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In 2009, Mitani and Saito introduced and studied a geometric constant yx 4 of a
Banach space X, by using the notion of ¥-ditect sum. For ¢ € [0, 1], the constant
vx,»(t) is defined as a supremum taken over all elements in the unit sphere of X.
In this paper, we obtain that, for a Banach space which has a predual Banach
space, the supremum can be taken over all extreme points of the unit ball. Then
we calculate vx 4 (t) for some Banach spaces.
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1. INTRODUCTION

There are several constants defined on Banach spaces such as the James
constant [4] and von Neumann-Jordan constant [3]. It has been shown that
these constants are very useful in the study of geometric structure of Banach
spaces.

Throughout this paper, let X be a Banach space with dim X > 2. By Sx
and By, we denote the unit sphere and the unit ball of X, respectively. The
von Neumann-Jordan constant is defined by

o+ 9l + e~y
2ol ) 7Y o #O0)

(Clarkson [3]), where the supremum can be taken over all x € Sx and y € Bx.
This constant has been considered in many papers ([3, 5, 8, 15, 17, 18] and so
on). It is known that
(1) For any Banach space X, 1 < Cn;(X) < 2.
(ii) X is a Hilbert space if and only if Cn;(X) =1 ([5]).
(iii) X is uniformly non-square if and only if Cn;(X) < 2 ([17]).

Cns(X) = sup {
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We note that the von Neumann-Jordan constant Cnj(X) is reformulated

as
l + ty ]| + [l — ty]?
Cni(X) Sup{ 21 1 17) z,y € Sx,0<t<
In 2006, the function vx from [0, 1] into [0, 4] was introduced by Yang and

Wang [21]:

2 2
1t =sup { L

This function is useful to calculate the von Neumann-Jordan constant
Cnj(X) for some Banach spaces. In fact, they computed Cn(X) for X being
Day-James spaces {-¢1 and f3-¢1 by using the function vx. In [11], Mitani
and Saito introduced a geometrical constant vx , of a Banach space, by using
the notion of i-direct sum.

:x,yESX}.

Recall that a norm || - || on C? is said to be absolute if
1z, w)ll = NIz, [w ]
for all (z,w) € C2, and normalized if ||(1,0)|] = [|(0,1)| = 1. The family of

all absolute normalized norms on C? is denoted by AN,. As in Bonsall and
Duncan [2], AN; is in a one-to-one correspondence with the family o of all
convex functions ¢ on [0,1] with max{1 —¢,t} < ¢(t) < 1forall 0 < ¢ < 1.
Indeed, for any ||| € AN2 we put ¥(t) = ||(1—t,¢)||. Then ¢ € ¥3. Conversely,
for all ¢ € WUy let

et fobo () i G 2 0,0),

2] + |w] ’
0 if (z,w) # (0,0).

Then || - ||y € ANy, and ¥(t) = ||(1 — t,t)||y (cf. [15]). The functions
corresponding to the £,-norms |||, on C2 are given by ¢, (t) = {(1—t)P+-tP}1/P
if 1 <p < oo, and () = max{l —¢t,t} if p = oco.

Takahashi, Kato and Saito [19] used the previous fact to introduce the
notion of v-direct sum of Banach spaces X and Y as their direct sum X @Y
equipped with the norm

1@ 9)lly = Izl yDlle - ((2,y) € X ©Y).

We denote by X @, Y the direct sum X @Y with this norm. This notion
has been studied by several authors (cf. |6, 7, 10, 14]).
For a Banach space X and 9 € Wy, the function yx, on [0,1] is defined

1(z, w)lly =

by
VX (t) = sup {[[(z + ty, x — ty)lly - z,y € Sx}.
Mitani and Saito [11] showed that
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ProposITION 1.1 ([11]).
(1) For any Banach space X, ¢ € ¥y and t € [0, 1],

1—1¢ 1
29 <2> <vxw(t) <21 +t)y (2> .
(2) For a Banach space X, 1 € Uy and t € [0, 1],

Yx,0(t) = sup{||(z + ty,x — ty)||ly : ,y € Bx}.

