RELATIVE GARSIDE ELEMENTS OF ARTIN MONOIDS

USMAN ALI, BARBU BERCEANU and ZAFFAR IQBAL

Communicated by Vasile Brînzănescu

We introduce a relative Garside element, the quotient of the corresponding Garside elements $\Delta\left(\Gamma_{n-1}\right)$ and $\Delta\left(\Gamma_{n}\right)$, for a pair of Artin monoids associated to Coxeter graphs $\Gamma_{n-1} \subset \Gamma_{n}$, the second graph containing a new vertex. These relative elements give a recurrence relation between Garside elements. As an application, we compute explicitly the Garside elements of Artin monoids corresponding to spherical Coxeter graphs or the longest elements of the associated finite Coxeter groups.

AMS 2010 Subject Classification: Primary 20F36; Secondary 20M05, 20F10.
Key words: Coxeter groups, Artin monoids, Garside elements.

1. INTRODUCTION

The Garside element for the braid group (and for the braid monoid) corresponding to Artin's presentation (see [2, 14])

$$
\mathcal{B}_{n}=\left\langle x_{1}, x_{2}, \ldots, x_{n-1} \left\lvert\, \begin{array}{l}
x_{i} x_{j}=x_{j} x_{i} \text { if }|i-j| \geq 2 \\
x_{i+1} x_{i} x_{i+1}=x_{i} x_{i+1} x_{i} \text { if } 1 \leq i \leq n-2
\end{array}\right.\right\rangle
$$

is given by (see [11])

$$
\Delta_{n}=x_{1}\left(x_{2} x_{1}\right)\left(x_{3} x_{2} x_{1}\right) \ldots\left(x_{n-1} x_{n-2} \ldots x_{1}\right)
$$

(to represent Δ_{n}, or, more general, to represent an element of a monoid as a product of generators, we chose the smallest word in the length-lexicographic order induced by the order between generators $\left.x_{1}<x_{2}<\ldots<x_{n-1}\right)$. For other representations of Δ_{n}, including the most used formula, see [4]. The right quotient $\Delta_{n}^{-1} \Delta_{n+1}=x_{n} x_{n-1} \ldots x_{1}$ will be called the relative Garside element corresponding to the embedding of the Coxeter graphs $A_{n-1} \subset A_{n}$:

This element and its left divisors play a central role in the construction of the Gröbner basis for the classical braid monoid (see $[1,3,6]$). In this paper we give few characterizations of the relative Garside element corresponding to an extension of Coxeter graphs by one new vertex, see Propositions 1-4, and we will use these to compute inductively the Garside elements of the Artin monoids of spherical type, see Corollaries 1-7.

We start to recollect some facts about Coxeter graphs, Coxeter and Artin groups, Artin monoids, and Garside elements. Let S be a set. A Coxeter matrix over S is a square matrix $M=\left(m_{s t}\right)_{s, t \in S}$ indexed by the elements of S such that
$m_{s s}=1$ for all $s \in S$ and $m_{s t}=m_{t s} \in\{2,3,4, \ldots, \infty\}$ for all $s, t \in S, s \neq t$.
The associated Coxeter graph $\Gamma=\Gamma(M)$ is a labeled graph defined by the following data:
S is a set of vertices of Γ;
two vertices $s, t \in S$ are joined by an edge if $m_{s t} \geq 3$, with label $m_{s t}$ if $m_{s t} \geq 4$.

A Coxeter matrix $M=\left(m_{s t}\right)_{s, t \in S}$ is usually represented by its Coxeter graph $\Gamma(M)$.

Definition 1. Let $M=\left(m_{s t}\right)_{s, t \in S}$ be the Coxeter matrix of the Coxeter graph Γ. Then the group defined by

$$
\left.\mathcal{W}(\Gamma)=\langle s \in S|(s t)^{m_{s t}}=1 \text { for all } s, t \in S \text { satisfying } m_{s t} \neq \infty\right\rangle
$$

is called the Coxeter group of type Γ.
In an equivalent way we can write $\mathcal{W}(\Gamma)=\langle s \in S| s^{2}=1, \underbrace{s t s \ldots}_{m_{s t} \text { factors }}=$

$$
\underbrace{t s t \ldots}_{m_{s t} \text { factors }}\rangle
$$

We call Γ to be of spherical type if $\mathcal{W}(\Gamma)$ is a finite group. A graph is of spherical type if and only if it has finitely many connected components, any of them from the list in Fig. 1.1. (see [7]).

Definition 2. If Γ is a Coxeter graph, its associated Artin group is defined by

$$
\mathcal{A}(\Gamma)=\langle s \in S| \underbrace{s t s \ldots j}_{m_{s t} \text { factors }}=\underbrace{t s t \ldots}_{m_{s t} \text { factors }} \text { for all } s, t \in S \text { satisfying } m_{s t} \neq \infty\rangle
$$

The set of positive elements (i.e. the elements which are product of generators with positive exponents) in an Artin group $\mathcal{A}(\Gamma)$ is called the associated Artin monoid and it can be also defined by the monoid presentation (see [15])
$\mathcal{M}(\Gamma)=\langle s \in S| \underbrace{s t s \ldots}_{m_{s t} \text { factors }}=\underbrace{t s t \ldots}_{m_{s t} \text { factors }}$ for all $s, t \in S$ satisfying $m_{s t} \neq \infty\rangle$.

Fig. 1.1. The connected spherical type Coxeter graphs.
There are two obvious surjective morphisms:

Now we recall some basic properties of the (absolute) Garside element of an Artin spherical monoid $\mathcal{M}(\Gamma)$ (see $[8,10,11,13,15]$, and also Section 2 for notation). This element is the least common left-multiple of the set of generators x_{1}, \ldots, x_{n} : we have, for any $i=1, \ldots, n,\left.x_{i}\right|_{L} \Delta$ and if $\left.x_{i}\right|_{L} \omega$ for all i, then $\left.\Delta\right|_{L} \omega$. The element $\Delta(\Gamma)$ is square free (there is no generator x_{i} such that $\left.x_{i}^{2} \mid \Delta\right)$. In some cases $\Delta(\Gamma)$ itself is a square: for example

$$
\begin{gathered}
\Delta\left(A_{3}\right)=x_{1}\left(x_{2} x_{1}\right)\left(x_{3} x_{2} x_{1}\right)=\left(x_{1} x_{3} x_{2}\right)^{2} ; \\
\Delta\left(I_{2}(4 k)\right)=(\underbrace{x_{1} x_{2} \ldots x_{2}}_{2 k \text { times }})^{2} .
\end{gathered}
$$

Also, there is a bijection $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ such that $x_{i} \Delta=$ $\Delta x_{\sigma(i)}$. The image of $\Delta(\Gamma)$ in the corresponding Coxeter group $W(\Gamma)$ is the (unique) longest element of this group and it has order two (see [7] and [9]). The length $l(\Gamma)$ of the Garside element $\Delta(\Gamma)$ is equal to the number of the
reflections (i.e. the conjugates of the generators in the Coxeter group) and it is given by the following table (see [12] and [5]):

