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We introduce a relative Garside element, the quotient of the corresponding Gar-
side elements A(T",,—1) and A(T,), for a pair of Artin monoids associated to
Coxeter graphs I',_1 C Iy, the second graph containing a new vertex. These
relative elements give a recurrence relation between Garside elements. As an
application, we compute explicitly the Garside elements of Artin monoids corre-
sponding to spherical Coxeter graphs or the longest elements of the associated
finite Coxeter groups.

AMS 2010 Subject Classification: Primary 20F36; Secondary 20M05, 20F10.

Key words: Coxeter groups, Artin monoids, Garside elements.

1. INTRODUCTION

The Garside element for the braid group (and for the braid monoid) cor-
responding to Artin’s presentation (see |2, 14])

TiTj = Tj Xy if’i—j|22

B, = T1,L2y...,Tp—-1 . .
" ’ ’ e :L‘i+11171'l'i+1:ZL‘i:L'Z'JrlfL'ilflSZSn—Q

is given by (see [11])
A, = z1(zox1)(z3T221) .« . . (Tp—1Tp—2 ... 1)

(to represent A, or, more general, to represent an element of a monoid as a
product of generators, we chose the smallest word in the length-lexicographic
order induced by the order between generators x; < zg < ... < x,_1). For
other representations of A, including the most used formula, see [4]. The right
quotient A 1A, 11 = 22,1 ... 21 will be called the relative Garside element
corresponding to the embedding of the Coxeter graphs A,,_1 C A,:

An—l e — e —o— C An e —eo—o— o —
X1 €2 x3 Tp—1 T €2 x3 Tpn—1 Tn

REV. ROUMAINE MATH. PURES APPL. 60 (2015), 3, 267-279



268 Usman Ali, Barbu Berceanu and Zaffar Igbal 2

This element and its left divisors play a central role in the construction
of the Grobner basis for the classical braid monoid (see [1, 3, 6]). In this paper
we give few characterizations of the relative Garside element corresponding to
an extension of Coxeter graphs by one new vertex, see Propositions 1-4, and
we will use these to compute inductively the Garside elements of the Artin
monoids of spherical type, see Corollaries 1-7.

We start to recollect some facts about Coxeter graphs, Coxeter and Artin
groups, Artin monoids, and Garside elements. Let S be a set. A Cozeter matriz
over S is a square matrix M = (mg)sses indexed by the elements of S such
that

mss = 1 for all s €. S and mg = mys € {2,3,4,...,00} forall s,t €S, s#t.

The associated Cozeter graph I' = T'(M) is a labeled graph defined by the
following data:

S is a set of vertices of I';

two vertices s,t € S are joined by an edge if mg > 3, with label myg; if
mst > 4.

A Coxeter matrix M = (mg)stes is usually represented by its Coxeter
graph I'(M).

Definition 1. Let M = (mg)stcs be the Coxeter matrix of the Coxeter
graph I'. Then the group defined by

W) = (s €S| (st)™* =1for all s,t €S satisfying ms # co)

is called the Cozeter group of type I.

In an equivalent way we can write W(I') = <s €S|s?2=1, sts.., =
——

mst factors

tst.., ).
N——

mst factors

We call T' to be of spherical type if W(I') is a finite group. A graph is of
spherical type if and only if it has finitely many connected components, any of
them from the list in Fig. 1.1. (see [7]).

Definition 2. If T is a Coxeter graph, its associated Artin group is defined
by
AT)=(s€ S| sts.., = tst.., forallsteS satisfying mg # 00).
ms¢ factors ms¢ factors
The set of positive elements (i.e. the elements which are product of gener-
ators with positive exponents) in an Artin group A(T") is called the associated
Artin monoid and it can be also defined by the monoid presentation (see [15])
M) =(se S‘ sts.., = tst.., forall s ,teS satisfying my # 00).

mst factors mst factors
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( 2(p))p257p¢6 T T9

Fig. 1.1. The connected spherical type Coxeter graphs.

