
EVERY ACYCLOTOMIC ELEMENT OF THE PROFINITE

GROTHENDIECK-TEICHM�ULLER GROUP IS A TWIST

P. LOCHAK and L. SCHNEPS

Communicated by �Stefan Papadima

In this note we motivate, state and prove a pro�nite analog of the main result
of [2] (see also [1]), to the e�ect that every acyclotomic element of the pro�nite

Grothendieck-Teichm�uller group (i.e. every element of ĜT 1) is a twist in the
sense �rst introduced by V.G. Drinfeld (in [3]).

AMS 2010 Subject Classi�cation: Primary 11R32; Secondary 14D22, 57M99.

Key words: braids, pro�nite groups, Grothendieck-Teichm�uller.

1. INTRODUCTION

We will state and prove a pro�nite analog of the main result of [2] (see also
[1]) concerning the connection between associators on the one hand and solu-

tions of the Kashiwara-Vergne problem on the other. We will need to introduce
comparatively little material and the text is (almost) self-contained. We start
however with this brief introductory and hopefully motivational paragraph for
which we do not (and possibly cannot) introduce the necessary background but
which can be skipped without impairing the understanding of the more detailed
technical parts.

Start from a solution F of the KV -problem (Kashiwara-Vergne problem),
that is F is an automorphism of the free Lie algebra L(x, y) on two generators x
and y, which maps each of these generators to a conjugate of itself (and satis�es
certain additional properties). Here and below the Lie algebras are graded and
(implicitly) completed as graded algebras, so what is meant above is really `the
degree completion of the free Lie algebra L(x, y)'.

Then form the combination

(1) Φ = (F 12,3)−1 (F 1,2)−1 F 2,3 F 1,23

in which each factor, and so also Φ is an automorphism of the free Lie al-
gebra L(x, y, z) on three generators x, y, z; multiplication is by composition,
starting from the right. Here we use the (co)simplicial notation which has be-
come common in terms of tensor categories. It is explained for instance in detail
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in [1] (�3.2). Let us recall the principle somewhat informally by saying that
in terms of braids, it corresponds to repeated `strand doubling' and `strand
removing', as well as adjoining strands to the left or right of a given braid.
For instance F 12,3 corresponds to sticking strands 1 and 2 together (producing
a unique `thicker' strand) and using the original automorphism F = F 1,2 to
produce an automorphism of L(x, y, z) = L(x1, x2, x3), replacing 1 by (12)
(the thickened strand) and 2 by 3. In turn F 2,3 involves adjoining a �passive�
strand to the left and shift the indices by 1. This topological recipe is quite
general and can be adapted to various algebraic settings. We will need only
a very particular case of the group-like, multiplicative version and will simply
give the explicit formulas that are e�ectively needed (see (9) to (12) below).
Adapting these formulas to the present Lie algebra additive (and so partially
commutative) setting simply requires replacing uv by u + v and w−1 by −w
everywhere.

Expression (1) is easily, that is formally shown to satisfy the pentagon

equation and to be an element of the appropriate version of the Kashiwara-
Vergne group ([1], Proposition 7.1). Also, Φ determines F up to an elemen-
tary exponential factor ([1], Proposition 7.2). In the converse direction, if an
automorphism F of (the degree completion of) L(x, y) gives rise to a Φ which
belongs to the KV -group, then F solves the KV -problem ([1], Proposition 7.4).
Finally and more deeply, start from any automorphism Φ of (the degree com-
pletion of) L(x, y, z) and assume it satis�es the pentagon equation; then (up to
minor exponential factors), there exists a unique F such that Φ can be written
in the form (1) and F solves the KV -problem ([1], Theorem 7.5). It is worth
noting that the proof of this last result proceeds in the way which is typical
in a prounipotent (or pronilpotent) framework (see esp. [3], �5), namely con-
structively, by linearization and induction on the degree or weight. At each
step one is confronted with a (linear) cohomological obstruction which has to
vanish in order to carry on with the construction. In the case at hand, the rel-
evant cohomology theory is constructed in [1] (�2, 3) and the vanishing result
is Theorem 3.17 there. Of course, this general strategy breaks completely in
the pro�nite situation.

