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The scan statistic is used to detect statistically signi�cant clusters of
events. In the continuous one-dimensional case, the test based on scan statistic
is equivalent to the generalized likelihood ratio test. We show that this result
remains true for one and two dimensional discrete scan statistics. The binomial
and Poisson models are considered.
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1. INTRODUCTION

In many areas it is necessary to decide whether a certain accumulation of
events is �normal� or not. In public health, epidemiology services seek the fac-
tors that explain the clusters of cancer or birth defects. Biologists seek clusters
palindromes in DNA sequences to �nd clues to the origin of replication of some
viruses. In quality control, one wonders about the clusters of defective prod-
ucts. The decision is then made according to the probability of observing such
a cluster under the null hypothesis of a �normal� situation. If this probability
is small, it is reasonable to assume the presence of a deviation from the normal
situation and then decisions must be taken.

Scan statistics are used to determine how signi�cant a cluster of events is.
More speci�cally, scan statistics are random variables used as test statistics to
check the null hypothesis that the observations are independent and identically
distributed (i.i.d.) from a speci�ed distribution, against an alternative hypoth-
esis which supports the existence of some cluster of events. Many works are
devoted to scan statistics. For an overview, include the monographs of Glaz
and Balakrishnan [5], Balakrishnan and Koutras [1], Fu and Lou [4] and more
recently the monograph of Glaz, Pozdnyakov and Wallenstein [6]. Scan statis-
tics have been widely used in several �elds of application such as cosmology [3],
reliability theory [2], epidemiology and public health [8].
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In Naus 1966 [7], the authors show that, for continuous scan statistics and
a scanning window of �xed size, the generalized likelihood ratio test (GLRT)
is used to reject H0 whenever the scan statistic is greater than its quantile of
order 1 − α where α is the type 1 error. This result is taken for granted in
the case of discrete scan statistics but, as far as we know, there is no proof
in the literature. In this article, we formalize this result in case of the one-
dimensional and two-dimensional discrete scan statistics for both binomial and
Poisson models. Section 2 is devoted to the one-dimensional case and Section 3
to the two-dimensional case. Section 4 provides a conclusion about the obtained
results.

2. ONE-DIMENSIONAL DISCRETE SCAN STATISTIC

AND THE GLRT

Let N be a positive integer and {Xi}, 1 ≤ i ≤ N be a sequence of i.i.d.
nonnegative integer random variables from a speci�ed distribution (Bernoulli,
binomial, Poisson, etc). Let m be a positive integer such that 1 ≤ m ≤ N . For
1 ≤ t ≤ N −m+ 1, let

νt = νt(m) =
t+m−1∑
i=t

Xi(1)

be the number of observed events in the scanning window of size m.

The one-dimensional discrete scan statistic is de�ned as the maximum
number of events occurring in any window of size m within {1, . . . , N},

Sm = S(m,N) = max
1≤t≤N−m+1

νt.(2)

The statistic Sm is used to test H0 assuming that the Xi's are i.i.d. from
a speci�ed distribution against an alternative hypothesis H1 which supports
the existence of some cluster of events.

For the binomial model, the null hypothesis assumes that the Xi's are
i.i.d., Xi ∼ B(n, p0), n > 0, with p0 the probability of success. The alternative
hypothesis presumes the existence of a window of size m, [a, a +m − 1], a ∈
[0, N −m + 1], where the Xi's are i.i.d. as binomial B(n, p1) with p1 > p0 if
i ∈ [a, a+m− 1] and p0 = p1 otherwise.

For the Poisson model, the null hypothesis assumes that the Xi's are i.i.d.,
Xi ∼ P(λ0). The alternative hypothesis presumes the existence of a window of
size m, [a, a+m− 1], a ∈ [0, N −m+ 1], where the Xi's are i.i.d. as Poisson
P(λ1) with λ1 > λ0 if i ∈ [a, a+m− 1] and λ0 = λ1 otherwise.
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In what follows, we assume that the value of m is known. We show that,
for both binomial and Poisson models, the GLRT rejects H0 in favor of H1

when Sm is greater than its quantile of order 1−α where α is the type 1 error.

The binomial model. Let X1, X2, . . . , XN be a sequence of independent
random variables binomially distributed as B(n, pk) where k is such that

k =

{
0 if 1 ≤ i < t or t+m ≤ i ≤ N
1 if t ≤ i < t+m.

