

for each i = 1, 2, . . ., n. From here we obtain

cψs =
∏n
i=1(xi,j , xi,j , xn+i,j)

ψ = e,

which contradicts cψs 6= e. Thus, the assumption At ∈ qL is not true. Therefore,
At /∈ Q(L). This proves the theorem.

Directly from the Theorem two corollaries follow.

Corollary 1. If a �nite nilpotent A-loop is not commutative or associa-

tive, then it has no basis of quasiidentities from a �nite number of variables.

Corollary 2. If L is a �nitely generated nilpotent A-loop, then Q(L) =
V (L) if and only if L is a �nite Abelian group.

Similarly to [5] we will prove the following.
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Corollary 3. The lattice of subquasivarieties of the variety generated by

a �nitely generated nilpotent and non-associative or non-commutative A-loop

has the power of the continuum.

Proof. Indeed, let L be a �nitely generated nilpotent A-loop and M the
variety generated by the A-loop L. If A-loop L is not �nite, it contains an
in�nite cyclic group and a �nite number of p-subloops. Then, according to
the proved Theorem, the quasivariety Q(L) is de�ned in the variety V (L) by
a in�nite and independent system of quasivarieties. Therefore the number of
quasivarieties from V (L) that contain Q(L) is continuum.

Let now the A-loop L be �nite. The proof of the above Theorem showed
that for any natural number t there is such a �nite loop Lt from the variety
V (L) that any t-generated subloop from Lt is contained in the quasivariety
Q(L), but the loop Lt itself is not contained in the quasivariety generated by
all loops from V (L) of a strictly smaller order than t. We construct such an
in�nite range of natural numbers {ti|i ∈ N = {1, 2, . . .}} that: t1 = |L|,
ti+1 = |Li|+ |L| (here and further on instead of Lti we will write Li).

Let us prove that Li /∈ Q({Lj |j ∈ N\{i}}). Indeed, if it is not true, then,
according to Theorem 8 [13], for any a ∈ Li, a 6= 1, there is an homomorphism
ϕa from Li in a certain loop Lj , j 6= i, so as aϕa 6= 1. If i < j, then |Lϕi | < tj
and, since Lϕi ⊆ Lj , we have L

ϕ
i ∈ Q(L). This means that the element a verges

towards the loop L. Therefore, according to the same Theorem 8, Li ∈ Q({L,
Lj |1 ≤ j < i}). But |Lj | < ti, |L| < ti, which contradicts the de�nition of Li.

For each i we establish the quasiidentity Φi identically true in the qua-
sivariety Q({Lj |j ∈ N\{i}}) and false in the loop Li. Then the system {Φi,
i ∈ N} of quasiidentities is in�nite, independent and, in particular, the lattice
of subquasivarieties from the variety M has the power of the continuum. �
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