Γ	A_{n}	B_{n}	D_{n}	E_{6}	E_{7}	E_{8}	F_{4}	G_{2}	H_{3}	H_{4}	$I_{2}(p)$
$l(\Gamma)$	$\binom{n+1}{2}$	n^{2}	$n^{2}-n$	36	63	120	24	6	15	60	p

2. RELATIVE GARSIDE ELEMENTS

Let us fix the notation. We already used the divisibility relation between two elements of a monoid $\mathcal{M}, \alpha \mid \beta$: this is equivalent to $\beta=\lambda \alpha \rho$ for some elements $\lambda, \rho \in \mathcal{M}$. If $\lambda=1$, we write $\left.\alpha\right|_{L} \beta$ and similarly, if $\rho=1$, we write $\left.\alpha\right|_{R} \beta$ and we say that α is a left and right divisor of β respectively. The element α in a monoid \mathcal{M} generated by x_{1}, x_{2}, \ldots is said to be rigid if α can be represented in a unique way as a word in x_{1}, x_{2}, \ldots.

Suppose we have an inclusion of Coxeter graphs $\Gamma_{n-1} \subset \Gamma_{n}$ with vertices $\left\{x_{1}, \ldots, x_{n-1}\right\}$ and $\left\{x_{1}, \ldots, x_{n}\right\}$, respectively. Using the definition of Garside elements we have

$$
\left.\Delta\left(\Gamma_{n-1}\right)\right|_{L} \Delta\left(\Gamma_{n}\right) .
$$

Definition 3. The relative Garside element $\Delta\left(\Gamma_{n}, \Gamma_{n-1}\right)$ is defined as a right quotient:

$$
\Delta\left(\Gamma_{n}\right)=\Delta\left(\Gamma_{n-1}\right) \Delta\left(\Gamma_{n}, \Gamma_{n-1}\right) .
$$

If there is no ambiguity concerning the inclusion $\Gamma_{n-1} \subset \Gamma_{n}$, we will use the simple notation $\Delta_{n}=\Delta_{n-1} R_{n}$. Now we present some properties of the relative Garside element R_{n} which characterize this element.

Proposition 1. The relative Garside element $R_{n}=\Delta\left(\Gamma_{n}, \Gamma_{n-1}\right)$ satisfies the properties:
a) R_{n} is square free;
b) $\left.x_{i}\right|_{L} R_{n}$ if and only if $i=n$;
c) there is a bijection $\sigma:\{1, \ldots, n-1\} \rightarrow\{1, \ldots, n\} \backslash\left\{\sigma_{n}(n)\right\}$ such that $x_{i} R_{n}=R_{n} x_{\sigma(i)}$;
d) $\left.x_{j}\right|_{R} R_{n}$ if and only if $j=\sigma_{n}(n)$.

Proof. Let $\Delta_{n}=\Delta_{n-1} R_{n}$. Then we have:
a) R_{n} is square free because Δ_{n} is square free;
b) $x_{i}(1 \leq i \leq n-1)$ cannot be a left divisor of R_{n} : otherwise, $R_{n}=x_{i} U$. But $\left.x_{i}\right|_{R} \Delta_{n-1}$ implies $\Delta_{n-1}=V x_{i}$, therefore we have $\Delta_{n}=\Delta_{n-1} R_{n}=$ $V x_{i}^{2} U$, a contradiction.
c) Let $\sigma_{n-1}:\{1, \ldots, n-1\} \rightarrow\{1, \ldots, n-1\}$ and $\sigma_{n}:\{1, \ldots, n\} \rightarrow$ $\{1, \ldots, n\}$ be the bijections defined by the conjugation with Δ_{n-1} and Δ_{n}, respectively: $x_{i} \Delta_{n-1}=\Delta_{n-1} x_{\sigma_{n-1}(i)}, x_{i} \Delta_{n}=\Delta_{n} x_{\sigma_{n}(i)}$. Now, for $i \in\{1, \ldots, n-$ $1\}$, we have:
$\Delta_{n-1} x_{i} R_{n}=x_{\sigma_{n-1}^{-1}(i)} \Delta_{n-1} R_{n}=x_{\sigma_{n-1}^{-1}(i)} \Delta_{n}=\Delta_{n} x_{\sigma_{n} \sigma_{n-1}^{-1}(i)}=\Delta_{n-1} R_{n} x_{\sigma_{n} \sigma_{n-1}^{-1}(i)}$, therefore $x_{i} R_{n}=R_{n} x_{\sigma(i)}$, where $\sigma=\sigma_{n} \circ \sigma_{n-1}^{-1}$. The image of σ contains all the elements $1, \ldots, n$, but not $\sigma_{n}(n)=m$.
d) If $x_{j} \neq x_{m}$, then there exists $i \in\{1, \ldots, n-1\}$ such that $j=\sigma(i)$ and $x_{i} R_{n}=R_{n} x_{j}$. Suppose that $\left.x_{j}\right|_{R} R_{n}$, i.e. $R_{n}=S x_{j}$. We obtain a contradiction: $x_{i} R_{n}=R_{n} x_{j}=S x_{j}^{2}$, because $x_{i} R_{n}$ is a right divisor of Δ_{n}.

Remark 1. From this proposition, the first and the last factors of R_{n} are uniquely defined. In some cases R_{n} is completely rigid, for instance $R_{3}\left(A_{3}, A_{2}\right)=$ $x_{3} x_{2} x_{1}$, in other cases only the interior factors can be changed, for instance $R_{3}\left(A_{3}, A_{1} \times A_{1}\right)=x_{2} x_{1} x_{3} x_{2}=x_{2} x_{3} x_{1} x_{2}$.

We will use the notation $m=\sigma_{n}(n)$.
Proposition 2. If $U_{n} \in \mathcal{M}\left(\Gamma_{n}\right)$ satisfies the following three conditions:
a) $x_{m}^{2} \nmid U_{n}$,
b) $\left.x_{i}\right|_{L} U_{n}$ if and only if $i=n$, and
c) there is a bijection $\tau:\{1, \ldots, n-1\} \rightarrow\{1, \ldots, \widehat{k}, \ldots, n\}$ such that $x_{i} U_{n}=U_{n} x_{\tau(i)}$,
then $U_{n}=R_{n}$ (and also $k=m, \tau=\sigma$).
Proof. Let us define $D=\Delta_{n-1} U_{n}$. Because of the relations $\left.x_{i}\right|_{L} \Delta_{n-1}, i=$ $1, \ldots, n-1$ and also from $\left.x_{n}\right|_{L} D$, a consequence of b) and c), we have $\left.x_{i}\right|_{L} \Delta_{n-1} U_{n}$ for any $i=1, \ldots, n$, therefore $\left.\Delta_{n}\right|_{L} D$. This implies that $\left.\Delta_{n-1} R_{n}\right|_{L} \Delta_{n-1} U_{n}$, hence $\left.R_{n}\right|_{L} U_{n}$. If $R_{n} \neq U_{n}$, then $U_{n}=R_{n} x_{j} W$ for some j. If $j \neq m$, then $j=\sigma_{n}(i)$ for some $i \in\{1, \ldots, n-1\}$, hence $U_{n}=$ $R_{n} x_{\sigma(i)} W=x_{i} R_{n} W$ and this contradicts b). If $j=m$, then $U_{n}=\left(S x_{m}\right) x_{m} W$ which contradicts a).