It is assumed that the parameters pk are known. One wants to check the
null hypothesis H0 that the Xi's are independent and identically distributed
(i.i.d.) as B(n, p0):

H0 : p0 = p1,(3)

against the alternative hypothesis H1 which supports a cluster of events of
length m where the Xi's are i.i.d. as B(n, p1) :

H1 : p1 > p0(4)

Proposition 1. The generalized likelihood ratio test rejects H0 in favor

of the alternative hypothesis H1 when the unidimensional discrete scan statistic

with scanning window of �xed length m exceeds a threshold τ determined from

P(S(m,N) > τ |H0) = α, where α corresponds to the type 1 error.

Proof. Let LH0 be the likelihood function under H0. It is expressed as

LH0(x1, . . . , xN ) = LH0 =

N∏
i=1

(
n

xi

)
pxi0 (1− p0)n−xi ,

where xi ∈ {0, . . . , n} and ∀i = 1, . . . , N.

One can remark that H1 can be expressed as a function of t:

H1 =

N−m+1⋃
t=1

H1(t),

where H1(t) corresponds to an alternative of a cluster of length m starting at
the tth position, for all t ∈ {1, . . . , N −m+ 1}.

Thus, the likelihood function under H1, LH1(t), can be expressed as

LH1(t) =

(
t−1∏
i=1

(
n

xi

)
pxi0 (1− p0)n−xi

)(
t+m−1∏
i=t

(
n

xi

)
pxi1 (1− p1)n−xi

)

×

(
N∏

i=t+m

(
n

xi

)
pxi0 (1− p0)n−xi

)
.
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Hence, the likelihood ratio LR(t,m) is de�ned as

LR(t,m) =

(∏t−1
i=1 (

n
xi
)pxi0 (1−p0)n−xi

)(∏t+m−1
i=t (nxi)p

xi
1 (1−p1)n−xi

)
∏N
i=1 (

n
xi
)pxi0 (1−p0)n−xi

×
(∏N

i=t+m (nxi)p
xi
0 (1−p0)n−xi

)
∏N
i=1 (

n
xi
)pxi0 (1−p0)n−xi

,

which can be simpli�ed to

LR(t,m) =

∏t+m−1
i=t

(
n
xi

)
pxi1 (1− p1)n−xi∏t+m−1

i=t

(
n
xi

)
pxi0 (1− p0)n−xi

.

Hence, the logarithm of the likelihood ratio LLR(t,m) can be expressed
as

LLR(t,m) = log
∏t+m−1
i=t

(
n
xi

)
pxi1 (1− p1)n−xi−log

∏t+m−1
i=t

(
n
xi

)
pxi0 (1− p0)n−xi ,

=
∑t+m−1

i=t xi log
(
p1
p0

)
+ (n− xi) log

(
1−p1
1−p0

)
.

Denoting C1 = log
(
p1
p0

)
and C2 = log

(
1−p1
1−p0

)
. The LLR(t,m) can be

expressed as

LLR(t,m) = C1

t+m−1∑
i=t

xi + C2

t+m−1∑
i=t

(n− xi).

For 1 ≤ t ≤ N −m+ 1, let

νt =
t+m−1∑
i=t

xi,

be the number of observed events in the window [t, t + m − 1]. Hence, the
LLR(t,m) can be written as follows

LLR(t,m) = C1νt + C2(mn− νt).
For �xed m and since C1 > 0 and C2 < 0, LLR(t,m) is a monotically

increasing function of νt. Consequently, the GLRT rejects H0 for a value of νt
as large as possible, i.e. the unidimensional discrete scan statistic with scanning
window of �xed length m, Sm de�ned in Eq.(2). �

The Poisson model. Let X1, X2, . . . , XN be a sequence of independent
random variables Poisson distributed as P(λk) where k is such that

k =

{
0 if 1 ≤ i < t ou t+m ≤ i ≤ N
1 if t ≤ i < t+m.

It is assumed that the parameters λk are known. One wants to check the
null hypothesis H0 that the Xi's are i.i.d. as P(λ0) :

H0 : λ0 = λ1(5)
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against the alternative hypothesis H1 which supports a cluster of events of
length m where the Xi's are i.i.d. as P(λ1)

H1 : λ1 > λ0(6)

Proposition 2. The generalized likelihood ratio test rejects H0 in favor

of the alternative hypothesis H1 when the unidimensional discrete scan statistic

with scanning window of �xed length m exceeds a threshold τ determined from

P(S(m,N) > τ |H0) = α, where α corresponds to the type 1 error.

