
For my Professor Lucian B�adescu and for our teacher's Professor

RELATIVE GARSIDE ELEMENTS OF ARTIN MONOIDS

USMAN ALI, BARBU BERCEANU and ZAFFAR IQBAL

Communicated by Vasile Br��nz�anescu

We introduce a relative Garside element, the quotient of the corresponding Gar-
side elements ∆(Γn−1) and ∆(Γn), for a pair of Artin monoids associated to
Coxeter graphs Γn−1 ⊂ Γn, the second graph containing a new vertex. These
relative elements give a recurrence relation between Garside elements. As an
application, we compute explicitly the Garside elements of Artin monoids corre-
sponding to spherical Coxeter graphs or the longest elements of the associated
�nite Coxeter groups.
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1. INTRODUCTION

The Garside element for the braid group (and for the braid monoid) cor-
responding to Artin's presentation (see [2, 14])

Bn=

〈
x1, x2, . . . , xn−1

∣∣∣∣∣ xixj = xj xi if | i− j | ≥ 2
xi+1 xi xi+1 = xi xi+1 xi if 1 ≤ i ≤ n− 2

〉
is given by (see [11])

∆n = x1(x2x1)(x3x2x1) . . . (xn−1xn−2 . . . x1)

(to represent ∆n, or, more general, to represent an element of a monoid as a
product of generators, we chose the smallest word in the length-lexicographic
order induced by the order between generators x1 < x2 < . . . < xn−1). For
other representations of ∆n, including the most used formula, see [4]. The right
quotient ∆−1n ∆n+1 = xnxn−1 . . . x1 will be called the relative Garside element

corresponding to the embedding of the Coxeter graphs An−1 ⊂ An:

An−1 : An :
xn
•⊂• • • •

x1 x2 x3 xn−1. . .
• • • •
x1 x2 x3 xn−1. . .
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This element and its left divisors play a central role in the construction
of the Gr�obner basis for the classical braid monoid (see [1, 3, 6]). In this paper
we give few characterizations of the relative Garside element corresponding to
an extension of Coxeter graphs by one new vertex, see Propositions 1�4, and
we will use these to compute inductively the Garside elements of the Artin
monoids of spherical type, see Corollaries 1�7.

We start to recollect some facts about Coxeter graphs, Coxeter and Artin
groups, Artin monoids, and Garside elements. Let S be a set. A Coxeter matrix

over S is a square matrix M = (mst)s,t∈S indexed by the elements of S such
that

mss = 1 for all s ∈ S and mst = mts ∈ {2, 3, 4, . . . ,∞} for all s, t ∈ S, s 6= t.

The associated Coxeter graph Γ = Γ(M) is a labeled graph de�ned by the
following data:

S is a set of vertices of Γ;
two vertices s, t ∈ S are joined by an edge if mst ≥ 3, with label mst if

mst ≥ 4.
A Coxeter matrix M = (mst)s,t∈S is usually represented by its Coxeter

graph Γ(M).

De�nition 1. Let M = (mst)s,t∈S be the Coxeter matrix of the Coxeter
graph Γ. Then the group de�ned by

W(Γ) =
〈
s ∈ S | (st)mst = 1 for all s, t ∈ S satisfying mst 6=∞

〉
is called the Coxeter group of type Γ.

In an equivalent way we can write W(Γ) =
〈
s ∈ S | s2 = 1, sts . . .︸ ︷︷ ︸

mst factors

=

tst . . .︸ ︷︷ ︸
mst factors

〉
.

We call Γ to be of spherical type if W(Γ) is a �nite group. A graph is of
spherical type if and only if it has �nitely many connected components, any of
them from the list in Fig. 1.1. (see [7]).

De�nition 2. If Γ is a Coxeter graph, its associated Artin group is de�ned
by

A(Γ) =
〈
s ∈ S

∣∣ sts . . .︸ ︷︷ ︸
mst factors

= tst . . .︸ ︷︷ ︸
mst factors

for all s, t ∈ S satisfying mst 6=∞
〉
.

