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We give a de�nition of volume for subsets in the space of arcs of an algebraic
variety, and study its properties. Our main result relates the volume of a set
of arcs on a Cohen-Macaulay variety to its jet-codimension, a notion which
generalizes the codimension of a cylinder in the arc space of a smooth variety.
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1. INTRODUCTION

In this paper, we give a de�nition of volume for subsets in the space of
arcs of an algebraic variety and study its properties. As our de�nition implies
that the volume of a set of arcs is �nite if and only if its projection to the
variety is a �nite set of closed points, we can restrict without loss of generality
to the case of an a�ne variety. Suppose therefore that X = Spec(R) is an
n-dimensional a�ne algebraic variety de�ned over an algebraically closed �eld
of characteristic zero. For every ideal a in R we denote by `(R/a) the length
of the quotient ring R/a and, if the cosupport consists of one point x de�ned
by the ideal mx, we denote by e(a) the Hilbert-Samuel multiplicity of Rmx with
respect to aRmx .

Let X∞ be the arc scheme of X. Recall that for every �eld extension K/k,
theK-valued points ofX∞ are in natural bijection with the arcs SpecK[[t]]→ X
(see [10], Section 3). For every subset C ⊆ X∞ and any integer m ≥ 0, we
consider the ideal

bm(C) := {f ∈ R | ordγ(f) ≥ m for all γ ∈ C}.
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This de�nes a graded sequence of ideals b•(C) = (bm(C))m≥0. We then
de�ne the volume of C by the formula

vol(C) := vol(b•(C)) = lim sup
m→∞

`(R/bm(C))

mn/n!
.

It follows from [3] that the limsup is, in fact, a limit. It is easy to see that
vol(C) <∞ if and only if the image π of C in X is a �nite set of closed points.
Here π : X∞ → X is the canonical projection mapping an arc γ to its base
point γ(0). The volume satis�es the following inclusion/exclusion property.

Proposition 1.1. If C1, C2 ⊆ X∞, then
vol(C1 ∪ C2) + vol(C1 ∩ C2) ≤ vol(C1) + vol(C2).

The contact locus of order at least q of an ideal a ⊆ R is de�ned to be

Cont≥q(a) = {γ ∈ X∞ | ordγ(a) ≥ q}.
Contact loci form a special class of subsets in X∞. For ideals cosupported

at one point, the volumes of these sets relate to the Samuel multiplicities of the
ideal in the following way.

Proposition 1.2. For every ideal a ⊆ R whose cosupport consists of one

point and for every m, p ≥ 1, we have

mn · vol(Cont≥m(a)) ≤ (mp)n · vol(Cont≥mp(a)) ≤ e(a)

for every m, p ≥ 1. Furthermore, both inequalities are equalities for m su�-

ciently divisible.

Generalizing the de�nition of codimension of a cylinder in the space of
arcs of a smooth variety, we de�ne the jet-codimension of an irreducible closed
subset C of X∞ to be

jet-codim(C) := lim
p→∞

(
(p+ 1)n− dimπp(C)

)
where πp : X∞ → Xp is the truncation map to the p-jet space. This de�nition
extends to an arbitrary set C ⊆ X∞ by taking the smallest jet-codimension
of the irreducible components of the closure C of C in X∞. We will see, for
instance, that if X is smooth, then the jet-codimension of a set C coincides
with its Krull codimension codim(C) (which is similarly de�ned as the smallest
Krull codimension of an irreducible component of C).

Our main result relates the volume of a set of arcs on a Cohen-Macaulay
variety to its jet-codimension.

Theorem 1.3. If X is Cohen-Macaulay, of dimension n, then for every

subset C ⊆ X∞ whose image in X is a closed point we have

vol(C)1/n · jet-codim(C) ≥ n.
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In particular, if X is smooth, then

vol(C)1/n · codim(C) ≥ n.

The proof of this theorem requires a suitable extension of the main result
of [6] to singular varieties, which we discuss next. Let a ⊆ R be an m-primary
ideal, where m ⊂ R is a maximal ideal. If X is smooth, then the colength and
the Hilbert-Samuel multiplicity of a are related to the log canonical threshold
lct(a) by the formulas

(1) (n! · `(OX/a))1/n · lct(a) ≥ n,

(2) e(a)1/n · lct(a) ≥ n.

We want to extend this result to all Cohen-Macaulay varieties. If X
is singular, then the log canonical threshold (even when it is de�ned) is not
the right invariant to consider. Instead, we look at the Mather log canonical

threshold of the ideal [16], which is de�ned by

l̂ct(a) := inf
f,E

ordE(Jacf ) + 1

ordE(a)

where the in�mum ranges over all birational morphisms f : Y → X, with Y
smooth, and all prime divisors E ⊂ Y , with Jacf being the Jacobian ideal of f .

Theorem 1.4. With the above notation, if X is Cohen-Macaulay, of di-

mension n, then we have

(3) (n! · `(OX/a))1/n · l̂ct(a) ≥ n,

(4) e(a)1/n · l̂ct(a) ≥ n.

The proofs of (1) and (2) rely on the reduction to monomial ideals via
�at degeneration, where the inequality follows from Howard's description of log
canonical thresholds of monomial ideals and the well-known inequality between
arithmetic and geometric means. A slightly more general formulation of (2) is
the key ingredient in the proof of a theorem of [5] on log canonical thresholds
of generic projections. The proof of Theorem 1.4 follows the opposite direction:
we �rst prove a theorem on Mather log discrepancies of generic projections (see
Theorem 2.5 below), and then deduce (3) and (4) from it.

The paper is organized as follows. In the next section we prove Theo-
rem 1.4. Section 3 is devoted to a discussion of volumes of graded sequences of
ideals, with emphasis on sequences associated to pseudo-valuations. Then, in
the last section we de�ne the volume of a set of arcs and prove several properties
including those stated above.
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2. MATHER LOG DISCREPANCIES

Let X be a variety of dimension n de�ned over an algebraically closed
�eld of characteristic zero. Recall that a divisor over X is a prime divisor E
on a normal variety Y , with a birational morphism f : Y → X. Such a divisor
determines a valuation ordE of k(Y ) = k(X) and as usual, we identify two
divisors over X if they give the same valuation. The valuations that arise in
this way are the divisorial valuations of k(X) that have center on X (recall
that the center of ordE is the closure of f(E)).

Given a birational morphism f : Y → X, with Y smooth, we consider
Jacf := Fitt0(ΩY/X) ⊆ OY , the Jacobian ideal of the map.

De�nition 2.1. Given a divisor E over X, the Mather log discrepancy

âE(X) of E over X is de�ned as follows. Suppose that f : Y → X is a bi-
rational morphism, with Y normal, such that E is a prime divisor on Y . After
possibly replacing Y by its smooth locus, we may assume that Y is smooth. If
Jacf ⊆ OY is the Jacobian ideal of the map, then

âE(X) := ordE(Jacf ) + 1.

Given a nonzero ideal sheaf a ⊂ OX and a number c ≥ 0, we de�ne the
Mather log discrepancy of E with respect to the pair (X, ac) to be

âE(X, ac) := ordE(Jacf ) + 1− c · ordE(a).

When X is smooth, we write aE(X) and aE(X, ac) instead of âE(X) and
âE(X, ac), respectively. It is clear that the de�nition of Mather log discrepancy
only depends on the valuation ordE that E de�nes on the function �eld of X,
and not on the model Y . We say that the pair (X, ac) is Mather log canonical
if for every E as above, we have âE(X, ac) ≥ 0. The Mather log canonical

threshold of the pair (X, a), with a a proper nonzero ideal of R, is de�ned by

l̂ct(a) := sup{ c ∈ R≥0 | (X, ac) is Mather log canonical }.