Proposition 3. If $U_{n} \in \mathcal{M}\left(\Gamma_{n}\right)$ satisfies the following three conditions:
a) $\left.x_{n}\right|_{L} U_{n}$,
b) there is a bijection $\tau:\{1, \ldots, n-1\} \rightarrow\{1, \ldots, \widehat{k}, \ldots, n\}$ such that $x_{i} U_{n}=U_{n} x_{\tau(i)}$, and
c) U_{n} has minimal length among the words satisfying a) and b),
then $U_{n}=R_{n}$ (and also $k=m, \tau=\sigma$).

Proof. Let us define $D=\Delta_{n-1} U_{n}$. As in the previous proof, a) and b) implies $\left.x_{i}\right|_{L} D$ for all $i=1, \ldots, n$. Therefore $\left.\Delta_{n}\right|_{L} D$, hence $\left.R_{n}\right|_{L} U_{n}$. We have $\left|U_{n}\right| \geq\left|R_{n}\right|$ and R_{n} satisfies a) and b), therefore condition c) implies $R_{n}=U_{n}$.

With the same proof, we have another version of the previous proposition:
Proposition 4. If $U_{n} \in \mathcal{M}\left(\Gamma_{n}\right)$ satisfies the following three conditions:
a) $\left.x_{n}\right|_{L} U_{n}$,
b) there is a bijection $\tau:\{1, \ldots, n-1\} \rightarrow\{1, \ldots, \widehat{k}, \ldots, n\}$ such that $x_{i} U_{n}=U_{n} x_{\tau(i)}$, and
c) the length of U_{n} is the expected length $l\left(\Gamma_{n}\right)-l\left(\Gamma_{n-1}\right)$ (from the table in Section 1), then $U_{n}=R_{n}$ (and also $k=m, \tau=\sigma$).

3. THE RELATIVE GARSIDE AND GARSIDE ELEMENTS FOR THE INFINITE SERIES

After the computation of various relative Garside elements, we will describe the Garside elements associated to the classical list of the connected Coxeter diagrams: the infinite series in this section, the exceptional cases in the next section. Using the following obvious result, these will give formulae for the Garside elements of all Artin monoids of spherical type.

Lemma 1. If the graph Γ is the disjoint union of Γ_{1} and Γ_{2}, then $\mathcal{M}(\Gamma) \cong$ $\mathcal{M}\left(\Gamma_{1}\right) \times \mathcal{M}\left(\Gamma_{2}\right)$ and

$$
\Delta(\Gamma)=\Delta\left(\Gamma_{1}\right) \Delta\left(\Gamma_{2}\right)=\Delta\left(\Gamma_{2}\right) \Delta\left(\Gamma_{1}\right)
$$

A $_{\mathbf{n}}$ series. We start with $A_{1}: \quad \dot{x}_{1}$ and its Garside element $\Delta\left(A_{1}\right)=$ $\Delta_{2}=x_{1}$.

Construction of $\Delta\left(A_{n}, A_{n-1}\right)$: The element $M_{n}=x_{n} x_{n-1} \ldots x_{1}$ satisfies the conditions of Proposition 2:
a) M_{n} is square free: obvious because M_{n} is rigid;
b) $\left.x_{i}\right|_{L} M_{n}$ if and only if $i=n$ for the same reason;
c) $x_{i} M_{n}=M_{n} x_{i+1}$, therefore $\sigma(i)=i+1$, where $i=1, \ldots, n-1$, and $m=1$.

Corollary 1 (Classical Garside element).

$$
\Delta\left(A_{n}\right)=\Delta_{n+1}=x_{1}\left(x_{2} x_{1}\right) \ldots\left(x_{n-1} \ldots x_{1}\right)\left(x_{n} \ldots x_{1}\right)
$$

\mathbf{B}_{n} series. We start with $B_{2}: \quad \stackrel{4}{\dot{x}_{1}} \quad \stackrel{\bullet}{x}_{2}$ and its Garside element $\Delta\left(B_{2}\right)=x_{1}\left(x_{2} x_{1} x_{2}\right)$, see the construction $\Delta\left(I_{2}(p), A_{1}\right)$.

Construction of $\Delta\left(B_{n}, B_{n-1}\right)$: The element $N_{n}=x_{n} x_{n-1} \ldots x_{2} x_{1} x_{2} \ldots x_{n}$ satisfies the conditions of Proposition 2:
a) N_{n} is square free: obvious, because N_{n} is rigid in $\mathcal{M}\left(B_{n}\right)$;
b) $\left.x_{i}\right|_{L} N_{n}$ if and only if $i=n$ for the same reason;
c) $x_{i} N_{n}=N_{n} x_{i}$, therefore $\sigma(i)=i$, where $i=1, \ldots, n-1$, and $m=n$.

Corollary 2.

$$
\Delta\left(B_{n}\right)=x_{1}\left(x_{2} x_{1} x_{2}\right)\left(x_{3} x_{2} x_{1} x_{2} x_{3}\right) \ldots\left(x_{n} x_{n-1} \ldots x_{2} x_{1} x_{2} \ldots x_{n-1} x_{n}\right) .
$$

\mathbf{D}_{n} series. We start with D_{3} :

and its Garside element $\Delta\left(D_{3}\right)=x_{1}\left(x_{2} x_{1}\right)\left(x_{3} x_{1} x_{2}\right)$ (this is $\Delta\left(A_{3}, A_{2}\right)=x_{3} x_{2} x_{1}$ with a change of notation).

Construction of $\Delta\left(D_{n}, A_{n-1}\right)$: Consider the product

$$
P_{n}=\left(x_{n} x_{n-2} x_{n-3} \ldots x_{1}\right)\left(x_{n-1} x_{n-2} \ldots x_{2}\right)\left(x_{n} x_{n-2} x_{n-3} \ldots x_{3}\right)\left(x_{n-1} x_{n-2} \ldots x_{4}\right) \ldots
$$

We prove by induction that $P_{n}=R_{n}$. The initial step is given by the previous formula: $\Delta\left(D_{3}, A_{2}\right)=\left(x_{3} x_{1}\right) x_{2}$. We check the conditions in Proposition 2 in the case of n even, when the product ends with the generator x_{n} :

$$
P_{n}=\left(x_{n} x_{n-2} x_{n-3} . . x_{1}\right)\left(x_{n-1} x_{n-2} x_{n-3} . . x_{2}\right)\left(x_{n} x_{n-2} x_{n-3} \ldots x_{3}\right) . .\left(x_{n-1} x_{n-2}\right) x_{n} .
$$

a) First we prove that P_{n} is square free and also that $x_{n} x_{n-1}$ is not a divisor of P_{n}.