The set of positive elements (i.e. the elements which are product of gener-
ators with positive exponents) in an Artin group A(Γ) is called the associated
Artin monoid and it can be also de�ned by the monoid presentation (see [15])

M(Γ) =
〈
s ∈ S

∣∣ sts . . .︸ ︷︷ ︸
mst factors

= tst . . .︸ ︷︷ ︸
mst factors

for all s, t ∈ S satisfying mst 6=∞
〉
.
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(An)n≥1 : • • • • •
x1 x2 x3 xn−1 xn. . .

(Bn)n≥2 : • • • • •4
x1 x2 x3 xn−1 xn. . .

�
��

• • • •
•

•
x1 x2 x3 xn−2

xn

xn−1

. . .
(Dn)n≥4 : HH

H

• • • • •

•

x1 x2 x3

x4

x5 xn. . .(En)n=6,7,8 :

• • • •
x1 x2 x3 x4

4F4 :

• •
x1 x2

6G2 :

• • •
x1 x2 x3

5 • • • •
x1 x2 x3 x4,

5(Hn)n=3,4 :

• •
x1 x2

p(
I2(p)

)
p≥5,p 6=6

:

Fig. 1.1. The connected spherical type Coxeter graphs.

There are two obvious surjective morphisms:

M(Γ) ↪→

W (Γ)
.

@R@R

A(Γ)
�	�	

Now we recall some basic properties of the (absolute) Garside element of
an Artin spherical monoid M(Γ) (see [8, 10, 11, 13, 15], and also Section 2
for notation). This element is the least common left-multiple of the set of
generators x1, . . . , xn: we have, for any i = 1, . . . , n, xi |L ∆ and if xi |L ω for
all i, then ∆ |L ω. The element ∆(Γ) is square free (there is no generator xi
such that x2i | ∆). In some cases ∆(Γ) itself is a square: for example

∆(A3) = x1(x2x1)(x3x2x1) = (x1x3x2)
2;

∆
(
I2(4k)

)
= (x1x2 . . . x2︸ ︷︷ ︸

2k times

)2.

Also, there is a bijection σ : {1, . . . , n} → {1, . . . , n} such that xi∆ =
∆xσ(i). The image of ∆(Γ) in the corresponding Coxeter group W (Γ) is the
(unique) longest element of this group and it has order two (see [7] and [9]).
The length l(Γ) of the Garside element ∆(Γ) is equal to the number of the
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re�ections (i.e. the conjugates of the generators in the Coxeter group) and it
is given by the following table (see [12] and [5]):

Γ An Bn Dn E6 E7 E8 F4 G2 H3 H4 I2(p)

l(Γ)
(
n+1
2

)
n2 n2 − n 36 63 120 24 6 15 60 p

2. RELATIVE GARSIDE ELEMENTS

Let us �x the notation. We already used the divisibility relation between
two elements of a monoid M, α | β: this is equivalent to β = λαρ for some
elements λ, ρ ∈ M. If λ = 1, we write α |L β and similarly, if ρ = 1, we write
α |R β and we say that α is a left and right divisor of β respectively. The
element α in a monoid M generated by x1, x2, . . . is said to be rigid if α can
be represented in a unique way as a word in x1, x2, . . ..

Suppose we have an inclusion of Coxeter graphs Γn−1 ⊂ Γn with vertices
{x1, . . . , xn−1} and {x1, . . . , xn}, respectively. Using the de�nition of Garside
elements we have

∆(Γn−1) |L ∆(Γn).

De�nition 3. The relative Garside element ∆(Γn,Γn−1) is de�ned as a
right quotient:

∆(Γn) = ∆(Γn−1)∆(Γn,Γn−1).

If there is no ambiguity concerning the inclusion Γn−1 ⊂ Γn, we will use the
simple notation ∆n = ∆n−1Rn. Now we present some properties of the relative
Garside element Rn which characterize this element.