It is straightforward to check that this is equivalent to the de�nition of
l̂ct(a) given in Introduction. We put, by convention, l̂ct(0)=0 and l̂ct(OX)=∞.

Remark 2.2. We refer to [16] for basic facts about Mather log discrepancies
and Mather log canonical threshold. A useful fact is that if f : Y → X is a log
resolution of (X, a) which factors through the Nash blow-up of X, then there

is a divisor E on Y such that l̂ct(a) = âE(X)
ordE(a) .

We will use several times the following basic fact about divisorial valua-
tions.
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Lemma 2.3. Let f : X → Y be a dominant morphism of varieties. If E
is a divisor over X, then the restriction of ordE to k(Y ) is a multiple of a

divisorial valuation, that is, we can write

ordE |k(Y ) = q · ordF

for some divisor F over Y and some positive integer q.

Proof. Let v = ordE and w = v|k(Y ). Note that w is a valuation with cen-
ter on Y , the center being the closure of the image of the center of v on X. We
denote by Rv and Rw the valuation rings corresponding to v and w, respectively,
and by kv and kw the corresponding residue �elds. Note that trdeg(kw/k) ≤
dim(Y ), with equality if and only if w is the trivial valuation. Furthermore, w
is a multiple of a divisorial valuation if and only if trdeg(kw/k) = dim(Y )− 1
(see [18], Lemma 2.45). On the other hand, since v is a divisorial valuation,
we know that trdeg(kv/k) = dim(X) − 1. It follows from ([24], Chapter VI.6,
Corollary 1) that trdeg(kv/kw) ≤ trdeg(k(X)/k(Y )) = dim(X)− dim(Y ). We
conclude that trdeg(kw/k) ≥ dim(Y ) − 1. Since it is clear that w is not the
trivial valuation, we conclude that in fact trdeg(kw/k) = dim(Y )− 1, hence w
is a multiple of a divisorial valuation. Since w only takes integer values, it is
immediate to see that the multiple is a positive integer. �

The next result gives an alternative way of computing Mather log discrep-
ancies. Suppose that E is a prime divisor over a normal n-dimensional a�ne
variety X. Given a closed immersion X ↪→ AN and a general linear projection
π : AN → Y := An, we may write ordE |k(Y ) = q · ordF , for a prime divisor F
over Y and a positive integer q, by Lemma 2.3.

Proposition 2.4. With the above notation, we have

âE(X) = q · aF (Y ).

Proof. Consider a commutative diagram

X ′

g
��

f // X

��

� � // AN

π
��

Y ′ // Y An

where X ′ → X and Y ′ → Y are resolutions such that E is a divisor on X ′ and
F is a divisor on Y ′. Note that ordE(g∗F ) = q and ordE(KX′/Y ′) = q − 1.
Denoting by h : X ′ → Y the composition of f with the projection to Y , we have
ordE(KX′/Y ) = ordE(Jach). If x1, . . . , xn is a regular system of parameters
in X ′ centered at a general point of E and y1, . . . , yN are a�ne coordinates
in AN , then f is locally given by equations yi = fi(x1, . . . , xn), and Jacf is
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locally de�ned by the n × n minors of the matrix (∂fi/∂xj). For a linear
projection π : AN → Y = An, Jach is locally de�ned by a linear combination
of the n × n minors of (∂fi/∂xj). If the projection is general, then so is the
linear combination, and we have âE(X) = ordE(KX′/Y ) + 1. Writing KX′/Y =
KX′/Y ′ +KY ′/Y , we get

âE(X) = ordE(KX′/Y ′) + ordE(g∗KY ′/Y ) + 1 = q · aF (Y ). �

The following theorem is a generalization of ([5], Theorem 1.1) to Cohen-
Macaulay varieties.

Theorem 2.5. Let X ⊆ AN be a Cohen-Macaulay variety of dimension

n, and E a divisor over X. For some 1 ≤ r ≤ n, consider the morphism

φ : X → An−r+1

induced by restriction of a general linear projection σ : AN → An−r+1. Write

ordE |k(An−r+1) = q · ordG, where G is a prime divisor over An−r+1 and q is

a positive integer (cf. Lemma 2.3). Let Z ↪→ X a closed Cohen-Macaulay

subscheme of pure codimension r such that φ|Z is a �nite morphism. Note that

φ∗[Z] is a cycle of codimension one in An−r+1; we regard φ∗[Z] as a Cartier

divisor on An−r+1. Then, for every c ∈ R≥0 such that âE(X, cZ) ≥ 0, we have

(5) q · aG
(
An−r+1,

r! cr

rr
· φ∗[Z]

)
≤ âE(X, cZ).

Moreover, if the ideal de�ning Z in X is locally generated by a regular

sequence, then

(6) q · aG
(
An−r+1,

cr

rr
· φ∗[Z]

)
≤ âE(X, cZ).

Proof. Our argument is similar to the one used in the proof of ([5], Theo-
rem 1.1). We assume that ordE(Z) > 0 (the case ordE(Z) = 0 is easier and left
to the reader). We factor σ as a composition of two general linear projections

AN → U = An → V = An−r+1.

By Lemma 2.3, we can write ordE |k(U) = p · ordF for some prime divisor
F over U and some positive integer p. Note that p divides q.

Let h : V ′ → V be a proper, birational morphism, with V ′ smooth, such
that G is a prime divisor on V ′. Let X ′ := V ′ ×V X and U ′ := V ′ ×V U , and
consider the induced commutative diagram with Cartezian squares
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X ′

ψ′

��

f //

φ′

��

X

ψ
��

φ

��

U ′

γ′

��

g // U

γ

��
V ′

h // V

.

Let Z ′ := f−1(Z) ↪→ X ′ and Z ′′ := ψ′(Z ′) ↪→ U ′, both de�ned scheme-
theoretically. In general, we have Z ′′ ↪→ g−1(ψ(Z)), but this may be a proper
subscheme. First, note that ψ is a �nite, �at morphism. Finiteness follows from
the fact that it is induced by a generic projection, while �atness follows from
the fact that it is �nite, U is smooth, and X is Cohen-Macaulay. Since γ is
clearly �at (in fact, smooth), we conclude that φ is �at. Therefore both X ′ and
U ′ are varieties and f and g are proper, birational morphisms. Furthermore,
the restriction φ′|Z′ is �nite by base-change, and thus both ψ′|Z′ and γ′|Z′′ are
�nite.

Note that Z ′ is a closed subscheme of ψ′−1(Z ′′), hence

(7) p · ordF (Z ′′) = ordE((ψ′)−1(Z ′′)) ≥ ordE(Z ′) = ordE(Z).

Since h, being a morphism between two smooth varieties, is a locally
complete intersection morphism, it follows by �at base change that f is a locally
complete intersection morphism as well. More explicitly, h factors as h = h1◦h2

where h1 : V ′ × V → V is the projection and h2 : V ′ ↪→ V ′ × V is the regular
embedding given by the graph of h. By pulling back, we get a decomposition
f = f1 ◦f2 where f1 : V ′×X → X is smooth and f2 : X ′ ↪→ V ′×X is a regular
embedding of codimension equal to dimV = dimV ′. Recall that the pull-back
f∗[Z] ∈ An−r(X ′) is de�ned as f !