Define a projection $p r: \mathcal{M}\left(D_{n}\right) \rightarrow \mathcal{M}\left(A_{n-1}\right)$ given by the diagram: $\operatorname{pr}\left(x_{i}\right)=y_{\min (i, n-1)}$. The image of P_{n} under the map pr is Δ_{n-1} which is square free: if $x_{j}^{2} \mid P_{n}$, then we have $\operatorname{pr}\left(x_{j}^{2}\right)=y_{h}^{2} \mid \Delta_{n-1}(h=j$ if $j \leq n-1$ and $h=n-1$ if $j=n$), a contradiction. Therefore P_{n} is square free. In the same way, if $x_{n} x_{n-1} \mid P_{n}$, then $\operatorname{pr}\left(x_{n} x_{n-1}\right)=y_{n-1}^{2} \mid \Delta_{n-1}$, a contradiction.
b) Obviously $\left.x_{n}\right|_{L} P_{n}$. Let us suppose that $\left.x_{i}\right|_{L} P_{n}$ for some $i \leq n-1$. By induction we know that R_{n-1} is given by the next formula and we will analyze the following three cases:

1) $i=n-1,2) i=n-2$, and 3$) ~ i \leq n-3$:
$R_{n-1}=\left(x_{n-1} x_{n-3} x_{n-4} \ldots x_{1}\right)\left(x_{n-2} x_{n-3} \ldots x_{2}\right)\left(x_{n-1} x_{n-3} x_{n-4} \ldots x_{3}\right) \ldots x_{n-2}$.

Using the inclusion morphism in : $\mathcal{M}\left(D_{n-1}\right) \rightarrow \mathcal{M}\left(D_{n}\right), z_{1} \mapsto x_{2}, z_{2} \mapsto$ $x_{3}, \ldots, z_{n-3} \mapsto x_{n-2}, z_{n-2} \mapsto x_{n}, z_{n-1} \mapsto x_{n-1}$, given by the inclusion of graphs:

the image of

$$
R_{n-1}=\left(z_{n-1} z_{n-3} z_{n-4} . . z_{1}\right)\left(z_{n-2} z_{n-3} . . z_{2}\right)\left(z_{n-1} z_{n-3} . . z_{3}\right) . .\left(z_{n-1} z_{n-3}\right) z_{n-2}
$$

is $i n\left(R_{n-1}\right)=R_{n-1}^{\prime}$, given by

$$
R_{n-1}^{\prime}=\left(x_{n-1} x_{n-2} x_{n-3} . . x_{2}\right)\left(x_{n} x_{n-2} x_{n-3} \ldots x_{3}\right)\left(x_{n-1} x_{n-2} \ldots x_{4}\right) . .\left(x_{n-1} x_{n-2}\right) x_{n}
$$

and we have $P_{n}=\left(x_{n} x_{n-2} x_{n-3} \ldots x_{1}\right) R_{n-1}^{\prime}$. If $\left.x_{i}\right|_{L} R_{n-1}^{\prime}$, then $i=n-1$ (by induction this is true for $i \in\{2,3, \ldots, n, n-1\}$ and also $\left.x_{1}\right|_{L} R_{n-1}^{\prime}$ is impossible because R_{n-1}^{\prime} does not contain x_{1}). In the case 1), $\left.x_{n-1}\right|_{L} P_{n}$ implies $x_{n-1} x_{n} \alpha_{1}=P_{n}$ (by Garside Lemma, see Section 5) and $\operatorname{pr}\left(P_{n}\right)$ contains y_{n-1}^{2}, a contradiction. In the case 2), $\left.x_{n-2}\right|_{L} P_{n}$, and Garside Lemma implies that $x_{n} x_{n-2} x_{n} \alpha_{2}=x_{n} x_{n-2} x_{n-3} \ldots x_{1} R_{n-1}$, hence $x_{n} \alpha_{2}=x_{n-3} x_{n-4} \ldots x_{1} R_{n-1}$ and $x_{n} x_{n-3} \ldots x_{1} \alpha_{3}=x_{n-3} \ldots x_{1} R_{n-1}$, and this gives a contradiction: $x_{n} \alpha_{3}=$ R_{n-1}. In the last case, 3), if $\left.x_{i}\right|_{L} P_{n}(i=1, \ldots, n-3)$, then

$$
x_{n} x_{i} \beta_{1}=x_{n} x_{n-2} \ldots x_{i+1} x_{i} \ldots x_{1} R_{n-1}
$$

and using Garside Lemma we have $x_{i} \beta_{1}=x_{n-2} \ldots x_{i+1} x_{i} \ldots x_{1} R_{n-1}$, and also $x_{i} x_{n-2} \ldots x_{i+2} \beta_{2}=x_{n-2} \ldots x_{i+2} x_{i+1} x_{i} \ldots x_{1} R_{n-1}$. We obtain

$$
x_{i} \beta_{2}=x_{i+1} x_{i} \ldots x_{1} R_{n-1}
$$

next $x_{i+1} x_{i} x_{i+1} \beta_{3}=x_{i+1} x_{i} x_{i-1} . . x_{1} R_{n-1}$ and $x_{i+1} x_{i-1} \ldots x_{1} \beta_{4}=x_{i-1} . . x_{1} R_{n-1}$; this gives another contradiction: $\left.x_{i+1}\right|_{L} R_{n-1}$.
c) We have $x_{i} P_{n}=P_{n} x_{n-i}$, hence $\sigma(i)=n-i$. Therefore $P_{n}=R_{n}$.

