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Let X be a normal Gorenstein complex projective variety. We introduce the
Hilbert variety VX associated to the Hilbert polynomial χ(x1L1, . . . , xρLρ), where
L1, . . . ,Lρ is a basis of Pic(X), ρ being the Picard number of X, and x1, . . . , xρ
are complex variables. After reviewing general properties of VX , we focus on the
following speci�c topics. First, we consider the Hilbert surface of a bipolarized
variety (X,L1, L2), namely, the surface of degree dim(X) in a 3-dimensional
a�ne space, associated to χ(xKX + yL1 + zL2). Special emphasis is given to
the case of 3-folds. Next, we treat the case of the Hilbert curve of a polarized
4-fold (X,L), that is, the plane quartic curve associated to χ(xKX + yL). We
also study quotients of Hilbert surfaces under the Serre involution s induced by
Serre duality, and we characterize surfaces in a 3-dimensional a�ne space which
are invariant under s.
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INTRODUCTION

Let X be an irreducible projective variety. Looking at the real vector
space N(X) of numerical equivalence classes of divisors on X with real coe�-
cients, following Kleiman's approach [7] and Mori's work [11], led to remark-
able results in algebraic geometry. In particular, from the adjunction theoretic
point of view, in the study of a polarized variety there are natural half-spaces
arising in the dual vector space N(X)∗ to looking at: those where a suitable ad-
joint bundle is negative. On the other hand, considering numerical equivalence
classes with complex coe�cients could suggest a new interesting point of view.
This is exactly the idea pursued in [3] and [8], focusing on a complex algebraic
plane curve which turns out to be naturally associated to any polarized variety.
In this paper, inspired by [3], we take a natural step forward on this topic. In
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particular, we deal with the Hilbert surface of a bipolarized variety (X,L1, L2),
with special attention to the case of 3-folds, and with the Hilbert quartic curve
of a polarized 4-fold (X,L).

Let us make everything more precise, outlining the plan of the paper.

Let Pic0(X) ⊂ Pic(X) denote the subgroup of topologically trivial line
bundles on X, so that Pic(X)/Pic0(X) is the N�eron-Severi group NS(X) ⊆
H2(X,Z). The function sending every L ∈ Pic(X) to its Euler characteristic
χ(L) gives rise to a polynomial function p from N(X) := Pic(X)/Pic0(X)⊗ZC
to C. This is a polynomial of degree dim(X) with rational coe�cients. We call
the hypersurface VX ⊂ N(X), de�ned by the vanishing of p, the Hilbert variety
of X. Of course we can also regard VX as a real hypersurface in N(X). Besides
being invariant under conjugation, VX is invariant under the linear map induced
by Serre duality since χ(L) = (−1)dim(X)χ(KX ⊗L∗). We call this latter map,
s : N(X)→ N(X), the Serre involution.

Note that N(X) ∼= AρC, where ρ := ρ(X) is the Picard number of X.
Given a multipolarized variety (X,L1, . . . , Lt), we have the vector subspace
〈KX , L1, . . . , Lt〉 ⊂ N(X) generated by L1, . . . , Lt and KX . This is a proper
subspace if t < ρ − 1. Moreover, it is at least one dimensional since the Li's
are ample. We assume here that 〈KX , L1, . . . , Lt〉 is isomorphic to Ct+1, since
if this is not true, then we fall in the degenerate case when there are integers x,
y1, . . . , yt (not all zero) with xKX + y1L1 + · · ·+ ytLt topologically trivial. We
denote by p(x, y1, . . . , yt) the polynomial on Ct+1 that χ(xKX + y1L1 + · · · +
ytLt) extends to. We denote the Hilbert variety of the multipolarized variety

(X,L1, . . . , Lt) by V(X,L1,...,Lt). For t = ρ− 1 and 〈KX , L1, . . . , Lρ−1〉 = N(X),
note that V(X,L1,...,Lρ−1) is just the Hilbert variety VX of X.

On 〈KX , L1, . . . , Lρ−1〉, the �xed point set of the involution s consists of
1
2KX ; we call it the central point of s. The Taylor expansion of p(x, y1, . . . , yρ−1)
at this point has all coe�cients of powers whose parity is di�erent from that of
dim(X) equal to zero. In particular,

(
1
2 , 0, . . . , 0

)
∈ VX if dim(X) is odd, and

if the point belongs to VX when dim(X) is even, it is a singular point. These
and related general facts are discussed in Section 1.

In Section 2 we introduce some numerical invariants we need, the bidegrees
of a bipolarized n-fold, following the same idea as in [4, �13.1]. We then prove
some basic relations between them, which follow from the Hodge index theorem.

Let D be any divisor on X. In Section 3 we point out as the Riemann-
Roch theorem provides for χ(D) a very useful expression to treat multipolarized
manifolds. The idea is to write D = E + 1

2KX , and to express χ(D) in terms
of E and the Chern classes of X in a quite e�ective way for our purposes. As
a sample of the e�ectiveness, we shortly discuss the quadric Hilbert surface of
a bipolarized surface (X,L1, L2).
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Section 4 is devoted to the case of bipolarized 3-folds (X,L1, L2). We
study some geometrical properties of the Hilbert cubic surface S = V(X,L1,L2).
In particular, we interpret the central point of the Serre involution as an Eckardt
point; moreover, inspired by the study of singular points at in�nity of the
Hilbert curve of a polarized manifold, done in [3], we look at the singularities
of the curve at in�nity of S.

In Section 5 we come back to Hilbert curves, studied in [3]. We provide
explicit examples of quartic Hilbert curves of polarized 4-folds of any possible
genus. A key result here is Lemma 2.5 which allows us to interpret a plane
section of the Hilbert surface of a bipolarized n-fold as the Hilbert curve of a
corresponding polarized n-fold. Precisely, let (X,L1, L2) be a bipolarized n-fold
and let S be its Hilbert surface. For positive integers a, b, let L := aL1 + bL2

and let Γa,b be the Hilbert curve of the polarized variety (X,L). Then Γa,b is
a suitable plane section of S. We refer to [2] for the study of the j-invariant of
the Hilbert cubic Γa,b in the case of a bipolarized 3-fold (X,L1, L2).

In Section 6, quotients of projective Hilbert surfaces S with respect to
the natural extension, s, of the Serre involution s are analyzed. It is shown
that the quotient is equipped with a natural map into P6. We show that, for
suitable hyperplane sections h of S, the curve h/〈s〉 is a Castelnuovo curve in
P3, assuming S to be smooth.

Inspired by [3, Section 7], Section 7 is devoted to characterize surfaces
in a 3-dimensional space which are invariant under the Serre involution. They
provide a natural context which Hilbert surfaces �t into.

A lot of computations have been carried out with Maple 14 algcurves

package; we simply refer for them to [10] throughout the paper, but we can
make such computations available if necessary.

This paper grew up from some ideas developed in connection with the
Master thesis of the third author [9], inspired by [3].

Notation and terminology. We work on the complex �eld C and use
the standard terminology in algebraic geometry.

In particular, we denote by OX the structure sheaf of a projective variety
X. For any coherent sheaf F on X, hi(F) stands for the complex dimension of
H i(X,F). Moreover, χ(F) :=

∑
i(−1)ihi(F) is the Euler characteristic of F .

Let L be a line bundle on X, and let |L| be the complete linear system
associated to it. The Kodaira dimension, κ(L), of L is de�ned as κ(L) = −∞
whenever |mL| = ∅ for everym ∈ N, and κ(L) = maxm>0{dim(φm(X))}, where
φm is the rational map de�ned by |mL|, otherwise. Note that κ(L) = κ(mL)
for any positive integer m.

We say that L is numerically e�ective (nef, for short) if L · C ≥ 0 for all
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e�ective curves C on X. Moreover, L is said to be big if κ(L) = dim(X). If
L is nef then this is equivalent to c1(L)n > 0, where c1(L) is the �rst Chern
class of L and n = dim(X). We say that L is spanned if it is spanned by global
sections, i.e. globally generated, at all points of X by H0(X,L).

If L is spanned we say that L is very ample if the morphism X → PN
de�ned by |L| is an embedding, where N = h0(X,L) − 1. We say that L is
ample if there exsists m > 0 such that L⊗m is very ample.

The pull-back ι∗L of L by an embedding ι : W ↪→ X is denoted by LW .
We denote by KX the canonical bundle of a Gorenstein variety X.

If L1, L2 are nef and big line bundles, the 3-tuple (X,L1, L2) is called
quasi-bipolarized variety. If L1, L2 are ample line bundles, the 3-tuple (X,L1, L2)
is called bipolarized variety.

When no confusion arises, we use the additive notation for the tensor
product of line bundles. We freely use the notation Y = 0 to denote a cycle
Y ⊂ X numerically equivalent to zero.

1. THE HILBERT VARIETY: GENERALITIES

In this section, we will show how to obtain the Hilbert variety associated
to a smooth n-fold and some properties closely related to it. The Hilbert variety
does not depend on any polarization.

Let X be a complex projective irreducible variety. Let Pic0(X) ⊂ Pic(X)
denote the subgroup of topologically trivial line bundles. Set N(X) :=(
Pic(X)/Pic0(X)

)
⊗Z C. The Euler characteristic map

χ : Pic(X)→ Z,

de�ned by L 7→ χ(L), gives rise to a polynomial function

p : N(X)→ C.

