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1. INTRODUCTION

Di�erential equations with delay are used in many �elds of science specif-
ically equations with delay. The latter are called neutral di�erential equations
which the delayed argument occurs in the derivative of the state variable as
well as in the independent variable. We refer the reader to the books Hale and
Lunel [17], Lakshmikantham et al. [24], Kolmanovskii and Myshkis [23]. On
the other hand, the neutral di�erential equations have become more important
in some mathematic models of real phenomena, especially in control, biological,
and medical domains. For more details, we refer the reader to [9, 14, 16, 17].

In the literature there are many papers study the problems of neutral
di�erential equations using di�erent methods. Among them, the �xed point
method combined by semigroup theory in Fr�echet space, see for exemple Baghli
and Benchohra [4, 5, 6] and Hernandez et al. [18, 19, 20].

In [26, 27], Travis and Webb are the �rst who considered the existence and
stability of the di�erential equations with delay, recently the study of equations
of this type attracted the attention of many authors for their consideration in
the study of di�erent real phenomena see [2, 7, 8, 13, 21].

Inspired by the above-mentioned works, we consider in this paper some
su�cient conditions for the existence and attractivity of mild solutions of the
following neutral evolution equation

(1)

{
d

dt [y(t)− g(t, yt)]−A(t)y(t) = f(t, yt), t ∈ J := [0,∞)
y(t) = φ(t) t ∈ (−∞, 0],
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where B is an abstract phase space to be speci�ed later, f and g is a given
function from J ×B into E, and φ ∈ B is a given functions and {A(t)}0≤t<+∞
is a family of linear closed (not necessarily bounded) operators from E into E
that generate an evolution system of operators {U(t, s)}(t,s)∈J×J for 0 ≤ s ≤
t < +∞.

For any continuous function y and any t ≥ 0, we denote by yt the element
of B de�ned by yt(θ) = y(t + θ) for θ ∈ (−∞, 0] : Here yt(·) represents the
history of the state up to the present time t. We assume that the histories yt
belong to B.

As far as we know, there are few papers dealing with global existence
results for the problem (1). Most of these results are stated in the Fr�echet space
setting. The present paper provides su�cient conditions for the existence and
attractivity mild solutions to problem (1) in the Banach space setting.

2. PRELIMINARY

Let E a Banach space with the norm | · | and BC(J,E) the Banach space
of all bounded and continuous functions y mapping J into E with the usual
supremum norm

‖y‖ = sup
t∈J
|y(t)|.

Let X be the space de�ned by

X = {y : R→ E such that y|J ∈ BC(J,E) and y0 ∈ B},

we denote by y|J the restriction of y to J .

In this paper, we will employ an axiomatic de�nition of the phase space
B introduced by Hale and Kato in [15] and follow the terminology used in [22].
Thus, (B, ‖·‖B) will be a seminormed linear space of functions mapping (−∞, 0]
into E, and satisfying the following axioms:

(A1) If y : (−∞, b) → E, b > 0, is continuous on [0, b] and y0 ∈ B, then for
every t ∈ [0, b) the following conditions hold:

(i) yt ∈ B ;

(ii) There exists a positive constant H such that |y(t)| ≤ H‖yt‖B ;

(iii) There exist two functions K(·),M(·) : R+ → R+ independent of y
with K continuous and M locally bounded such that :

‖yt‖B ≤ K(t) sup{ |y(s)| : 0 ≤ s ≤ t}+M(t)‖y0‖B.

(A2) For the function y in (A1), yt is a B−valued continuous function on [0, b].

(A3) The space B is complete.
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Remark 2.1. In the sequel we assume that K and M are bounded on J
and

γ := max

{
sup
t∈R+

{K(t)}, sup
t∈R+

{M(t)}

}
.

For other details we refer, for instance to the book by Hino et al [22].

In what follows, we assume that {A(t), t ≥ 0} is a family of closed densely
de�ned linear unbounded operators on the Banach space E and with domain
D(A(t)) independent of t.