Proof. Let LH0 be the likelihood function under H0. It is expressed as
follows

LH0(x1, . . . , xN ) = LH0 =
N∏
i=1

e−λ0λxi0
xi!

,

where xi ∈ {0, . . . , n} and ∀i = 1, . . . , N.
The expression of the likelihood function under H1, LH1(t), is the follow-

ing

LH1(t) =

(
t−1∏
i=1

e−λ0λxi0
xi!

)(
t+m−1∏
i=t

e−λ1λxi1
xi!

)(
N∏

i=t+m

e−λ0λxi0
xi!

)
.

Hence, the likelihood ratio LR(t,m) is de�ned as

LR(t,m) =

∏t+m−1
i=t

e−λ1λ
xi
1

xi!∏t+m−1
i=t

e−λ0λ
xi
0

xi!

,

and its logarithm, LLR(t,m),

LLR(t,m) =
∑t+m−1

i=t [(−λ1+xi log(λ1)−log(xi!))−(λ0 + xi log(λ0)log(xi!))] ,

= m(λ0 − λ1)+
∑t+m−1

i=t xi log
(
λ1
λ0

)
.

Denoting C = log
(
λ1
λ0

)
. The expression of the LLR(t,m) is now the

following

LLR(t,m) = m(λ0 − λ1) + C

t+m−1∑
i=t

xi.

For 1 ≤ t ≤ N −m+ 1, let

νt =

t+m−1∑
i=t

xi,

be the number of observed events in the window [t, t + m − 1]. Hence, the
LLR(t,m) can be written as follows

LLR(t,m) = m(λ0 − λ1) + Cνt.
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For �xed m and since C > 0 and m(λ0 − λ1) < 0, LLR(t,m) is a monot-
ically increasing function of νt. Accordingly, the GLRT rejects H0 for a value
of νt as large as possible, i.e. the unidimensional discrete scan statistic with
scanning window of �xed length m, Sm de�ned in Eq.(2). �

3. TWO-DIMENSIONAL DISCRETE SCAN STATISTIC

AND THE GLRT

Let N1, N2 be positive integers, R = [0, N1] × [0, N2] be a rectangular
region and {Xij}, 1 6 i 6 N1, 1 6 j 6 N2, be a family of i.i.d. nonnega-
tive integer random variables from a speci�ed distribution (Bernoulli, binomial,
Poisson, etc). In practice, the Xij 's represent the number of events occurring
in the elementary square sub-region [i− 1, i]× [j − 1, j].

Let m1, m2 be positive integers such that 1 6 m1 6 N1, 1 6 m2 6 N2.
For 1 6 t 6 N1 −m1 + 1 and 1 6 s 6 N2 −m2 + 1, let

νts = νts(m1,m2) =

t+m1−1∑
i=t

s+m2−1∑
j=s

Xij(7)

be the number of events observed in the scanning window located on the rect-
angular sub-region [t, t+m1 − 1]× [s, s+m2 − 1] within R (see Fig. 1).

Fig. 1. The scanning process with m1 ×m2 scanning window in R.

The two-dimensional discrete scan statistic is de�ned as the maximum
number of events that occured in any m1 ×m2 rectangular window within the
rectangular region [0, N1]× [0, N2],

Sm1,m2 = S(m1,m2, N1, N2) = max
1 6 t 6 N1 −m1 + 1
1 6 s 6 N2 −m2 + 1

νts .(8)
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The statistic Sm1,m2 is used to test the null hypothesis (H0) assuming
that the Xij 's are i.i.d. from a speci�ed distribution, against an alternative
hypothesis (H1) which supports the existence of some cluster of events.

For the binomial model, the null hypothesis assumes that the Xij 's are
i.i.d., Xij ∼ B(n, p0), n > 0, with p0 the probability of success. The alternative
hypothesis presumes the existence of a rectangular subregion of size m1 ×m2,
[a, a+m1− 1]× [b, b+m2− 1], a ∈ [0, N1−m1 +1], b ∈ [0, N2−m2 +1], such
that the random variables Xij 's are independent and identically distributed as
a binomial B(n, p1) with p1 > p0 if (i, j) ∈ [a; a+m1 − 1]× [b, b+m2 − 1] and
p0 = p1 otherwise.