Note that N(X) ∼= AρC, where ρ := ρ(X) is the Picard number of X. If
N(X) = 〈L1, . . . , Lρ〉 with L1, . . . , Lρ ∈ Pic(X), we can write L =

∑ρ
i=1 xiLi ∈

N(X), xi ∈ C, for all L ∈ N(X). Then the image

p(L) = p(x1, . . . , xρ)

is the evaluation in L of the polynomial p ∈ C[x1, . . . , xρ], when we consider
x1, . . . , xρ as complex variables. In other words, for x1, . . . , xρ integers, we
consider the Hilbert polynomial

(1) χ(x1, . . . , xρ) := χ(x1L1 + · · ·+ xρLρ),

and we denote by p(x1, . . . , xρ) the polynomial χ(x1, . . . , xρ) when we consider
x1, . . . , xρ as complex variables.
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Let us consider the a�ne algebraic set VX := V (p), which is a hyper-
surface of degree dim(X) in N(X) ∼= AρC. We also refer to VX as the (a�ne)
Hilbert variety associated to X. Note that the coe�cients of the polynomial p are
rational numbers; therefore VX is de�ned over Q, hence over R. In particular,
one can also consider VX as a real a�ne hypersurface in AρR.

From now on, apart from the Hilbert variety and unless otherwise spec-
i�ed, we will use the word variety to mean a normal, Gorenstein, complex
projective variety, X.

Up to a suitable choice of generators, we may assumeN(X)=〈KX ,L1, . . . ,
Lρ−1〉, provided that KX is not numerically trivial. Thus, we can write an el-
ement L ∈ N(X) as L = xKX +

∑
i yiLi, with Li ∈ Pic(X) and x, yi ∈ C,

i = 1, . . . , ρ− 1. Then sending

L = xKX +

ρ−1∑
i=1

yiLi 7→ (1− x)KX −
ρ−1∑
i=1

yiLi

de�nes a map

s : N(X)→ N(X), (x, y1, . . . , yρ−1) 7→ (1− x,−y1, . . . ,−yρ−1),

that we call Serre involution. More precisely, for integers x, yi, look at the
Hilbert polynomial χ(x, . . . , yi, . . .) := χ(xKX +

∑
i yiLi). By Serre duality,

χ(x, . . . , yi, . . .) = χ
(
xKX +

ρ−1∑
i=1

yiLi
)

= (−1)dim(X)χ
(
(1− x)KX −

ρ−1∑
i=1

yiLi
)

= (−1)dim(X)χ(1− x, . . . ,−yi, . . .).
According to the above notation, denote by p(x, . . . , yi, . . .) the polynomial
χ(x, . . . , yi, . . .) when we consider x, yi as complex variables. Thus,

p(x, y1, . . . , yρ−1) = (−1)dim(X)p(1− x,−y1, . . . ,−yρ−1).

Clearly, the Hilbert variety VX is �xed under the Serre involution s, that
is s(VX) = VX . Moreover the (unique) �xed point of the involution s is C =(

1
2 , 0, . . . , 0

)
∈ AρC corresponding to 1

2KX . We express these facts saying that
VX is symmetric with respect to C. We also say that C is the central point of
the Serre involution. Notice that

(2) C ∈ VX for dim(X) odd.

Since, for any j-th partial derivative ∂j , j ≥ 0,

(∂jp)(1− x,−y1, . . . ,−yρ−1) = (−1)dim(X)+j(∂jp)(x, y1, . . . , yρ−1),
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we conclude that

(3) (∂jp)
(1

2
, 0, . . . , 0

)
= 0 if n+ j is odd.

Summarizing, we have the following result.

Proposition 1.1. Let VX be the Hilbert variety of an n-dimensional va-

riety X, and let C be the central point of the Serre involution.

1. VX is symmetric with respect to C, and C ∈ VX for n odd;

2. For n even, if C ∈ VX , then VX is singular at C;

3. For any n, if C ∈ VX is a point of multiplicity n − 1, then C is a point

of multiplicity n of VX .

Proof. We have only to note that statements 2) and 3) are an immediate
consequence of condition (3): take j = 1 to get 2), and j − 1 to get 3). �

Let us denote by VX ⊂ N(X)(∼= PρC) the projective closure of VX ⊂ N(X).
We also say that VX is the (projective) Hilbert variety of X. Denoting by
u0, u1, . . . , uρ the homogeneous coordinates in PρC, with xuρ = u0, yiuρ = ui,
1 = 1, . . . , ρ− 1, the Serre involution extends to an involution

s : N(X)→ N(X), [u0, u1, . . . , uρ] 7→ [uρ − u0,−u1, . . . ,−uρ−1, uρ],

with the hyperplane at in�nity uρ = 0 consisting of �xed points.
We note the following. For any a�ne linear subspace Λ of N(X) con-

taining the point C, the variety Λ ∩ VX cut out on VX by Λ is invariant under
the Serre involution s. The projective closure of Λ ∩ VX in N(X) is in turn
invariant with respect to s. This provides a motivation for the discussion in
Section 7.

We refer to [3] for several illustrative basic examples.

2. BIPOLARIZED MANIFOLDS

To begin with, let us introduce some numerical invariants we need in the
sequel (compare with [4, �13.1]).

2.1. Bidegrees. Following the notation as in [3, p. 462], we de�ne the
bidegrees of a 3-tuple (X,L1, L2). Let L1, L2 be two line bundles on an irre-
ducible, normal, Gorenstein n-dimensional projective variety X. For j, k ≥ 0
and j + k ≤ n, de�ne the (j, k)-th bidegree of the 3-tuple (X,L1, L2) as

dj,k(L1, L2) := Kn−j−k
X · Lj1 · L

k
2.

Note that dj,k is an integer, since it is the intersection of cycles of complemen-
tary dimension. If no confusion will arise, we simply write dj,k := dj,k(L1, L2).
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Moreover, in each case when j, k are both assigned numbers, we avoid the
comma in the symbol dj,k, e.g., simply writing d00, d10, d12, . . . . From now on,
we will consider the above condition j + k ≤ n as a blanket assumption. Just
as a reminder,

d00 = Kn
X , dn0 = Ln1 , d0n = Ln2 .

Here are some basic relations between the bidegrees, which follow from
the Hodge index theorem (see [4, �2.5]).

Proposition 2.2. Let L1, L2 be two nef line bundles on an irreducible,

normal, Gorenstein n-dimensional projective variety X. Then the following

inequalities hold:

1. d2
j,n−1−j ≥ dj−1,n−1−j dj+1,n−1−j, for j = 1, . . . , n− 1.

2. d2
n−1−j,j ≥ dn−1−j,j−1 dn−1−j,j+1, for j = 1, . . . , n− 1.

Furthermore, assuming that KX is nef, one has, for j + k ≤ n− 1,

3. d2
j,k ≥ dj−1,k dj+1,k, with j ≥ 1 and k ≥ 0.

4. d2
j,k ≥ dj,k−1 dj,k+1, with j ≥ 0 and k ≥ 1.

Proof. It follows from [4, Proposition 2.5.1]. In particular, for j = 1, . . . , n−
1, we get

d2
j,n−1−j = (KX · Lj1 · L

n−1−j
2 )2 ≥ (K2

X · L
j−1
1 · Ln−1−j

2 )(Lj+1
1 · Ln−1−j

2 )

= dj+1,n−1−j dj−1,n−1−j ,

as well as the symmetric inequality obtained by exchanging the indices in each
bidegree. This leads to 1) and 2) respectively.

If KX is nef, the condition k + j − 1 relaxes to j + k ≤ n− 1, that is, for
j ≥ 1 and k ≥ 0,

d2
j,k = (Kn−j−k

X · Lj1 · L
k
2)2 = (L1 ·Kn−j−k

X · Lj−1
1 · Lk2)2

≥ (L2
1 ·K

n−j−k−1
X · Lj−1

1 · Lk2)(Kn−j−k+1
X · Lj−1

1 · Lk2)

= (Kn−j−k−1
X · Lj+1

1 · Lk2)(Kn−j−k+1
X · Lj−1

1 · Lk2) = dj+1,k dj−1,k.

Symmetrically, for k ≥ 1 and j ≥ 0, we obtain d2
j,k ≥ dj,k+1 dj,k−1. �

Example 2.3. For n = 3, statements 1) and 2) of Proposition 2.2 yield, for
j = 1, 2,

d2
11 ≥ d21d01, d2

20 ≥ d30d10 and d2
02 ≥ d03d01, d2

11 ≥ d12d10,

respectively. Under the further assumption that the canonical bundle is nef,
statements 3) and 4) give, for j + k = 1, the two more conditions d2

10 ≥ d20d00

and d2
01 ≥ d02d00.

2.4. The Hilbert surface. Coming back to the case of interest, let X
be a smooth projective variety of dimension n, let L1 and L2 be ample line
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bundles on X. The Hilbert polynomial χ(x, y, z) := χ(xKX +yL1 + zL2), with
x, y, z ∈ Z, arises naturally in the study of the bipolarized variety (X,L1, L2).
As usual, denote by p(x, y, z), sometimes by p(X,L1,L2)(x, y, z), the polynomial
χ(x, y, z) when we consider x, y and z as complex variables. Then looking at
the zeroes of p(x, y, z) corresponds to taking a slice of the Hilbert variety VX
by the 3-dimensional vector subspace C3

(x,y,z) ⊆ N(X) (C3
(x,y,z) = 〈KX , L1, L2〉

whenever KX , L1 and L2 are C-linearly independent). We will also write

V(X,L1,L2) := C3
(x,y,z) ∩ VX ,

and we will say that the degree n := dim(X) a�ne surface V(X,L1,L2) is the
Hilbert surface of the bipolarized variety (X,L1, L2).

Letting S := V(X,L1,L2) we will denote by S its projective closure in P3,
where x, y, z, ζ are the homogeneous coordinates. According to Proposition
1.1, the degree n surface S is symmetric with respect to the central point C =
(1

2 , 0, 0) of the Serre involution.

Unless otherwise speci�ed, we make the blanket assumption that the nu-
merical classes of L1, L2 and KX are linearly independent in the vector space
N(X).