De�nition 2.1. A family of bounded linear operators

{U(t, s)}(t,s)∈∆ : U(t, s) : E → E (t, s) ∈ ∆ := {(t, s) ∈ J×J : 0 ≤ s ≤ t < +∞}

is called en evolution system if the following properties are satis�ed:

1. U(t, t) = I where I is the identity operator in E,

2. U(t, s) U(s, τ) = U(t, τ) for 0 ≤ τ ≤ s ≤ t < +∞,

3. U(t, s) ∈ B(E) the space of bounded linear operators on E, where for
every (s, t) ∈ ∆ and for each y ∈ E, the mapping (t, s) → U(t, s) y is
continuous.

More details on evolution systems and their properties could be found on
the books of Ahmed [1], Engel and Nagel [12] and Pazy [25].

Lemma 2.1 ([10]). Let C ⊂ BC(J,E) be a set satisfying the following

conditions:

(i) C is bounded in BC(J,E);

(ii) the functions belonging to C are equicontinuous on any compact interval

of J ;

(iii) the set C(t) := {y(t) : y ∈ C} is relatively compact on any compact

interval of J ;

(iv) the functions from C are equiconvergent, i.e., given ε > 0, there corre-

sponds T (ε) > 0 such that |y(t) − y(+∞)| < ε for any t ≥ T (ε) and

y ∈ C.

Then C is relatively compact in BC(J,E).

Theorem 2.1 ([3] Buton-Kirk's �xed point theorem). Let X Banach

space, and A,B : X → X two operators. Suppose that B is a contraction

and A a compact operator. Then either

(i) x = λB
(
x
λ

)
+ λAx has a solution for λ = 1, or

(ii) the set {x ∈ X : x = λB
(
x
λ

)
+ λAx, λ ∈ (0, 1)} is unbounded.
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3. MAIN RESULT

De�nition 3.1. A function y ∈ X is said to be a mild solution of the
problem (1), if

(2) y(t) =


φ(t), if t ≤ 0

U(t, 0)(φ(0)− g(0, φ)) + g(t, yt)

+

∫ t

0
U(t, s)A(s)g(s, yt)ds+

∫ t

0
U(t, s)f(s, yt)ds, if t ∈ J.

To prove our results we introduce the following conditions:

(H1) There exists a constant M̂ ≥ 1 and ω > 0 such that

‖U(t, s)‖B(E) ≤ M̂e−ω(t−s) for every (s, t) ∈ ∆.

(H2) There exists a function p ∈ L1(J,R+) such that:

|f(t, u)| ≤ p(t)(‖u‖B + 1) for a.e. t ∈ J and each u ∈ B.

(H3) For each (t, s) ∈ ∆ we have: lim
t→+∞

∫ t

0
e−w(t−s)p(s)ds = 0.

(H4) There exists a constant M̃ > 0 such that:

‖A−1(t)‖B(E) ≤ M̃ for all t ∈ J.

(H5) There exists a constant ` > 0 such that

|A(t)g(t, φ)−A(s)g(s, ϕ)| ≤ `(|t− s|+ ‖φ− ϕ‖B)

for all t, s ∈ J and φ, ϕ ∈ B.

(H6) There exists a bounded continuous function ζ : J → R+ such that:

|A(t)g(t, φ)| ≤ ζ(t)‖φ‖B for all t ∈ J, φ ∈ B.

Theorem 3.1. Assume (H1)− (H6) are satis�ed, and if

γ

(
`M̃ +

M̂

ω

)
< 1,

and

M̃ζ∗γ +
M̂ζ∗

ω
+ M̂γ < 1.

Then the problem (1) admits at least one mild solution.
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Proof. It is clear that we will obtain the results if we show that the operator
T : X → X de�ned by:

(3) Ty(t) =



φ(t), if t ≤ 0

U(t, 0)(φ(0)− g(0, φ)) + g(t, yt)

+

∫ t

0
U(t, s)A(s)g(s, yt)ds

+

∫ t

0
U(t, s)f(s, yt)ds, if t ∈ J.

has a �xed point.
For φ ∈ B, we can introduce the following function x : (−∞,+∞) → E

by

x(t) =


φ(t), if t ∈ (−∞, 0]

U(t, 0)φ(0) if t ∈ J.
Then x0 = φ. For each function z ∈ X , set

y(t) = x(t) + z(t).