2[V ′ × Z] (see [12], Section 6.6).
We now show that Z ′ is pure-dimensional, of the same dimension as Z,

and f∗[Z] is equal to the class of [Z ′] in An−r(X
′). Since φ′|Z′ is �nite and

φ′(Z ′) is a proper subset of V ′, we see that dimZ ′ ≤ dimV ′ − 1 = n − r. On
the other hand, Z ′ is locally cut out in V ′×Z by dimV ′ equations, hence every
irreducible component of Z ′ has dimension at least dimZ = n − r. Therefore
Z ′ is pure dimensional, of dimension dimZ. Since V ′ ×X is Cohen-Macaulay,
it follows from ([12], Proposition 7.1) that f∗[Z] = [Z ′] in An−r(X

′).
Since ψ′|Z′ : Z ′ → Z ′′ is a �nite, dominant morphism of schemes, we see

that Z ′′ is also pure dimensional of the same dimension as Z ′, and ψ′∗[Z
′] ≥ [Z ′′].

Note that h∗φ∗[Z] and φ′∗[Z
′] are divisors on V ′. Since f and h are locally

complete intersection morphisms of the same codimension, and since we have
seen that f∗[Z] = [Z ′] in An−r(X

′), it follows from ([12], Example 17.4.1) that
h∗φ∗[Z] ∼ φ′∗[Z ′] (note that while φ and φ′ are not proper morphisms, they are
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proper when restricted to the supports of Z and Z ′, respectively). Since the
two divisors are equal away from the exceptional locus of h, we deduce that
h∗φ∗[Z] = φ′∗[Z

′] by the Negativity Lemma (see [18], Lemma 3.39). We thus
conclude that

h∗φ∗[Z] = φ′∗[Z
′] ≥ γ′∗[Z ′′].

On the other hand, the center C of ordF in U ′ is contained in Z ′′ and
dominates G. Since φ′|Z′ is �nite, it follows that the map γ′|C : C → G is
�nite. In particular, we have dim(C) = dim(G) = n − r = dim(Z ′′), hence C
is an irreducible component of Z ′′. Therefore we have

(8) ordG(φ∗[Z]) = ordG(h∗φ∗[Z]) ≥ ordG(γ′∗[Z
′′]) ≥ eC([Z ′′]) = `(OZ′′,C).

Let b := kG(V ) denote the discrepancy of G over V , and let H := (γ′)∗G.
Note that p · valF (H) = q and since γ′ is smooth, H is a smooth divisor
at the generic point of C. Moreover, since KU ′/U = (γ′)∗KV ′/V , we have
KU ′/U = bH +R, where R is a divisor that does not contain C in its support.
Then, by Proposition 2.4 and equation (7), we see that

âE(X, cZ) ≥ p · aF (U ′, cZ ′′ −KU ′/U ) = p · aF (U ′, cZ ′′ − bH).

Setting α := âE(X, cZ)/q, we have

aF (U ′, cZ ′′−(b−α)H) = aF (U ′, cZ ′′−bH)−α·ordF (H) ≤ α(1−ordF (H)) ≤ 0,

where the last inequality follows from the fact that ordF (H) ≥ 1 and, by
assumption, α ≥ 0. This in turn implies

(9) `(OZ′′,C) ≥ (b− α+ 1)rr

r! cr
.

Indeed, if b− α ≥ 0, then (9) follows by ([5], Theorem 2.1). The case b−
α < 0 is easier, and follows from ([5], Lemma 2.4) using the same degeneration
to monomial ideals (see [6], Section 2).

Combining (8) and (9), we get

q · aG
(
V,
r! cr

rr
· φ∗[Z]

)
= q · aG(V )− r! cr

rr
· ordG(φ∗[Z])

≤ q(b+ 1− (b− α+ 1)) = âE(X, cZ),
as stated in (5)

Suppose now that the ideal of Z in X is locally generated by a regular
sequence. If IZ ⊆ OX is the ideal sheaf of Z and Zi is an irreducible component
of Z, then

(10) `(OZ,Zi) = e(IZOX,Zi) = lim
m→∞

r!

mr
· `(OX,Zi/ImZ OX,Zi).

For every m, let Zm ↪→ X be the subscheme de�ned by ImZ . Since IZ is
locally generated by a regular sequence, ImZ /I

m+1
Z is a locally free OZ-module,
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and thus is Cohen-Macaulay (as an OZ-module, hence as an OX -module). Note
that OZ is also Cohen-Macaulay (as an OZ-module, hence as an OX -module).
By applying ([2], Proposition 1.2.9) to the exact sequences of OX -modules

0→ ImZ /I
m+1
Z → OZm+1 → OZm → 0,

we see by induction that OZm is a Cohen-Macaulay OX -module, and therefore
Zm is a Cohen-Macaulay scheme. Note that

âE

(
X,

c

m
· Zm

)
= âE(X, cZ) for all m,

and

lim
m→∞

r!

mr
· [Zm] = [Z]

by (10). Since φ|Zm if �nite for every m, we may apply (5) with (Z, c) replaced
by (Zm, c/m) to deduce, after lettingm go to in�nity, the inequality in (6). �

Corollary 2.6. With the same assumptions as in the �rst part of The-

orem 2.5, we have

(11) lct(An−r+1, φ∗[Z]) ≤ l̂ct(X,Z)r

rr/r!
.

Moreover, if the ideal of Z in X is locally generated by a regular sequence,

then

(12) lct(An−r+1, φ∗[Z]) ≤ l̂ct(X,Z)r

rr
.

Proof. We apply Theorem 2.5 for a divisor E computing l̂ct(X,Z). �

We apply the �rst part of the corollary to prove Theorem 1.4.

Proof of Theorem 1.4. Let x ∈ X be the cosupport of a. After replacing X
by an a�ne neighborhood of x, we may assume that we have a closed immersion
X ↪→ AN . Let m ≥ 1 be �xed and Zm ↪→ X be the zero-dimensional scheme
de�ned by am. Note that Zm is Cohen-Macaulay, since it is zero dimensional.

Consider a general linear projection AN → A1 and let φ : X → A1 be the
induced map. Note that

l̂ct(X,Zm) =
1

m
· l̂ct(X,Z),

and since

φ∗[Zm] = `(OX/am) · [f(x)],

we have

lct(A1, φ∗[Zm]) =
1

`(OX/am)
.
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Then (11) gives

`(OX/am)

mn/n!
· l̂ct(X,Z)n ≥ nn.

Setting m = 1 and taking n-th roots, we get (3). The formula (4) follows
by taking the limit as m goes to in�nity and then taking n-th roots. �

3. THE VOLUME OF A GRADED SEQUENCE OF IDEALS

We recall, following [9] and [21], some basic facts about the volume of a
graded sequence of ideals. Let k be an algebraically closed �eld of arbitrary
characteristic and let X = Spec(R) be an n-dimensional a�ne variety over k (in
particular, we assume thatR is a domain). Recall that a sequence a• = (am)m≥0

of ideals am ⊆ R is a graded sequence of ideals if a0 = R and ap · aq ⊆ ap+q for
every p, q ≥ 1.

De�nition 3.1. The volume of a graded sequence a• is de�ned by

vol(a•) := lim sup
m→∞

`(R/am)

mn/n!
.