We prove the following general fact.

Lemma 2.5 (Key lemma). Let (X,L1, L2) be a bipolarized n-fold and let S

be its Hilbert surface. For positive integers a, b, let L := aL1 + bL2 and let Γa,b
be the Hilbert curve of the polarized variety (X,L). Then Γa,b is the section of

S with the plane az − by = 0 in C3
(x,y,z).

Proof. Clearly, L := aL1 +bL2 is an ample line bundle for positive integers
a, b. According to [3], the curve Γa,b is de�ned in the C2

(x,t) plane by the equation

p(x, t) = χ(xKX + tL) = 0. Since xKX + tL = xKX + atL1 + btL2 and the
Hilbert surface S of the bipolarized n-fold (X,L1, L2) is de�ned in the C3

(x,y,z)
space by the equation

p(X,L1,L2)(x, y, z) = χ(xKX + yL1 + zL2) = 0,

we thus see that Γa,b is the section of S with the plane de�ned by az − by = 0.
Its equation in the plane C2

(x,t) is obtained by specializing that of S letting t =

y/a = z/b. Moreover, as b/a (or a/b) varies in Q we have that the corresponding
Hilbert curve Γa,b varies in the pencil of planes of C3

(x,y,z) through the axis
generated by KX . �

Example 2.6 (The Hilbert surface of products). Let us consider a remark-
able class of examples. Assume that the variety X is a product, X = X ′×X ′′,
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and consider the projections π′ and π′′

X
π′

~~
π′′

!!
X ′ X ′′

onto the factors. Set L′i<=×L′′i := (π′)∗L′i⊗(π′′)∗L′′i , where L
′
i ∈ Pic(X ′) and L′′i ∈

Pic(X ′′) for i = 1, 2. By K�unneth formulas one has χ(L′i<=×L′′i ) = χ(L′i) χ(L′′i ),
i = 1, 2.

Assume L′i and L′′i nef and big, so that Li := L′i<=×L′′i is nef and big,
i = 1, 2, and consider the quasi-bipolarized variety (X,L1, L2). We have

xKX + yL1 + zL2 = (xKX′ + yL′1 + zL′2)<=× (xKX′′ + yL′′1 + zL′′2),

so we obtain

χ(xKX + yL1 + zL2) = χ(xKX′ + yL′1 + zL′2) χ(xKX′′ + yL′′1 + zL′′2).

Thus, we �nd for the polynomial p(x, y, z) := p(X,L1,L2)(x, y, z) the expression

p(x, y, z) := χ(xKX + yL1 + zL2) = p(X′,L′1,L
′
2)(x, y, z) p(X′′,L′′1 ,L

′′
2 )(x, y, z);

hence the Hilbert surface associated to X is reducible. In particular, if X =
C1 × · · · × Cn is the product of n = dim(X) smooth curves, then the Hilbert
surface S is the union of n planes, all containing the point C. Note however
that this is not a su�cient condition for X being the product of n curves, e.g.,
see [3, �3.5].

2.7. The degenerate case. Let (X,L1, L2) be a bipolarized n-fold such
that dimC〈KX , L1, L2〉 < 3. Even in this case we can consider the polynomial

p(x, y, z) = χ(xKX + yL1 + zL2),

de�ning an a�ne surface, which we call the degenerate Hilbert surface of
(X,L1, L2), and we denote again by S. We observe that, for a polarized n-
fold (X,L), degenerate case means dimC〈KX , L〉 = 1, while in the bipolarized
case, degeneracy is equivalent to 1 ≤ dimC〈KX , L1, L2〉 ≤ 2.

Clearly, if dimC〈KX , L1, L2〉 < 3, then the surface S is not a slice of type
C3∩VX with C3 a vector subspace ofN(X). In particular, if dimC〈KX , L1, L2〉 =
1, then KX = λiLi, for λi ∈ Q, i = 1, 2, and letting λ2t := λ1λ2x+ λ2y + λ1z,
one has

p(x, y, z) = ℘(t) ∈ C[t].

This is a polynomial of degree n = dim(X) in t and its zeros correspond to
the slice C(t) ∩ VX . Moreover, in this case, S is the union of n parallel planes,
πj , of equation λ1λ2x + λ2y + λ1z − λ2tj = 0, where tj are the roots of ℘(t),
j = 1, . . . , n.
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The con�guration of such planes πj is symmetric with respect to the
central point C = (1

2 , 0, 0) of the Serre involution. Moreover, according to (2),
if n is odd, one of these planes passes through C.

A simple example is given by (X,L1, L2) = (P3,OP3(a),OP3(b)), for some
positive integers a, b. In this case, for x, y, z integers, one has

p(P3,L1,L2)(x, y, z) = χ(xKX + yL1 + zL2) = χ(OP3(−4x+ ay + bz)).

Recalling that χ(OP3(t)) = h0(OP3(t)) for t � 0 and that h0(OP3(t)) =
(
t+3

3

)
for t ≥ 0, we have

χ(xKX + yL1 + zL2) = χ(OP3(t)) =

(
t+ 3

t

)
=

1

3!
(t+ 3)(t+ 2)(t+ 1).

Thus, the polynomial p(P3,L1,L2)(x, y, z), with x, y, z complex variables, can be
written in the form

p(P3,L1,L2)(x, y, z) = ℘(t) =
1

3!

3∏
i=1

(t+ i), i = 1, 2, 3,

where t = −4x + ay + bz. Therefore, S is the union of three parallel planes
S = π1 ∪ π2 ∪ π3, where πi : −4x + ay + bz + i = 0, for i = 1, 2, 3, and
C = (1

2 , 0, 0) ∈ π2.
We want to stress the following numerical interpretation of degenerate

cases when KX ∈ 〈L1, L2〉 ⊂ N(X). The equivalences below are a limit case
of statements 1) and 2) of Proposition 2.2 and can be regarded as an analog
of [3, Lemma 2.4]. Here, D = D′ stands for numerical equivalence of divisors
D,D′ ∈ Pic(X)⊗Q.

Proposition 2.8. Let (X,L1, L2) be a bipolarized n-fold. Then:

1. d2
j,n−1−j = dj−1,n−1−j dj+1,n−1−j for some j, 1 ≤ j ≤ n− 1, if and only

if KX = λ1L1 with λ1 ∈ Q.
2. d2

n−1−j,j = dn−1−j,j−1 dn−1−j,j+1 for some j, 1 ≤ j ≤ n − 1, if and only

if KX = λ2L2 with λ2 ∈ Q.

Proof. Indeed, the equality d2
j,n−1−j = dj−1,n−1−j dj+1,n−1−j can be rewrit-

ten as

(KX · Lj1 · L
n−j−1
2 )2 = (KX · L1 · Lj−1

1 · Ln−j−1
2 )2

= (K2
X · L

j−1
1 · Ln−j−1

2 )(Lj+1
1 · Ln−j−1

2 )

= (K2
X · L

j−1
1 · Ln−j−1

2 )(L2
1 · L

j−1
1 · Ln−j−1

2 ).

If the above equality occurs for some j, then a consequence of the Hodge in-
dex theorem (see [4, Corollary 2.5.4]) applies to say that there exists a ra-
tional number λ1 such that KX is numerically equivalent to λ1L1. Similarly,
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d2
n−1−j,j = dn−1−j,j−1 dn−1−j,j+1 can be rewritten as

(KX · Ln−1−j
1 · Lj2)2 = (KX · L2 · Ln−1−j

1 · Lj−1
2 )2

= (K2
X · L

n−1−j
1 · Lj−1

2 )(Ln−1−j
1 · Lj+1

2 )

= (K2
X · L

n−1−j
1 · Lj−1

2 )(L2
2 · L

n−1−j
1 · Lj−1

2 ).

So, if this equality holds for some j, then there exists a rational number λ2 such
that KX is numerically equivalent to λ2L2.

In both cases, a straightforward check proves the converse. �

3. RIEMANN-ROCH FORMULA REVISITED

Let X be a smooth complex projective variety of dimension n and let
D be any divisor on X. Recalling that 1

2KX is the �xed point of the Serre
involution s : N(X) → N(X), it is convenient to write D = E + 1

2KX . Then
the Riemann-Roch theorem provides a very useful expression for χ(D) in terms
of E and the Chern classes, ci(X), of X. Actually, let X be a smooth curve,
i.e., n = 1. Then

χ(D) = degE.
If X is a smooth surface, we get

(4) χ(D) =
1

2
E2 +

(
χ(OX)− 1

8
K2
X

)
.

Now suppose that n = 3. The usual expression of the Riemann-Roch
theorem for threefolds is

(5) χ(D) =
1

12
D · (D −KX) · (2D −KX) +

1

12
D· c2(X) + χ(OX).

Hence, letting D = E + 1
2KX we get

χ(D) =
1

12

(
E +

1

2
KX

)
·
(
E − 1

2
KX

)
· (2E) +

1

12
(E +

1

2
KX) · c2(X) + χ(OX).

Recalling that (e.g. see [5, Ex. 6.7, p. 437])

(6) − 1

24
KX · c2(X) = χ(OX),

the sum of the last three terms in the above expression is simply 1
12E · c2(X).

Then

χ(D) =
1

12

(
E2− 1

4
K2
X) · (2E)+

1

12
E ·c2(X) =

1

12

(
2E3− 1

2
E ·K2

X +E ·c2(X)
)
.

In conclusion,

(7) χ(D) =
1

6
E3 +

1

24
E ·
(
2c2(X)−K2

X

)
.



292 M.C. Beltrametti, A. Lanteri and M. Lavaggi 12

Now suppose that n = 4. The usual expression of the Riemann-Roch
formula for 4-folds is the following

χ(D) =
1

24
D4− 1

12
D3·KX+

1

24
D2·K2

X+
1

24
c2(X)·D2− 1

24
c2(X)·KX ·D+χ(OX).