Proposition 1. The relative Garside element Rn = ∆(Γn,Γn−1) satis�es
the properties:

a) Rn is square free;

b) xi |L Rn if and only if i = n;

c) there is a bijection σ : {1, . . . , n− 1} → {1, . . . , n} \ {σn(n)} such that

xiRn = Rnxσ(i);

d) xj |R Rn if and only if j = σn(n).

Proof. Let ∆n = ∆n−1Rn. Then we have:

a) Rn is square free because ∆n is square free;

b) xi (1 ≤ i ≤ n− 1) cannot be a left divisor of Rn: otherwise, Rn = xiU .
But xi |R ∆n−1 implies ∆n−1 = V xi, therefore we have ∆n = ∆n−1Rn =
V x2iU , a contradiction.
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c) Let σn−1 : {1, . . . , n − 1} → {1, . . . , n − 1} and σn : {1, . . . , n} →
{1, . . . , n} be the bijections de�ned by the conjugation with ∆n−1 and ∆n, re-
spectively: xi∆n−1 = ∆n−1xσn−1(i), xi∆n = ∆nxσn(i). Now, for i ∈ {1, . . . , n−
1}, we have:

∆n−1xiRn=xσ−1
n−1(i)

∆n−1Rn=xσ−1
n−1(i)

∆n=∆nxσnσ−1
n−1(i)

= ∆n−1Rnxσnσ−1
n−1(i)

,

therefore xiRn = Rnxσ(i), where σ = σn ◦ σ−1n−1. The image of σ contains all
the elements 1, . . . , n, but not σn(n) = m.

d) If xj 6= xm, then there exists i ∈ {1, . . . , n − 1} such that j = σ(i)
and xiRn = Rnxj . Suppose that xj |R Rn, i.e. Rn = Sxj . We obtain a
contradiction: xiRn = Rnxj = Sx2j , because xiRn is a right divisor of ∆n. �

Remark 1. From this proposition, the �rst and the last factors of Rn are
uniquely de�ned. In some casesRn is completely rigid, for instanceR3(A3, A2) =
x3x2x1, in other cases only the interior factors can be changed, for instance
R3(A3, A1 ×A1) = x2x1x3x2 = x2x3x1x2.

• •
x1 x1

• • •A2 :
x2 x2 x3
⊂ A3 : A1 ×A1 :

x1 x1
⊂ A3 :

x3 x3x2
• • • • •

We will use the notation m = σn(n).

Proposition 2. If Un ∈M(Γn) satis�es the following three conditions:

a) x2m - Un,
b) xi |L Un if and only if i = n, and
c) there is a bijection τ : {1, . . . , n − 1} → {1, . . . , k̂, . . . , n} such that

xiUn = Unxτ(i),
then Un = Rn (and also k = m, τ = σ).

Proof. Let us de�neD = ∆n−1Un. Because of the relations xi |L ∆n−1, i =
1, . . . , n − 1 and also from xn |L D, a consequence of b) and c), we have
xi |L ∆n−1Un for any i = 1, . . . , n, therefore ∆n |L D. This implies that
∆n−1Rn |L ∆n−1Un, hence Rn |L Un. If Rn 6= Un, then Un = RnxjW for
some j. If j 6= m, then j = σn(i) for some i ∈ {1, . . . , n − 1}, hence Un =
Rnxσ(i)W = xiRnW and this contradicts b). If j = m, then Un = (Sxm)xmW
which contradicts a). �

Proposition 3. If Un ∈M(Γn) satis�es the following three conditions:

a) xn |L Un,
b) there is a bijection τ : {1, . . . , n − 1} → {1, . . . , k̂, . . . , n} such that

xiUn = Unxτ(i), and
c) Un has minimal length among the words satisfying a) and b),

then Un = Rn (and also k = m, τ = σ).
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Proof. Let us de�ne D = ∆n−1Un. As in the previous proof, a) and b)
implies xi |L D for all i = 1, . . . , n. Therefore ∆n |L D, hence Rn |L Un.
We have |Un| ≥ |Rn| and Rn satis�es a) and b), therefore condition c) implies
Rn = Un. �

With the same proof, we have another version of the previous proposition:

Proposition 4. If Un ∈M(Γn) satis�es the following three conditions:

a) xn |L Un,
b) there is a bijection τ : {1, . . . , n − 1} → {1, . . . , k̂, . . . , n} such that

xiUn = Unxτ(i), and
c) the length of Un is the expected length l(Γn) − l(Γn−1) (from the table

in Section 1),

then Un = Rn (and also k = m, τ = σ).

3. THE RELATIVE GARSIDE AND GARSIDE ELEMENTS

FOR THE INFINITE SERIES

After the computation of various relative Garside elements, we will de-
scribe the Garside elements associated to the classical list of the connected
Coxeter diagrams: the in�nite series in this section, the exceptional cases in
the next section. Using the following obvious result, these will give formulae
for the Garside elements of all Artin monoids of spherical type.

Lemma 1. If the graph Γ is the disjoint union of Γ1 and Γ2, thenM(Γ) ∼=
M(Γ1)×M(Γ2) and

∆(Γ) = ∆(Γ1)∆(Γ2) = ∆(Γ2)∆(Γ1).

An series. We start with A1: •
x1

and its Garside element ∆(A1) =
∆2 = x1.

Construction of ∆(An, An−1): The element Mn = xnxn−1 . . . x1 satis�es
the conditions of Proposition 2:

a) Mn is square free: obvious because Mn is rigid;
b) xi |L Mn if and only if i = n for the same reason;
c) xiMn = Mnxi+1, therefore σ(i) = i + 1, where i = 1, . . . , n − 1, and

m = 1.

Corollary 1 (Classical Garside element).

∆(An) = ∆n+1 = x1(x2x1) . . . (xn−1 . . . x1)(xn . . . x1).

Bn series. We start with B2: • •
x1 x2

4
and its Garside element

∆(B2) = x1(x2x1x2), see the construction ∆(I2(p), A1).
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Construction of ∆(Bn, Bn−1): The element Nn = xnxn−1 . . . x2x1x2 . . . xn
satis�es the conditions of Proposition 2:

a) Nn is square free: obvious, because Nn is rigid inM(Bn);
b) xi |L Nn if and only if i = n for the same reason;
c) xiNn = Nnxi, therefore σ(i) = i, where i = 1, . . . , n− 1, and m = n.

Corollary 2.

∆(Bn) = x1(x2x1x2)(x3x2x1x2x3) . . . (xnxn−1 . . . x2x1x2 . . . xn−1xn).

Dn series. We start with D3: •

•
x1 x3

x2
��HH
• and its Garside element

∆(D3) = x1(x2x1)(x3x1x2) (this is ∆(A3, A2) = x3x2x1 with a change of no-
tation).

Construction of ∆(Dn, An−1): Consider the product

Pn = (xnxn−2xn−3..x1)(xn−1xn−2..x2)(xnxn−2xn−3..x3)(xn−1xn−2..x4)...

We prove by induction that Pn = Rn. The initial step is given by the
previous formula: ∆(D3, A2) = (x3x1)x2. We check the conditions in Proposi-
tion 2 in the case of n even, when the product ends with the generator xn:

Pn = (xnxn−2xn−3..x1)(xn−1xn−2xn−3..x2)(xnxn−2xn−3..x3)..(xn−1xn−2)xn.

a) First we prove that Pn is square free and also that xnxn−1 is not a
divisor of Pn.

�
��

HH
H

• • •
•

•
x1 x2 xn−2

xn

xn−1

. . .
Dn : Pn

∆n−1

↓ ?

• • ••
y1 y2 yn−2 yn−1. . .