Let a• be a graded sequence of ideals in R. The main case for under-
standing the notion of volume is that when there is a closed point x in X such
that for every m ≥ 1, the cosupport of am is equal to {x} (we say that a•
is cosupported at x). Note that in this case we have vol(a•) < ∞. Indeed, if
N is a positive integer such that mN

x ⊆ a1, where mx is the ideal de�ning x,
then mpN

x ⊆ ap for every p ≥ 1, hence vol(a•) ≤ Nn · e(mx). In fact, under
the same assumption, it follows from ([20], Theorem 3.8) that the volume of a•
can be computed as a limit of normalized Hilbert-Samuel multiplicities. More
precisely, we have

(13) vol(a•) = lim
m→∞

e(am)

mn
.

Moreover, the limit superior in the de�nition of volume is a limit

(14) vol(a) = lim
m→∞

`(R/am)

mn/n!

by ([3], Theorem 1).

Remark 3.2. Suppose that a• is a graded sequence of ideals such that
ap ⊆ aq whenever p ≥ q. If a• is cosupported at a point x ∈ X, then

vol(a•) = inf
m≥1

e(am)

mn
.



11 The volume of a set of arcs on a variety 385

Indeed, this is a consequence of (13) and of the fact that

lim
m→∞

e(am)

mn
= inf

m≥1

e(am)

mn
.

This equality is a consequence of Lemma 3.7 below.

Remark 3.3. Suppose that a• is a graded sequence of ideals and Γ =
{x1, . . . , xr} is a �nite set of closed points in X such that for every m ≥ 1,
the ideal am has cosupport Γ. For every m ≥ 1, let us consider the primary
decomposition

am =
r⋂
i=1

a(i)
m ,

where each a
(i)
m is an ideal with cosupport {xi}. It is clear that each a

(i)
• is a

graded sequence of ideals. Since

(15) `(R/am) =
r∑
i=1

`(R/a(i)
m ),

we deduce

(16) vol(a•) =

r∑
i=1

vol(a
(i)
• ).

In particular, we see that vol(a•) <∞ and the assertion in (14) also holds
for a•.

Example 3.4. Suppose that a• is a graded sequence of ideals such that
each am, with m ≥ 1, has cosupport equal to a �nite set Γ. If a• is such
that am is the integral closure of the ideal am, then a• is a graded sequence
and vol(a•) = vol(a•). The �rst assertion follows from the fact that ap · aq is
contained in the integral closure of ap · aq, hence in ap+q. In order to see that
vol(a•) = vol(a•), we may assume that all am have cosupport at the same point
x ∈ X (see Remark 3.3). In this case, since e(am) = e(am) for every m, the
assertion follows from (13).

Under a mild condition on a• which is often satis�ed, we give in the next
proposition a new easy proof of the assertions (13) and (14) in the smooth case.

Proposition 3.5. Suppose that X = Spec(R) is smooth. If a• is a graded

sequence of ideals in R which is cosupported at a point in X, and ap ⊆ aq
whenever p ≥ q, then

(17) vol(a•) = lim
m→∞

`(R/am)

mn/n!
= inf

m≥1

`(R/am)

mn/n!

(18) = lim
m→∞

e(am)

mn
= inf

m≥1

e(am)

mn
.
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Note that while the proposition recovers (13) and (14) in the smooth

setting, it also implies the equality vol(a•) = infm≥1
`(R/am)
mn/n! , which needs the

smoothness assumption. For the proof of the proposition we need two lemmas.
The �rst one is a special case of ([19], Lemma 25); for completeness, we include
the proof of this special case.

Lemma 3.6. If X = Spec(R) is smooth, x ∈ X is a closed point de�ned

by mx, and a is an mx-primary ideal in R, then for every p ≥ 1, we have

`(R/a) ≥ 1

pn
· `(R/ap).

Proof. Since X is smooth, it is straightforward to reduce to the case when
X = An and a is an ideal supported at the origin. We choose a monomial order
on R = k[x1, . . . , xn] and for every ideal b in R, we consider the initial ideal

in(b) = (in(f) | f ∈ b).

We refer to ([11], Chapter 15) for the basic facts about initial ideals. Note
that we have `(R/b) = `(R/ in(b)). It is clear that in(ap) ⊇ in(a)p. It follows
that if we know the assertion in the lemma for in(a), then

`(R/a) = `(R/ in(a)) ≥ 1

pn
· `(R/ in(a)p) ≥ 1

pn
· `(R/ in(ap)) =

1

pn
· `(R/ap),

hence we obtain the assertion for a.

The above argument shows that we may assume that a is a monomial
ideal. For every such ideal a, we consider the sets

Q(a) :=
⋃
xu∈a

(u+ Rn) and Qc(a) := Rn≥0 rQ(a).

Note that Qc(a) is equal, up to a set of measure zero, to the union of
`(R/a) disjoint open unit cubes. Therefore `(R/a) is equal to vol(Qc(a)), the
Euclidean volume of Qc(a). On the other hand, it is clear from de�nition that
Q(ap) ⊇ p ·Q(a), hence Qc(ap) ⊆ p ·Qc(a). We thus conclude

`(R/a) = vol(Qc(a)) ≥ vol

(
1

p
·Qc(ap)

)
=

1

pn
· vol(Qc(ap)) =

1

pn
· `(R/ap).

This completes the proof of the lemma. �

The following is a variant of ([21], Lemma 2.2).

Lemma 3.7. If (αm)m≥1 is a sequence of non-negative real numbers that

satis�es the following two conditions:

i) αpq ≤ p · αq for every p, q ≥ 1, and

ii) αp ≥ αq whenever p ≥ q,



13 The volume of a set of arcs on a variety 387

then
lim
m→∞

αm
m

= inf
m≥1

αm
m
.

Proof. Let λ := infm
αm
m . We need to show that for every ε > 0, we have

αm
m ≤ λ+ ε for all m� 1. By de�nition, there is d > 0 such that αd

d < λ+ ε
2 .

Given m, we write m = jd − i, where 0 ≤ i < d (hence j = dm/de). The
hypotheses imply

αm
m
≤

αjd
jd− i

≤ αd
d
· jd

jd− i
≤
(
λ+

ε

2

)
· jd

jd− i
.

For m� 1, we have j � 1, hence jd
jd−i <

λ+ε
λ+ ε

2
.

This completes the proof of the lemma. �

Proof of Proposition 3.5. Let αm = `(R/am). If p ≥ q, then by assumption
ap ⊆ aq, hence αp ≥ αq. Moreover, it follows from Lemma 3.6 that αpq ≤ p ·αq
for all p, q ≥ 1. The two equalities in (17) now follow from the de�nition of
volume and Lemma 3.7.

Note now that Lemma 3.7 also gives the second equality in (18). Indeed,
for p ≥ q, we have ap ⊆ aq, hence e(ap) ≥ e(aq); moreover, the inclusion
apq ⊆ apq implies e(apq) ≤ e(apq) = pn · e(aq). In order to prove the �rst equality
in (18), note �rst that by de�nition of Hilbert-Samuel multiplicity, for every m
we have

e(am) = lim
q→∞

`(R/aqm)

qn/n!
,

hence using Lemma 3.6 we conclude that e(am) ≤ `(R/am)
n! . Dividing by mn and

passing to limit, we obtain

L := lim
m→∞

e(am)

mn
≤ vol(a•).

In order to prove the reverse inequality, note that given any ε > 0, by
de�nition of L and of the Hilbert-Samuel multiplicity, we can �nd �rst m ≥ 1

and then q ≥ 1 such that L > `(R/aqm)
mnqn/n! − ε. Since aqm ⊆ amq, it follows that

L >
`(R/amq)

(mq)n/n!
− ε ≥ inf

p

`(R/ap)

pn/n!
− ε.