Grouping the �rst three summands and doing the same for the next two, we
can rewrite it as

χ(D) =
1

24
D2 · (D2 − 2D ·KX +K2

X) +
1

24
c2(X) ·D · (D −KX) + χ(OX)

=
1

24
D2 · (D −KX)2 +

1

24
c2(X) ·D · (D −KX) + χ(OX),

and by replacing D with 1
2KX + E, we get

χ(D) =
1

24

(
E2 − 1

4
K2
)2

+
1

24
c2(X) ·

(
E2 − 1

4
K2
X

)
+ χ(OX).

In conclusion,

(8) χ(D) =
1

24
E4 +

1

48

(
2c2(X)−K2

X

)
·E2 +

1

384

(
K2
X−4c2(X)

)
·K2

X+χ(OX).

A nice property of all these expressions is that χ(D) contains only powers
of E of the same parity as n. They are very convenient to revisit the theory of
the Hilbert curve of a polarized manifold developed in [3], as well as to extend
it to the case of multipolarized manifolds. In particular, for a bipolarized
manifold, we can construct the Hilbert surface in a parallel way, as follows.

Let X be a smooth projective variety of dimension n, let L1 and L2 be two
ample line bundles on X, and suppose that the numerical classes of KX , L1,
and L2 are linearly independent. Consider the 3-dimensional vector subspace
of N(X) generated by KX , L1, L2. In line with paragraph 2.4 (just with a
little change of perspective), we can consider the Hilbert surface S = S(X,L1,L2)

of (X,L1, L2), namely, the a�ne surface S ⊂ A3 de�ned by the complexi�ed
p(x, y, z) of the polynomial expression of χ(D) given by the Riemann-Roch
theorem letting D = xKX + yL1 + zL2 and looking at x, y, z as complex
variables (see (1)). Clearly, S has degree n. Let C = (1

2 , 0, 0) ∈ A3 be the
central point, corresponding to 1

2KX , of the Serre involution restricted to the
plane 〈KX , L1, L2〉. Thus, using new variables (u = x − 1

2 , v = y, w = z)
centered at C and writing D = E + 1

2KX where E = uKX + vL1 + wL2, we
can express the equation of S in terms of the coordinates u, v, w. In these
coordinates C becomes the origin and, by Proposition 1.1(1), it is a center of
symmetry for S. We refer to

(9) f(u, v, w) = p
(1

2
+ u, v, w

)
= 0
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as the canonical equation of the Hilbert surface S. Moreover, since Ek is a
homogeneous polynomial of degree k in u, v, w for any positive integer k, the
polynomial f(u, v, w) is the sum of homogenous polynomials whose degrees
have the same parity as n. Thus, we can write f(u, v, w) = fn+ · · ·+ f0, where
fi = fi(u, v, w) is homogeneous of degree i and it is identically zero if i and n
have di�erent parity. Clearly, S ⊂ P3, the projective closure of S, is de�ned by
the homogeneous polynomial f(u, v, w)hom = fn + ζfn−1 + · · ·+ ζnf0, where ζ
is the homogenizing coordinate.

3.1. Bipolarized surfaces. Let X be a smooth projective surface, by-
polarized by two ample line bundles L1 and L2 such that rk〈KX , L1, L2〉 = 3.
In this case, the Hilbert surface S is a quadric surface, since χ(D) has degree
2. Moreover, according to (4), the polynomial de�ning S is the sum of f2, a
homogeneous polynomial of degree two in u, v, w, and a constant term f0.
Actually, up to the constant factor 1

2 , S is the quadric surface associated to the
matrix

(10) A =

(
A∞ 0
0 a

)
,

where A∞ is the submatrix

(11) A∞ :=

 K2
X KX · L KX · L2

KX · L1 L2
1 L1 · L2

KX · L1 L1 · L1 L2
2


and a = 2χ(OX)− 1

4K
2
X . Then, if C ∈ S, it is a double point for S, namely, S

is a quadric cone with vertex C. Note that C ∈ S if and only if a = 0, i.e.,

(12) K2
X = 8χ(OX).

In [3, �3.5] we listed surfaces satisfying condition (12). However, here we
are requiring that rk〈KX , L1, L2〉 = 3, which implies that X has Picard number
≥ 3. In particular this rules out the possibility that X is a P1-bundle over a
curve. Here are two examples.

Example 3.2. Let X be the surface P1×P1 blown-up at a point, let E ⊂ X
be the exceptional curve of the blowing-up, let e′ and f ′ be the �bers of the
two rulings of P1 × P1, and denote by e and f their total transforms on X
respectively. Clearly, KX = −2(e+f)+E; set L1 = e+2f−E, L2 = 2e+f−E
and note that both are ample line bundles. As e, f and E generate Pic(X) it is
immediate to check that the condition rk〈KX , L1, L2〉 = 3 is satis�ed. We have
K2
X = 8−1 = 7 and χ(OX) = 1. Moreover, recalling that e2 = f2 = 0, e·f = 1,

we get KX · L1 = KX · L2 = −5, L2
1 = L2

2 = 3 and L1 · L2 = 4. Therefore
the Hilbert surface S of (X,L1, L2) is the quadric a�ne surface de�ned by the
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matrix

A =


7 −5 −5 0
−5 3 4 0
−5 4 3 0
0 0 0 1

4

 .

Let A∞ be the submatrix consisting of the �rst three rows and columns of
A: then detA∞ = 1, hence detA = 1

4 , so that S is smooth. From the complex
point of view, S is a general a�ne quadric. On the other hand, det(A∞− tI) =
−(t+ 1)(t2− 14t− 1), so that the signature of A∞ is (1, 2), hence from the real
point of view S is a hyperbolic hyperboloid.

Example 3.3. Let X be the surface obtained by blowing-up P2 at three
non-collinear points p1, p2, p3, let ei be the exceptional curve corresponding
to pi and let `i be the proper transform of the line in P2 joining pj and pk,
with j, k 6= i. Note that (X,−KX) is a del Pezzo surface of degree 6, hence
`1 + `2 + `3 + e1 + e2 + e3 = −KX is ample and K2

X = 6. Clearly, χ(OX) = 1.
Note that `i too is a (−1)-curve for i = 1, 2, 3 and `i · ej = 1− δij , where δij is
the Kronecker symbol. Then the line bundles L1 = 2(`1+`2+`3)+2e1+2e2+e3

and L2 = 2(`1 +`2 +`3)+e1 +2e2 +2e3 are also ample and rk〈KX , L1, L2〉 = 3.
Moreover, L2

1 = L2
2 = 19, L1 ·L2 = 20, and KX ·L1 = KX ·L2 = −11. Therefore

the Hilbert surface S of (X,L1, L2) is the a�ne quadric surface de�ned by the
matrix

A =


6 −11 −11 0
−11 19 20 0
−11 20 19 0

0 0 0 1
2

 .

Here detA∞ = 8, hence detA = 4, so that S is smooth. Moreover,
det(A∞ − tI) = −(t + 1)(t2 − 45t − 8), so that the signature of A∞ is (1, 2)
again, and we get the same conclusion as before.

Coming back to the general case one can ask whether being a quadric
cone with vertex C is the only possibility for S being singular. Note that the
matrix A∞ in (11) represents the quadratic form ϕ, obtained by restricting the
intersection form on X to the real 3-dimensional vector subspace U ⊆ N(X)
generated by the classes of KX , L1, L2. Note that ϕ is positive de�nite on
the 1-dimensional vector subspace 〈L1〉 of U . Then the Hodge index theorem
implies that ϕ has signature (1, 2) on U . Therefore detA∞ > 0; in particular,
A∞ is non-singular. Thus, for the matrix A in (10) we have

rk(A) = rk(A∞) + ε = 3 + ε, where ε =

{
0, if a = 0

1, if a 6= 0.
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In conclusion, we have proved the following

Proposition 3.4. Let (X,L1, L2) be a bipolarized surface such that

rk〈KX , L1, L2〉 = 3. Then the associated Hilbert surface S ⊂ A3 is an irre-

ducible quadric. Moreover, it is singular if and only if it contains C, in which

case S is a quadric cone of vertex C. This happens if and only if X satis�es

condition (12).

4. BIPOLARIZED THREEFOLDS

Let (X,L1, L2) be a bipolarized 3-fold and let S = V(X,L1,L2) be the cor-
responding Hilbert cubic surface. Assume that rk〈KX , , L1, L2〉 = 3. In this
section, we provide two expressions for the equation of S, and we study some
geometrical properties of the surface. In particular, we describe Sing(S) when
S is irreducible, we interpret the central point of the Serre involution as an
Eckardt point if non-singular, and we look at the singularities of the curve at
in�nity of S. At the end, we consider the special interesting case of bipolar-
ized threefolds X in P1 × P1 × P1 × P1, showing the e�ectiveness of the 1-cycle
2c2(X)−K2

X , and discussing an explicit example.
Let D := xKX + yL1 + zL2, with x, y, z complex variables. In view

of the Riemann-Roch formula for 3-fold (5), the polynomial p(x, y, z) :=
p(X,L1,L2)(x, y, z) is given by

p(x, y, z) =
D ·
(
(x− 1)KX + yL1 + zL2

)
·
(
(2x− 1)KX + 2(yL1 + zL2)

)
12

+
1

12
(xKX + yL1 + zL2)· c2(X) + χ(OX).

Assume that there exist two smooth surfaces S1 and S2, in the linear
systems |L1| and |L2|, respectively. Then the relations

(13)
c2(X)·L1 = e(S1)− (KX + L1)·L2

1 = e(S1)− d20 − d30,

c2(X)·L2 = e(S2)− (KX + L2)·L2
2 = e(S2)− d02 − d03,

hold true, where e(Si) stands for the topological Euler characteristic of Si, for
i = 1, 2. Indeed, to compute L1 · c2(X), consider the exact tangent normal
bundle sequence for S1 ⊂ X,

0→ TS1 → (TX)S1 → L1S1
→ 0.