There are two obvious surjective morphisms:
M) <= A)
w(I)

Now we recall some basic properties of the (absolute) Garside element of
an Artin spherical monoid M(T") (see [8, 10, 11, 13, 15|, and also Section 2
for notation). This element is the least common left-multiple of the set of
generators xy,...,T,: we have, forany i =1,...,n, z; | A and if x; | w for
all 4, then A | w. The element A(T") is square free (there is no generator x;
such that 22 | A). In some cases A(T) itself is a square: for example

A(Az) = z1(z9m1) (237971) = (212322)%;
A(I2(4k)) = (.7)1.7}2 NN {IJQ)Q.
2k times
Also, there is a bijection o : {1,...,n} — {1,...,n} such that ;A =
A, (). The image of A(T') in the corresponding Coxeter group W(I') is the

(unique) longest element of this group and it has order two (see 7] and [9]).
The length [(T') of the Garside element A(T') is equal to the number of the
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reflections (i.e. the conjugates of the generators in the Coxeter group) and it
is given by the following table (see [12] and [5]):

T An Bn Dn E6 E7 Eg F4 GQ Hg H4 IQ(p)
D) | ("3 [n? [n®>—n |36 [63]120]24] 6 |15 | 60| p

2. RELATIVE GARSIDE ELEMENTS

Let us fix the notation. We already used the divisibility relation between
two elements of a monoid M, a | §: this is equivalent to 8 = Aap for some
elements A\, p € M. If A = 1, we write « |1, 8 and similarly, if p = 1, we write
a |r B and we say that « is a left and right divisor of § respectively. The
element o in a monoid M generated by 1,9, ... is said to be rigid if o can
be represented in a unique way as a word in z,zo,.. ..

Suppose we have an inclusion of Coxeter graphs I';,_; C I';, with vertices
{z1,..., xp—1} and {z1,...,2,}, respectively. Using the definition of Garside
elements we have

A(Ty—1) | A(T).

Definition 3. The relative Garside element A(T,,,T',,—1) is defined as a
right quotient:
AT,) = A(Th-1)A(T,, Th—1).

If there is no ambiguity concerning the inclusion I',,_; C I'y,, we will use the
simple notation A, = A,,_1R,. Now we present some properties of the relative
Garside element R,, which characterize this element.

PROPOSITION 1. The relative Garside element R, = A(Ty,,T'y—1) satisfies
the properties:

a) Ry, is square free;

b) z; | Ry, if and only if i = n;

c) there is a bijection o : {1,...,n—1} = {1,...,n} \ {on(n)} such that
iRy = Rnxa(i) ;

d) z; |r Ry if and only if j = o,(n).

Proof. Let A, = A,_1R,. Then we have:

a) R, is square free because A, is square free;

b) x; (1 <i <n—1) cannot be a left divisor of R,: otherwise, R,, = x;U.
But z; |p A,—1 implies A,_; = Vuz;, therefore we have A, = A,_1R, =
V22U, a contradiction.
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¢) Let opp—1 : {1,...,n =1} = {1,...,n — 1} and o, : {1,...,n} —
{1,...,n} be the bijections defined by the conjugation with A, _; and A, re-
spectively: 2;An1 = Ap1T4,_ (5), TilAn = ApZg, ;). Now, fori € {1,...,n—
1}, we have:

Ap1ziRp=2 1 Ap_1R,=x -1 A=Ay 1= A1 Ry 1
o, -4(2) 0, -4(4)

onoy, 4 (4) ono, (i)’
therefore z; R, = Rynxq), where 0 = 0, © 01;11. The image of ¢ contains all
the elements 1,...,n, but not o,(n) = m.

d) If x; # wx,, then there exists i € {1,...,n — 1} such that j = o()
and z;R,, = Rpxj;. Suppose that x; |r Ry, i.e. R, = Sxj;. We obtain a
contradiction: x;R,, = R,x; = Sx?, because x; Ry, is a right divisor of A,,. [

Remark 1. From this proposition, the first and the last factors of R, are
uniquely defined. In some cases R,, is completely rigid, for instance R3(As, A2) =
x3x221, in other cases only the interior factors can be changed, for instance
Rg(Ag, A1 X Al) = T2X1Xx3T9 — X2T3T1X2.

Ay i o— e CA3: 0———o—o A1 XA :e e CA3: o———o— o
X1 x2 T €2 xs3 €1 xs3 €1 x2 €3

We will use the notation m = o, (n).

ProposITION 2. If U, € M(T',,) satisfies the following three conditions:
a) xp, t Un,
b) z; | Uy if and only if i =n, and R
¢) there is a bijection 7 : {1,...,n — 1} — {1,...,k,...,n} such that
v Up = nLr(i)s
then U, = R, (and also k =m, 7 = o).