It is obvious that y satis�es (2) if and only if z satis�es z0 = 0 and for all
t ∈ J

z(t) = U(t, 0)g(0, φ) + g(t, xt + zt) +

∫ t

0
U(t, s)A(s)g(s, xs + zs)ds

+

∫ t

0
U(t, s)f(s, xs + zs)ds.

Let
X0 = {z ∈ X : z0 = 0}.

The X0 is a Banach space with norm

‖z‖X0 = sup
t∈J
|z(t)|+ ‖z0‖B = sup

t∈J
|z(t)|

Now, de�ne the operators F,L : X0 → X0 by

Fz(t) =

∫ t

0
U(t, s)f(s, zs + xs)ds, for t ∈ J,

and

Lz(t) = U(t, 0)g(0, φ) + g(t, xt + zt) +

∫ t

0
U(t, s)A(s)g(s, xs + zs)ds.

Obviously, the problem (1) has a solution is equivalent to F + L has a
�xed point. To prove this end, we start with the following estimation.
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For each z ∈ X0 and t ∈ J , we have

‖zt + xt‖B ≤ ‖zt‖B + ‖xt‖B
≤ K(t)|z(t)|+K(t)‖U(t, 0)‖B(E)‖φ‖B +M(t)‖φ‖B
≤ γ‖z‖X0 + γM̂e−ωt‖φ‖B + γ‖φ‖B
≤ γ‖z‖X0 + γ(M̂ + 1)‖φ‖B.(4)

Now, we prove that the operators F,L satis�ed conditions of Theorem
2.1.

Step 1. F is continuous and compact.
• F is continuous. Let (zk)k∈N be a sequence in X0 such that zk → z

in X0. We get for every t ∈ J

|F (zk)(t)− F (z)(t)| ≤
∫ t

0
‖U(t, s)‖B(E)|f(s, zks + xs)− f(s, zs + xs)| ds

≤ M̂

∫ t

0
e−ω(t−s)|f(s, zks + xs)− f(s, zs + xs)| ds.

Since f is continuous, we obtain by the Lebesgue dominated convergence
theorem that

‖Fzk − Fz‖X0 → 0 as k → +∞.
Thus, F is continuous.
• F (D) relatively compact. Let D is a bounded sub set of X0. Then,

we will Lemma 2.1.
Let η ≥ 0 such that D = {z ∈ X0 : ‖x‖X0 ≤ η}, then for z ∈ D we have

|F (z)(t)| ≤
∫ t

0
‖U(t, s)‖B(E)|f(s, zs + xs)| ds

≤ M̂

∫ t

0
e−ω(t−s)p(s)(‖zs + xs‖B + 1)ds

≤ M̂(γ‖z‖X0 + γ(M̂ + 1)‖φ‖B + 1)

∫ t

0
e−ω(t−s)p(s)ds

≤ M̂ξ‖p‖L1 ,

with ξ := γη + γ(M̂ + 1)‖φ‖B + 1.
Thus, F (D) is bounded.
• F (D) is equicontinuous. Let s, t ∈ [0, b] with t > s and z ∈ D. Then

|(Fz)(t)− (Fz)(s)| =

∣∣∣∣∫ s

0
(U(t, τ)− U(s, τ))f(τ, zτ + xτ )dτ

+

∫ t

s
U(t, τ)f(τ, zτ + xτ )dτ

∣∣∣∣
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≤
∫ s

0
‖U(t, τ)− U(s, τ)‖B(E) p(τ)(‖zτ + xτ‖B + 1)dτ

+ M̂

∫ t

s
e−ω(t−τ) p(τ)(‖zτ + xτ‖B + 1)dτ.

Using (4) we get

|(Fz)(t)− (Fz)(s)| ≤ ξ

∫ s

0
‖U(t, τ)− U(s, τ)‖B(E) p(τ) dτ + M̂ξ

∫ t

s
p(τ)dτ.

The right-hand side of the above inequality tends to zero as t − s → 0,
then F (D) is equicontinuous.