From the properties of the Chern classes and adjunction formula we get

L1 · c2(X) = c2(S1) = −KS1 · L1S1
= −(KX + L1) · L2

1 + e(S1).

This gives the �rst relation in (13) since d30 = L3
1, d20 = KX · L2

1, and d10 =
K2
X · L1 The second equality follows similarly, considering the smooth surface

S2 ∈ |L2| (see also [4, �13.1]).
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By using relations (13) and (6) we can express the Hilbert polynomial of
the bipolarized 3-fold (X,L1, L2) in terms of the bidegrees dj,k, as

(14)

p(x, y, z) =
1

6
d00x

3 +
1

2
d10x

2y +
1

2
d20xy

2 +
1

6
d30y

3 +
1

2
d01x

2z + d11xyz

+
1

2
d21y

2z +
1

2
d02xz

2 +
1

2
d12yz

2 +
1

6
d03z

3 − 1

4
d00x

2 − 1

2
d10xy

− 1

4
d20y

2 − 1

2
d01xz −

1

2
d11yz −

1

4
d02z

2

+
( 1

12
d00 − 2χ(OX)

)
x+

1

12

(
d10 − d20 − d30 + e(S1)

)
y

+
1

12

(
d01 − d02 − d03 + e(S2)

)
z + χ(OX).

Now, by using the coordinates u, v, w, we see from (7) that the polynomial
de�ning S is the sum of two homogeneous parts, one of degree 3 and one of
degree 1. In particular, this shows the known fact that S contains the centre
C of the Serre involution; moreover, if C is a singular point for S, then it
is a triple point (see Proposition 1.1). This happens if and only if the term
E ·
(
2c2(X)−K2

X

)
is identically zero. Since E = uKX + vL1 +wL2, this is in

turn equivalent to the three �cone conditions�

(15) KX ·
(
2c2(X)−K2

X

)
= L1 ·

(
2c2(X)−K2

X

)
= L2 ·

(
2c2(X)−K2

X

)
= 0.

Moreover, under the assumption that both the linear systems |L1|, |L2| on X
contain smooth surfaces S1, S2 respectively, then the three above conditions
rewrite as

d00 + 48χ(OX) = d10 + 2d20 + 2d30 − 2e(S1)(16)

= d01 + 2d02 + 2d03 − 2e(S2) = 0.

Indeed, KX ·
(
2c2(X) −K2

X

)
= 0 is equivalent to 48χ(OX) + K3

X = 0 by (6).
Then relations (16) follow from conditions (15) by simply using relations (13).

Let us come back to the polynomial (14) that de�nes the Hilbert sur-
face S. Direct numerical computations allow to rewrite it in the useful and
more expressive form:

(17)

f(u, v, w)=
1

6
d00u

3+
1

2
d10u

2v+
1

2
d20uv

2+
1

6
d30v

3+
1

2
d01u

2w+d11uvw

+
1

2
d21v

2w +
1

2
d02uw

2 +
1

2
d12vw

2 +
1

6
d03w

3

− 1

24

(
d00+48χ(OX)

)
u− 1

24

(
d10+2d20+2d30−2e(S1)

)
v

− 1

24

(
d01 + 2d02 + 2d03 − 2e(S2)

)
w.
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Recall that f(u, v, w) = p
(
u+ 1

2 , v, w
)

= 0 is the canonical equation of S
(see Section 4). Moreover, whenever the surface S is smooth at C, the linear
summand in (17) de�nes the tangent plane, TC(S), to S at C, that is,

TC(S) :
(
d00 + 48χ(OX)

)
u+

(
d10 + 2d20 + 2d30 − 2e(S1)

)
v

+
(
d01 + 2d02 + 2d03 − 2e(S2)

)
w = 0.

Proposition 4.1. Let (X,L1, L2) be a bipolarized 3-fold and suppose that

the associated Hilbert cubic surface S is irreducible. The following facts hold:

1. If dim(Sing(S)) = 1, then Sing(S) is a line (of double points for S), which
contains the central point C of the Serre involution.

Next suppose that S has isolated singularities at most.

2. If C is a singular point of S, then it is a triple point and S cannot have

further singular points.

3. Suppose that C is a smooth point of S: if S is singular, then it has exactly

two double points which are symmetric with respect to C.

Proof. 1) is obvious: the general hyperplane section, which is irreducible,
is a singular plane cubic, hence with a single singular point. Therefore the
1-dimensional singular locus has degree one, i.e., it is a line. Moreover it has
to contain C, due to the symmetry.

2) The point C is of multiplicity three by Proposition 1.1. Suppose that
S contains another singular point, say P . Then every plane containing the line
〈C,P 〉 would cut S along a plane cubic with a triple point at C and a further
singular point at P , which is impossible.

3) Suppose that P is a singular point of S. Then P ′, the symmetric of P
with respect to C, is also a singular point. Let ` = 〈P, P ′〉. Clearly, ` ⊂ S. The
tangent plane TC(S) to S at C cuts out on S a plane cubic which is singular
at P , P ′ and at the tangency point C. But TC(S) contains `, since ` ⊂ S.
Then, such a cubic must necessarily be of the form 2`+ `′, where `′ is another
line through C, due to the symmetry. Now, suppose that S contains another
singular point, say Q. Clearly Q cannot lie on ` (by the same argument as in
2)). Moreover, also its symmetric point Q′ with respect to C is singular for S.
Letting λ := 〈Q,Q′〉 and arguing as before, we thus see that TC(S) contains
the quartic 2`+ 2λ, which is impossible. �

The following can be viewed as an analogue of the fact that for the Hilbert
curve of a general polarized threefold, the central point C of the Serre involution
is a �ex (see [3, Remark 4.6]). See e.g., [1, p. 345]) for more on Eckardt points,
and Example 4.8 for a further instance.
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Proposition 4.2. Let (X,L1, L2) be a bipolarized threefold as above, and

let S be its Hilbert surface. Suppose that the central point C of the Serre invo-

lution is a non-singular point of S. Then C is an Eckardt point of S.

Proof. With the notation as in Section 3, let f = f(u, v, w) = f1(u, v, w)+
f3(u, v, w) = 0 be the canonical equation of S where fj = fj(u, v, w) is the
homogeneous polynomial of degree j, j = 1, 3, appearing in (17). Since f1 = 0 is
the equation of the tangent plane TC(S) to S at C. It follows that the plane cubic
curve γ =: S ∩ TC(S) is described by f3 = f1 = 0. This implies that γ consists
of three coplanar lines meeting at C. For instance, if f1 = u−av−bw = 0, then
projecting γ onto the plane u = 0, we get the plane cubic curve f3(0, v, w) = 0,
which has a triple point at (v, w) = (0, 0), since f3 is homogeneous of degree
3. Thus, the same holds for γ as well. We then conclude that C is an Eckardt
point of S. �

4.3. Singular points at in�nity. Let S ⊂ A3
(u,v,w) be the Hilbert cubic

surface of a bipolarized threefold (X,L1, L2) satisfying the condition
rk〈KX , L1, L2〉 = 3 and let S ⊂ P3

[u,v,w,ζ] be its projective closure, where ζ
denotes the homogenizing coordinate. Then the curve at in�nity of S is the
cubic γ∞ := S ∩ π∞, de�ned by f3 = 1

6E
3 = 0 in the plane at in�nity π∞ of

equation ζ = 0 (see equation (7)). A natural question suggested by [3, Lemma
3.2] is: what about singularities of γ∞? Using Greek letters for the coe�cients,
γ∞ is described by the homogeneous equation

6f3 = E3 = αu3 + βv3 + γw3 + δu2v + εu2w

+ ϕuv2 + ψuw2 + λv2w + µvw2 + νuvw = 0

together with ζ = 0. Since E = uKX +vL1 +wL2, then α, β, . . . , ν are nothing
but the coe�cients appearing in the expression

(18)

E3 = K3
Xu

3 + L3
1v

3 + L3
2w

3 + 3K2
X · L1u

2v + 3K2
X · L2u

2w

+ 3KX · L2
1uv

2 + 3KX · L2
2uw

2 + 3L2
1 · L2v

2w

+ 3L1 · L2
2vw

2 + 6KX · L1 · L2uvw.

In the a�ne chart outside the line u = 0, by using v and w again as a�ne
coordinates, we have to deal with the plane curve of equation

g := g(v, w) = βv3 +γw3 +λv2w+µvw2 +ϕv2 +ψw2 +νvw+ δv+εw+α = 0.

Suppose that γ∞ has a triple point (v, w). A direct numerical check, computing
the derivatives, shows that the system g = gv = gw = gvv = gvw = gww = 0
translates into the following set of relations between coe�cients and solutions:

α = −βv3 − γw3 − µvw2 − λv2w,

δ = 3βv2 + µvw2 + 2λv2w,
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ε = 3γw2 + λv2 + 2µvw,

ϕ = −3βv − λw,
ψ = −3γw − µv,
ν = −2λv − 2µw.