(3) Let v € Wy with ¥ # Y. Then a Banach space X is uniformly
non-square if and only if yx () < 2(1 4 t)y(1/2) for any (or some) t with
0<t<I.

They also gave the value of vx, when X is a Hilbert space and an /-
space, and obtained a sufficient condition for uniform normal structure of Ba-
nach spaces in terms of yx 4.

Our aim in this paper is to study some properties of yx . In particular, we
prove that for a Banach space X with a predual Banach space X,, the function
vx,(t) can be calculated as the supremum taken over all extreme points of the
unit ball. Then we calculate yx y(t) for X being Day-James spaces {o-¢1 and
lo-f7.

2. SOME PROPERTIES OF ~vx 4

We easily obtain the following properties of vx y.

ProrosiTioN 2.1. Let X be a Banach space, and let i € Wo. Then
(1) vx.4(t) is a non-decreasing function;
(2) vx,u(t) is a convexr function;
(3) vx,u(t) is continuous on [0, 1].
(4) The function
Vx(t) = Yx.0(0)
t

is non-decreasing on (0, 1].

Proof. (1) Let 0 < t; < t9 < 1. Take any z,y € Sx. Since %y € By, by
Proposition 1.1 (2), we have

t1
o+t =l = | (o 12+ o =2 2 )H < xulte)

Thus, we obtain vx (t1) < vx.u(t2)-
(2) Let t1,t2 € [0,1] and A € (0,1). Then, from the convexity of || - ||, €
AN, we obtain

Y (1= Nt 4 Mt2)) < (1= N)yxp(ty) + Ayx e (t2).
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(3) Since (2) implies that yx,(t) is continuous on (0,1), it suffices to
show that vyx 4 (t) is continuous at ¢ = 0 and ¢t = 1. From Proposition 1.1 (1),
it follows that vyx . (t) —vx,4(0) < 2tap(1/2) for any ¢ € (0,1). Thus, yx (t) is
continuous at t = 0.

Take any ¢ € (0,1) and any z,y € Sx. Since txz € Bx, by Proposition 1.1
(2), one can have that

ti(z +y, @ = y)lly = [[(tx + ty, to = ty)lly <vx4(F)

and hence, tyx (1) < vx(t). Thus, we obtain vx (1) — yx4(t) < (1 —
t)vx,(1), which completes the proof.
(4) This is an easy consequence of (2). O

In |21], the sufficient condition of uniform smoothness was obtained in
terms of vx. Related to this result, we obtain the following

PROPOSITION 2.2. Let ¢ € Wy, Assume that o takes the minimum al
t =1/2. Then, a Banach space X is uniformly smooth if

t —
lim Yx,0(t) — vx,(0)
t—04 t

Proof. Put M = 1/ming<;<19(t). Then, for any ¢ € (0,1] and any
x,y € Sx, we have

[ + tyll + [l — tyl| _

= 0.

[(z + ty, z — ty)llr

1= 1
2 2
« Myxp(®)
- 2
M (L, 1)1
-z 4) - N5 DI
5 <Vx,w() 7
M
= - (xp(®) = (L Dllw) < 7x6(8) = 7x,(0),
which implies px (t) < vx,4(t) — vx,,(0). Thus, we obtain
t) — 0
lim px(t) < lim Y, (t) — ¥x,4(0) _ 0
t—04 t t—04 t

and then X is uniformly smooth. [

An element x € Sy is called an extreme point of By if y,z € Sx and
x = (y+2)/2 implies x = y = z. The set of all extreme points of Bx is denoted
by ext(Bx). There exists some infinite-dimensional Banach spaces whose unit
ball has no extreme point. However, from the Banach-Alaoglu Theorem and
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Krein-Milman Theorem, we have that for any Banach space, the unit ball of
the dual space is the weakly™ closed convex hull of its set of extreme points.
For ¢ € Wy, the dual function ¢* of ¢ is defined by

o (=)= st
Vi) = tG[OI,)l] P(t)

for s € [0,1]. Then we have ¢* € Uy and that || - ||+ is the dual norm of || - ||.
It is easy to see that ¥** = . Let Y, Z be Banach spaces. Then according to
[10], the dual of Y @y, Z is isomorphic to Y™ @yx Z*.