Proof. Let us define D = A,,_1U,,. Because of the relations z; |, Ap—1,7 =
1,...,n — 1 and also from x, | D, a consequence of b) and c), we have
z; | Ap—1Uy for any i = 1,...,n, therefore A, | D. This implies that
A, 1R, |L A,_1U,, hence R, |L U, 1If R, # U,, then U, = Rnl‘jW for
some j. If j # m, then j = o,(i) for some ¢ € {1,...,n — 1}, hence U, =
RpzoH)W = x; R, W and this contradicts b). If j = m, then U, = (Szy)zmW
which contradicts a). O

PROPOSITION 3. If U, € M(T'},) satisfies the following three conditions:
a) Ty | Un,
b) there is a bijection T : {1,...,n — 1} — {1,...,%,...7n} such that
z;U, = nTr(i); and
c) U, has minimal length among the words satisfying a) and b),
then U, = R, (and also k =m, 7 = o).
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Proof. Let us define D = A,,_1U,. As in the previous proof, a) and b)
implies z; | D for all @ = 1,...,n. Therefore A, |1 D, hence R, |1 U,.
We have |Uy| > |R,| and R, satisfies a) and b), therefore condition c¢) implies
R,=U, O

With the same proof, we have another version of the previous proposition:

PROPOSITION 4. If U, € M(T',,) satisfies the following three conditions:

a') In ’L Un7

b) there is a bijection T : {1,...,n — 1} — {1,...,%,...,n} such that
z; U, = UnxT(i), and

c) the length of Uy, is the expected length [(I'y,) — I(T'p—1) (from the table
in Section 1),
then U, = R,, (and also k =m, 7 =0).

3. THE RELATIVE GARSIDE AND GARSIDE ELEMENTS
FOR THE INFINITE SERIES

After the computation of various relative Garside elements, we will de-
scribe the Garside elements associated to the classical list of the connected
Coxeter diagrams: the infinite series in this section, the exceptional cases in
the next section. Using the following obvious result, these will give formulae
for the Garside elements of all Artin monoids of spherical type.

LEMMA 1. If the graph T is the disjoint union of I'y and 'y, then M(T') =
M(T1) x M(T'2) and

A(T) = A(T1)A(Ts) = AT)A(T).

A, series. We start with Aj: ;:1 and its Garside element A(A;) =
AZ =x.

Construction of A(A,, A,—1): The element M, = x,x,_1 ...x1 satisfies
the conditions of Proposition 2:

a) M, is square free: obvious because M, is rigid;

b) x; | My, if and only if i = n for the same reason;

c) x; M, = Mypzit1, therefore o(i) = ¢+ 1, where i = 1,...,n — 1, and
m = 1.

COROLLARY 1 (Classical Garside element).

A(Ay) = Apy1 = x1(zowy) .. (Tp—1 ... 21) (T - . - 27).

4
B, series. We start with Bs: 01—02 and its Garside element
A(B3) = x1(wex122), see the construction A(lz(p), A1).
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Construction of A(By,, By—1): The element N, = xp,zp—1 ... 22122 ... Ty
satisfies the conditions of Proposition 2:

a) N, is square free: obvious, because N, is rigid in M(B,,);

b) x; |r Ny if and only if ¢ = n for the same reason;

¢) ;N = Nypx;, therefore o(i) =4, where i =1,...,n — 1, and m = n.

COROLLARY 2.
A(By) = z1(zox122) (232221 7223) - . . (TpTp—1 ... T2X1T ... Tp_1Tp).

€2
D, series. We start with Ds: £1<: and its Garside element
x3
A(Dg) = I (SCQ$1)(CL‘3$1ZL‘2) (thiS 18 A(Ag,AQ) = X3T2T1 with a change of no-
tation).
Construction of A(D,,, A,—1): Consider the product

P, = (zprp—2xn—3..21) (Tn—1Tn—2..22) (TnTp—2Tn—3..23) (Tn—1Tn—2..24)...

We prove by induction that P, = R,. The initial step is given by the
previous formula: A(Ds3, As) = (x3x1)x2. We check the conditions in Proposi-
tion 2 in the case of n even, when the product ends with the generator x,:

Py = (vpTp—2Tn—3..21) (Tn-1Tn—2Tn—3..22) (TnTn—2Tn—3..23)..(Tn—1Tn—2) Tn.

a) First we prove that P, is square free and also that z,z,_1 is not a
divisor of P,.