In particular, looking at the last three relations we see that our curve
admits a triple point (outside the line u = 0) if and only if the linear system

3βv + λw = −ϕ
µv + 3γw = −ψ
2λv + 2µw = −ν

admits some solution. Taking into account relation (18), this implies that in
the matrix

(A | b) =

 L3
1 L2

1 · L2 −KX · L2
1

L1 · L2
2 L3

2 −KX · L2
2

L2
1 · L2 L1 · L2

2 −KX · L1 · L2

 ,

where b denotes the last column, the submatrix A has rank ≤ 2. Note that
rk(A) ≥ 1, since L is ample. Moreover, equality occurs if and only if (L3

1)(L3
2) =

(L1 · L2
2)(L2

1 · L2) and (L3
1)(L1 · L2

2) = (L2
1 · L2)2. Suppose that there ex-

ists a smooth surface S ∈ |L1|. Then the latter equality can be rewritten
as (L1S

2)(L2S
2) = (L1S · L2S)2, which implies that rk〈L1, L2〉 = 1 by the

Hodge index theorem, combined with the injectivity of the restriction map
Pic(X) → Pic(S) due to the Lefschetz theorem. But this contradicts our as-
sumption that rk〈KX , L1, L2〉 = 3. Therefore

(19) rk(A) = 2.

It thus follows that the linear system above admits a solution (v, w) if and
only if ∣∣∣∣∣∣

L3
1 L2

1 · L2 −KX · L2
1

L1 · L2
2 L3

2 −KX · L2
2

L2
1 · L2 L1 · L2

2 −KX · L1 · L2

∣∣∣∣∣∣ = 0.

Moreover, the solution is unique by (19), i.e., there is a single triple point.
Note that a similar argument works also on the a�ne charts outside the lines
v = 0 and w = 0, due to the condition rk〈KX , L1, L2〉 = 3, even though
the coe�cients are exchanged. We have only to require that there is a smooth
surface in |L2|. In particular, this proves the following fact, that can be regarded
as an analogue of [3, Lemma 3.2] for the Hilbert curve of a polarized threefold.

Proposition 4.4. Let (X,L1, L2) be a bipolarized threefold with

rk〈KX , L1, L2〉 = 3 and suppose that both the linear systems |L1| and |L2| con-
tain a smooth surface. Then the curve at in�nity of the Hilbert surface cannot

be a line with multiplicity three.
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4.5. Bipolarized 3-folds in P1×P1×P1×P1. Let P := P1×P1×P1×P1,
let pi : P → P1 be the i-th projection, and set Ai = p∗iOP1(1). Let H :=
OP (1, 1, 1, 1) =

∑4
i=1Ai. Clearly, KP = −2H.

For simplicity of notation, we will omit from now on the dot symbol �·�
when intersecting the pullback divisors Ai's. Note that A2

i = 0 for every i,
while A1A2A3A4 = 1. In particular, this gives

H2 = 2
∑
i<j

AiAj (6 summands),

H3 = 6
∑
i<j<k

AiAjAk (4 summands),

H4 = 24(A1A2A3A4) = 24.

Now, let X ⊂ P be a connected smooth threefold. Then X ∈ |OP (a1, a2,
a3, a4)| for some non-negative integers ai, not all zeroes; moreover, the connect-
edness requirement implies that if ai = 0 for three indices, then aj = 1 for the
remaining index j. We point out the following fact.

Proposition 4.6. Let X ⊂ P be any smooth connected threefold as above.

Then 2c2(X) − K2
X is an e�ective 1-cycle. Moreover, it is nontrivial unless

(a1, a2, a3, a4) = (0, 0, 0, 1), up to reordering, i.e., unless X = P1 × P1 × P1.

Proof. Let us compute the explicit expression of 2c2(X)−K2
X . As KP =

−2H, we get by adjunction KX =
(∑4

i=1(ai − 2)Ai
)
X
, so that

K2
X = 2

(∑
i<j

(ai − 2)(aj − 2)AiAj

)
X
.

To compute c2(X) we proceed as follows. The tangent-normal bundle sequence
of X ⊂ P is

0→ TX → (TP )X → OX(X)→ 0,

where OX(X) =: [X]X denotes the normal bundle, since X is a divisor inside
P . From the relation between the Chern polynomials

c((TP )X ; t) =
(
1 + c1(X)t+ c2(X)t2 + c3(X)t3

)
(1 + [X]Xt)

we get

(20) c2(X) = c2((TP )X)− c1(X) · [X]X .

Clearly c1(X) = −KX = −
(∑4

i=1(ai − 2)Ai
)
X
. On the other hand, since P is

the product of four copies of P1, we have TP = ⊕ip∗iTP1 , hence

c(TP ; t) =
4∏
i=1

(1 + 2Ait) = 1 + 2
(∑

i

Ai

)
t+ 4

(∑
i<j

AiAj

)
t2 + · · · .
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Thus, c2(TP ) = 4
∑

i<j AiAj = 2H2, so that (20) gives

c2(X) = 4
(∑
i<j

AiAj

)
X

+
( 4∑
i=1

(ai − 2)Ai

)
X

( 4∑
i=1

ajAj

)
X

=
(

4
∑
i<j

AiAj + 2
∑
i<j

(aiaj − ai − aj)AiAj
)
X

= 2
(∑
i<j

(aiaj − ai − aj + 2)AiAj

)
X
.

Therefore,

(21) 2c2(X)−K2
X = 2

(∑
i<j

aiajAiAj

)
X
.

This is always an e�ective 1-cycle, since ai ≥ 0 for every i. Moreover, it is
trivial if and only if aiaj = 0 for every pair (i, j) with i < j. This happens if
and only if three of the ai's are zeroes, but in this case, as observed before, the
connectedness of X implies that the remaining degree is 1. This is enough to
conclude. �

Now, let L1 and L2 be any two ample line bundles on X such that
rk〈KX , L1, L2〉 = 3. If X is as in the exceptional case of Proposition 4.6,
then

(
2c2(X) − K2

X

)
· E = 0 for any E = uKX + vL1 + wL2, i.e., the linear

term f1 in the equation (17) of the Hilbert surface S is identically zero. This
means that C is a singular point of S of multiplicity 3. However, we know that
S is in fact reducible into three planes passing through C, since X is a product
of three factors. Apart from this case, 2c2(X)−K2

X is an e�ective non trivial
1-cycle, hence it has positive intersection with any ample line bundle on X.
This implies that f1 is not identically zero, hence C is a smooth point of S.
This proves the following result.

Corollary 4.7. Let (X,L1, L2) be any bipolarized threefold with

rk〈KX , L1, L2〉 = 3. If X ⊂ P , then the Hilbert surface S can never be an

irreducible cone.

Thus, in order to produce an example in which S is an irreducible cone
we have to look for a threefold X not in P .

In fact one can expect that S is a smooth surface for a general multidegree
(a1, a2, a3, a4) and general L1 and L2. Here is an example.

Example 4.8. Let P , H be as in paragraph 4.5 and let X ∈ |H|, i.e.,
a1 = a2 = a3 = a4 = 1. From the exact sequence

0→ OX(−H)→ OP → OX → 0,
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we get χ(OX) = χ(OP ) − χ(−H) = χ(OP ) = 1, since hj(−H) = 0 for j ≤ 3,
and h4(−H) = h0(KP + H) = h0(−H) = 0 by Serre duality. We have KX =
(KP +H)X = −HX , by adjunction. Therefore K3

X = −H3
X = −H4 = −24. In

particular,
48χ(OX) +K3

X = 24,

showing that condition 48χ(OX) + K3
X = 0 is not satis�ed. This is enough to

grant that for any bipolarization we �x on X the corresponding Hilbert surface
is not a cubic cone (see conditions (15) and (16)). Actually, the linear term f1 in
the equation of S is not identically zero. Note that H is ample, hence Pic(P ) ∼=
Pic(X) under the restriction homomorphism, by the Lefschtez theorem. Set,
e.g., L1 = OX(2, 1, 1, 1) and L2 = OX(1, 1, 1, 3). Then the basic condition
rk〈KX , L1, L2〉 = 3 is clearly satis�ed. To compute intersection indices note
that L1 = (A1 +H)X and L2 = (H + 2A4)X . By using [10], we �nd:

d30 = L3
1 = (A1 +H)3 ·H = 42

d03 = L3
2 = (H + 2A4)3 ·H = 60

d10 = K2
X · L1 = H2 · (A1 +H) ·H = 30

d01 = K2
X · L2 = H2 · (H + 2A4) ·H = 36

d20 = KX · L2
1 = −H · (A1 +H)2 ·H = −36

d02 = KX · L2
2 = −H · (H + 2A4)2 ·H = −48

d21 = L2
1 · L2 = (A1 +H)2 · (H + 2A4) ·H = 56

d12 = L1 · L2
2 = (A1 +H) · (H + 2A4)2 ·H = 62

d11 = KX · L1 · L2 = −H2 · (A1 +H) · (H + 2A4) = −46.

On the other hand, 2c2(X)−K2
X = H2

X by (21), and this allows us to compute
the terms (to get the equalities on the �rst line we use the relation (6))

KX · (2c2(X)−K2
X) = −H3

X = −H4 = −24;
L1 ·

(
2c2(X)−K2

X

)
= (A1 +H) ·H3 = 30;

L2 ·
(
2c2(X)−K2

X

)
= (H + 2A4) ·H3 = 36.

Finally, set E = uKX + vL1 + wL2, consider D := E + 1
2KX , and recall

the expression of χ(D) provided by (7),

χ(OX(D)) =
1

6
E3 +

1

24
E ·
(
2c2(X)−K2

X

)
,

where E3 is as in (18).
Now we have all we need to write the equation of the Hilbert cubic surface

S of our bipolarized threefold (X,L1, L2) explicitly. Actually, S is de�ned by
the equation

− 4u3 + 7v3 + 10w3 + 15u2v + 18u2w − 18uv2

− 24uw2 + 28v2w + 26vw2 − 46uvw − u+
5

4
v +

3

2
w = 0.
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A check carried out by using [10] proves that S is smooth. In particular,
it follows from what we said in the general case that C is an Eckardt point of
S (see Proposition 4.2).