Similarly one can check the conditions a), b), c) of Proposition 2 for n odd:

$$
R_{n}=\left(x_{n} x_{n-2} x_{n-3} . . x_{1}\right)\left(x_{n-1} x_{n-2} . . x_{2}\right)\left(x_{n} x_{n-2} x_{n-3} . . x_{3}\right) . .\left(x_{n} x_{n-2}\right) x_{n-1} .
$$

Corollary 3.

$$
\Delta\left(D_{n}\right)=x_{1}\left(x_{2} x_{1}\right) . .\left(x_{n-1} \ldots x_{1}\right)\left(x_{n} x_{n-2} x_{n-3} \ldots x_{1}\right)\left(x_{n-1} x_{n-2} \ldots x_{2}\right)\left(x_{n} x_{n-2} . . x_{3}\right) . .
$$

$\mathbf{I}_{\mathbf{2}}(\mathbf{p})$ series, $\mathbf{B}_{\mathbf{2}}$ and $\mathbf{G}_{\mathbf{2}}$. Construction of $\Delta\left(I_{2}(p), A_{1}\right)$: Let us define $Q_{2}(p)=x_{2} x_{1} x_{2} x_{1} x_{2} \ldots,(p-1$ factors $)$. This element satisfies the conditions in Proposition 3:
a) clearly $\left.x_{2}\right|_{L} Q_{2}(p)$;
b) we have $x_{1} Q_{2}(2 p+1)=Q_{2}(2 p+1) x_{2}(m=1)$ and $x_{1} Q_{2}(2 p)=$ $Q_{2}(2 p) x_{1}(m=2)$;
c) any relation $x_{1} V=V x_{\sigma(1)}$ should involve the unique defining relation $x_{2} x_{1} x_{2} .$. (p factors $)=x_{1} x_{2} x_{1} . .(p$ factors $)$, so the length of V is greater than or equal to $p-1$ and $Q_{2}(p)$ has minimal length among the words satisfying a) and b).

Corollary 4.

$$
\begin{array}{ll}
\Delta\left(G_{2}\right) & =x_{1} x_{2} x_{1} x_{2} x_{1} x_{2} \\
\Delta\left(I_{2}(p)\right) & =x_{1} x_{2} x_{1} x_{2} \ldots(\text { factors }) .
\end{array}
$$

4. THE RELATIVE GARSIDE ELEMENTS FOR THE EXCEPTIONAL SERIES

As a consequence of the results in Section 3 we obtained a new proof for the lengths of the Garside elements corresponding to the infinite series A_{*}, B_{*}, D_{*} and $I(*)$ (including G_{2}). In this section we will use the lengths of the Garside elements to find the relative Garside elements and also the Garside elements of the monoids corresponding to the exceptional Coxeter graphs $E_{6}, E_{7}, E_{8}, F_{4}, H_{3}$ and H_{4}.
\mathbf{F}_{4} case. We consider the inclusion:

$$
B_{3}:
$$

Construction of $\Delta\left(F_{4}, B_{3}\right)$: Let us define $T_{3}=x_{3} x_{2} x_{1} x_{3} x_{2} x_{3}$; the Garside element of B_{3} (with the change of marking $x_{1} \leftrightarrow x_{3}$) is $\Delta\left(B_{3}\right)=x_{1} x_{2} x_{1} T_{3}$. Defining $R_{4}=x_{4} T_{3} x_{4} T_{3} x_{4}$, we have $x_{i} R_{4}=R_{4} x_{i}, i=1,2,3$, and $l\left(R_{4}\right)=15$; from the table in Section 1 we have $l\left(F_{4}\right)-l\left(B_{3}\right)=24-9=15$, hence, using Proposition 4, we obtain

$$
\Delta\left(F_{4}, B_{3}\right)=x_{4} T_{3} x_{4} T_{3} x_{4}
$$

Corollary 5.

$$
\Delta\left(F_{4}\right)=x_{1} x_{2} x_{1}\left(x_{3} x_{2} x_{1} x_{3} x_{2} x_{3}\right) x_{4}\left(x_{3} x_{2} x_{1} x_{3} x_{2} x_{3}\right) x_{4}\left(x_{3} x_{2} x_{1} x_{3} x_{2} x_{3}\right) x_{4}
$$

$\mathbf{H}_{\mathbf{n}=\mathbf{3}, \mathbf{4}}$ series. We consider the inclusions:

Construction of $\Delta\left(H_{3}, I_{2}(5)\right)$ and $\Delta\left(H_{4}, H_{3}\right)$: The element

$$
S_{3}=\left(x_{3} x_{2} x_{1} x_{2} x_{1}\right)\left(x_{3} x_{2} x_{1} x_{2}\right) x_{3}
$$

satisfies the commutation rules $x_{1} S_{3}=S_{3} x_{2}, x_{2} S_{3}=S_{3} x_{1}$, and its length is 10. From the length table we find that $l\left(\Delta\left(H_{3}, I_{2}(5)\right)\right)=15-5=10$, so

$$
\Delta\left(H_{3}, I_{2}(5)\right)=S_{3}
$$

Similarly, the element

$$
S_{4}=x_{4} S_{3} x_{4} S_{3} x_{4} S_{3} x_{4} S_{3} x_{4}
$$

verifies $x_{i} S_{4}=S_{4} x_{i}, i=1,2,3$, and it has the expected length: $l\left(S_{4}\right)=45=$ $60-15=l\left(H_{4}\right)-l\left(H_{3}\right)$, therefore

$$
\Delta\left(H_{4}, H_{3}\right)=S_{4} .
$$

Corollary 6.

$$
\begin{aligned}
\Delta\left(H_{3}\right) & =x_{1} x_{2} x_{1} x_{2} x_{1} S_{3}=x_{1} x_{2} x_{1} x_{2} x_{1} \cdot\left(x_{3} x_{2} x_{1} x_{2} x_{1}\right)\left(x_{3} x_{2} x_{1} x_{2}\right) x_{3}, \\
\Delta\left(H_{4}\right) & =x_{1} x_{2} x_{1} x_{2} x_{1} S_{3} S_{4}=x_{1} x_{2} x_{1} x_{2} x_{1} S_{3} x_{4} S_{3} x_{4} S_{3} x_{4} S_{3} x_{4} S_{3} x_{4} .
\end{aligned}
$$

$\mathbf{E}_{\mathbf{n}=\mathbf{6}, \mathbf{7}, \mathbf{8}}$ series. We consider the inclusions:

Construction of $\Delta\left(E_{6}, D_{5}\right), \Delta\left(E_{7}, E_{6}\right)$, and $\Delta\left(E_{8}, E_{7}\right)$: Let us define the element

$$
V_{6}=x_{6} \Delta\left(D_{5}, D_{4}\right) x_{6} x_{5} x_{3} x_{2} x_{1}=\left(x_{6} x_{5} x_{3} x_{2} x_{1} x_{4} x_{3} x_{2} x_{5} x_{3} x_{4}\right)\left(x_{6} x_{5} x_{3} x_{2} x_{1}\right)
$$

This verifies the commutation relations:

$$
x_{1} V_{6}=V_{6} x_{6}, x_{2} V_{6}=V_{6} x_{5}, x_{3} V_{6}=V_{6} x_{3}, x_{4} V_{6}=V_{6} x_{2} \text { and } x_{5} V_{6}=V_{6} x_{4} .
$$

Define also the elements

$$
V_{7}=x_{7} V_{6}\left(x_{7} x_{6} x_{5} x_{3} x_{2} x_{4} x_{3} x_{5} x_{6}\right) x_{7} \text { and } V_{8}=x_{8} V_{7} x_{8} V_{7} x_{8}
$$

