
Dedicated to Professor Lucian B�adescu on the occasion of his 70th birthday

ARITHMETIC ANALOGUES OF SOME BASIC CONCEPTS

FROM RIEMANNIAN GEOMETRY

ALEXANDRU BUIUM

Communicated by Vasile Br��nz�anescu

Following recent work of the author, partly in collaboration with T. Dupuy and
M. Barrett, we describe arithmetic analogues of some key concepts from Rieman-
nian geometry such as: metrics, Chern connections, curvature, etc. Theorems
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1. INTRODUCTION

In previous work (initiated in [4] and partly summarized in [5, 6]) the
author has developed an arithmetic analogue of di�erential calculus and, in
particular, of di�erential equations. As explained in [3, 13], this theory can be
viewed as an alternative approach to �absolute geometry� (or the �geometry over
the �eld with one element, F1�) and led to a series of diophantine applications
[6]. Once an arithmetic analogue of di�erential calculus is available one can ask
for arithmetic analogues of the basic concepts of di�erential geometry and, in
particular, of Riemannian geometry. Such analogues were recently proposed in
[1, 2, 8�10] and led to the somewhat surprising conclusion that the spectrum of
the integers, Spec Z, can be viewed as an (in�nite dimensional) manifold which
is naturally �curved� (although, as we shall see, only �mildly� curved). The aim
of this note is to present, in a self contained manner, some of the ideas and
results of this �arithmetic Riemannian� theory. For the details of the theory we
refer to the papers cited above.
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2. MAIN CONCEPTS AND RESULTS

The best way to present our material is by analogy with classical dif-
ferential geometry. In classical di�erential geometry one starts with an m-
dimensional smooth manifold M and its ring of smooth functions C∞(M). For
our purposes it is enough to think ofM as being the Euclidean spaceM = Rm.
Also we would like to think of the dimension m as going to in�nity, m → ∞.
In this paper the arithmetic analogue of Rm, with m→∞, will be the scheme
Spec Z. Let

(2.1) U = {u1, u2, ..., um}

be the set of coordinate functions on Rm. Then the analogue of the ring of
polynomial functions

(2.2) R[u1, ..., um]

on Rm will be the ring of integers Z or, more generally, the ring

(2.3) Z[1/N0, ζN ]

where N0 is an even integer, N is an integer, and ζN is a primitive N -th root
of unity. The analogue of the coordinate functions 2.1 will be a set of primes,

(2.4) V = {p1, p2, p3, ...} ⊂ Z.

One can take all primes or, better, all primes not dividing N0N . One
can further ask for an analogue of the ring C∞(Rm); as a general rule, in this
paper, C∞ objects will correspond, in arithmetic, to adelic objects.

Next one considers the partial derivative operators

(2.5) δi : C∞(Rm)→ C∞(Rm), δif :=
∂f

∂ui
, , i ∈ {1, ...,m}.

Following [4] we propose to take, as an analogue of 2.5, the operators

(2.6) δp : Z[1/N0, ζN ]→ Z[1/N0, ζN ], δp(a) =
φp(a)− ap

p
, p ∈ V,

where φp : Z[1/N0, ζN ]→ Z[1/N0, ζN ] is the unique ring automorphism sending
ζN into ζpN . More generally the concept of derivation on a ring B (by which
we mean an additive map B → B that satis�es the Leibniz rule) has, as an
arithmetic analogue, the concept of p-derivation de�ned as follows. Assume B
is a ring and assume, for simplicity, that p is a non-zero divisor in B; then a
p-derivation on B is a set theoretic map δp : B → B with the property that the
map φp : B → B de�ned by φp(b) = bp + pδpb is a ring homomorphism; we will
always denote by φp the ring homomorphism attached to a p-derivation δp and
we shall refer to φp as the Frobenius lift attached to δp.
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The next step in the classical theory is to consider various �brations
E → M and various tensors on E and M . Depending on the nature of the
tensors one is led to various �avors of di�erential geometry. Among these �a-
vors we would like to mention contact geometry and metric geometry. Contact
geometry has, as one of its motivating examples, the study of the case when E
is a bundle of jets ofM , equipped with contact forms; this example leads to the
geometric theory of di�erential equations and of classical mechanics (Lagrange
and Hamiltonian formalisms). Metric geometry leads, on the other hand, to
Riemannian geometry (the geometry of gravity, where one has a metric on M)
and gauge theory (the semi-classical theory of elementary particles, where one
has a family of metrics on the �bers of E, a principal bundle over M). An
arithmetic analogue of contact geometry was developed in a series of papers
(reviewed, for instance, in [6]) where the �bration E → M had, as analogue,
what were called arithmetic jet spaces of various arithmetically interesting vari-
eties (especially elliptic curves and modular curves) over rings of integers; this
led to a series of purely arithmetic applications (to topics related to the Manin-
Mumford conjecture, congruences between classical modular forms, Heegner
points, etc.). An analogue of the metric geometry (gauge-theoretic style) was
proposed more recently in [1, 2, 8�10] and will be explained in what follows.
Classically one starts with E →M the frame bundle of a rank n vector bundle
over the manifold M . Then E is a principal homogeneous space for the group
GLn; and if the vector bundle is trivial (which we shall assume from now on)
then E is identi�ed with M ×GLn. (Note that the rank n of the vector bundle
and the dimension m of M in this picture are unrelated.) We want to review
the classical concept of connection in E; we shall do it in a somewhat non-
standard way so that the transition to arithmetic becomes more transparent.
Indeed consider an n × n matrix x = (xij) of indeterminates and consider the
ring of polynomials over A = C∞(Rm), with the determinant inverted,