Now, we will prove that Λ := {(Fz)(t) : z ∈ D} is relatively compact in
E. Let t ∈ J be a �xed and let 0 < ε < t ≤ b. For z ∈ D we de�ne

Fε(z)(t) = U(t, t− ε)
∫ t−ε

0
U(t− ε, s)f(s, zs + xs)ds.

Since U(t, s) is a compact operator, and the set Λε := {(Fεz)(t) : z ∈ D}
is the image of bounded set of E by U(t, s) then Λε is precompact in E for
every 0 < ε < t. Furthermore, for z ∈ D, we have

|F (z)(t)− Fε(z)(t)| ≤
∫ t

t−ε
‖U(t, s)‖B(E)|f(s, zs + xs)|ds

≤
∫ t

t−ε
‖U(t, s)‖B(E)p(s)(‖zs + xs‖B + 1)ds

≤ ξM̂

∫ t

t−ε
e−ω(t−s)p(s)ds.

The right-hand side tends to zero as ε→ 0, then Fε(z) converge uniformly
to F (z) which implies that D(t) is precompact in E.

Finally, F is equiconvergent.

Let z ∈ D, then from (H1), (H2) and (4) we have

|(Fz)(t)| ≤ M̂ξ

∫ t

0
e−ω(t−s)p(s)ds,

it follows immediately by (4) that |(Fz)(t)| −→ 0 as t→ +∞.

Then

lim
t→+∞

|(Fz)(t)− (Fz)(+∞)| = 0

which implies that F is equiconvergent.

Step 2. L is a contraction. Take z, z̄ ∈ X0, then for each t ∈ J and by
(H1), (H4), (H5) and (4)
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|(Lz)(t)− (Lz̄)(t)| ≤ |g(t, xt + zt)− g(t, xt + z̄t)|

+

∫ t

0
‖U(t, s)‖B(E)|A(s)g(s, xs + zs)−A(s)g(s, xs+z̄s)|ds

≤ ‖A−1(t)‖B(E)|A(t)g(t, xt + zt)−A(t)g(t, xt + z̄t)|

+ M̂

∫ t

0
e−ω(t−s)|A(s)g(s, xs + zs)−A(s)g(s, xs + z̄s)|ds

≤ `M̃‖zt − z̄t‖B + M̂

∫ t

0
e−ω(t−s)‖zs − z̄s‖Bds

≤ γ

(
`M̃ + M̂

∫ t

0
e−ω(t−s)ds

)
‖z − z̄‖X0

≤ γ

(
`M̃ +

M̂

ω

)
‖z − z̄‖X0 .

Therefore,

‖Lz − Lz̄‖X0 ≤ γ

(
`M̃ +

M̂

ω

)
‖z − z̄‖X0 .

Thus, the operator L is a contraction.

For applying the Theorem 2.1, we must check hypothesis (ii) is not hold,
i.e. prove that the set

Dλ =
{
z ∈ X0 : z = λL

( z
λ

)
+ λF (z) for λ ∈ (0, 1)

}
,

is bounded. Let z ∈ Dλ then for each t ∈ J , z(t) = λL
(
z
λ

)
(t) + λF (z)(t) then

we obtain

|z(t)| ≤ λ‖U(t, 0)‖B(E)‖A−1(t)‖B(E)|A(t)g(0, φ)|

+ ‖A−1(t)‖B(E)|A(t)g(t, xt +
zt
λ

)|

+ λ

∫ t

0
‖U(t, s)‖B(E)|A(s)g(s, xs +

zs
λ

)|ds

+ λ

∫ t

0
‖U(t, s)‖B(E)|f(s, xs + zs)|ds

≤ λM̂M̃ζ(t)‖φ‖B + λM̃ζ(t)‖xt +
zt
λ
‖B

+ λM̂

∫ t

0
e−ω(t−s)ζ(s)‖xs +

zs
λ
‖Bds

+ λM̂

∫ t

0
e−ω(t−s)p(s)(‖xs + zs‖B + 1)ds
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≤ M̂M̃ζ∗‖φ‖B + M̃ζ∗γ(‖z‖X0 + µ)