Now restrict attention to the Grothendieck-Teichm�uller setting, still in a
prounipotent framework. A Drinfeld associator is a Φ (not a priori of the form
(1)) which can be expressed in terms of braids (see [1], esp. De�nition 9.4).
Passing to the Lie algebra this amounts to considering an element ψ ∈ grt, the
Grothendieck-Teichm�uller Lie algebra (here we use H. Furusho's result in [4],
which asserts that the pentagon is the only de�ning equation of grt). Then a
little miracle happens: one �nds an explicit, indeed almost tautological solution
of the relevant cohomological equation ([1], Proposition 4.7). This seed has
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been cultivated in [2] in order to produce an explicit version of the connection
between Φ and F as above, which represents the main result of that paper (see
Introduction and Theorems 2.1 and 2.5 there). Here we will prove the pro�nite
version of that same result. Because associators, not to mention Lie algebras,
are typically prounipotent creatures, our statement will of necessity be group
theoretical by nature. Finally the connection with Drinfeld's twists, which has
been inspirational since the beginning of that story, can be gathered from [3]
(see formula (1.11) there).

2. STATEMENTS OF THE RESULTS

Let us move to the pro�nite setting and start afresh. We will work with
the pro�nite Grothendieck-Teichm�uller group ĜT and introduce only a bare
minimum. The original and unavoidable reference is [3] but here all the neces-
sary details can actually be found in [6]; �rst inputs and more recent references

are also available in [7]. Let us explain how ĜT can be realized as a subgroup
of Aut(F̂2), the automorphism group of the pro�nite completion of the free

group F2 on two generators (call them x, y). We will then identify ĜT with

its image. De�ne z ∈ F2 ⊂ F̂2 such that xyz = 1; an automorphism F ∈ ĜT
is given by a pair (λ, f(x, y)) ∈ Ẑ∗ × F̂2 (actually f is uniquely determined by
further requiring that it belong to F̂ ′2, the derived subgroup of F̂2) and it acts
according to:

(2) F (x) = f(x, z)xλf(z, x) ; F (y) = f(y, z)yλf(z, y).

A few simple comments are in order. First F ∈ Aut(F̂2) de�ned as above

is an element of ĜT if and only if it satis�es three de�ning equations, of which
the �rst two read (see (6) below for the third):

(3) f(y, x)f(x, y) = 1;

(4) f(x, y)xmf(z, x)zmf(y, z)ym = 1.

The �rst one is the duality (2-cycle) relation; the second one is the hexag-
onal (3-cycle) relation, in which one has set λ = 2m+ 1 with m ∈ Ẑ, which is
licit (i.e. λ is `odd', that is = 1 mod 2). By (3), F (x) and F (y) are conjugate to
xλ and yλ respectively; (4) implies that F (z) = zλ. It is a little more customary
to use a version where F (x) = xλ but the one above, which is tuned to the
conventions of [1] and [2], di�ers by an inner automorphism (using again (4)).
In more geometric terms, think of P1 \{0, 1,∞} and of x, y and z as describing
loops around 0, 1 and∞ respectively. Then the `usual' convention corresponds
to working with a tangential basepoint at 0, whereas we pick one at ∞. This
amounts to a permutation of the points (or of the letters which label them).
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Although the de�nition above is perfectly correct, it does not of course
`explain' the origin nor the signi�cance of the Grothendieck-Teichm�uller group,
for which [3] remains probably the best reference. In particular an element F ∈
ĜT will also act on the pro�nite completions B̂n of the Artin braid groups Bn,
for any number of strands n ≥ 0. There are moreover explicit and `universal'
formulas for this action, which can be found in [3] (or [6]) and are explained in
the framework of braided categories ([3]), or retrieved as a special, genus 0 case
of the lego developped in [5]. Here we will only need the action at `the second
level', that is in modular dimension 2, and thus will explain in detail, if only
to �x notation (which is essentially standard), how an element F ∈ ĜT acts
on Γ̂0,5, the pro�nite completion of the Teichm�uller (or mapping class) group
for spheres with 5 labeled marked points (Γ0,4 ' F2), referring to [6] for details
and to Lemma 3.2 below for a very explicit list of the action on generators.