(2.7) B = A[x,det(x)−1].

Note that B is naturally a subring of the ring C∞(M ×GLn). Then by a
connection on E = M ×GLn we will understand a tuple δ = (δi) of derivations

(2.8) δi : B → B, i ∈ {1, ...,m},

lifting the derivations 2.5. We say the connection is invariant (or linear) if
δix = Aix for some n × n matrix Ai with coe�cients in A; invariance here
corresponds to the concept of invariance of classical connections under the right
action of GLn on the frame bundle E. For an invariant connection δ as above
one can de�ne the curvature as the matrix (ϕij) of commutators

(2.9) ϕij := [δi, δj ] : B → B, i, j ∈ {1, ...,m}.
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One has then ϕij(x) = Fijx where Fij is the matrix given by the classical
formula

(2.10) Fij := δiAj − δjAi − [Ai, Aj ].

We would like to introduce now an arithmetic analogue of connection
and curvature. The �rst step is clear: we consider a ring B de�ned as in 2.7
but where A is given now by A = Z[1/N0, ζN ] as in 2.3. A �rst attempt to
de�ne arithmetic analogues of connections would be to consider families of p-
derivations δp : B → B, p ∈ V, lifting the p-derivations 2.6; one would then
proceed by considering their commutators on B (or, if necessary, expressions
derived from these commutators). But the point is that the examples of �arith-
metic analogues of connections� we will encounter in practice (when we develop
arithmetic analogues of the Chern connections of classical di�erential geome-
try) will never lead to p-derivations B → B! What we shall be led to is, rather,
an adelic concept we next introduce. (This is also in line with our �principle�
that C∞ geometric objects should correspond to adelic objects in arithmetic.)
For each p ∈ V we consider the p-adic completion of B:

(2.11) Bp̂ := lim
←
B/pnB.

Then we de�ne an adelic connection on GLn to be a family (δp) of p-
derivations

(2.12) δp : Bp̂ → Bp̂, p ∈ V,

lifting the p-derivations in 2.6. We do not impose any condition analogous to
invariance; instead, what happens is that our adelic connections of interest turn
out to enjoy a certain invariance property with respect to right translations by
the elements of the normalizer of the maximal (diagonal) torus of GLn. Leaving
the invariance issue aside we are facing, at this point, a more severe dilemma:
our p-derivations δp in 2.12 do not act on the same ring, so there is no a priori
way of considering their commutators and, hence, it does not seem possible to
de�ne, in this way, the notion of curvature. It will turn out, however, that our
adelic connections of interest will satisfy an interesting property which we call
�being global along the identity�, and which will allow us to de�ne curvature
via commutators. Here is the de�nition of this property. Consider the matrix
T = x−1, where 1 is the identity matrix. We say that an adelic connection (δp)
on GLn, with attached family of Frobenius lifts (φp), is global along 1 if, for all
p, φp sends the ideal of 1 into itself and, moreover, the induced homomorphism
φp : Ap̂[[T ]]→ Ap̂[[T ]] sends the ring A[[T ]] into itself. If the above holds then
one can consider the commutator [φp, φp′ ] : A[[T ]] → A[[T ]] for all p, p′ ∈ V;
this commutator is divisible by pp′ and one can de�ne the curvature of (δp) as
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the matrix (ϕpp′) with entries

(2.13) ϕpp′ :=
1

pp′
[φp, φp′ ] : A[[T ]]→ A[[T ]], p, p′ ∈ V.