Tn—1
D, : P,
] o ... Tp-2 2
n
| }
An—l . ——o —— 0o —o An—l
1 Y2 ... Yn-2 Yn-1

Define a projection pr : M(D,) — M(A,—1) given by the diagram:
pr(%i) = Ymin(im—1)- The image of P, under the map pr is A,_1 which is
square free: if a:? P,, then we have pr(m?) = y,% | Apg (h=jifj<n-—1
and h = n — 1 if j = n), a contradiction. Therefore P, is square free. In the
same way, if 2,251 | Py, then pr(z,z,—1) = y2_; | An_1, a contradiction.

b) Obviously z,, | P,. Let us suppose that z; | P, for some i <n — 1.
By induction we know that R, _1 is given by the next formula and we will
analyze the following three cases:

l)i=n—1,2)i=n—2,and 3) i <n—3:

Rn—l = ($n_1xn_3$n_4 PN 1'1)(56”_2.7}”_3 .. ..I‘g)(.l‘n_livn_gxn_4 .. .:Eg) e Lp—9.
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Using the inclusion morphism in : M(Dyp_1) — M(D,), z1 v 2, 22 —
T3y-vy Zn—3 > Tn_9, Zn_2 —> Tn, Zn_1 —> Tp_1, given by the inclusion of
graphs:

Zn—2
(Z1 < o< zZpoo < Zn—l)

Dn—l :

D, : (x2<---<xn_2<xn<xn_1)

x1 €2 €3

Ln—1
the image of
Ry—1 = (#n-12n—32n-1..21)(Zn—22n—3..22) (#n—12n—3..23)..(Zn—12n—3) Zn—2

is in(R,—1) = R,,_4, given by

n—1»
R, = (#n_1Zn—2Tn_3..22) (TnTn_2Tn_3..23) (Tn_1Tn—2..24)..(Tp_1Tn_2)Tn

and we have P, = (zp2p—2tp—3...21)R,,_1. If 2; |1 R),_,, then i =n —1 (by
induction this is true for i € {2,3,...,n,n — 1} and also ;1 | R],_; is impos-
sible because R/ _; does not contain z1). In the case 1), x,—1 |1 P, implies
Tp_17pa1 = P, (by Garside Lemma, see Section 5) and pr(P,) contains y2_,
a contradiction. In the case 2), x,—2 | P, and Garside Lemma implies that
TpTp—oTny = TpTp—2Tp—3...2T1HR,—1, hence xp,a0 = Tp_3xp—g...c1R,1
and xpTp_3... 2103 = Tp_3...x1Ry_1, and this gives a contradiction: z,a3 =
R,_1. In the last case, 3), if x; |p P, (i =1,...,n—3), then

l’nl‘iﬁl =Tndn—2 ... Li4+1T4 - . ..ran,l,

and using Garside Lemma we have ;81 = xp—2...Tiy1%; ... x1Ry—1, and also
Tilp—9 ... xi+262 =Tn—-2.. -Li42Li4+1Lj5 - - - iL'an_l. We obtain

Tifs = Tip17 ... x1 Ry 1,
next i 1724103 = Tip12:%i—1..21 Ry 1 and xip17-1.70184 = vi-1..701 Ry 1;
this gives another contradiction: x; 41 | Rp—1.
¢) We have z; P,, = P,x,_;, hence o(i) = n — i. Therefore P, = R,,.
Similarly one can check the conditions a), b), ¢) of Proposition 2 for n
odd:
R, = (xnxn—2%n—3..21)(Tp_1Tn—2..22) (TnTn—2Tn—3..23)..(TnTn—2)Tn_1.

COROLLARY 3.

A(Dy) = z1(xoz1)..(Tp—1..21) (XnTp—2Tn—3..21) (Tn_1Tn—2..72) (TnTp—2..23)..
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I2(p) series, B2 and Ga. Construction of A(I2(p), A1): Let us define
Q2(p) = xow1x22122 ..., (p — 1 factors). This element satisfies the conditions
in Proposition 3:

a) clearly z2 |1 Q2(p);

b) we have z1Q2(2p + 1) = Q2(2p + 1)z (m = 1) and z1Q2(2p) =
Q2(2p)z1 (m = 2);

c¢) any relation 1V = Vx,(1) should involve the unique defining relation
xox1To.. (p factors) = xyxowy..(p factors), so the length of V' is greater than
or equal to p — 1 and Q2(p) has minimal length among the words satisfying a)
and b).