Since this holds for every ε > 0, using (17) we conclude that L ≥ vol(a•),
completing the proof of the proposition. �

Remark 3.8. Suppose that X = Spec(R) is smooth and a is an ideal in R
which is cosupported at a point. Applying Proposition 3.5 in the case of the
sequence given by the powers of a, we see that

e(a) = inf
m≥1

`(R/am)

mn/n!
.
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In this note, we will be interested in graded sequences that arise from
pseudo-valuations.

De�nition 3.9. A function v : R → R≥0 ∪ {∞} is said to be a pseudo-

valuation of R if it satis�es the following conditions:

(i) v(0) =∞ and v(λ) = 0 for every λ ∈ k,

(ii) v(f + g) ≥ min{v(f), v(g)} for every f, g ∈ R, and

(iii) v(fg) ≥ v(f) + v(g) for every f, g ∈ R.

We say that a pseudo-valuation v is radical if, in addition, it satis�es

(iv) v(f r) = r · v(f) for every f ∈ R, r ∈ Z>0.

The support of a pseudo-valuation v is the closed subscheme Supp(v) ↪→ X
de�ned by the ideal

b∞(v) := {f ∈ R | v(f) =∞}.

Given a pseudo-valuation v and an ideal a in R, we put

v(a) := inf{v(f) | f ∈ a}.

We say that v has center at the closed subscheme Y de�ned by the ideal
b in R if we have b = {f ∈ R | v(f) > 0}.

Remark 3.10. Note that if b de�nes the center of v, then v(b) > 0. Indeed,
if we put Im := {f ∈ R | v(f) ≥ 1/m}, then each Im is an ideal in R and we
have Im ⊆ Im+1. Since b =

⋃
m Im and R is Noetherian, it follows that b = Im

for m� 0.

Remark 3.11. There are two other related notions. A semi-valuation of R
is a pseudo-valuation with the property that the inequality in (iii) is an equality
for all f and g (in this case, condition (iv) is automatically satis�ed). A semi-
valuation v is a valuation if, in addition, we have v(f) <∞ for all f ∈ Rr{0}.
It is clear that in this case we can extend v to a valuation of the function �eld
of R by putting v(f/g) = v(f) − v(g) for every nonzero f, g ∈ R. Note that
if v is a semi-valuation, then the ideal b∞(v) is a prime ideal and we have a
valuation v on R/b∞ such that v = v ◦π, where π : R→ R/b∞ is the canonical
projection.

Remark 3.12. If (vα)α∈Λ is a family of semi-valuations of R and we put
v(f) := infα∈Λ vα(f), then v is a radical pseudo-valuation. Note that the
support of v is the union of the supports of the vα and if Λ is �nite, then
the center of v is the union of the centers of the vα. In particular, these sets



15 The volume of a set of arcs on a variety 389

are not necessarily irreducible. It is a theorem of Bergman that every radical
pseudo-valuation arises in this way. More precisely, for every radical pseudo-
valuation w of R, there is a family (wi)i∈I of semi-valuations of R such that
w(f) = infiwi(f) for every f ∈ R (see ([1], Theorem 2)).

Remark 3.13. There is a canonical way to obtain a radical pseudo-valuation
of R from an arbitrary pseudo-valuation. Indeed, if v is any pseudo-valuation,
then we put

ṽ(f) := inf
m≥1

v(fm)

m
= lim

m→∞

v(fm)

m
,

where the second equality follows from property (iii) and a version of Lemma 3.7
(see [21], Lemma 1.4). It is easy to see that ṽ is a radical pseudo-valuation such
that ṽ(f) ≤ v(f) for every f ∈ R. Moreover, if w is another radical pseudo-
valuation such that w(f) ≤ v(f) for every f ∈ R, then w(f) ≤ w̃(f) for every
f ∈ R.

Suppose that v is a pseudo-valuation of R. We de�ne for every m ∈ Z≥0

bm(v) := {f ∈ R | v(f) ≥ m}.

It follows from (ii) and (iii) that b•(v) = (bm(v))m≥0 is a graded sequence
of ideals.

Remark 3.14. The sequence b•(v) clearly satis�es the condition bp(v) ⊆
bq(v) for p ≥ q.

Example 3.15. Suppose that I 6= R is an ideal of R. If for every f ∈ R,
we put vI(f) := min{m ≥ 0 | f ∈ Im}, then vI is a pseudo-valuation of R, with
support X and whose center is de�ned by I. It follows from de�nition that in
this case bm(vI) = Im.

Remark 3.16. It is clear that for every pseudo-valuation v and every m ≥
1, if b is the ideal de�ning the center of v, then bm(v) ⊆ b and the two ideals
have the same radical. In fact, if d is an integer such that d · v(b) ≥ 1 (see
Remark 3.10), then bdm ⊆ bm(v) for every m ≥ 1.

We will be mostly interested in pseudo-valuations with 0-dimensional cen-
ter.

De�nition 3.17. The volume of a pseudo-valuation v of R is de�ned to be
the volume

vol(v) := vol(b•(v))
of the graded sequence b•(v). Recall that by (13) and (14), we have

vol(v) = lim
m→∞

`(R/bm(v))

mn/n!
= lim

m→∞

e(bm(v))

mn
.
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Remark 3.18. We have vol(v) <∞ if and only if the center of v is a �nite
set. Indeed, if the latter condition holds, then the �niteness of the volume
follows from Remark 3.3. On the other hand, if the center of v has positive
dimension, then `(R/bm(v)) =∞ for all m ≥ 1 by Remark 3.16.

Example 3.19. If I 6= R is an ideal whose cosupport consists of one point
and vI is the pseudo-valuation associated to I in Remark 3.15, then vol(vI) =
e(I).

Example 3.20. Let I 6= R be an ideal in R. Recall that there are �nitely
many divisorial valuations w1, . . . , wr of R (the Rees valuations of I) with the
property that for every m ≥ 0, the integral closure Im of Im is equal to

{f ∈ R | wi(f) ≥ m · wi(I) for 1 ≤ i ≤ r}.

We refer to [23] for an introduction to Rees valuations. In particular, we
see that if w is the pseudo-valuation given by w = mini

1
wi(I)

wi, then bm(w) =

Im for every m. In particular, it follows from Example 3.4 that if the cosupport
of I consists of one point, then vol(w) = e(I).

Example 3.21. Suppose that v and w are pseudo-valuations of R such
that v(f) ≥ w(f) for all f ∈ R. In this case we have bm(w) ⊆ bm(v) for all
m. By taking the colength, dividing by mn/n!, and passing to limit, we obtain
vol(w) ≥ vol(v).

Example 3.22. If v is a pseudo-valuation of R and α is a positive real
number, then αv is a pseudo-valuation such that vol(αv) = 1

αn ·vol(v). Indeed,
note that we have

bm(αv) ⊇ bdm/αe(v),
hence

vol(αv) ≤ lim
m→∞

`(R/bdm/αe(v))

dm/αen/n!
· dm/αe

n

mn
= vol(v) · 1

αn
.

By writing v = 1
α(αv) and applying the inequality already proved, we

obtain vol(v) ≤ αn · vol(αv). By combining the two inequalities, we obtain
vol(αv) = 1

αn · vol(v).