For i, j ∈ {1, 2, 3, 4, 5}, i 6= j, one denotes by xij the `elementary colored
braid' corresponding to point i circling around point j once (or vice versa;
xij = xji). Then Γ̂0,5 can be given as the split extension:

(5) 1 −→ F̂3 −→ Γ̂0,5 −→ F̂2 −→ 1

in which F2 = 〈x12, x23〉 and F3 = 〈x14, x24, x34〉 are free on two and three
generators respectively. Geometrically speaking, this is the (completion of the)
homotopy sequence derived from the �bration corresponding to erasing the
4-th point on the sphere. An F ∈ ĜT now satis�es the third de�ning equation
(after (3) and (4); in fact (6) below implies (3)), namely the pentagon or 5-cycle
relation in Γ̂0,5, which says that:

(6) f(x12, x23)f(x34, x45)f(x51, x12)f(x23, x34)f(x45, x51) = 1

Using these relations one shows that F ∈ ĜT induces an automorphism
of Γ̂0,5, which we denote again F . It is made explicit in (26) below for the
case λ = 1; the formulas in the general case are identical, except that F (xij) is
conjugate to xλij (by the same factor). Moreover, that automorphism preserves

the decomposition (5), acting on the normal subgroup F̂3 which is nothing but
the fundamental group of the sphere with 4 points (labeled 1, 2, 3, 5) removed.
The so-called sphere relation states that the 4 corresponding elementary loops
are related by:

(7) x14 x24 x34 x45 = 1.

Inside ĜT we �nd the subgroup ĜT 1 of the elements with λ = 1, which we
call acyclotomic. This terminology comes of course from the Galois case: recall
that there is an essentially natural embedding Gal(Q) ↪→ ĜT of the absolute

Galois group of Q into ĜT . It maps σ ∈ Gal(Q) to a pair (λσ, fσ) where
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λσ = χ(σ) and χ denotes the cyclotomic character. So for Galois elements,
λσ = 1 corresponds to χ(σ) = 1, i.e. to elements which act trivially on the

roots of unity. Note also that the (topological) derived group [ĜT , ĜT ] is

included in ĜT 1. In the Galois case, class �eld theory tells us that the derived
subgroup of Gal(Q) coincides with the subgroup of the elements with χ(σ) = 1
(the Kronecker-Weber theorem). It was asked a long time ago (and is recorded

in [7] as Question 1.2) whether this also holds true for the whole of ĜT . One
can wonder whether the result of the present note may have some bearing on
that matter.

We can now state the main result of this note. We write Inn(u)v = uvu−1

for the conjugacy in a group. So for instance (2) can be rewritten as: F (x) =
Inn(f(x, z))(xλ);F (y) = Inn(f(y, z))(yλ). Then we have:

Theorem 2.1. Let F = (1, f) ∈ ĜT 1 and let F̂3 ⊂ Γ̂0,5 be the normal

subgroup topologically generated by x14, x24 and x34. Slightly abusing notation

we write Inn(f(x12, x23)) for the restriction of this inner automorphism of Γ̂0,5

to the subgroup F̂3. Then we have the following equality of automorphisms of F̂3:

(8) Inn(f(x12, x23)) = F 1,2 F 12,3 (F 1,23)−1 (F 2,3)−1.