COROLLARY 4.
A(G2) = T1T2T122X1T2,
A(I2(p)) = zixex1Z2... (p factors).

4. THE RELATIVE GARSIDE ELEMENTS
FOR THE EXCEPTIONAL SERIES

As a consequence of the results in Section 3 we obtained a new proof for
the lengths of the Garside elements corresponding to the infinite series Ay, By,
D, and I(x) (including G3). In this section we will use the lengths of the Garside
elements to find the relative Garside elements and also the Garside elements of
the monoids corresponding to the exceptional Coxeter graphs Fg, 7, Eg, Fy, H3
and Hy.

F4 case. We consider the inclusion:

4
B3 : r———o—o C F4 . e—o—o—o
T T2 T3 T X9 T3 T4

Construction of A(Fy, Bs): Let us define T3 = xsxorix3rors; the Garside
element of By (with the change of marking x; <> x3) is A(B3) = x12x921T5.
Defining Ry = x4T5x4T324, we have z;Ry = Ryx;, i = 1,2,3, and [(R4) = 15;
from the table in Section 1 we have [(Fy) — [(B3) = 24 — 9 = 15, hence, using
Proposition 4, we obtain

A(F4, Bg) = .T4T3.T4T3.’E4.
COROLLARY 5.
A<F4) = $1$2x1<$3x2$1£€3x21‘3)$4($3$2x1$3$2x3)$4($3£L’2$11‘3$2$3):B4.
H,—_3 4 series. We consider the inclusions:

I)(5): e—e CH3y:0——eo—o CH;: e—eo—o—
€1 x2 €1 T2 zs3 z1 €2 z3 T4
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Construction of A(Hs, I2(5)) and A(Hy4, Hs): The element
Sg = (x3$2x1$2$1)($3$2x1x2)$3

satisfies the commutation rules x1.55 = S3za, 253 = S3x1, and its length is
10. From the length table we find that [(A(Hs, I2(5))) = 15 — 5 = 10, so

A(Hs,I3(5)) = Ss.
Similarly, the element
54 = x453$45’3x45333453m4

verifies x;S4 = Syx;, i = 1,2,3, and it has the expected length: [(Sy) = 45 =
60 — 15 = [(Hy) — [(H3s), therefore

A(H47H3) = 54'
COROLLARY 6.
A(Hg) == IE1£E2£L‘1$2:L‘153 = X1T2Tx1T2X1 - (Igl‘gxlltgl‘l)($3$2$1$2).’E3,
A<H4) = .%'1$2$1.%'2$15354 = 1'1.%23311'2.%'1Sg$4S3$4S3$4Sg:L‘4SgQ?4.

E,—6.78 series. We consider the inclusions:

€1 z2 T3 Ts z1 ) z3 Ts Te Z7 Ts
D5 . Eg .
[ ] .’,1;‘4 U [ ] ZL’4

€1 Z2 €T3 T5 Z6 x1 Z2 z3 Ts Te Z7
Eg : C Er7:
eIy ® Ty

Construction of A(Eg, Ds), A(E7, Eg), and A(Eg, E7): Let us define the
element

Vo = 26 A(Ds5, Dy)zsrsr3r0n] = (T6T5T3T2T1 T4X3T2T52324) (TeX5T3T2X1 ).
This verifies the commutation relations:
21Ve = Vexe, w2V = Voxs, 23Ve = Vs, 24V = Vo and x5V = Vezy.
Define also the elements
Vi = w7Ve(xrr6250320042030576) 27 and Vg = xgVrxgVrxs.
These elements verify the commutation relations:

1 = V7x7_i’ L= ]‘7 27 57 67 . — . s
xZV7_{ Vo, i=3,4, and z;Vg=VWexy, 1=1,...,7.
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Counting the lengths we obtain

I(Vg) = 16 = 36 — 20 = [(Eg) — [(Ds),
I(V) = 27 = 63 — 36 = I(Ex) — I(Ey),
I(Vg) = 57 = 120 — 63 = [(Eg) — (Ex).

From Proposition 4 we obtain the relative Garside elements:
A(Es, D5) = Vs, A(E7, Eg) = V7, A(Es, E7) = Vs.

COROLLARY 7.

A(Eg) = A(Ds5)Ve = A(A4)A(Ds, Ag) Vs,
A(E7) = A(Ee)V7 = A(A1)A(Ds, Ag)VsV7,
A(Eg) = A(E7)Vs = A(A4)A(Ds, Ay)VsV7Vs.