Remark 3.23. Suppose that v is a pseudo-valuation of R and h ∈ R is
nonzero and such that v(fhm) = v(f) for every f ∈ R (in particular, v(h) = 0,
and this condition is su�cient if v is a valuation). In this case, v extends
uniquely to a pseudo-valuation ṽ of Rh, given by ṽ(f/hm) = v(f) for every
positive integer m and every f ∈ R. It is clear that we have bm(ṽ) = bm(v) ·Rh
for every m ≥ 0. We now show that vol(v) = vol(ṽ). Note �rst that if b is
the ideal de�ning the center of v, then b · Rh de�nes the center of ṽ. Let b =
q1∩ . . .∩qr be an irredundant primary decomposition of b. If h ∈ √qi for some
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i, then we obtain a contradiction: indeed, by choosing g ∈
(⋂

j 6=i qj

)
r qi, we

see that ghm ∈ b for some m ≥ 1. However, v(ghm) = v(g) by the assumption
on h, and v(g) > 0 since g 6∈ b. Therefore h 6∈ √qi for any i. First, this
implies that if dimR/b > 0, then also dim(R/b)h > 0. Second, it implies that
if dimR/b = 0, then for every m, the class of h in R/bm(v) is invertible, hence
`(R/bm(v)) = `(Rh/bm(ṽ)). We thus conclude that vol(v) = vol(ṽ).

The following proposition gives an important example of valuation with
positive volume.

Proposition 3.24. If v is a divisorial valuation of R having center at a

closed point x ∈ X and X is analytically unrami�ed∗ at x, then val(v) > 0.

Proof. This is an immediate consequence of Izumi's theorem (see for exam-
ple ([14], Theorem 1.2). This says that since the local ring OX,x is analytically
unrami�ed, there is a constant c = c(v) such that for every other divisorial valu-
ation v′ with center {x}, we have v(f) ≤ c·v′(f) for every f ∈ R. Let w1, . . . , wr
be the Rees valuations corresponding to the maximal ideal mx de�ning x. If
w = mini

1
wi(mx)wi and α = c ·maxiwi(mx), then we see that v(f) ≤ α · w(f)

for every f ∈ R. By combining Examples 3.20, 3.21, and 3.22, we conclude
that

vol(v) ≥ vol(α · w) =
vol(w)

αn
=
e(mx)

αn
> 0. �

4. THE VOLUME OF A SUBSET IN THE SPACE OF ARCS

Suppose, as in the previous section, thatX = Spec(R) is an n-dimensional,
a�ne algebraic variety over an algebraically closed �eld k. We now assume that
char(k) = 0.

Let X∞ be the scheme of arcs of X (for an introduction to spaces of arcs,
see for example [10]). Since X is a�ne, X∞ is a�ne as well, but in general not
of �nite type over k. Note that if γ ∈ X∞ is a point with residue �eld k(γ),
then we can identify γ with a morphism Spec(k(γ)[[t]]) → X. We denote by
π : X∞ → X the canonical projection taking γ to γ(0), the image by γ of the
closed point.

Remark 4.1. While X∞ is not a Noetherian scheme, if C is a closed subset
of X∞, we may still consider the irreducible components of C: these correspond
to the prime ideals in O(X∞) which are minimal over the ideal of C. Note that
we can still write C as the union of its irreducible components: this is an
immediate application of Zorn's Lemma.

∗This means that the completion ÔX,x is a domain (note that it is always reduced, since
OX,x is a reduced excellent ring). The condition is satis�ed, for example, if X is normal.
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For every γ ∈ X∞, we de�ne the function ordγ : R → Z≥0 ∪ {∞} given
by ordγ(f) = ordt(γ

∗(f)). It is clear that ordγ is a semi-valuation of R.

Given a subset C ⊆ X∞, we consider the function ordC : R→ Z≥0 ∪{∞}
de�ned by

ordC(f) = min
γ∈C

ordγ(f).

It follows from the de�nition that ordC is a radical pseudo-valuation. For
short, we denote bm(C) := bm(ordC) ⊆ R and, similarly, let b•(C) := b•(ordC).

Lemma 4.2. If C is the closure of a subset C ⊆ X∞, then ordC = ordC .

Proof. The assertion follows from the fact that for every f ∈ R and every
m ∈ Z, the set {γ ∈ X∞ | ordγ(f) ≥ m} is closed. �

The assertion in the next lemma follows directly from de�nition.

Lemma 4.3. If C =
⋃
i∈I Ci, then ordC(f) = mini∈I ordCi(f) for every

f ∈ R.

Remark 4.4. If C is irreducible, then ordC is a semi-valuation. Indeed, it
follows from Lemma 4.2 that if δ is the generic point of C, then ordC = ordδ,
hence ordC is a semi-valuation.

Remark 4.5. The center of the pseudo-valuation ordC is equal to π(C),
with the reduced scheme structure. Indeed, this follows from the fact that for
f ∈ R and γ ∈ X∞, we have ordγ(f) ≥ 1 if and only if f lies in the ideal

de�ning π(γ).

De�nition 4.6. We de�ne the volume vol(C) of a set C ⊆ X∞ to be the
volume

vol(C) := vol(ordC) = vol(b•(C))

of the pseudo-valuation ordC .

Proposition 4.7. For every C ⊆ X∞, we have vol(C) < ∞ if and only

if π(C) is a �nite set of closed points.

Proof. The assertion follows by combining Remarks 3.18 and 4.5. �

From now on, we restrict our attention to subsets C ⊆ X∞ whose image
in X is a �nite set of closed points. In the next propositions, we give some
basic properties of volumes of subsets of X∞.

Proposition 4.8. If C1 ⊆ C2, then vol(C1) ≤ vol(C2).

Proof. If C1 ⊆ C2 then it is clear that ordC1(f) ≥ ordC2(f) for every
f ∈ R. The assertion then follows from Example 3.21. �



19 The volume of a set of arcs on a variety 393

The next proposition allows us to reduce to considering subsets lying in a
�ber of π : X∞ → X. For every closed point x ∈ X, we denote the �ber π−1(x)
by X∞(x).

Proposition 4.9. Let C ⊆ X∞ be such that π(C) is a �nite set of closed

points. If we consider the unique decomposition C = C1∪ . . .∪Cr such that the

π(Ci) are pairwise distinct points, then we have

vol(C) =

r∑
i=1

vol(Ci).

Proof. If π(Ci) = {xi}, then it is clear that

bm(C) =
r⋂
i=1

bm(Cj)

and bm(Cj) is cosupported at xj for every m ≥ 1. Therefore the assertion
follows from Remark 3.3. �

Proposition 4.10. If C ⊆ X∞(x), for some closed point x ∈ X, then

vol(X) ≤ ex(X).

Proof. Note that if mx is the ideal de�ning x, then mx ⊆ b1(C). Therefore
mp
x ⊆ b1(C)p ⊆ bp(C) for every p, and we obtain vol(C) ≤ e(mx) = ex(X). �

The following de�nition extends the notions of thin and fat arcs introduced
in [8, 15] to arbitrary sets of arcs.

De�nition 4.11. A subset C of X∞ is said to be thin if there exists a
proper closed subscheme Z ↪→ X such that C ⊆ Z∞. If C is not thin, then
we say that C is fat. A subset C of X∞ is a cylinder if C = π−1

m (S) for
some m and some constructible subset S ⊆ Xm, where πm : X∞ → Xm is the
canonical projection. It is a basic fact that a cylinder C is thin if and only if
C ⊆ (Xsing)∞, where Xsing is the singular locus of X (see [10], Lemma 5.1).