An−1 :

De�ne a projection pr : M(Dn) → M(An−1) given by the diagram:
pr(xi) = ymin(i,n−1). The image of Pn under the map pr is ∆n−1 which is
square free: if x2j | Pn, then we have pr(x2j ) = y2h | ∆n−1 (h = j if j ≤ n − 1
and h = n − 1 if j = n), a contradiction. Therefore Pn is square free. In the
same way, if xnxn−1 | Pn, then pr(xnxn−1) = y2n−1 | ∆n−1, a contradiction.

b) Obviously xn |L Pn. Let us suppose that xi |L Pn for some i ≤ n− 1.
By induction we know that Rn−1 is given by the next formula and we will
analyze the following three cases:

1) i = n− 1, 2) i = n− 2, and 3) i ≤ n− 3:

Rn−1 = (xn−1xn−3xn−4 . . . x1)(xn−2xn−3 . . . x2)(xn−1xn−3xn−4 . . . x3) . . . xn−2.
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Using the inclusion morphism in : M(Dn−1) → M(Dn), z1 7→ x2, z2 7→
x3, . . . , zn−3 7→ xn−2, zn−2 7→ xn, zn−1 7→ xn−1, given by the inclusion of
graphs:

��
���

HH
H

• • •
•

•
z1 z2 zn−3

zn−1

zn−2

. . .
Dn−1 : (z1 < . . . < zn−2 < zn−1)

��
���

HH
H

• • •
•

•
x2 x3 xn−2

xn−1

xn

. . .
Dn :

↓
•
x1

(x2 < · · · < xn−2 < xn < xn−1)

the image of

Rn−1 = (zn−1zn−3zn−4..z1)(zn−2zn−3..z2)(zn−1zn−3..z3)..(zn−1zn−3)zn−2

is in(Rn−1) = R′n−1, given by

R′n−1 = (xn−1xn−2xn−3..x2)(xnxn−2xn−3..x3)(xn−1xn−2..x4)..(xn−1xn−2)xn

and we have Pn = (xnxn−2xn−3 . . . x1)R
′
n−1. If xi |L R′n−1, then i = n− 1 (by

induction this is true for i ∈ {2, 3, . . . , n, n− 1} and also x1 |L R′n−1 is impos-
sible because R′n−1 does not contain x1). In the case 1), xn−1 |L Pn implies
xn−1xnα1 = Pn (by Garside Lemma, see Section 5) and pr(Pn) contains y2n−1,
a contradiction. In the case 2), xn−2 |L Pn, and Garside Lemma implies that
xnxn−2xnα2 = xnxn−2xn−3 . . . x1Rn−1, hence xnα2 = xn−3xn−4 . . . x1Rn−1
and xnxn−3 . . . x1α3 = xn−3 . . . x1Rn−1, and this gives a contradiction: xnα3 =
Rn−1. In the last case, 3), if xi |L Pn (i = 1, . . . , n− 3), then

xnxiβ1 = xnxn−2 . . . xi+1xi . . . x1Rn−1,

and using Garside Lemma we have xiβ1 = xn−2 . . . xi+1xi . . . x1Rn−1, and also
xixn−2 . . . xi+2β2 = xn−2 . . . xi+2xi+1xi . . . x1Rn−1. We obtain

xiβ2 = xi+1xi . . . x1Rn−1,

next xi+1xixi+1β3 = xi+1xixi−1..x1Rn−1 and xi+1xi−1..x1β4 = xi−1..x1Rn−1;
this gives another contradiction: xi+1 |L Rn−1.

c) We have xiPn = Pnxn−i, hence σ(i) = n− i. Therefore Pn = Rn.

Similarly one can check the conditions a), b), c) of Proposition 2 for n
odd:

Rn = (xnxn−2xn−3..x1)(xn−1xn−2..x2)(xnxn−2xn−3..x3)..(xnxn−2)xn−1.

Corollary 3.