5. GARSIDE LEMMA AND FEW COMPUTATIONS

The next lemma was proved by Garside for the braid monoid (or A4,
series), see [11], and generalized for an arbitrary Artin monoid by Brieskorn
and Saito, see [8]:

LEMMA 2 (Garside Lemma). Let W be an element in the Artin monoid
M such that z; |, W and zj | W (i # j). Then there is an element Z € M
such that
W = (vixjziz;...) 72 = (xjoxm;...) 2.
——— ~—

m;; times m;; times

Now we give the details for the proof of two commutation relations de-
scribed in Section 4. First a short computation:

LEMMA 3. In Fy we have v1Ry = Ryx1.

Proof. The factors which are transformed under Coxeter relations are writ-
ten in bold characters:

X1 - £4(23%20103T223) T4 (L3221 03T223) Ty =
= T4(23X1 X201 T3023) T4 (T3T2T1X3T223) T4 =
= 04 (230221 X223%203) T4 (T3T2T1L3T2T3) Ty =
- £L'4(:Eg:ﬂga?l.’E3£E2£L‘3)X2;E4($35E2$1I‘3.’E2563)IE4 —
= 04230221 030203) T4 (X2X3T2T3L1T223) Ty =
- $4(5133582331:E3562$3)[L‘4($31‘21‘3X21’1{E2$3)IE4

= T4 (230221 030203) T4(T3T203T1 X2X123) Ty =
= zy(x3x9012030273) x4 (T3T221T3T2X3) Ty - X1.

And now a long computation:
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LEMMA 4. In Eg we have z7Vs = Vgxr.
Proof. In Eg we have the following sequence of equalities:
Q@ = T3T2X4T3T2X4 = T3X2X3T4X3T9 = X2T3T2T4X3Ty =
= X2X3X2X4T3TQ = X2X3T4T3Tx2Xg = X2X3L4X3T2T3 =
= TaT4T3T2XaT3 = 3,
and from the equality o = 8 we get

v

x5(T3T0x42375) (X3 Lo 1 X423T2) = X5(X3X5X2X4T3%5)(ToT1X4T3T2) =
— X3T5 (x3m2x4x3X5)(x2:1:1x4x3x2) — I3T5 (1‘3%’2%4$3)($2$1Z’4X5$31’2)
= x3w5(x3xow4x3)(TaX124T5T3%2) = X375(T3x004x3)(ToT4X1T5T3T2) =

= I3x30X1T5T3T2 = T3T50X1T5T3T2 = T3T5(ToT4T3T2T4T3X1 T5T3T2) =
325 (ToX4T3ToX1 T4 T3T5X3T2) = T3Xp(ToTax3Xs)(ToX1T4T3T5T2) =

= x3(roxyxprsxs)(Tor1x403T5X2) = (X3T2w42375)(X3X2T1X4X3X2) X5 = 0,

and also, from v = §, we obtain

n = x6(x5:c3x2334x3x5x6)(X5x3x2x1x4$3x2x5x3x4) =
:Eg(x5x6x3xga:4x3x5x6)(x3x2x1$4x3x2x5x3x4) =
X5T6x5(T3T20403T5) (T3TT1X4T3T2)XL5T3Ty =
= IT5T6YTLeL5X3T4 — m5x651’6x5x3x4 =

= x506(r3x004x3%5) (L3201 T4X3T2) T5TEXELIT, =
= x5:x6(x3:c2x4x3x5)(x3x2x1x4x3x2x6x5x6w3x4) =
= x5Xe(T3x2047375Xe) (T3T2T1T4T3T2T5XET3T,) =

(523220 4T325%6) (X5 T3T2T1 T4T3T2T5L3L4)Xe = 0.

For the final step we use the next equality

A = xr(versrarorsrzzsrery)Ve =

= x7(Ter5x3T2T4T3T5T6X7 ) (XeT5L3T2X1T4T3T2T5T324 ) (TeT5L3T2T1) =
27 (TeX7 50302 423T5X6X7 ) (T5X3L201 X4 T3T2X523%4 ) (TeT5X3T2T1) =
XeT7L6(T5T3T2X4T3T5%6) (T5T3T2T1T4T3T2T5X3T4) (X7 XeT5X3TaT1) =
LeL7NL7LELEL3TLL] = ZE6:E79:Z}7ZL'6$5IL‘3:I)2:L'1 =
xGX7(x5w3x2x4w3x5x6)(x5x3m2x1x4w3$2x5w3$4)x6m7x6x5x3w2x1 =
= (X6T5X7X3T2T4X3T5T6X7 ) (T5T3X2T1 T4X3T2X523T4 ) (TeX7T5X3T2T1) =
= (2er5r32204T3T5T6T7)(XeT5T3T2T1 T4T3T2X5X3%4 ) (TeT5T3T2T] )Xy =
= (xersr3xrersrsrsrext)Verr = p,