The idea of comparing p-adic phenomena for di�erent p's by �moving along
the identity section� is borrowed from [7] where it was referred to as �analytic
continuation along primes�. Of course, in order for the above de�nitions to be
interesting, we will need to:

1) �nd natural �metric� adelic connections on GLn,

2) show that these adelic connections are global along 1, and

3) compute and interpret the curvatures of these adelic connections.

We explain now how this program can be achieved. First we go back
to classical di�erential geometry and we �recall� the de�nition of the Chern
connection [12]. We shall present this de�nition in the �real setting� only, where
the Chern connections should be more appropriately referred to as Duistermaat
connections [11]; for the �complex setting� we refer to [1, 9]. So let us consider
the ring A = C∞(Rm) and let q be an n× n invertible matrix with coe�cients
in A which is either symmetric (qt = q) or antisymmetric (qt = −q), where the t
superscript means transposition. Of course, a symmetric q as above is viewed as
a �metric� while an antisymmetric q is viewed as a �2-form.� Set G = GLn and
consider the maps of schemes over A, Hq : G→ G, Bq : G×G→ G de�ned by
Hq(x) = xtqx and Bq(x, y) = xtqy. We continue to denote by the same letters
the corresponding maps of rings B → B and B → B⊗AB. Consider the trivial
(invariant) connection δ0 = (δ0i) on G de�ned by δ0ix = 0. Then one can easily
check (see below) that there is a unique invariant connection (δi) on G such
that the following diagrams are commutative:

(2.14)
B

δi←− B
Hq ↑ ↑ Hq
B

δ0i←− B

B
δi⊗1+1⊗δ0i←− B ⊗A B

δ0i ⊗ 1 + 1⊗ δi ↑ ↑ Bq
B ⊗A B

Bq←− B

This δ can be referred to as the Chern connection attached to q. The
de�nition just given may look non-standard. It turns out that the Chern con-
nection we just de�ned is a real analogue [11] of the usual Chern connection
in di�erential geometry [12] (in which δ0 is an analogue of a complex struc-
ture). To see this set Γi = −Ati, let Γkij be the (j, k)-entry of Γi (the Cristo�el

symbols), and set Γijk := Γlijqlk (Einstein notation). Assume we are in the
symmetric case, qt = q. Then the commutativity of the left diagram in 2.14 is
equivalent to the condition

(2.15) δiqjk = Γijk + Γikj ,
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and the commutativity of the right diagram in 2.14 is equivalent to the condition

(2.16) Γijk = Γikj ;

so the Chern connection attached to q is given by

(2.17) Γijk =
1

2
δiqjk.

The Chern connection will have an arithmetic analogue to be explained
presently. The condition 2.15 expresses the fact that q is parallel with respect
to the connection δ. It is important to note, however, that, in our setting, the
torsion is not de�ned and, in particular, the symmetry in 2.16 has nothing to
do with the vanishing of the torsion. On the other hand, if one takes E to be
the tangent bundle of M (so in particular n = m), then the condition that the
torsion of δ vanishes is given by

(2.18) Γijk = Γjik

which is a symmetry condition rather di�erent from 2.16. By the way there
is a unique connection δ such that conditions 2.15 and 2.18 are satis�ed; this
connection is referred to as the Levi-Civita connection and is given by the
formula

(2.19) Γkij =
1

2
(δkqij + δiqjk − δjqki) .

The Levi-Civita connection does not seem to have an arithmetic analogue
in our theory, at this point.

Now we move to the arithmetic situation. So let A = Z[1/N0, ζN ]. Let
q ∈ GLn(A) with qt = ±q. Set G = GLn = Spec B, viewed as a group scheme
over A. Attached to q we have, again, maps Hq : G→ G and Bq : G×G→ G
de�ned by Hq(x) = xtqx and Bq(x, y) = xtqy. We continue to denote by Hq,Bq
the maps induced on the p-adic completions Gp̂ and Gp̂ × Gp̂. Consider the
unique adelic connection δ0 = (δ0,p) on G with δ0,px = 0 and denote by (φp)
and (φ0,p) the families of lifts of Frobenius attached to δ and δ0 respectively.
Then one has the following:

Theorem 2.1 ([9]). For any q ∈ GLn(A) with qt = ±q there exists a

unique adelic connection δ such that the following diagrams are commutative:

Gp̂
φp−→ Gp̂

Hq ↓ ↓ Hq
Gp̂

φ0,p−→ Gp̂

Gp̂
φ0,p×φp−→ Gp̂ ×Gp̂

φp × φ0,p ↓ ↓ Bq
Gp̂ ×Gp̂ Bq−→ Gp̂

The adelic connection δ is referred to as the Chern connection (on G =
GLn) attached to q. The various q's with qt = ±q lead to the various forms
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of the classical groups Spn and SOn. A similar theorem is proved in [9] for
the classical groups SLn. Note the following relation between the �Christo�el
symbols� de�ning our Chern connection and the Legendre symbol. We explain
this in a special case. Let q ∈ GL1(A) = A×, A = Z[1/N0], and let δ = (δp) be
the Chern connection associated to q. Then it turns out that φp : Gp̂ → Gp̂ is
de�ned by φp : Zp[x, x−1]p̂ → Zp[x, x−1]p̂,

(2.20) φp(x) = q(p−1)/2
(
q

p

)
xp,

where
(
q
p

)
is the Legendre symbol of q ∈ A× ⊂ Z(p).

Next one can ask which of these adelic connections admit curvatures. One
has:

Theorem 2.2 ([1]). If all the entries of q are roots of unity or 0 then the

Chern connection δ attached to q is global along 1. In particular δ has a well

de�ned curvature.

Next we address the question of computing the curvature of Chern con-
nections. Let us say that a matrix q ∈ GLn(A) is split if it is one of the
following:

(2.21)

(
0 1r
−1r 0

)
,

(
0 1r
1r 0

)
,

 1 0 0
0 0 1r
0 1r 0

 ,

where 1r is the r×r identity matrix and n = 2r, 2r, 2r+1 respectively. These are
matrices that de�ne the classical split groups Sp2r, SO2r, SO2r+1, respectively.
One has the following:

Theorem 2.3 ([1]). Let q be split and let (ϕpp′) be the curvature of the

Chern connection on G attached to q.

1) Assume n ≥ 4. Then for all p 6= p′ we have ϕpp′ 6= 0.

2) Assume n even. Then for all p, p′ we have ϕpp′(T ) ≡ 0 mod (T )3.

3) Assume n = 2 and qt = −q. Then for all p, p′ we have ϕpp′ = 0.

4) Assume n = 1. Then for all p, p′ we have ϕpp′ = 0.

In assertion 2) we denoted by (T )3 the cube of the ideal in A[[T ]] generated
by the entries of the matrix T . Assertion 1) morally says that Spec Z is �curved�,
while assertion 2) morally says that Spec Z is only �mildly curved�. Note that
the theorem says nothing about the vanishing of the curvature ϕpp′ in case
n = 2, 3 and qt = q; our method of proof does not seem to apply to these cases.

The theory explained above has a �complex analogue� (or, rather, a (1, 1)-
analogue) for which we refer to [1, 9].
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This theory (that largely follows [1]) was based on what we called �analytic
continuation between primes�; this was the key to making Frobenius lifts corre-
sponding to di�erent primes act on a same ring. There is a di�erent approach
towards making Frobenius lifts comparable; this approach was developed in [2]
and is based on the following �algebraization� result:

Theorem 2.4 ([2]). Let δ = (δp) be the Chern connection on G = GLn
attached to a matrix q ∈ GLn(A) with qt = ±q. Then one can �nd maps of

A-schemes πp : Yp → G and ϕp : Yp → G such that:

i) πp are a�ne and �etale,

ii) πp̂p : Y p̂
p → Gp̂ are isomorphisms, and

iii) ϕp̂p = φp ◦ πp̂p : Y p̂
p → Gp̂.

In other words the correspondences Γp := (Yp, πp, ϕp) on G are �alge-
braizations� of our Frobenius lifts φp; the system (Γp) is referred to as a corre-

spondence structure for (δp); it is not unique but does have some �uniqueness
features� (cf. [2]). On the other hand any correspondence Γp acts on the �eld
E of rational functions of G by the formula Γ∗p : E → E,

(2.22) Γ∗p(z) = Trπp(ϕ∗p(z)), z ∈ E,

where Trπp : Fp → E is the trace of the extension π∗p : E → Fp := Yp ⊗G E
and ϕ∗p : E → Fp is induced by ϕp. By the way the degrees of the extensions
π∗p : E → Fp and ϕ∗p : E → Fp will be referred to as the left degree and the
right degree of Γp respectively. Also we say Γp is irreducible if Fp is a �eld. So
one can de�ne the ∗-curvature of the adelic connection (δp) as the matrix (ϕ∗pp′)
where

(2.23) ϕ∗pp′ :=
1

pp′
[Γ∗p,Γ

∗
p′ ] : E → E, p, p′ ∈ V.