∆(Dn) = x1(x2x1)..(xn−1..x1)(xnxn−2xn−3..x1)(xn−1xn−2..x2)(xnxn−2..x3)..
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I2(p) series, B2 and G2. Construction of ∆(I2(p), A1): Let us de�ne
Q2(p) = x2x1x2x1x2 . . . , (p − 1 factors). This element satis�es the conditions
in Proposition 3:

a) clearly x2 |L Q2(p);
b) we have x1Q2(2p + 1) = Q2(2p + 1)x2 (m = 1) and x1Q2(2p) =

Q2(2p)x1 (m = 2);
c) any relation x1V = V xσ(1) should involve the unique de�ning relation

x2x1x2.. (p factors) = x1x2x1..(p factors), so the length of V is greater than
or equal to p− 1 and Q2(p) has minimal length among the words satisfying a)
and b).

Corollary 4.

∆
(
G2

)
= x1x2x1x2x1x2,

∆
(
I2(p)

)
= x1x2x1x2 . . . (p factors).

4. THE RELATIVE GARSIDE ELEMENTS

FOR THE EXCEPTIONAL SERIES

As a consequence of the results in Section 3 we obtained a new proof for
the lengths of the Garside elements corresponding to the in�nite series A∗, B∗,
D∗ and I(∗) (includingG2). In this section we will use the lengths of the Garside
elements to �nd the relative Garside elements and also the Garside elements of
the monoids corresponding to the exceptional Coxeter graphs E6, E7, E8, F4, H3

and H4.
F4 case. We consider the inclusion:

• • •B3 :
4 4

x1 x1 x4x2 x2x3 x3
⊂ F4 : • • • •

Construction of ∆(F4, B3): Let us de�ne T3 = x3x2x1x3x2x3; the Garside
element of B3 (with the change of marking x1 ↔ x3) is ∆(B3) = x1x2x1T3.
De�ning R4 = x4T3x4T3x4, we have xiR4 = R4xi, i = 1, 2, 3, and l(R4) = 15;
from the table in Section 1 we have l(F4)− l(B3) = 24− 9 = 15, hence, using
Proposition 4, we obtain

∆(F4, B3) = x4T3x4T3x4.

Corollary 5.

∆(F4) = x1x2x1(x3x2x1x3x2x3)x4(x3x2x1x3x2x3)x4(x3x2x1x3x2x3)x4.

Hn=3,4 series. We consider the inclusions:

• •I2(5) :
5 5• • •⊂ H3 :

x1 x1 x1x2 x2 x2x3 x3 x4
• • • •⊂ H4 :

5
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Construction of ∆(H3, I2(5)) and ∆(H4, H3): The element

S3 = (x3x2x1x2x1)(x3x2x1x2)x3

satis�es the commutation rules x1S3 = S3x2, x2S3 = S3x1, and its length is
10. From the length table we �nd that l(∆(H3, I2(5))) = 15− 5 = 10, so

∆(H3, I2(5)) = S3.

Similarly, the element

S4 = x4S3x4S3x4S3x4S3x4

veri�es xiS4 = S4xi, i = 1, 2, 3, and it has the expected length: l(S4) = 45 =
60− 15 = l(H4)− l(H3), therefore

∆(H4, H3) = S4.

Corollary 6.

∆(H3) = x1x2x1x2x1S3 = x1x2x1x2x1 · (x3x2x1x2x1)(x3x2x1x2)x3,
∆(H4) = x1x2x1x2x1S3S4 = x1x2x1x2x1S3x4S3x4S3x4S3x4S3x4.

En=6,7,8 series. We consider the inclusions:

E6 : • • • •
x1 x2 x3 x5

x4•

• • • •
x1 x2 x3 x5

x4•

• • • •
x1 x2 x3 x5

x4•

• • • •
x1 x2 x3 x5

x4•

•
x6 x6

x6 x8

x7

x7

• •

• • •D5 :

⋂
⊂ E7 :

⋃
E8 :

Construction of ∆(E6, D5), ∆(E7, E6), and ∆(E8, E7): Let us de�ne the
element

V6 = x6∆(D5, D4)x6x5x3x2x1 = (x6x5x3x2x1x4x3x2x5x3x4)(x6x5x3x2x1).