For the Poisson model, assumes that the Xij 's are i.i.d., Xij ∼ P(λ0).
The alternative hypothesis presumes the existence of a rectangular subregion
of size m1 × m2, [a, a + m1 − 1] × [b, b + m2 − 1], a ∈ [0, N1 − m1 + 1], b ∈
[0, N2 − m2 + 1], such that the random variables Xij 's are independent and
identically distributed as a Poisson P(λ1) with λ1 > λ0 if (i, j) ∈ [a; a+m1 −
1]× [b, b+m2 − 1] and λ1 = λ0 otherwise.

In what follows, we assume that the values of m1 and m2 are known. We
show that, for both binomial and Poisson models, the GLRT rejects H0 in favor
of H1 when Sm1,m2 is greater than its quantile of order 1 − α when α is the
type 1 error.

The Binomial model. Let [0, N1] × [0, N2] be a rectangular region,
N1, N2 ∈ N. Let {Xij} be a family of independent random variables binomially
distributed as B(n, pk) where k is such that

k =

{
0 if {i, j} ∈ [0, N1]× [0, N2]\[t, t+m1 − 1]× [s, s+m2 − 1]

1 if {i, j} ∈ [t, t+m1 − 1]× [s, s+m2 − 1].

It is assumed that the parameters pk are known. One wants to verify the null
hypothesis H0 that the Xij 's are i.i.d. as B(n, p0):

H0 : p0 = p1(9)

against the alternative hypothesis H1 which supports the existence of a cluster
of events of size m1 ×m2 where the Xij 's are i.i.d. as B(n, p1):

H1 : p1 > p0(10)

Proposition 3. The GLRT rejects H0 in favor of H1 when the two-

dimensional discrete scan statistic with scanning window of �xed size m1 ×m2

exceeds a threshold determined from P(S(m1,m2, N1, N2) > τ |H0) = α, where
α is the type 1 error.

Proof. The following proof has a similar reasoning to the one-dimensional
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case. Let LH0 be the likelihood function under H0. It is expressed as follows:

LH0(x11, . . . , xN1N2) = LH0 =

N1∏
i=1

N2∏
j=1

(
n

xij

)
p
xij
0 (1− p0)n−xij ,

where xij ∈ {0, . . . , n} and ∀i ∈ {1, . . . , N1} and ∀j ∈ {1, . . . , N2}.
Under H1, the likelihood function is given by

LH1(t, s)=

t−1∏
i=1

s−1∏
j=1

(
n

xij

)
p
xij
0 (1− p0)n−xij

t+m1−1∏
i=t

s+m2−1∏
j=s

(
n

xij

)
p
xij
1 (1− p1)n−xij

×
N1∏

i=t+m1

N2∏
j=s+m2

(
n

xij

)
p
xij
0 (1− p0)n−xij .

Hence, the likelihood ratio LR(t,m) is de�ned as

LR(t, s,m1,m2) =

∏t+m1−1
i=t

∏s+m2−1
j=s

(
n
xij

)
p
xij
1 (1− p1)n−xij∏t+m1−1

i=t

∏s+m2−1
j=s

(
n
xij

)
p
xij
0 (1− p0)n−xij

,

and its logarithm, LLR(t, s,m1,m2),

LLR(t, s,m1,m2) = log
∏t+m1−1
i=t

∏s+m2−1
j=s

(
n
xij

)
p
xij
1 (1− p1)n−xij

− log
∏t+m1−1
i=t

∏s+m2−1
j=s

(
n
xij

)
p
xij
0 (1− p0)n−xij ,

=
∑t+m1−1

i=t

∑s+m2−1
j=s

[
xij log

(
p1
p0

)
+ (n− xij) log

(
1−p1
1−p0

)]
.

Denoting C1 = log
(
p1
p0

)
and C2 = log

(
1−p1
1−p0

)
. Then

LLR(t, s,m1,m2) = C1

t+m1−1∑
i=t

s+m2−1∑
j=s

xij + C2

t+m1−1∑
i=t

s+m2−1∑
j=s

(n− xij).