Suppose that X is a Banach space which has the predual Banach space
X,. Then the unit ball Bx is the weakly* closed convex hull of ext(Bx), and
the direct sum X @, X is isomorphic to the dual of X, ®y+ X,.

THEOREM 2.3. Let X be a Banach space with the predual Banach space.
Then

vx,0(t) = sup{[|(z + ty,x — ty)|ly : 2,y € ext(Bx)}
for any ¥ € ¥y and any t € [0, 1].

Proof. Let ¢ € Wy and t € [0, 1]. Take arbitrary elements z,y € By. It fol-
lows from y € By = ¢o"*(ext(By)) that there exists a net {y,} in co(ext(Bx))
which weakly* converges to y. Since the net {(z + tyq,x — tys)} weakly™ con-
verges to (z +ty,x — ty) € X @, X, we obtain

1z +ty, 2 — ty)|lp <Um[[(z + tya, 2 — tya)lly
o
< sup ||(z + tya, v — tya)Hl/f
(0%
= sup {[|(z + tv,z — tv)||y : v € co(ext(Bx))} .

For any v € co(ext(Bx)), since z € Bx = co"*(ext(Bx)), as in the
preceding paragraph, we have

|(z + tv,z — tv)||y < sup{[|(u+tv,u —tv)||y : v € co(ext(Bx))} .
Hence, we obtain
|(z +ty, x — ty)|lp < sup {||(v+tv,u —tv)|y : u,v € co(ext(Bx))} .
On the other hand, from the convexity of || - || € ANa, we directly have
sup {||(z + ty,x — ty)||ly : ,y € co(ext(Bx))}
=sup{[[(z +ty,z — ty)|ly : =,y € ext(Bx)}.

Thus, we obtain this theorem. [
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In [16], Takahashi introduced the James and von Neumann-Jordan type
constants of Banach spaces. For t € [-o00,00) and 7 > 0, the James type
constant is defined as

t . t\ 1/t
Sup{<||:c+w|| + ||z Ty|> :x,yGSX} £ £ oo
Ix (1) =

2

sup{min(||z + 7y, |z — 7y||) : 2,y € Sx} if t=-00
(cf. [20, 22]). The von Neumann-Jordan type constant is defined as

2
Ct(X):sup{JlXi(T;:Ogrgl}.
T

For g € [1,00) and t € [0, 1], it is easy to see that Jx 4(t) = 2*1/‘17)(7% (t).
Thus, we have the following results on the James and von Neumann-Jordan
type constants.

COROLLARY 2.4. Let X be a Banach space with the predual Banach space.
(1) For any q € [1,00) and any t € [0, 1],

tyllq — tylle 1/q
Jea(t) = sup {(||x+yu + |z yH> :weext(BX)}

2
(2) For any q € [1,00),

x4 ty|9 + ||z — ty||9)?/
Cq(X):sup{(” y2‘2‘/q<1H_i_t2)yH ) :m,yEext(BX),Ogtgl}.
In particular, one can easily has
t
px(®) = Jxa(t) — 1= X0

for any ¢ € [0, 1], and

VX (1)

O () = Co(x) =sup { T2

:Ogtgl}.

Hence, we obtain

COROLLARY 2.5. Let X be a Banach space with the predual Banach space.

Then,
t -1
px(t) :sup{”ac+ y!—2F||33 yl -1 :x,yeext(BX)}

for all t € [0,1], and

Cns(X) = sup {

|z + ty||? + ||z — ty]?
2(1 +t2)

12,y € ext(By), Ogtgl}.
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3. EXAMPLES

In this section, we calculate yx y(t) for some two-dimensional Banach
spaces. Then we mention a geometric constant which can not be expressed by
Tx0(1)-

For p,q with 1 < p,q < oo, the Day-James space £),-{, is defined as the
space R? with the norm

[(z1,22)|lpq = {

Yang and Wang [21] calculated the von Neumann-Jordan constant of the Day-
James spaces {oo-£1 and lo-¢1 by using the notion of yx (t). We compute vx ,;(t)
of these spaces for all ¢ € WUy and all ¢t € [0,1]. Remark that {.-¢; and lo-£;
have the predual spaces ¢1-fo and f2-fo, respectively (cf. [13]). Thus, from
Theorem 2.3, we obtain

(@1, 22)llp if @122 >0,

[(z1,22)llg i 2122 <O.