This veri�es the commutation relations:

x1V6 = V6x6, x2V6 = V6x5, x3V6 = V6x3, x4V6 = V6x2 and x5V6 = V6x4.

De�ne also the elements

V7 = x7V6(x7x6x5x3x2x4x3x5x6)x7 and V8 = x8V7x8V7x8.

These elements verify the commutation relations:

xiV7 =

{
V7x7−i, i = 1, 2, 5, 6,
V7xi, i = 3, 4,

and xiV8 = V8xi, i = 1, . . . , 7.
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Counting the lengths we obtain

l(V6) = 16 = 36− 20 = l(E6)− l(D5),
l(V7) = 27 = 63− 36 = l(E7)− l(E6),
l(V8) = 57 = 120− 63 = l(E8)− l(E7).

From Proposition 4 we obtain the relative Garside elements:

∆(E6, D5) = V6,∆(E7, E6) = V7,∆(E8, E7) = V8.

Corollary 7.

∆(E6) = ∆(D5)V6 = ∆(A4)∆(D5, A4)V6,
∆(E7) = ∆(E6)V7 = ∆(A4)∆(D5, A4)V6V7,
∆(E8) = ∆(E7)V8 = ∆(A4)∆(D5, A4)V6V7V8.

5. GARSIDE LEMMA AND FEW COMPUTATIONS

The next lemma was proved by Garside for the braid monoid (or An
series), see [11], and generalized for an arbitrary Artin monoid by Brieskorn
and Saito, see [8]:

Lemma 2 (Garside Lemma). Let W be an element in the Artin monoid

M such that xi |L W and xj |L W (i 6= j). Then there is an element Z ∈ M
such that

W = (xixjxixj . . .︸ ︷︷ ︸
mij times

)Z = (xjxixjxi . . .︸ ︷︷ ︸
mij times

)Z.

Now we give the details for the proof of two commutation relations de-
scribed in Section 4. First a short computation:

Lemma 3. In F4 we have x1R4 = R4x1.

Proof. The factors which are transformed under Coxeter relations are writ-
ten in bold characters:

x1 · x4(x3x2x1x3x2x3)x4(x3x2x1x3x2x3)x4 =
= x4(x3x1x2x1x3x2x3)x4(x3x2x1x3x2x3)x4 =
= x4(x3x2x1x2x3x2x3)x4(x3x2x1x3x2x3)x4 =
= x4(x3x2x1x3x2x3)x2x4(x3x2x1x3x2x3)x4 =
= x4(x3x2x1x3x2x3)x4(x2x3x2x3x1x2x3)x4 =
= x4(x3x2x1x3x2x3)x4(x3x2x3x2x1x2x3)x4 =
= x4(x3x2x1x3x2x3)x4(x3x2x3x1x2x1x3)x4 =
= x4(x3x2x1x3x2x3)x4(x3x2x1x3x2x3)x4 · x1. �

And now a long computation:
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Lemma 4. In E8 we have x7V8 = V8x7.

Proof. In E8 we have the following sequence of equalities:

α ≡ x3x2x4x3x2x4 = x3x2x3x4x3x2 = x2x3x2x4x3x2 ≡
≡ x2x3x2x4x3x2 = x2x3x4x3x2x3 = x2x3x4x3x2x3 =
= x2x4x3x2x4x3 ≡ β,

and from the equality α = β we get

γ ≡ x5(x3x2x4x3x5)(x3x2x1x4x3x2) = x5(x3x5x2x4x3x5)(x2x1x4x3x2) =
= x3x5(x3x2x4x3x5)(x2x1x4x3x2) = x3x5(x3x2x4x3)(x2x1x4x5x3x2) ≡
≡ x3x5(x3x2x4x3)(x2x1x4x5x3x2) = x3x5(x3x2x4x3)(x2x4x1x5x3x2) ≡
≡ x3x5αx1x5x3x2 = x3x5βx1x5x3x2 ≡ x3x5(x2x4x3x2x4x3x1x5x3x2) =
= x3x5(x2x4x3x2x1x4x3x5x3x2) = x3x5(x2x4x3x5)(x2x1x4x3x5x2) =
= x3(x2x4x5x3x5)(x2x1x4x3x5x2) = (x3x2x4x3x5)(x3x2x1x4x3x2)x5 ≡ δ,