Note that, in this way, we have de�ned a concept of �curvature� for Chern
connections attached to arbitrary q's (that do not necessarily have entries zeroes
or roots of unity). There is a (1, 1)-version of the above as follows. Given
one more adelic connection δ = (δp) =: (δp) with correspondence structure
(Γp) =: (Γp) one can de�ne the (1, 1)-∗-curvature of (Γp) with respect to (Γp)
as the family (ϕ∗pp′) where ϕ∗pp′ is the additive endomorphism

(2.24) ϕ∗pp′ :=
1

pp′
[Γ∗p′ ,Γ

∗
p] : E → E for p 6= p′, and ϕ∗pp :=

1

p
[Γ∗p,Γ

∗
p] : E → E.

In what follows we let δ be equal to δ0 = (δ0,p), where δ0,px = 0; we
give δ the correspondence structure (Γp) = (G, πp, ϕp), πp the identity, and
ϕp(x) = x(p).
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Theorem 2.5 ([2]).
1) Assume n = 2 and q is split with qt = −q. Then Γp is irreducible

and has left degree 2 and right degree 2p4. Moreover the ∗-curvature satis�es

ϕ∗pp′ = 0 for all p, p′ while the (1, 1)-∗-curvature satis�es ϕ∗pp′ 6= 0 for all p, p′.

2) Assume n = 2 and q is split with qt = q. Then Γp is irreducible and

has left degree 4. Moreover the (1, 1)-∗-curvature satis�es ϕ∗pp′ 6= 0 for all p, p′.

Once again, the theorem says nothing about the ∗-curvature in case n = 2
and qt = q; our method of proof does not seem to apply to this case.

3. FINAL REMARKS

The theory outlined above should be viewed as a �rst step in a program of
developing a di�erential geometry of Spec Z. Other types of curvature (Ricci,
mean, scalar) are developed in [1] and lead to some interesting Dirichlet series.
An arithmetic Maurer-Cartan connection and a Galois theory attached to it
is given in [9, 10]; this Galois theory should be viewed as an arithmetic gauge

theory and should be further developed. It might be possible to attach deRham

cohomology classes to our curvatures and to link them to the �etale cohomology
of Spec Z. Links between adelic connections and Galois representations might
exist that mimic the link between �at connections on vector bundles over man-
ifolds and representations of the fundamental group of those manifolds. We
hope to come back to these issues in future work.

Acknowledgments. The author would like to acknowledge partial support from the
Simons Foundation (award 311773) and from the Romanian National Authority for
Scienti�c Research (CNCS - UEFISCDI, project number PN-II-ID-PCE-2012-4-0201).

REFERENCES

[1] M. Barrett and A. Buium, Curvature on the integers, I. Preprint.

[2] A. Buium, Curvature on the integers, II. Preprint.

[3] J. Borger, Λ-rings and the �eld with one element . arXiv:0906.3146 [math.NT]

[4] A. Buium, Di�erential characters of Abelian varieties over p-adic �elds. Invent. Math.,
122 (1995), 309�340.

[5] A. Buium, Arithmetic Di�erential Equations . Math. Surveys and Monographs 118,
American Mathematical Society, Providence, RI, 2005. xxxii+310 pp.

[6] A. Buium, Di�erential calculus with integers. arXiv:1308.5194, to appear in: Proceed-
ings of the Algebra and Geometry Semester at the Hausdor� Institute (2013), Cambridge
Univ. Press.

[7] A. Buium and S.R. Simanca, Arithmetic Laplacians. Advances in Math. 220 (2009),
246�277.

[8] A. Buium and T. Dupuy, Arithmetic di�erential equations on GLn, I: di�erential cocyles.
arXiv:1308.0748v1.



266 Alexandru Buium 10

[9] A. Buium and T. Dupuy, Arithmetic di�erential equations on GLn, II: arithmetic Lie-

Cartan theory. arXiv:1308.0744.

[10] A. Buium and T. Dupuy, Arithmetic di�erential equations on GLn, III: Galois groups.
arXiv:1308.0747.

[11] J. Duistermaat, On Hessian Riemannian structures . Asian J. Math. 5 (2001), 79�91.

[12] S. Kobayashi, Di�erential Geometry of Complex Vector Bundles . Princeton University
Press, 1987.

[13] Yu. I. Manin, Numbers as functions. arXiv:1312.5160.

Received 27 February 2015 University of New Mexico,

Albuquerque, NM 87131

buium@math.unm.edu