This result thus states that every acyclotomic element of the pro�nite
Grothendieck-Teichm�uller group can be written as a twist in the sense of Drin-
feld (see [3], (1.11)), and the twisting element corresponds to the same element

of ĜT 1, but with a di�erent kind of action � actually four di�erent actions � on
F̂3. Slightly di�erent conventions explain the di�erences between (8) and (1);
recall that (1) refers, as in [1, 2], to the prounipotent graded version, that is
to automorphisms of (degree completed) Lie algebras. We also remark that we
believe that the statement is simply wrong when λ 6= 1. As it stands, looking
at the right-hand sides of formula (1) (or (8)) and abelianizing the situation
implies that the resulting automorphism has parameter λ = 1.

Let us now spell out the de�nitions of the terms on the right-hand side of
(8). All the terms appearing there are automorphisms of F̂3 = 〈x14, x24, x34, x45〉
(see (7)). We identify this subgroup of Γ̂0,5 with (the completion of) a`standard'
copy of F3 = 〈x, y, z, w〉 (xyzw = 1) by setting x = x14, y = x24, z = x34,
w = x45. Finally, below we use of course (2) but replace there z by (xy)−1,
apologizing for the unfortunate notational clash. With this preparation (and
with λ = 1) we have:

F 1,2(x) = f(x, (xy)−1)xf((xy)−1, x)

F 1,2(y) = f(y, (xy)−1)yf((xy)−1, y)(9)

F 1,2(z) = z
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F 2,3(x) = x

F 2,3(y) = f(y, (yz)−1)yf((yz)−1, y)(10)

F 2,3(z) = f(y, (yz)−1)zf((yz)−1, z)

F 12,3(x) = f(xy,w)xf((w, xy)

F 12,3(y) = f(xy,w)yf((w, xy)(11)

F 12,3(z) = f(z, w)zf(w, z)

F 1,23(x) = f(x,w)xf((w, x)

F 1,23(y) = f(yz, w)yf((w, yz)(12)

F 1,23(z) = f(yz, w)zf(w, yz)

We break the statement of Theorem 2.1 into two, essentially for the sake
of clarity. The �rst statement reads:

Proposition 2.2. As automorphisms of F̂3 (topologically generated by

x14, x24, x34) the following equality holds true:

F 2,3 F 1,23 = Inn(f(x23, x12)) F,

where F ∈ ĜT is considered as an automorphism of F̂3 ⊂ Γ̂0,5 by restriction.

For the statement of the next proposition we need to introduce notation
for the noncolored braids. We thus simply recall that σi (i = 1, 2, 3, 4) denotes,
as is usual, the elementary braid which intertwines points or strands i and i+1.
In particular σ2i = xi,i+1. Although we will not really need it, we remark that
in [6] the reader will �nd more generally the de�nition of elements σij such that
σ2ij = xij (any number of points or strands). Topologically speaking, imagine
the points i (say i ∈ Z/n for some n > 1) placed on a circle. Then σij will
correspond to swapping i and j by letting these points travel along a chord.
Returning to our problem we can now state:

Proposition 2.3. As automorphisms of F̂3 (again topologically generated

by x14, x24, x34):

F 1,2 F 12,3 = Inn(σ4) F Inn(σ−14 ),

where again F ∈ ĜT is considered as an automorphism of F̂3 ⊂ Γ̂0,5 by restric-

tion.

These two propositions will be proved in the next section. Together they
imply the result. Indeed rewriting the �rst one we get:

F = Inn(f(x12, x23)) F
2,3 F 1,23.
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Next and using the fact that the standard action of ĜT on Γ̂0,5 satis�es F (σ4) =
σ4 (cf. e.g. [6]), we �nd that actually:

Inn(σ4) F Inn(σ−14 ) = Inn(σ4)Inn(F (σ−14 ) F = F,

so that the statement of Proposition 2.3 simpli�es to:

F = F 1,2 F 12,3.

Comparing these two expressions of F yields the result.