These elements verify the commutation relations:

$$
x_{i} V_{7}=\left\{\begin{array}{ll}
V_{7} x_{7-i}, & i=1,2,5,6, \\
V_{7} x_{i}, & i=3,4,
\end{array} \quad \text { and } \quad x_{i} V_{8}=V_{8} x_{i}, \quad i=1, \ldots, 7 .\right.
$$

Counting the lengths we obtain

$$
\begin{aligned}
& l\left(V_{6}\right)=16=36-20=l\left(E_{6}\right)-l\left(D_{5}\right), \\
& l\left(V_{7}\right)=27=63-36=l\left(E_{7}\right)-l\left(E_{6}\right), \\
& l\left(V_{8}\right)=57=120-63=l\left(E_{8}\right)-l\left(E_{7}\right) .
\end{aligned}
$$

From Proposition 4 we obtain the relative Garside elements:

$$
\Delta\left(E_{6}, D_{5}\right)=V_{6}, \Delta\left(E_{7}, E_{6}\right)=V_{7}, \Delta\left(E_{8}, E_{7}\right)=V_{8}
$$

Corollary 7.

$$
\begin{aligned}
\Delta\left(E_{6}\right) & =\Delta\left(D_{5}\right) V_{6}=\Delta\left(A_{4}\right) \Delta\left(D_{5}, A_{4}\right) V_{6}, \\
\Delta\left(E_{7}\right) & =\Delta\left(E_{6}\right) V_{7}=\Delta\left(A_{4}\right) \Delta\left(D_{5}, A_{4}\right) V_{6} V_{7}, \\
\Delta\left(E_{8}\right) & =\Delta\left(E_{7}\right) V_{8}=\Delta\left(A_{4}\right) \Delta\left(D_{5}, A_{4}\right) V_{6} V_{7} V_{8} .
\end{aligned}
$$

5. GARSIDE LEMMA AND FEW COMPUTATIONS

The next lemma was proved by Garside for the braid monoid (or A_{n} series), see [11], and generalized for an arbitrary Artin monoid by Brieskorn and Saito, see [8]:

Lemma 2 (Garside Lemma). Let W be an element in the Artin monoid \mathcal{M} such that $\left.x_{i}\right|_{L} W$ and $\left.x_{j}\right|_{L} W(i \neq j)$. Then there is an element $Z \in \mathcal{M}$ such that

$$
W=(\underbrace{x_{i} x_{j} x_{i} x_{j} \ldots}_{m_{i j} \text { times }}) Z=(\underbrace{x_{j} x_{i} x_{j} x_{i} \ldots}_{m_{i j} \text { times }}) Z .
$$

Now we give the details for the proof of two commutation relations described in Section 4. First a short computation:

Lemma 3. In F_{4} we have $x_{1} R_{4}=R_{4} x_{1}$.
Proof. The factors which are transformed under Coxeter relations are written in bold characters:

$$
\begin{aligned}
& \mathbf{x}_{\mathbf{1}} \cdot x_{4}\left(x_{3} x_{2} x_{1} x_{3} x_{2} x_{3}\right) x_{4}\left(x_{3} x_{2} x_{1} x_{3} x_{2} x_{3}\right) x_{4}= \\
& =x_{4}\left(x_{3} \mathbf{x}_{\mathbf{1}} x_{2} x_{1} x_{3} x_{2} x_{3}\right) x_{4}\left(x_{3} x_{2} x_{1} x_{3} x_{2} x_{3}\right) x_{4}= \\
& =x_{4}\left(x_{3} x_{2} x_{1} \mathbf{x}_{\mathbf{2}} x_{3} x_{2} x_{3}\right) x_{4}\left(x_{3} x_{2} x_{1} x_{3} x_{2} x_{3}\right) x_{4}= \\
& =x_{4}\left(x_{3} x_{2} x_{1} x_{3} x_{2} x_{3}\right) \mathbf{x}_{\mathbf{2}} x_{4}\left(x_{3} x_{2} x_{1} x_{3} x_{2} x_{3}\right) x_{4}= \\
& =x_{4}\left(x_{3} x_{2} x_{1} x_{3} x_{2} x_{3}\right) x_{4}\left(\mathbf{x}_{2} x_{3} x_{2} x_{3} x_{1} x_{2} x_{3}\right) x_{4}= \\
& =x_{4}\left(x_{3} x_{2} x_{1} x_{3} x_{2} x_{3}\right) x_{4}\left(x_{3} x_{2} x_{3} \mathbf{x}_{\mathbf{2}} x_{1} x_{2} x_{3}\right) x_{4}= \\
& =x_{4}\left(x_{3} x_{2} x_{1} x_{3} x_{2} x_{3}\right) x_{4}\left(x_{3} x_{2} x_{3} x_{1} x_{2} \mathbf{x}_{\mathbf{1}} x_{3}\right) x_{4}= \\
& =x_{4}\left(x_{3} x_{2} x_{1} x_{3} x_{2} x_{3}\right) x_{4}\left(x_{3} x_{2} x_{1} x_{3} x_{2} x_{3}\right) x_{4} \cdot \mathbf{x}_{\mathbf{1}} .
\end{aligned}
$$

And now a long computation:

Lemma 4. In E_{8} we have $x_{7} V_{8}=V_{8} x_{7}$.
Proof. In E_{8} we have the following sequence of equalities:

$$
\begin{aligned}
\alpha & \equiv x_{3} x_{2} x_{4} x_{3} x_{2} \mathbf{x}_{\mathbf{4}}=x_{3} x_{2} \mathbf{x}_{\mathbf{3}} x_{4} x_{3} x_{2}=\mathbf{x}_{\mathbf{2}} x_{3} x_{2} x_{4} x_{3} x_{2} \equiv \\
& \equiv x_{2} x_{3} \mathbf{x}_{\mathbf{2}} x_{4} x_{3} x_{2}=x_{2} x_{3} x_{4} x_{3} x_{2} \mathbf{x}_{\mathbf{3}}=x_{2} \mathbf{x}_{\mathbf{3}} x_{4} x_{3} x_{2} x_{3}= \\
& =x_{2} x_{4} x_{3} x_{2} \mathbf{x}_{\mathbf{4}} x_{3} \equiv \beta
\end{aligned}
$$