Vx5 (t) = sup{[|(z + ty,z — ty)|ly : z,y € ext(Bx)}

for X being o, — ¢1 or €9 — ¢1. We note that, for z,y € ext(Bx), ||(z — ty,z +
ty)|ly does not necessarily coincide with [|(z + ty, z — ty)||,-

FEzample 3.1. Let X be the Day-James space {oo—£1, 1) € Ug and ¢ € [0, 1].
Hhen 1 14+t
t)=(2+1 — P — .
vt = @+ omax{v (557 ) 0 (557

In particular, for g € [1, 00),

q\ 1/a
Jx,q(t)=<1+(12+t>> and  C,(X)

where tg € (0,1) such that (1 +#)? 1 (1 —tg) —tg = 0.

{1+ (1 +t)9ye
o 2241+ 83)

)

Proof. 1t is easy to check
ext(Bx) = {%(1,1), (£1,0), (0,£1)}.

By the definition of || - ||,1, we may consider ||(z + ty,x — ty)||, and
||(z — ty,x + ty)||y only in the following three cases.
Case 1. x = (1,0), y = (0,1). We have

o+ oot = (L Olloox =1 and [l — tylloe = 1L, ~Dllocs = 1+
Case 2. x = (1,1), y = (1,0). We have
2+ tylloon = (1 4+, Do =1+

and
[z = tylloo,1 = (1 —¢,1)][o01 = 1.
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Case 3. x = (1,0), y = (1,1). We have
12+ tylloon = 11+ 1, 8)llcon =142

and
[z = tylloog = [[(L = £, —1)[locp = 1.
Thus, we obtain

Yxp(t) = max{[|(1 + ¢, 1)[ly, [[(1, 1+ )]l }

-y (1) (50}

and hence, for ¢ € [1, 00),

Txq(t) = <1+(12+t)q>1/q

2/
Cy(X) =sup { {12_2/((11(14__’%):2}) ! 0<t< 1} .

Let tg € (0,1) with (1 +1t9)?1(1 —t9) — to = 0. Then the function
{14+ (1 +1t)7}2/a
22/4(1 4 12)

takes the maximum at ¢ = ¢3. This completes the proof. [

and

To calculate yx y(t) for X being the Day-James space £-¢1, we note that
for any ¢ € Wq, if |2| < |u] and |w| < |v|, then ||(z,w)|ly < |[(u,v)]y, and if
|z| < |u| and |w| < |v|, then ||(z,w)|ly < [[(u,v)|ly (cf. [2]). More results on the
monotonicity of absolute normalized norms can be found in [12, 10, 19] and so
on.

FEzample 3.2. Let X be the Day-James space ¢-¢1, 1) € U9 and ¢ € [0, 1].
Then

VX (1)
- 1+t V142
—(1+t+m)ma’({¢<1+t+m>’w<1+t+\/1+7t2>}'

In particular, for g € [1, c0),

JX,q(t):<(1+t)q+(1+t2)Q/2>1/q and cq<x>:<”2q/2)2/q.

2 2
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Proof. One can easily have that
ext(Bx) = {(21,22) : l’% + $% =1,z129 > 0}.