3. PROOFS

Here we prove Propositions 2.2 and 2.3 together, thereby completing the
proof of Theorem 2.1. The proofs appear as purely combinatorial, making good
use of the braid relations in Γ0,[5], but in fact they rest on the lego properties of

the action of ĜT , which were established in [5] in a much more general setting
� to wit for Teichm�uller groups of any genus and with any number of marked
points.

We start with an auxiliary statement:

Lemma 3.1. We have:

F 1,2(xy) = xy, F 2,3(yz) = yz,

F 1,2(w) = F 2,3(w) = F 12,3(w) = F 1,23(w) = w.

Proof. It makes use of the hexagon identity (4) and the following variant:

(13) f(x, y)x−m−1f(z, x)z−m−1f(y, z)y−m−1 = 1.

This identity holds true for any x, y, z such that xyz = 1, because if
F = (λ, f) is in ĜT , so is (−λ, f), that is one can change λ into −λ, which
maps m to −m− 1 (recall that λ = 2m+ 1). Below, we will use only the case
λ = 1 (m = 0) of (13).

We have

F 1,2(xy) = f(x, z)xf(z, x)f(y, z)yf(z, y)

= f(x, z)xf(y, x)yf(z, y)

=
(
f(y, z)y−1f(x, y)x−1f(z, x)

)−1
= z−1 = xy

and then it follows that F 1,2(w) = F 1,2(xyz)−1 =
(
F 1,2(xy)F 1,2(z)

)−1
=

(xyz)−1 = w. The computation of F 2,3(yz) is completely similar, leading to
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F 2,3(yz) = yz and thus to F 2,3(xyz) = xyz, since F 2,3(x) = x. Next, applying
the hexagon relation to the product (xy)zw = 1, we have

f(xy, z)f(w, xy)f(z, w) = f(xy, z)(xy)−1f(w, xy)w−1f(z, w)z−1 = 1,

so that

F 12,3(xyz) = f(xy,w)xyf(w, xy)f(z, w)zf(w, z)

= f(xy,w)xyf(z, xy)zf(w, z)

=
(
f(z, w)z−1f(xy, z)(xy)−1f(w, xy)

)−1
= w−1 = xyz.

Finally, applying the hexagon relation to the product x(yz)w = 1, we get

f(x, yz)f(w, x)f(yz, w) = f(x, yz)x−1f(w, x)w−1f(yz, w)(yz)−1 = 1,

so we have

F 1,23(xyz) = f(x,w)xf(w, x)f(yz, w)yzf(w, yz)

= f(x,w)xf(yz, x)yzf(w, yz)

=
(
f(yz, w)(yz)−1f(x, yz)x−1f(w, x)

)−1
= w−1 = xyz

which concludes the proof of the lemma. �

Before plunging into the computations proving Proposition 2.2 and 2.3,
let us list some useful and well-known identities in Γ0,5. For i < j and the
notation as above, we have:

(14) xij = σj−1 · · ·σi+1σ
2
i σ
−1
i+1 · · ·σ

−1
j−1

and we introduce the elements:

(15) x′ij = σ−1j−1 · · ·σ
−1
i+1σ

2
i σi+1 · · ·σj−1.

These formulas are actually general (not con�ned to i, j ≤ 5); visually
both xij and x

′
ij correspond to the elementary intertwining of strands i and j,

but with these strands passing in front of (resp. behind) the other strands of
the braid (see e.g. [6]). Then the following identities hold in Γ0,5 � and are
easy to prove, either algebraically or visually, `by inspection':

x12x13x23 = x45,(16)

x12x13x23 = x12x23x
′
13,(17)

x12x14x24 = x′35,(18)



9 Every acyclotomic element is a twist 125

together of course with all the identities obtained from these by cyclic permu-
tation of the �ve indices 1, 2, 3, 4, 5. Finally, we will also make frequent use of
the fact that if c commutes with a and b, and f is a commutator, we have

(19) f(a, b) = f(ac, b) = f(a, bc).