and from the equality $\alpha=\beta$ we get

$$
\begin{aligned}
\gamma & \equiv x_{5}\left(x_{3} x_{2} x_{4} x_{3} x_{5}\right)\left(\mathbf{x}_{\mathbf{3}} x_{2} x_{1} x_{4} x_{3} x_{2}\right)=x_{5}\left(x_{3} \mathbf{x}_{\mathbf{5}} x_{2} x_{4} x_{3} x_{5}\right)\left(x_{2} x_{1} x_{4} x_{3} x_{2}\right)= \\
& =\mathbf{x}_{\mathbf{3}} x_{5}\left(x_{3} x_{2} x_{4} x_{3} \mathbf{x}_{\mathbf{5}}\right)\left(x_{2} x_{1} x_{4} x_{3} x_{2}\right)=x_{3} x_{5}\left(x_{3} x_{2} x_{4} x_{3}\right)\left(x_{2} x_{1} x_{4} \mathbf{x}_{\mathbf{5}} x_{3} x_{2}\right) \equiv \\
& \equiv x_{3} x_{5}\left(x_{3} x_{2} x_{4} x_{3}\right)\left(x_{2} \mathbf{x}_{\mathbf{1}} x_{4} x_{5} x_{3} x_{2}\right)=x_{3} x_{5}\left(x_{3} x_{2} x_{4} x_{3}\right)\left(x_{2} x_{4} \mathbf{x} \mathbf{1}_{\left.x_{5} x_{3} x_{2}\right) \equiv}\right. \\
& \equiv x_{3} x_{5} \alpha \mathbf{x}_{\mathbf{1}} x_{5} x_{3} x_{2}=x_{3} x_{5} \beta \mathbf{x}_{\mathbf{1}} x_{5} x_{3} x_{2} \equiv x_{3} x_{5}\left(x_{2} x_{4} x_{3} x_{2} x_{4} x_{3} \mathbf{x}_{\mathbf{1}} x_{5} x_{3} x_{2}\right)= \\
& =x_{3} x_{5}\left(x_{2} x_{4} x_{3} x_{2} \mathbf{x}_{\mathbf{1}} x_{4} x_{3} x_{5} \mathbf{x} \mathbf{3}^{x_{2}}\right)=x_{3} \mathbf{x}_{\mathbf{5}}\left(x_{2} x_{4} x_{3} \mathbf{x} \mathbf{5}\right)\left(x_{2} x_{1} x_{4} x_{3} x_{5} x_{2}\right)= \\
& =x_{3}\left(x_{2} x_{4} \mathbf{x}_{\mathbf{5}} x_{3} x_{5}\right)\left(x_{2} x_{1} x_{4} x_{3} x_{5} \mathbf{x}_{\mathbf{2}}\right)=\left(x_{3} x_{2} x_{4} x_{3} x_{5}\right)\left(\mathbf{x}_{\mathbf{3}} x_{2} x_{1} x_{4} x_{3} \mathbf{x}_{\mathbf{2}}\right) x_{5} \equiv \delta,
\end{aligned}
$$

and also, from $\gamma=\delta$, we obtain

$$
\begin{aligned}
\eta & \equiv x_{6}\left(x_{5} x_{3} x_{2} x_{4} x_{3} x_{5} x_{6}\right)\left(\mathbf{x}_{\mathbf{5}} x_{3} x_{2} x_{1} x_{4} x_{3} x_{2} x_{5} x_{3} x_{4}\right)= \\
& \equiv x_{6}\left(x_{5} \mathbf{x}_{\mathbf{6}} x_{3} x_{2} x_{4} x_{3} x_{5} \mathbf{x}_{\mathbf{6}}\right)\left(x_{3} x_{2} x_{1} x_{4} x_{3} x_{2} x_{5} x_{3} x_{4}\right)= \\
& =\mathbf{x}_{\mathbf{5}} x_{6} x_{5}\left(x_{3} x_{2} x_{4} x_{3} x_{5}\right)\left(x_{3} x_{2} x_{1} x_{4} x_{3} x_{2}\right) \mathbf{x}_{\mathbf{6}} x_{5} x_{3} x_{4} \equiv \\
& \equiv x_{5} x_{6} \gamma x_{6} x_{5} x_{3} x_{4}=x_{5} x_{6} \delta x_{6} x_{5} x_{3} x_{4} \equiv \\
& \equiv x_{5} x_{6}\left(x_{3} x_{2} x_{4} x_{3} x_{5}\right)\left(x_{3} x_{2} x_{1} x_{4} x_{3} x_{2}\right) x_{5} x_{6} \mathbf{x}_{\mathbf{5}} x_{3} x_{4}= \\
& =x_{5} x_{6}\left(x_{3} x_{2} x_{4} x_{3} x_{5}\right)\left(x_{3} x_{2} x_{1} x_{4} x_{3} x_{2} \mathbf{x}_{\mathbf{6}} x_{5} x_{6} x_{3} x_{4}\right)= \\
& =x_{5} \mathbf{x}_{\mathbf{6}}\left(x_{3} x_{2} x_{4} x_{3} x_{5} \mathbf{x} \mathbf{6}\right)\left(x_{3} x_{2} x_{1} x_{4} x_{3} x_{2} x_{5} \mathbf{x}_{\mathbf{6}} x_{3} x_{4}\right)= \\
& =\left(x_{5} x_{3} x_{2} x_{4} x_{3} x_{5} x_{6}\right)\left(\mathbf{x}_{\mathbf{5}} x_{3} x_{2} x_{1} x_{4} x_{3} x_{2} x_{5} x_{3} x_{4}\right) \mathbf{x}_{\mathbf{6}} \equiv \theta .
\end{aligned}
$$

For the final step we use the next equality

```
\lambda \equiv x x ( 
    \equiv}\mp@subsup{x}{7}{}(\mp@subsup{x}{6}{}\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{4}{}\mp@subsup{x}{3}{}\mp@subsup{x}{5}{}\mp@subsup{x}{6}{}\mp@subsup{x}{7}{})(\mp@subsup{\mathbf{x}}{6}{}\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{1}{}\mp@subsup{x}{4}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{4}{})(\mp@subsup{x}{6}{}\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{1}{})
```



```
    = \mathbf{x}}\mp@subsup{\mathbf{6}}{7}{}\mp@subsup{x}{6}{}(\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{4}{}\mp@subsup{x}{3}{}\mp@subsup{x}{5}{}\mp@subsup{x}{6}{})(\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{1}{}\mp@subsup{x}{4}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{4}{})(\mp@subsup{\mathbf{x}}{7}{}\mp@subsup{x}{6}{}\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{1}{})
    \equiv \mp@subsup{x}{6}{}\mp@subsup{x}{7}{}\eta\mp@subsup{x}{7}{}\mp@subsup{x}{6}{}\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{1}{}=\mp@subsup{x}{6}{}\mp@subsup{x}{7}{}0\mp@subsup{x}{7}{}\mp@subsup{x}{6}{}\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{1}{}\equiv
    \equiv \mp@subsup{x}{6}{}\mp@subsup{\mathbf{x}}{\mathbf{7}}{(}(\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{4}{}\mp@subsup{x}{3}{}\mp@subsup{x}{5}{}\mp@subsup{x}{6}{})(\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{1}{}\mp@subsup{x}{4}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{4}{})\mp@subsup{x}{6}{}\mp@subsup{x}{7}{}\mp@subsup{\mathbf{x}}{\mathbf{6}}{6}\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{1}{}=
```



```
    =(x6}\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{4}{}\mp@subsup{x}{3}{}\mp@subsup{x}{5}{}\mp@subsup{x}{6}{}\mp@subsup{x}{7}{})(\mp@subsup{\mathbf{v}}{\mathbf{6}}{}\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{1}{}\mp@subsup{x}{4}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{4}{})(\mp@subsup{x}{6}{}\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{1}{})\mp@subsup{\mathbf{x}}{\mathbf{7}}{}
    \equiv(x6}\mp@subsup{x}{5}{}\mp@subsup{x}{3}{}\mp@subsup{x}{2}{}\mp@subsup{x}{4}{}\mp@subsup{x}{3}{}\mp@subsup{x}{5}{}\mp@subsup{x}{6}{}\mp@subsup{x}{7}{})\mp@subsup{V}{6}{}\mp@subsup{x}{7}{}\equiv\mu
```