For 1 ≤ t ≤ N1 −m1 + 1 and 1 ≤ s ≤ N2 −m2 + 1, let

νts =

t+m1−1∑
i=t

s+m2−1∑
j=s

xij ,

be the number of observed events in the window of size [t, t+m1 − 1]× [s, s+
m2 − 1]. Thus, the LLR(t, s,m1,m2) can be written as

LLR(t, s,m1,m2) = C1νts + C2(m1m2n− νts).
For �xed m1 and m2 and since C1 > 0 and C2 < 0, LLR(t, s,m1,m2)

is a monodically increasing function of νts. Consequently, the GLRT rejects
H0 for a value of νts as large as possible, i.e. the two-dimensional discrete
scan statistic with scanning window of �xed size m1 ×m2, Sm1,m2 de�ned in
Eq. (8). �
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The Poisson model. Let [0, N1] × [0, N2] be a rectangular region,
N1, N2 ∈ N. Let {Xij} be a family of independent random variables Poisson
distributed as P(λk) where k is such that

k =

{
0 if {i, j} ∈ [0, N1]× [0, N2]\[t, t+m1 − 1]× [s, s+m2 − 1]

1 if {i, j} ∈ [t, t+m1 − 1]× [s, s+m2 − 1].

It is assumed that the parameters pk are known. One wants to verify the
null hypothesis H0 that the Xij 's are i.i.d. as P(λ0):

H0 : λ0 = λ1(11)

against the alternative hypothesis H1 which supports the existence of a cluster
of events of size m1 ×m2 where the Xij 's are i.i.d. as P(λ1):

H1 : λ1 > λ0(12)

Proposition 4. The GLRT rejects H0 in favor of H1 when the two-

dimensional discrete scan statistic with scanning window of �xed size m1 ×m2

exceeds a threshold determined from P(S(m1,m2, N1, N2) > τ |H0) = α, where
α is the type 1 error.

Proof. Let LH0 be the likelihood function under H0:

LH0(x11, . . . , xN1N2) = LH0 =

N1∏
i=1

N2∏
j=1

e−λ0λ
xij
0

xij !
,

where xij ∈ {0, . . . , n} and ∀i ∈ {1, . . . , N1} and ∀j ∈ {1, . . . , N2}.
The likelihood function under H1 is given by

LH1(t, s) =

t−1∏
i=1

s−1∏
j=1

e−λ0λ
xij
0

xij !

t+m1−1∏
i=t

s+m2−1∏
j=s

e−λ1λ
xij
1

xij !

N1∏
i=t+m1

N2∏
j=s+m2

e−λ0λ
xij
0

xij !
.

Hence, the likelihood ratio LR(t, s,m1,m2) is de�ned as

LR(t, s,m1,m2) =

∏t+m1−1
i=t

∏s+m2−1
j=s

e−λ1λ
xij
1

xij !∏t+m1−1
i=t

∏s+m2−1
j=s

e−λ0λ
xij
0

xij !

,

and its logarithm, LLR(t, s,m1,m2),

LLR(t, s,m1,m2) =
∑t+m1−1

i=t

∑s+m2−1
j=s [(−λ1+xij log(λ1))−(λ0+xij log(λ0))],

=m1m2(λ0 − λ1) + C
∑t+m1−1

i=t

∑s+m2−1
j=s xij ,

where C = log
(
λ1
λ0

)
.
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For 1 ≤ t ≤ N1 −m1 + 1 and 1 ≤ s ≤ N2 −m2 + 1, let

νts =

t+m1−1∑
i=t

s+m2−1∑
j=s

xij ,

be the number of observed events in the window of size [t, t+m1 − 1]× [s, s+
m2 − 1]. Hence, the LLR(t, s,m1,m2) can be written as

LLR(t, s,m1,m2) = m1m2(λ0 − λ1) + Cνts.

For �xed m1 and m2, LLR(t, s,m1,m2) is a monodically increasing func-
tion of νts. Consequently, the GLRT rejects H0 for a value of νts as large as
possible, ie the two-dimensional discrete scan statistic with scanning window
of �xed sizem1 ×m2, Sm1,m2 de�ned in Eq. (8). �

4. CONCLUSION

In this paper, we showed that the generalized likelihood ratio test rejects
the null hypothesis of randomness in favor of an alternative hypothesis which
supports the existence of a cluster when the discrete scan statistic exceeds its
quantile of order 1 − α. We proved this result for one-dimensional and two-
dimensional discrete scan statistics for both binomial and Poisson models.
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