Proposition 4.12. Let C be a subset of X∞ whose image in X is a �nite

set of closed points. If C is thin, then vol(C) = 0, and if the closure of C is a

fat cylinder and X is analytically unrami�ed at every point, then vol(C) > 0.

Proof. Suppose �rst that there exists a proper closed subscheme Z of X
such that C ⊆ Z∞. Let IZ ⊆ OX be the ideal of Z. We have IZ ⊆ bm(C) for
every m, hence

`(OX/bm(C)) = `(OZ/bm(C)OZ) = o(mn)

since dimZ < n. This implies that vol(C) = 0.
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Let us assume now that C is a fat cylinder. Since ordC = ordC by
Lemma 4.2, we may replace C by C and thus assume that C is closed. Since C is
a cylinder, it has �nitely many irreducible components (see [4], Proposition 3.5).
One of these, say C ′, has to be fat, in which case ordC′ is a divisorial valuation
by ([4], Propositions 2.12 and 3.9). Of course, the image of C ′ in X consists of
one closed point. Using Propositions 4.8 and 3.24, we conclude that

vol(C) ≥ vol(C ′) = vol(ordC′) > 0. �

We now address the results stated in the introduction. We begin with the
�rst two propositions.

Proof of Proposition 1.1. For every p, we have

(19) bp(C1 ∪ C2) = bp(C1) ∩ bp(C2) and

(20) bp(C1 ∩ C2) ⊇ bp(C1) + bp(C2).

The exact sequence

0→ OX/(bp(C1)∩bp(C2))→ OX/bp(C1)⊕OX/bp(C2)→ OX/(bp(C1)+bp(C2))→ 0

implies

`(OX/bp(C1)) + `(OX/bp(C2)) = `(OX/bp(C1) ∩ bp(C2)) + `(OX/bp(C1) + bp(C2)).

Using (19) and (20), we conclude

`(OX/bp(C1)) + `(OX/bp(C2)) ≥ `(OX/bp(C1 ∪ C2)) + `(OX/bp(C1 ∩ C2)).

Then the assertion follows by dividing by pn/n! and letting p go to in�nity.
Note that this step uses the property that the limsup in the de�nition of the
volume is, in fact, a limit. �

Proof of Proposition 1.2. Let Cm = Cont≥m(a). It follows from de�nition
that ap ⊆ bmp(Cm) for every p ≥ 1. By (13), we have

mn · vol(Cm) = lim
p→∞

e(bmp(Cm))

pn
≤ lim

p→∞

e(ap)

pn
= e(a).

Using the characterization of volume in Remark 3.2, we deduce from the
inclusion a ⊆ bm(Cm) that

vol(Cm) ≤ e(bm(Cm))

mn
≤ e(a)

mn
.

Note that if γ(t) ∈ Cm, then γ(tp) ∈ Cmp. This implies that we have an
inclusion

bmpq(Cmp) ⊆ bmq(Cm) for every q,
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and therefore

mn · e(bmq(Cm))

(mq)n
≤ (mp)n · e(bmpq(Cmp))

(mpq)n
.

By letting q go to in�nity, we obtain

mn · vol(Cm) ≤ (mp)n · vol(Cmp).

In order to complete the proof, it is enough to show that when m is
divisible enough, we have vol(Cm) ≥ e(a)

mn . Suppose that E1, . . . , Er are the
divisors over X corresponding to the Rees valuations associated to the ideal
a (see Example 3.20). We put qi = ordEi(a) and assume that m is divisible
by every qi. Recall that if E is a divisor over X, then there is a sequence
of irreducible closed subsets CqX(E), for q ≥ 1, called the maximal divisorial

sets, which are de�ned as follows. If π : Y → X is a birational map such that
Y is smooth and E is a smooth divisor on Y , then CqX(E) is the closure of
π∞(Cont≥q(E)). It is easy to see that ordCqX(E) = q · ordE . For a discussion of

these subsets of X∞, we refer to [8] and [4]. With this notation, we consider
the closed subset

Tm :=
r⋃
i=1

C
m/qi
X (Ei).

Note that we have Tm ⊆ Cm, hence

bjm(Cm) ⊆ bjm(Tm) =
r⋂
i=1

{f ∈ R | ordEi(f) ≥ jqi} = aj ,

where we denote by c the integral closure of an ideal c. We conclude that

e(bjm(Cm)) ≥ e(aj) = jn · e(a).

Dividing by (jm)n and letting j go to in�nity, we get vol(Cm) ≥ e(a)
mn .

This completes the proof of the proposition. �

Next, we review the de�nition of jet-codimension and prove two more
preliminary properties before addressing the proof of Theorem 1.3. Recall that
the Krull codimension of a closed irreducible set C ⊆ X∞ is the dimension of
the local ring OX∞,C , and is denoted by codim(C). The de�nition extends to
an arbitrary set C ⊆ X∞ by taking the smallest codimenion of an irreducible
component of the closure C.

While the Krull codimension is computed from the local rings of X∞, the
jet-codimension is computed from the �nite levels Xm. In order to de�ne it,
we need the following lemma.

Lemma 4.13. For every subset C ⊆ X∞, the limit

lim
m→∞

(
(m+ 1)n− dimπm(C)

)
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exists.

Proof. It follows from ([7], Lemma 4.3) that for every m, the �bers of
the map πm+1(X∞) → πm(X∞) have dimension ≤ n (note that both sets are
constructible by a result due to Greenberg [13]). It follows from Lemma 4.14
below that dimπm+1(C) ≤ dimπm(C) + n, hence the sequence (am)m≥1 with
am = (m+1)n−dimπm(C) is a non-decreasing sequence of integers. Therefore
it either stabilizes or it has limit in�nity. �

Lemma 4.14. Let f : V → W be a morphism of algebraic varieties over

k and suppose that d is a non-negative integer and A is a constructible subset

of V such that for every y ∈ f(A), we have dim(f−1(y) ∩ A) ≤ d. For every

subset B ⊆ A, we have

dim(B) ≤ d+ dim(f(B)).

Proof. We can write A =
⋃r
i=1Ai, with each Ai a locally closed subset of

V . If Bi = B ∩ Ai, then B =
⋃r
i=1Bi, B =

⋃r
i=1Bi, and f(B) =

⋃r
i=1 f(Bi).

Since it is enough to prove the assertion for each Bi, it follows that we may
assume that A is a locally closed subset. In this case A is open in A, hence
A∩B is a dense open subset of B. Since dim(B) = dim(A∩B) and the �bers
of the morphism A ∩ B → f(B) have dimension ≤ d, we obtain the assertion
in the lemma. �

De�nition 4.15. The jet-codimension of an irreducible closed subset C of
X∞ is de�ned to be

jet-codim(C) := lim
m→∞

(
(m+ 1)n− dimπm(C)

)
.

For an arbitrary subset C ⊆ X∞, we de�ne jet-codim(C) to be the small-
est jet-codimension of an irreducible component of C.

Remark 4.16. It follows from the proof of Lemma 4.13 that if C is closed
and irreducible, then jet-codim(C) ≥ n− dimπ(C) ≥ 0. This implies that for
every C ⊆ X, we have jet-codim(C) ≥ 0.

Remark 4.17. If C1 ⊆ C2 ⊆ X∞, then jet-codim(C1) ≥ jet-codim(C2).
Indeed, if C ′1 is an irreducible component of C1, then there is an irreducible
component C ′2 of C2 such that C ′1 ⊆ C ′2. In this case, for every m we have

(m+ 1)n− dimπm(C ′1) ≥ (m+ 1)n− dimπm(C ′2).