and also, from γ = δ, we obtain

η ≡ x6(x5x3x2x4x3x5x6)(x5x3x2x1x4x3x2x5x3x4) =
≡ x6(x5x6x3x2x4x3x5x6)(x3x2x1x4x3x2x5x3x4) =
= x5x6x5(x3x2x4x3x5)(x3x2x1x4x3x2)x6x5x3x4 ≡
≡ x5x6γx6x5x3x4 = x5x6δx6x5x3x4 ≡
≡ x5x6(x3x2x4x3x5)(x3x2x1x4x3x2)x5x6x5x3x4 =
= x5x6(x3x2x4x3x5)(x3x2x1x4x3x2x6x5x6x3x4) =
= x5x6(x3x2x4x3x5x6)(x3x2x1x4x3x2x5x6x3x4) =
= (x5x3x2x4x3x5x6)(x5x3x2x1x4x3x2x5x3x4)x6 ≡ θ.

For the �nal step we use the next equality

λ ≡ x7(x6x5x3x2x4x3x5x6x7)V6 ≡
≡ x7(x6x5x3x2x4x3x5x6x7)(x6x5x3x2x1x4x3x2x5x3x4)(x6x5x3x2x1) =
= x7(x6x7x5x3x2x4x3x5x6x7)(x5x3x2x1x4x3x2x5x3x4)(x6x5x3x2x1) =
= x6x7x6(x5x3x2x4x3x5x6)(x5x3x2x1x4x3x2x5x3x4)(x7x6x5x3x2x1) ≡
≡ x6x7ηx7x6x5x3x2x1 = x6x7θx7x6x5x3x2x1 ≡
≡ x6x7(x5x3x2x4x3x5x6)(x5x3x2x1x4x3x2x5x3x4)x6x7x6x5x3x2x1 =
= (x6x5x7x3x2x4x3x5x6x7)(x5x3x2x1x4x3x2x5x3x4)(x6x7x5x3x2x1) =
= (x6x5x3x2x4x3x5x6x7)(x6x5x3x2x1x4x3x2x5x3x4)(x6x5x3x2x1)x7 ≡
≡ (x6x5x3x2x4x3x5x6x7)V6x7 ≡ µ,

and we �nd

x7V8 ≡ x7(x8V7x8V7x8) ≡
≡ x7[x8x7V6(x7x6x5x3x2x4x3x5x6)x7x8x7V6(x7x6x5x3x2x4x3x5x6)x7x8] =
= x8x7V6(x8x7x6x5x3x2x4x3x5x6)x8x7V6(x8x7x6x5x3x2x4x3x5x6)x7x8 =
= x8x7V6x7x8(x7x6x5x3x2x4x3x5x6)x7V6)(x8x7x6x5x3x2x4x3x5x6)x7x8 ≡
≡ x8x7V6x7x8λ(x8x7x6x5x3x2x4x3x5x6)x7x8 =
= x8x7V6x7x8µ(x8x7x6x5x3x2x4x3x5x6)x7x8 ≡
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≡ x8x7V6x7x8(x6x5x3x2x4x3x5x6x7V6)(x7x8x7x6x5x3x2x4x3x5x6)x7x8 =
= x8x7V6(x7x8x6x5x3x2x4x3x5x6)x7x8V6(x7x8x6x5x3x2x4x3x5x6)x7x8 =
= [x8x7V6(x7x6x5x3x2x4x3x5x6)x7x8x7V6(x7x6x5x3x2x4x3x5x6)x7x8]x7 ≡
≡ (x8V7x8V7x8)x7 ≡ V8x7.
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