We note that the coe�cients of v and w in the above expression are not
integral. This fact, however, should not be surprising since D = 1

2KX + E
and KX belong to Pic(X), while E doesn't. Recalling that KX = −HX =
(−
∑4

i=1Ai)X , L1 = (A1 +H)X , L2 = (H + 2A4)X , we have

D =
(
u+

1

2

)
KX + vL1 + wL2

=
(
−u+2v+w+

1

2

)
A1X+

(
−u+v+w−1

2

)
(A2+A3)X+

(
−u+v+2w−1

2

)
A4X .

So, the only condition is that the cubic polynomial above takes integral values
when the four coe�cients of the AiX are integers.

5. HILBERT QUARTIC CURVES

In this section, we come back to Hilbert curves, studied in [3]. We dis-
cuss several examples and, in particular, we produce quartic Hilbert curves of
polarized 4-folds having each possible genus.

Let's start considering a bipolarized 4-fold (X,L1, L2) and let S = V(X,L1,L2)

be the corresponding Hilbert quartic surface. Assume that rk〈KX , L1, L2〉 = 3.
In this section we deal with the general case when S is irreducible. Recall from
Section 3 that the equation of the corresponding Hilbert quartic surface S (in
coordinates (u, v, w) centered in C) is given by (9), namely,

f(u, v, w) = f4 + f2 + f0 = 0,

the homogeneous parts of f of the various degree being

f4 =
1

24
E4, f2 =

1

48

(
2c2(X)−K2

X

)
·E2, andf0 =

1

384

(
K4
X−4c2(X)·K2

X

)
+χ(OX),

where E = uKX + vL1 + wL2. Note that f0 is the constant term depending
only on X.

The following class of examples provides quartic Hilbert surfaces with
isolated singularities. Essentially, this is in line with the contents of Section 4,
except for the fact that here n = 4, and it is the key to provide examples of
quartic Hilbert curves we are looking for (see Example 5.6).

Example 5.1. Let P = P2×P1×P1×P1; let p1 = P → P2 with pi : P → P1

the i-th projection; let A1 = p∗1(OP2(1)); let Ai = p∗i (OP1(1)), i = 2, 3, 4;
and set H = OP (k, h, 1, 1), where h and k are positive integers. Let X be a
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smooth element of |H|. Note that A2
i = 0 for i = 2, 3, 4, and A3

1 = 0, while
A2

1A2A3A4 = 1. Now consider the ample line bundles L1 := OX(1, 1, 1, 2) and
L2 := OX(3, 1, 1, 1).

Recall that Pic(P ) ∼= Pic(X) under the restriction homomorphism, by the
Lefschetz theorem. By the choice of L1, L2, we see that the basic condition
rk〈KX , L1, L2〉 = 3 is satis�ed.

To compute the coe�cients of f2(u, v, w), the part of degree two of the
canonical equation of S, it is necessary to compute the explicit expression of
2c2(X)−K2

X . As KP = OP (−3,−2,−2,−2), we get by adjunction

KX = (KP +X)X = OX(k − 3, h− 2,−1,−1),

hence

K2
X = (OX(k − 3, h− 2,−1,−1))2 =

(
((k − 3)A1 + (h− 2)A2 −A3 −A4)2

)
X
.

To compute c2(X) we proceed as follows. The tangent-normal bundle
sequence of X ⊂ P is

0→ TX → (TP )X → OX(X)→ 0,

where OX(X) =: [X]X is the normal bundle, since X is a divisor inside P .
From the relation between the Chern polynomials

c((TP )X ; t) =
(
1 + c1(X) + c2(X)t2 + c3(X)t3 + c4(X)t4

)
(1 + [X]Xt)

we get

(22) c2(X) = c2((TP )X)− c1(X) · [X]X .

Clearly,

c1(X) = −KX = −
(
(k − 3)A1 + (h− 2)A2 −A3 −A4

)
X
,

and [X]X = (hA1+kA2+A3+A4)X . On the other hand, since P is the product
of P2 and three copies of P1, we have TP = p∗1TP2 ⊕i p∗iTP1 . Then

c(TP ; t) = (1 + 3A1t+ 3A2
1t

2)(1 + 2A2t)(1 + 2A3t)(1 + 2A4t),

so that

c2(TP ) = 3A2
1 + 6(A1A2 +A1A3 +A1A4) + 4(A2A3 +A2A4 +A3A4).

In conclusion, (22) gives the expression
(23)
c2(X) =

[
3A2

1 + 6(A1A2 +A1A3 +A1A4) + 4(A2A3 +A2A4 +A3A4)

− ((3− k)A1 + (2− h)A2 +A3 +A4)(kA1 + hA2 +A3 +A4)
]
X

=
[
A2

1(k2 − 3k + 3) +A1A2(2hk − 3h− 2k + 6) + 3(A1A3 +A1A4)

+ 2(A2A3 +A2A4 +A3A4)
]
X
.
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Therefore,

2c2(X)−K2
X =

[
2
(
A2

1(k2 − 3k + 3) +A1A2(2hk − 3h− 2k + 6)

+ 3(A1A3 +A1A4) + 2(A2A3 +A2A4 +A3A4)
)

−
(
(k − 3)A1 + (h− 2)A2 −A3 −A4

)2]
X

=
[
(k2 − 3)A2

1 + 2khA1A2 + 2kA1A3 + 2kA1A4 + 2hA2A3

+ 2hA2A4 + 2hA2A4 + 2A3A4

]
X
.

We may note that the cycle 2c2(X) − K2
X is always an e�ective 2-cycle

for k > 1, since in that case each coe�cient in the last expression above is
non-negative (compare with Proposition 4.6).

Following the same approach as in Section 4, set E = uKX + vL1 +wL2,
consider D = E + 1

2KX , and recall the expression of χ(D) provided by (8),

χ(D) =
1

24
E4 +

1

48

(
2c2(X)−K2

X

)
· E2 +

1

384

(
K2
X − 4c2(X)

)
·K2

X + χ(OX).

We have all we need to write the canonical equation f(u, v, w) = 0 of the
Hilbert cubic surface S of our bipolarized 4-fold (X,L1, L2) explicitly.

Note that χ(OX) = 1. Indeed, χ(OX) = χ(OP )− χ(−H), and χ(−H) =
h0(KP +H) = h0(OP (−3 + k,−2 + h,−1,−1)) = 0.

We compute all the other coe�cients of the Hilbert polynomial by using
[10]. Setting α := 2c2(X)−K2

X , we have (to calculate the third an the second
summand of χ(D)):

α·K2
X = −24 + 72k + 60h− 12k2h

α·KX · L1 = 24− 30k − 18h− 18k2 + 18k2h− 54kh

α·KX · L2 = 18− 54k − 54h− 12k2 + 12k2h− 36kh

α·L2
1 = −18 + 12k − 6h+ 18k2 + 12k2h+ 36kh

α·L2
2 = −12 + 36k + 48h+ 12k2 + 6k2h+ 72kh

α·L1·L2 = −15 + 24k + 9h+ 15k2 + 9k2h+ 66kh.

Moreover, for the bidegrees dj,k we need to calculate the E4 term, we �nd

d00 = K4
X = 432− 144k − 108h+ 12k2h

d10 = K3
X ·L1 = −288 + 30k + 18h+ 18k2 − 18k2h+ 54kh

d01 = K3
X ·L2 = −378 + 54k + 54h+ 12k2 − 12k2h+ 36kh

d03 = KX ·L3
2 = −270− 54k − 54h+ 6k2 + 36kh

d12 = KX ·L1·L2
2 = −210− 64k − 60h+ 8k2 + 40kh

d21 = KX ·L2
1·L2 = −138− 66k − 54h+ 10k2 + 36kh

d30 = KX ·L3
1 = −78− 60k − 36h+ 24kh+ 12k2
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d04 = L4
2 = 216 + 72k + 108h

d13 = L1·L3
2 = 171 + 78k + 99h

d22 = L2
1·L2

2 = 118 + 76k + 74h

d31 = L3
1·L2 = 69 + 66k + 45h

d40 = L4
1 = 36 + 48k + 24h

d02 = K2
X ·L2

2 = 324 + 12k − 12k2 + 6k2h− 48kh

d11 = K2
X ·L1·L2 = 249 + 28k + 21h− 17k2 + 9k2h− 58kh

d20 = K2
X ·L2

1 = 158 + 44k + 34h− 22k2 + 12k2h− 60kh.

Thus, the projective closure S ⊂ P3
[u,v,w,ζ] of the Hilbert surface S of

(X,L1, L2) has equation

f(u, v, w)hom =
1

24
(432− 144k − 108h+ 12k2h)u4 +

1

24
(36 + 48k + 24h)v4

+
1

24
(216 + 72k + 108h)w4

+
1

6
(−288 + 30k + 18h− 18k2h+ 18k2 + 54kh)u3v

+
1

6
(−378 + 54k + 54h− 12k2h+ 12k2 + 36kh)u3w

+
1

6
(−78− 60k − 36h+ 12k2 + 24kh)uv3

+
1

6
(−270− 54k − 54h+ 6k2 + 36kh)uw3

+
1

6
(69 + 66k + 45h)v3w +

1

6
(171 + 78k + 99h)vw3

+
1

4
(158 + 44k + 34h+ 12k2h− 22k2 − 60kh)u2v2

+
1

4
(324 + 12k + 6k2h− 12k2 − 48kh)u2w2 +

1

4
(118 + 76k + 74h)v2w2

+
1

2
(249 + 28k + 21h+ 9k2h− 17k2 − 58kh)u2vw

+
1

2
(−138− 66k − 54h+ 10k2 + 36kh)uv2w

+
1

2
(−210− 64k − 60h+ 8k2 + 40kh)uvw2

+
1

48
(−24 + 72k + 60h− 12k2h)u2ζ2

+
1

48
(−18 + 12k − 6h+ 12k2h+ 18k2 + 36kh)v2ζ2

+
1

48
(−12 + 36k + 48h+ 6k2h+ 12k2 + 72kh)w2ζ2
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+
1

24
(24− 30k − 18h+ 18k2h− 18k2 − 54kh)uvζ2

+
1

24
(18− 54k − 54h+ 12k2h− 12k2 − 36kh)uwζ2

+
1

24
(−15 + 24k + 9h+ 9k2h+ 15k2 + 66kh)vwζ2 − 1

32
hζ4 +

1

32
k2hζ4 = 0.