Armed with these preliminaries we can proceed to the (brute?) computa-
tion of both sides of the identities in Propositions 2.2 and 2.3 as automorphisms
of F̂3, that is their respective actions on x = x14, y = x24 and z = x34 (as well
as w = x45; xyzw = 1). Let us begin with the left-hand sides, F 2,3 ◦ F 1,23 and
F 1,2 ◦ F 12,3. We �rst have
(20)
F 2,3F 1,23(x14) = F 2,3

(
f(x14, x45)x14f(x45, x14) = f(x14, x45)x14f(x45, x14),

where we used the fact that F 2,3(x45) = F 2,3(w) = w = x45 (see Lemma 3.1).
Next we compute

(21) F 2,3F 1,23(x24) = F 2,3(f(x24x34, x45)x24f(x45, x24x34))

= f
(
x24x34, x45

)
f
(
x24, (x24x34)

−1)x24f((x24x34)−1, x24)f(x45, x24x34)
= f(x23x24x34, x45)f(x24, x45x14)x24f(x45x14, x24)f(x45, x23x24x34)

= f(x23x24x34, x45)f(x24, x45x14x51)x24f(x45x14x51, x24)f(x45, x23x24x34)

= f(x51, x45)f(x24, x23)x24f(x23, x24)f(x45, x51).

Here, for the second equality we used the fact that F 2,3(yz) = yz (Lemma
3.1), whereas in the third equality we inserted a factor of x23 inside the f , which
is licit as it commutes with both x24x34 and x45 (see equation (19)); we also
used (x24x34)

−1 = x45x14 from the sphere identity (see (7)). In the fourth
equality we used again (19) to justify the insertion of a commuting factor of
x51, and in the �nal equality we used (a cyclic permutation of) identity (16).

The computation for x34 is completely similar, so we give only the result,
namely

(22) F 2,3F 1,23(x34) = f(x51, x45)f(x34, x23)x34f(x23, x34)f(x45, x51).

We now pass to the computation of F 1,2◦F 12,3 which is again quite similar
to the above one. First

(23) F 1,2F 12,3(x14) = F 1,2
(
f(x14x24, x45)x14f(x45, x14x24)

)
= f(x14x24, x45)f(x14, (x14x24)

−1)x14f((x14x24)
−1, x14)f(x45, x14x24)

= f(x14x24, x45)f(x14, x34x45)x14f(x34x45, x14)f(x45, x14x24)

= f(x12x14x24, x45)f(x14, x34x45x
′
35)x14f(x34x45x

′
35, x14)f(x45, x12x14x24)

= f(x′35, x45)f(x14, x12)x14f(x12, x14)f(x14, x
′
35).
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Here, and much as above, the second equality uses the fact that F 1,2 �xes
xy and w (Lemma 3.1), the third equality uses the sphere relation, the fourth
uses (cyclic permutations of) (16) and (17) whereas the last equality uses (18).
Again the computation for x24 is very similar and we give only the result

(24) F 1,2F 12,3(x24) = f(x′35, x45)f(x24, x12)x24f(x12, x24)f(x45, x
′
35).

Finally the action on x34 is easier to compute, to wit
(25)
F 1,2F 12,3(x34) = F 1,2

(
f(x34, x45)x34f(x45, x34)

)
= f(x34, x45)x34f(x45, x34).