and we find
$x_{7} V_{8} \equiv x_{7}\left(x_{8} V_{7} x_{8} V_{7} x_{8}\right) \equiv$
$\equiv \mathbf{x}_{\mathbf{7}}\left[x_{8} x_{7} V_{6}\left(x_{7} x_{6} x_{5} x_{3} x_{2} x_{4} x_{3} x_{5} x_{6}\right) \mathbf{x}_{7} x_{8} x_{7} V_{6}\left(x_{7} x_{6} x_{5} x_{3} x_{2} x_{4} x_{3} x_{5} x_{6}\right) x_{7} x_{8}\right]=$
$=x_{8} x_{7} V_{6}\left(\mathbf{x}_{\mathbf{8}} x_{7} x_{6} x_{5} x_{3} x_{2} x_{4} x_{3} x_{5} x_{6}\right) \mathbf{x}_{\mathbf{8}} x_{7} V_{6}\left(\mathbf{x}_{8} x_{7} x_{6} x_{5} x_{3} x_{2} x_{4} x_{3} x_{5} x_{6}\right) x_{7} x_{8}=$
$\left.=x_{8} x_{7} V_{6} \mathbf{x}_{7} x_{8}\left(x_{7} x_{6} x_{5} x_{3} x_{2} x_{4} x_{3} x_{5} x_{6}\right) x_{7} V_{6}\right)\left(x_{8} x_{7} x_{6} x_{5} x_{3} x_{2} x_{4} x_{3} x_{5} x_{6}\right) x_{7} x_{8} \equiv$
$\equiv x_{8} x_{7} V_{6} x_{7} x_{8} \lambda\left(x_{8} x_{7} x_{6} x_{5} x_{3} x_{2} x_{4} x_{3} x_{5} x_{6}\right) x_{7} x_{8}=$
$=x_{8} x_{7} V_{6} x_{7} x_{8} \mu\left(x_{8} x_{7} x_{6} x_{5} x_{3} x_{2} x_{4} x_{3} x_{5} x_{6}\right) x_{7} x_{8} \equiv$

$$
\begin{aligned}
& \equiv x_{8} x_{7} V_{6} x_{7} x_{8}\left(x_{6} x_{5} x_{3} x_{2} x_{4} x_{3} x_{5} x_{6} x_{7} V_{6}\right)\left(x_{7} x_{8} \mathbf{x}_{7} x_{6} x_{5} x_{3} x_{2} x_{4} x_{3} x_{5} x_{6}\right) x_{7} x_{8}= \\
& =x_{8} x_{7} V_{6}\left(x_{7} \mathbf{x}_{8} x_{6} x_{5} x_{3} x_{2} x_{4} x_{3} x_{5} x_{6}\right) x_{7} \mathbf{x}_{8} V_{6}\left(x_{7} \mathbf{x}_{8} x_{6} x_{5} x_{3} x_{2} x_{4} x_{3} x_{5} x_{6}\right) x_{7} x_{8}= \\
& =\left[x_{8} x_{7} V_{6}\left(x_{7} x_{6} x_{5} x_{3} x_{2} x_{4} x_{3} x_{5} x_{6}\right) x_{7} x_{8} \mathbf{x}_{7} V_{6}\left(x_{7} x_{6} x_{5} x_{3} x_{2} x_{4} x_{3} x_{5} x_{6}\right) x_{7} x_{8}\right] \mathbf{x}_{\mathbf{7}} \equiv \\
& \equiv\left(x_{8} V_{7} x_{8} V_{7} x_{8}\right) x_{7} \equiv V_{8} x_{7}
\end{aligned}
$$

Acknowledgments. This research is partially supported by Higher Education Commission, Pakistan.

REFERENCES

[1] U. Ali and B. Berceanu, Canonical forms of positive braids. Journ. of Algebra and its Appl., 14 (2015), 1.
[2] E. Artin, Theory of braids. Ann. Math. 48 (1947), 101-126.
[3] B. Berceanu, Artin algebras - applications in topology (in Romanian). Ph. Thesis, University of Bucharest, 1995.
[4] B. Berceanu and S. Parveen, Braid groups in complex projective spaces. Advances in Geometry 12 (2012), 269-286.
[5] A. Björner and F. Brenti, Combinatorics of Coxeter Groups. Graduate Texts in Mathematics 231, Springer Verlag, 2005.
[6] L.A. Bokut, Y. Fong, W.F. Ke and L.S. Shiao. Gröbner-Shirshov bases for braid semigroup. Advances in Algebra, World Sci. Publ., 2003, 60-72.
[7] N. Bourbaki, Groupes et Algèbres de Lie. Chapitres 4-6, Elem. Math., Hermann, 1968.
[8] E. Brieskorn and K. Saito, Artin groups and Coxeter groups. Invent. Math. 17 (1972), 245-271.
[9] M. Davis, The Geometry and Topology of Coxeter Groups. London Mathematical Society Monographs, Princeton Univ. Press, 2008.
[10] P. Deligne, Les immeubles des groupes de tresses généralisés. Invent. Math. 17 (1972), 273-302.
[11] F.A. Garside, The braid groups and other groups, Quart. J. Math. Oxford, 2^{e} ser. 20 (1969), 235-254.
[12] J.E. Humphreys, Reflection Groups and Coxeter Groups. Cambridge Univ. Press, 1990.
[13] J. Michel, A note on words in braid monoids. J. Algebra 215 (1999), 1, 366-377.
[14] S. Moran, The Mathematical Theory of Knots and Braids. North-Holland Mathematical Studies 80, Elsevier, Amsterdam, 1983.
[15] L. Paris, Braid groups and Artin groups. In: Handbook on Teichmüller Theory, II, EMS Publishing House, Zürich, 2008.

Bahauddin Zakariya University, Center for Advanced Studies in Pure and Applied Mathematics, Multan, Pakistan uali@bzu.edu.pk
"Simion Stoilow" Institute of Mathematics, Bucharest, Romania
Barbu.Berceanu@imar.ro
University of Gujrat, Department of Mathematics, Pakistan
zaffar.iqbal@uog.edu.pk