By lettingm go to in�nity, we conclude that jet-codim(C ′1)≥ jet-codim(C ′2)
≥ codim(C2). Since this holds for every irreducible component of C1, we con-
clude that jet-codim(C1) ≥ jet-codim(C2).
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Remark 4.18. For any subset C ⊆ X∞, we have codim(C) = codim(C)
and jet-codim(C) = jet-codim(C).

If X is smooth and C ⊆ X∞ is a cylinder, then we have jet-codim(C) =
codim(πm(C), Xm) for all m� 1. As the next proposition shows, this is equal
to the Krull codimension codim(C). More generally, we have the following
property.

Proposition 4.19. If X is smooth and C ⊆ X∞ is any set, then we have

jet-codim(C) = codim(C).

Proof. The proof of the proposition follows immediately by applying the
next lemma to the irreducible components of C. �

Lemma 4.20. If X is smooth and C ⊆ X∞ is a closed irreducible subset,

then

jet-codim(C) = codim(C),

and this number is �nite if and only if C is a cylinder.

Proof. If C is a cylinder, then it follows from ([8], Corollary 1.9) that

jet-codim(C) = codim(πm(C), Xm) = codim(C) for m� 1.

Therefore it su�ces to show that if C is not a cylinder then

jet-codim(C) = dim(C) =∞.

In order to check this, consider the sequence of closed irreducible cylinders

Fi := π−1
i (πi(C)), i ≥ 0.

We have inclusions

C ⊆ · · · ⊆ Fi+1 ⊆ Fi ⊆ · · · ⊆ F1 ⊆ F0 ⊆ X∞.

Moreover, since C is closed, we have C =
⋂
i≥0 Fi.

Since C is not a cylinder, the sequence (Fi)i≥0 does not stabilize. There-
fore we can pick a subsequence (Fim)m≥0 such that

C ( Fim ( Fim−1 ( · · · ( Fi1 ( Fi0 ( X∞,

which clearly implies that codim(C) =∞. In fact, for every m, if p ≥ im, then
we also have the sequence

πp(C) ⊆ πp(Fim) ( πp(Fim−1) ( · · · ( πp(Fi1) ( πp(Fi0) ( Xp.

Note that for every k ≤ m, the subset πp(Fik) of Xp is irreducible and

closed since p ≥ ik. Therefore codim(πp(C), Xp) ≥ m and we conclude that
jet-codim(C) =∞. �
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Remark 4.21. The de�nition of jet-codimension generalizes to all sets the
de�nition of codimension of a quasi-cylinder given in [4]. In general, if X is
singular and C ⊆ X∞ is a closed irreducible set, then there is only an inequality
codim(C) ≤ jet-codim(C) which can be strict (e.g., see [17], Example 2.8).

If E is a prime exceptional divisor over X and CqX(E) ⊆ X∞ is the
maximal divisorial set associated to the divisorial valuation q · ordE , then we
have

(21) jet-codim(CqX(E)) = q · âE(X)

by ([4], Theorem 3.8). Using this fact, it is easy to extend ([22], Corollary 0.2)
to the singular setting, as follows. This proposition is also proved in ([16],
Proposition 3.5), but since the proof is short, we include it for the convenience
of the reader.

Proposition 4.22. For every proper, nonzero ideal a ⊆ R and every

positive integer m, we have

jet-codim(Cont≥m(a)) ≥ m · l̂ct(a),

with equality if m is su�ciently divisible.

Proof. By ([4], Propositions 3.5 and 2.12), Cont≥m(a) has �nitely many
fat irreducible components, and any such component C is a maximal divisorial
set. In particular, there is a fat irreducible component of the form C = CqX(E)
for some divisorial valuation q · ordE , such that

jet-codim(Cont≥m(a)) = jet-codim(CqX(E)) = q · âE(X),

by (21). Note that q · ordE(a) ≥ m, since CqX(E) ⊆ Cont≥m(a). On the other
hand, we have

l̂ct(a) ≤ âE(X)

ordE(a)
by the de�nition of Mather log canonical threshold. We conclude that

jet-codim(Cont≥m(a)) ≥ m · l̂ct(a).

On the other hand, suppose that F is a divisor over X such that l̂ct(a) =
âF (X)
ordF (a) and suppose that m = q · ordF (a) for some positive integer q. In this

case CqX(F ) ⊆ Cont≥m(a), hence

jet-codim(Cont≥m(a)) ≤ jet-codim(CqX(F )) = q · âF (X) = m · l̂ct(a).

By combining this with what we have already proved, we conclude that
in this case we have jet-codim(Cont≥m(a)) = m · l̂ct(a). �
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Proof of Theorem 1.3 For every p ≥ 1, we have C ⊆ Cont≥p(bp(C)). Note
that if C lies over the closed point x ∈ X, de�ned by the maximal ideal mx,
the ideal bp(C) is mx-primary. It follows from Proposition 4.22 that

(22) jet-codim(C) ≥ jet-codim Cont≥p(bp(C))) ≥ p · l̂ct(bp(C)).

On the other hand, Theorem 1.4 implies that

(23) (n! · `(OX/bp(C)))1/n · l̂ct(bp(C)) ≥ n.

By combining (22) and (23), we get(
`(OX/bp(C))

pn/n!

)1/n

· jet-codim(C) ≥ n.

We conclude that

vol(C)1/n · jet-codim(C) = lim
p→∞

(
`(OX/bp(C))

pn/n!

)1/n

· jet-codim(C) ≥ n.

This gives the �rst part of the statement of the theorem. The second part
follows from Proposition 4.19. �

For simplicity, we have always assumed that the ambient variety is a�ne.
However, as Remark 4.24 below shows, one can easily extend the notion of
volume for subsets of spaces of arcs to the case of possibly non-a�ne varieties.

Remark 4.23. Suppose that C ⊆ X∞ is contained in the �ber over a closed
point x ∈ X. If h ∈ R is such that h(x) 6= 0, then ordC(fhm) = ordC(f) for
every f ∈ R and every m ≥ 1. By Remark 3.23, we may extend ordC as a
pseudo-valuation of Rf ; in fact, this is the pseudo-valuation associated to C
when considered as a subset of U∞, where U is the open subset SpecRh ⊆ X.
It follows from Remark 3.23 that C has the same volume, whether regarded as
a subset of X∞ or U∞.

Remark 4.24. Suppose now that X is an arbitrary variety over k, possibly
not a�ne, and C ⊆ X∞ is a subset. We can de�ne vol(C) as follows. If the
image of C in X does not consist of �nitely many closed points, then we put
vol(C) = ∞. If the image of C in X consists of the closed points x1, . . . , xr,
then we choose a�ne open neighborhoods Ui of xi in X. If Ci = C ∩ (Ui)∞,
then C =

⊔r
i=1Ci and we may consider each Ci as a subset of (Ui)∞. Therefore

vol(Ci) is de�ned and independent of the choice of Ui by Remark 4.23 and we
put

vol(C) :=

r∑
i=1

vol(Ci).

It is easy to deduce from Proposition 4.9 and Remark 4.23 that if there
is an a�ne open subset U ⊆ X such that C ⊆ U∞ (this is the case, for
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example, whenever X is quasiprojective), then vol(C) can be also computed by
considering C as a subset of U∞ and using our original de�nition.
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