This completes the computation of the action on 〈x14, x24, x34〉 of the
automorphisms of (the pro�nite completion of) that group appearing on the
left-hand sides of Proposition 2.2 and 2.3 respectively. There now remains to
compare these results with the respective actions of the expressions appearing
on the right-hand sides, to which end one uses the expression of the standard
action of F ∈ ĜT on the elements x14, x24, x34. It is actually useful to list the
`standard' action of F on all ten (topological) generators xij of Γ̂0,5. Most items
in the list below can be found in [6] (see especially Lemma 7) but it can also be
easily and more conceptually inferred as a special case of the lego developped
in [5]. From that viewpoint, we are dealing here with the particular case of
a sphere (genus 0) with 5 marked point (modular dimension 2), and we are
writing the action for a particular `pants decomposition', consisting of 2 (= the
modular dimension) nonintersecting loops encircling the pairs of points labeled
(1, 2) and (4, 5) respectively. We state the result explicitly as:

Lemma 3.2. The following formulas describe the action of an acyclotomic

element F ∈ ĜT on a set of generators of Γ̂0,5 :

F (x12) = x12

(26)

F (x23) = f(x23, x12)x23f(x12, x23)

F (x34) = f(x34, x45)x34f(x45, x34)

F (x45) = x45

F (x51) = f(x23, x12)f(x51, x45)x51f(x45, x51)f(x12, x23)

F (x13) = f(x13, x12)x13f(x12, x13)

F (x24) = f(x23, x12)f(x51, x45)f(x24, x23)x24f(x23, x24)f(x45, x51)f(x12, x23)

F (x14) = f(x23, x12)f(x14, x45)x14f(x45, x14)f(x12, x23)

F (x25) = f(x34, x45)f(x25, x12)x25f(x12, x25)f(x45, x34)

F (x35) = f(x35, x45)x34f(x45, x35).
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Using these expressions, we now �rst compute

Inn(f(x23, x12)) ◦ F (x14) = f(x14, x45)x14f(x45, x14),

as well as

Inn(f(x23, x12)) ◦ F (x24) = f(x51, x45)f(x24, x23)x24f(x23, x24)f(x45, x51),

and �nally

Inn(f(x23, x12)) ◦ F (x34) = f(x12, x23)f(x34, x45)x34)f(x45, x34)f(x23, x12)

= f(x51, x45)f(x34, x23)f(x12, x51)x34f(x51, x12)f(x23, x34)f(x45, x51)

= f(x51, x45)f(x34, x23)x34f(x23, x34)f(x45, x51).

(The second equality uses the pentagon relation and the third uses com-
mutation of x12 and x51 with x34.) Checking that these three expressions are
respectively equal to the quantities computed in (20), (21) and (22) completes
the proof of Proposition 2.2. The proof of Proposition 2.3 is completely anal-
ogous, computing the expressions appearing there on the right-hand side; to
start with

Inn(σ4)◦F ◦ Inn(σ−14 )(x14) = Inn(σ4) ◦ F
(
σ4x14σ

−1
4

)
= Inn(σ4) ◦ F

(
σ4σ3σ2σ

2
1σ
−1
2 σ−13 σ−14

)
= Inn(σ4) ◦ F (x51)

= Inn(σ4)
(
f(x34, x45)f(x51, x12)x51f(x12, x51)f(x45, x34)

)
= (f(x′35, x45)f(x14, x12)x14f(x12, x14)f(x45, x

′
35),

then

Inn(σ4)◦F ◦ Inn(σ−14 )(x24) = Inn(σ4) ◦ F
(
σ4x24σ

−1
4

)
= Inn(σ4) ◦ F

(
x25
)

= Inn(σ4)
(
f(x34, x45)f(x25, x12)x25f(x12, x25)f(x45, x34)

)
= f(x′35, x45)f(x24, x12)x24f(x12, x24)f(x45, x

′
35)

and last

Inn(σ4)◦F ◦ inn(σ−14 )(x34) = inn(σ4) ◦ F
(
σ4x34σ

−1
4

)
= inn(σ4) ◦ F

(
x35
)

= inn(σ4)
(
f(x35, x45)x35f(x45, x35)

)
= f(x34, x45)x34f(x45, x34).

One then con�rms by inspection that these expressions coincide with those
computed in (23), (24) and (25) respectively, concluding the proof of Proposi-
tion 2.3 and thus of Theorem 2.1. �
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