Let t € [0,1]. For 01,62 with 0 < 0; < 0y < 7/2, put x = (cosby,sinb;)
and y = (cosfa,sinfy). Then x + ty = (cosfy + t cosbs,sinf; + tsinfy) and
x —ty = (cosy — tcosby,sinf — tsinby). Thus, we have

Hac + tyHg,l = Hac + tyHg = \/1 + 12 4+ 2tCOS(92 — 91)

and hence, V1 +t2 < |z + ty|21 <1+t
If sin#; > tsin s, then one has

|z — tyllog = ||z — tyll2 = /1 + 12 —2tcos(fa — 0;) < 1+ 12,

Hence, from the monotonicity of | - ||, € ANa,

Iz +ty,z = ty)lly < [[(1+1, VI+ )]y

and

Iz =ty + ty)lly <[[(VI+ 821+

Suppose that sinf; < tsinfs. Then we have
|z — tyll2q = ||z — ty||1 = cosfy — tcos By — sin b + ¢sin Os.

One can show that ||z + ty|l21 + ||z — tyll2q < 1+t + V1 + % Indeed,
putting e; = (1,0) and e = (0,1), by the triangle inequality, we have

[+ tyll2,n — V142 = [lz +tyl21 — |ler +teall2n
< [[(z + ty) — (e1 + te2)|21
< llz— el + tly — e2fl21
=1—cosf; +sinfy + t(cosfhy + 1 — sin )
=14+t—|z—tyl21.

On the other hand, we have already obtained that V1 +t? < ||z +ty|l21 <
1+ t. Thus, by the monotonicity and convexity of || - ||, € AN2, we have

Iz + ty, z — ty)lly < max{[|(V1+2%1+)]y, [(1+1V1+12)]y}

and

Iz = ty, 2 + ty)lp < max{[[(V1+,1+)]y [[(1+1VI+ )]y}

Therefore we obtain

v () < max{[|(V 1482, 14+ )|y, [|(1+ £, V1 +12) ]|}
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Finally, for e; = (1,0) and e3 = (0, 1), one has
[(e1 + tea, e1 — tea)lly = [[(VI+ 121+l

and

”(61 — t62,€1 + t@g)”¢ = H(l + t, V 1+ t2)H¢.

Thus, we obtain

V(1)

= max{[[(V1+2 1+ )]y [(1+1,V1+8)]y}

_ T o 1+t ) V1+ 12
(I+t+ V1t ma {w<1+t+\/1+7t2 ’¢<1+t+\/1+7t2

and hence, for ¢ € [1, 00),

q a2\ V4
Tea(t) = ((1+t) +(1+12) 2)

2

and

o 4 {0 DT+ (L e2)02y20
Cy(X) = sup 2Ia(1 1 12) 0<t<1,.

Since the function
{1+ )7 + (1 + )1/}
22/4(1 4 2)
is increasing on the interval [0, 1], one has

(294 21/2)2/a 1+ 21/2)2/a
Co(X) = 9.92/q B 22/q ’

as desired. O

Although Theorem 2.3 holds, some geometric constants does not neces-
sarily coincide with the supremum taken over all extreme points of the unit
ball. We show a such example.

The constant

Cz(X) = sup{’x+y|Hm — 4l cx,y € X, (z,y) # (0,0)}.

1% + [ly[I?

was introduced by Zbaganu [23]. As in the von Neumann-Jordan constant, this
constant is reformulated as

|z +tyllllz —tyll
C’Z(X):sup{ T+ cr,y€ Sy, 0<t<1y.
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Ezxample 3.3. Let X be the Day-James space €o-¢1. Then
b [l + tyllllx — tyll
1+ ¢2
Proof. According to [1], we have Cz(X) = 5/4.
On the other hand, as in Example 3.1, we obtain

ap {12 011z =t
p

cx,y €ext(Bx), 0<t< 1} < Cz(X).

1+t
max
0<t<1 1+ t2
1
2(v2-1)’

and hence, this supremum is less than the Zbaganu constant Cz(X). O

e :a:,yEext(BX),Ogtgl}:

Remark 3.4. From [16], Zbaganu constant Cz(X) coincide with the von
Neumann-Jordan type constant Cp(X).

We do not know whether, for any ¢ less than 1, there exist a Banach space
X in which the von Neumann-Jordan type constant Cy(X) does not coincide
with the supremum taken over all extreme points of the unit ball Bx.
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