and we find
x7Vs = w7(xgVixgVizs) =
= X7[x8x7V6(x7x6x5x3x2$4x3x5x6)X7x8:r7V6(x7x6x5x3x2x4x3x5x6):L'yxg] =
= w807 Ve (X8L7T6T5T3L20403T526) X807 Ve (XSLTL6T5T3L2L4T3T5L6)L7T8 =
1327 VeXrag (07262503020 4232536) 07 Ve ) (T8T7X6T5T3L2L4X3T526) L7128 =
= x8x7V6x7378)\(m8x7x6x5x3x2x4m3x5x6)x7a:8 =
= l‘8$7‘/6$71'8,u($8x7$6$5ZE3:E21‘4:L‘35L‘5:L’6)1:7$8 =
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(1]

(2]
(3]

(4]
[5]
[6]

(7]
(8]

9]
[10]
[11]
[12]
[13]
[14]

[15]

2807 Ver7x8(T6T503020403T52627 Ve ) (T7X8X7L6T5L3L24L3T526)T7L8 =
338£U7V6($7X8$6$5$3332$4$31?5$6)1‘7X8V¥5($7X8$6$59€3$2$4$3$5$6)$71178 =
(827 V(272605030204 2385%6) T7x8X7 Ve (L7206 X5L3T2X4T3T5L6 ) L7L-| Xy =
(wgVrxgVawg)wr = Vear.

Acknowledgments. This research is partially supported by Higher Education Com-
mission, Pakistan.

REFERENCES

U. Ali and B. Berceanu, Canonical forms of positive braids. Journ. of Algebra and its
Appl., 14 (2015), 1.

E. Artin, Theory of braids. Ann. Math. 48 (1947), 101-126.

B. Berceanu, Artin algebras — applications in topology (in Romanian). Ph. Thesis,
University of Bucharest, 1995.

B. Berceanu and S. Parveen, Braid groups in complez projective spaces. Advances in
Geometry 12 (2012), 269-286.

A. Bjorner and F. Brenti, Combinatorics of Cozeter Groups. Graduate Texts in Math-
ematics 231, Springer Verlag, 2005.

L.A. Bokut, Y. Fong, W.F. Ke and L.S. Shiao. Grébner-Shirshov bases for braid semi-
group. Advances in Algebra, World Sci. Publ.; 2003, 60-72.

N. Bourbaki, Groupes et Algébres de Lie. Chapitres 4-6, Elem. Math., Hermann, 1968.
E. Brieskorn and K. Saito, Artin groups and Cozeter groups. Invent. Math. 17 (1972),
245-271.

M. Davis, The Geometry and Topology of Cozeter Groups. London Mathematical Society
Monographs, Princeton Univ. Press, 2008.

P. Deligne, Les immeubles des groupes de tresses généralisés. Invent. Math. 17 (1972),
273-302.

F.A. Garside, The braid groups and other groups, Quart. J. Math. Oxford, 2° ser. 20
(1969), 235-254.

J.E. Humphreys, Reflection Groups and Cozeter Groups. Cambridge Univ. Press, 1990.
J. Michel, A note on words in braid monoids. J. Algebra 215 (1999), 1, 366-377.

S. Moran, The Mathematical Theory of Knots and Braids. North-Holland Mathematical
Studies 80, Elsevier, Amsterdam, 1983.

L. Paris, Braid groups and Artin groups. In: Handbook on Teichmiller Theory, II, EMS
Publishing House, Ziirich, 2008.

Recetved 3 March 2015 Bahauddin Zakariya University,
Center for Advanced Studies
in Pure and Applied Mathematics,
Multan, Pakistan
wali@bzu.edu.pk

“Simion Stoilow” Institute of Mathematics,
Bucharest, Romania
Barbu.Berceanu@imar.ro

Unaversity of Gugrat,
Department of Mathematics,
Pakistan
zaffar.igbalQuog.edu.pk