+
M̂ζ∗

ω
(‖z‖X0 + µ) + M̂γ(‖z‖X0 + µ+ 1)‖p‖L1 ,

with µ := (M̂ + 1)‖φ‖B and ζ∗ := supt∈J |ζ(t)|.
Therefore,

‖z‖X0 ≤
M̂M̃ζ∗‖φ‖B + M̃ζ∗γµ+ M̂ζ∗

ω µ+ M̂γ(µ+ 1)‖p‖L1

(1− M̃ζ∗γ − M̂ζ∗

ω − M̂γ)
:= c,

which implies that Dλ is bounded.
Thus, by Theorem 3.1 the operator T has at least one �xed point which

is a mild solution of problem (1). �

4. ATTRACTIVITY OF SOLUTIONS

In this section, we study the attractivity of solutions the problem (1)

De�nition 4.1 ([11]). We say that solutions of (1) are locally attractive if
there exists a closed ball B(z∗, ρ) in the space X0 for some z∗ ∈ X such that
for arbitrary solutions z and z̃ of (1) belonging to B(z∗, ρ) we have that

lim
t→+∞

(z(t)− z̃(t)) = 0.

Under the assumption of Section 3, let z∗ a solution of (1) and B(z∗, ρ)
the closed ball in X0 witch ρ satis�es the following inequality

ρ ≥ 2M̂‖p‖L1

1− M̃`γ − M̂`γ
ω − 2M̂γ‖p‖L1

.

Moreover, we assume that

(5) lim
t→∞

ζ(t) = 0 and lim
t→∞

∫ t

0
e−ω(t−s)ζ(s)ds = 0,

which ζ is the function in (H6). Then, for z ∈ B(z∗, ρ) by (H1)�(H2) and (4)
we have

|(Tz)(t)− z∗(t)| = |(Tz)(t)− (Tz∗)(t)|
≤ ‖A−1(t)‖B(E)|A(t)g(t, zt + xt)−A(t)g(t, z∗t + xt)|

+

∫ t

0
‖U(t, s)‖B(E)|f(s, zs + xs)− f(s, z∗s + xs)|ds

+

∫ t

0
‖U(t, s)‖B(E)|A(s)g(s, zs + xs)−A(s)g(s, z∗s + xs)|ds
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≤ M̃`‖zt − z∗t ‖B + M̂`

∫ t

0
e−ω(t−s)‖zs − z∗s‖Bds

+ M̂

∫ t

0
e−ω(t−s)p(t)(‖zs + xs‖B + ‖z∗s + xs‖B + 2)ds

≤ M̃`γρ+
M̂`γρ

ω
+ 2M̂(γρ+ 1)‖p‖L1

≤ M̃`γρ+
M̂`γρ

ω
+ 2M̂(γρ+ 1)‖p‖L1 ≤ ρ.

Therefore, we get T (B(z∗, ρ)) ⊂ B(z∗, ρ). So, for each z ∈ B(z∗, ρ)
solution of problem (1) and t ∈ J , we have

|z(t)− z∗(t)| = |(Tz)(t)− (Tz∗)(t)|
≤ ‖A−1(t)‖B(E)|A(t)g(t, zt + xt)−A(t)g(t, z∗t + xt)|

+

∫ t

0
‖U(t, s)‖B(E)|f(s, zs + xs)− f(s, z∗s + xs)|ds

+

∫ t

0
‖U(t, s)‖B(E)|A(s)g(s, zs + xs)−A(s)g(s, z∗s + xs)|ds

≤ M̃ζ(t)(‖zt + xt‖B + ‖z∗t + xt‖B)

+ M̂

∫ t

0
e−ω(t−s)p(s)(ψ(‖zs + xs‖B) + ψ(‖z∗s + xs‖B))ds

+ M̂

∫ t

0
e−ω(t−s)ζ(s)(‖zs + xs‖B + ‖z∗s + xs‖B)ds

≤ 2γM̃(ρ+ µ)ζ(t) + 2M̂ψ(γρ+ γµ)

∫ t

0
e−ω(t−s)p(s)ds

+ 2γM̂(ρ+ µ)

∫ t

0
e−ω(t−s)ζ(s)ds.

Hence, from (H3) and (5), we conclude that

lim
t→∞
|z(t)− z̃(t)| = 0.

Consequently, the solutions of equation (1) are locally attractive.
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