For example, for (h, k) = (2, 2), it turns out that the surface S has seven
double points:[3

2
, 0, 1,±1

]
,
[3

2
, 1, 0,±1

]
, [1, 1, 0, 0], [5, 2, 1, 0], [2,−1, 1, 0].

The �rst four of them belong to the a�ne Hilbert surface S and are symmetric
with respect to C, the origin in coordinates u, v, w.

Now, let's consider a polarized 4-fold (X,L). Following the same argument
as above, letting D = E + 1

2KX and E = uKX + vL, we have for the quartic
Hilbert curve Γ of (X,L) the canonical equation f(u, v) = 0, where, as usual,
f(u, v) is the polynomial χ(D) expressed by (8), when we consider u, v as
complex variables.

From Proposition 1.1 we know that if the central point of the Serre in-
volution C belongs to Γ, then C is a double point; moreover, if C is a triple
point, then it is a point of multiplicity 4, so Γ splits into four lines through
C. Furthermore, if Γ has a singular point Q, then, for symmetry, it must have
another singular point Q′, symmetric to Q with respect to C.

In conclusion, assuming Γ to be irreducible, either Γ has C as a double
point and no more singular points, or Γ does not pass through C and in this
case it can have two double points Q, Q′, symmetric with respect to C.

The fact that

f(u, v) = p
(1

2
+ u, v

)
= f0 + f2 + f4,

with fi = fi(u, v) homogeneous polynomial of degree i = 0, 2, 4, suggests one
more comment. Assume that Γ is irreducible, and let's consider the special case
when the constant term f0 is zero, which translates into the condition

(24)
(
K2
X − 4c2(X)

)
·K2

X + 384χ(OX) = 0.

One has f2(u, v) = (au+bv)(cu+dv) for some complex numbers a, b, c, d.
Then either Γ has a nodal point or a cuspidal point at the origin C, according
to whether the tangent lines `1 : au + bv = 0, `2 : cu + dv = 0 are distinct or
not. We observe that the intersection multiplicity of Γ with `i, i = 1, 2, at C
is at least four. Therefore, the double point C is a bi�ecnode (which decreases
the genus by 1) in the former case, and a tacnode (which decreases the genus
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by 2) in the latter case. Accordingly, if (f0 = 0 and) f4(u, v) is general, the
Hilbert curve Γ has either genus 2 or 1.

Remark 5.2 (The real case). Let's look at the quartic Hilbert curve Γ from
the real point of view, assuming f0 = 0. Write f2(u, v) = Au2+2Buv+Cv2 and
recall that A, B, C are rational numbers. As above, let f2(u, v) = (au+bv)(cu+
dv) be the factorization over C. In the tacnode case, one has B2 −AC = 0, so
that a, b, c, d are real numbers with ad− bc = 0. Up to this case, one has that
either a, b, c, d are real (if B2 −AC > 0), or they are complex conjugate, with
c = a and d = b (if B2−AC < 0). In the former case, Γ presents a loop at the
origin (0, 0), while, in latter case, (0, 0) is an isolated double point.

The above argument recovers as well the fact that the general Hilbert
curve is a plane quartic of genus 3. We refer to [6, Chapter XVIII] for the
geometry of quartic plane curves.

Coming to examples, let us �rst produce some reducible Hilbert quartic
curves.

Example 5.3. Consider the 4-fold X = P1 × P1 × P1 × P1 and let Ai
denote the pullback to X of O(1) via the i-th projection. Note that A2

i = 0
for every i = 1, 2, 3, 4 and A1A2A3A4 = 1. We have χ(OX) = 1, K2

X =

4
(∑

iAi
)2

= 8(A1A2 + · · ·+ A3A4), K4
X = 16

(∑
iAi
)4

= 16× 24. Moreover,
c2(X) = 4(A1A2 + · · · + A3A4). Then c2(X) ·K2

X = 192. Thus, the constant
term of f(u, v) is

1

384
K4
X −

1

96
c2(X) ·K2

X + χ(OX) = 1− 2 + 1 = 0.

This means that the Hilbert curve Γ = Γ(X,L) contains C regardless of any
polarization L on X. The term of the second degree of f(u, v) in (8) is

1

48

(
2c2(X)−K2

X

)
· E2,

and the above computations says that 2c2(X)−K2
X = 0 as a 2-cycle. Therefore,

the only surviving term in the equation of Γ is E4 (up to a multiplicative
constant), regardless of the polarization. In other words, for any polarization
L on X, the curve Γ consists of four lines through C.

Here is an example of a quartic Hilbert curve reducible into four lines
having a di�erent con�guration.

Example 5.4. Let P = P2 × P3, let X be a smooth element in |OP (1, 1)|,
and let L = OX(1, k) be an ample divisor on X, with k a positive integer. Let
Ai denote the pullback to P of O(1) via the i-th projection, i = 1, 2. Note
that A3

1 = 0, A4
2 = 0 and A2

1A
3
2 = 1. By the adjunction formula, we obtain
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KX = (KP +X)X = OX(−2,−3). Moreover, c(TP ; t) = (1 + A1t)
3(1 + A2t)

4.
Hence, in view of (22), we have

c2(X) = (A2
1 + 7A1A2 + 3A2

2)X .

By using [10], we �nd for the Hilbert polynomial the expression

f(u, v) = 18u4 +
(1

4
k2 +

1

6
k3
)
v4 −

(5

2
k2 +

1

3
k3 +

3

2
k
)
uv3

−
(

15k +
27

2

)
u3v +

(
4k2 +

9

4
+

21

2
k
)
u2v2

− 1

2
u2 −

( 1

16
+

1

24
k
)
v2 +

(3

8
+

1

12
k
)
uv.

A close inspection shows that f(u, v) factors as

f(u, v) = − 1

48
(2u− v)(−12u+ 2kv + 3v)(−6u+ 1 + 2kv)(−6u− 1 + 2kv),

so that the Hilbert curve splits into four lines symmetric with respect to the
origin, two of them being parallel, and one of remaining two not depending
on k.

Further examples of reducible Hilbert quartic curves come from general
results in [3, Theorem 6.1] and [8]. The following example shows that condition
(24) is not necessary to have a quartic Hilbert curve of genus 1, 2.

Example 5.5. Let P = P2×P3, let X a smooth element in |OP (4, 3)|, and
let L = OX(3, k) be an ample divisor on X, with k a positive integer. Let Ai
denote the pullback to P of O(1) via the i-th projection, i = 1, 2. In this case
one has

X ∈ |4A1 + 3A2|, L = (3A1 + kA2)X ,

KX = (KP +X)X = OX(1,−1) = (A1 −A2)X ,

E = (uKX + vL) =
(
u(A1 −A2) + v(3A1 + kA2)

)
X
.

Referring to (8) to obtain the equation of the quartic Hilbert curve, we have to
compute c2(X). To this end, consider the tangent-normal bundle sequence of
X ⊂ P ,

0→ TX → (TP )X → O(X)X → 0,

where OX(X) =: [X]X is the normal bundle, since X is a divisor inside P .
From the relation between the Chern polynomials

c((TP )X ; t) =
(
1 + c1(X)t+ c2(X)t2 + c3(X)t3 + c4(X)t4

)
(1 + [X]Xt),

we get

(25) c2(X) = c2((TP )X)− c1(X) · [X]X .
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Clearly, c1(X) = −KX = (A2 −A1)X . On the other hand, we have

TP = p∗1TP2 ⊕ p∗2TP3 ,

so that

c(TP ; t) = (1 + 3A1t+ 3A2
1t

2)(1 + 4A2t+ 6A2
2t

2 + 4A3
2t

3)

= 1 + (3A1 + 4A2)t+ (3A2
1 + 12A1A2 + 6A2

2)t2 + · · ·
Thus,

c2(TP ) = 3A2
1 + 12A1A2 + 6A2

2.
In conclusion, (25) gives

c2(X) =
(
(3A2

1 + 12A1A2 + 6A2
2)− (A2 −A1)(4A1 + 3A2)

)
X

=
(
7A2

1 + 11A1A2 + 3A2
2

)
X
.

By combining (8) with this expression, and carrying out all the computations
by using [10], we obtain the equation of the Hilbert curve Γk of (X,L), that is,

f(u, v) = −43

24
kuv − 3ku2v2 − 3

2
k2uv3 − 5

4
k2u2v2 − 27

2
kuv3 +

2

3
k3uv3

+
1

2
ku3v − 17

24
u2 +

27

4
k2v4 + 2k3v4 +

23

2
kv2 +

45

16
v2 +

1

12
u4

+
27

4
u2v2 +

5

2
u3v − 77

8
uv +

45

16
k2v2 +

75

64
= 0.

Furthermore, one checks that Γk has only one double point [k, 1, 0] ∈ P2 at
in�nity, and therefore it is a curve of genus g = 2.

Now, by using Lemma 2.5 and Example 5.1, we construct Hilbert quartic
curves of each possible genus g = 0, 1, 2, 3.

Example 5.6. Let X, L1, L2, Ai, i = 1, 2, 3, 4, be as in Example 5.1, with
h = k = 2. We then have X ∈ |2A1 + 2A2 +A3 +A4|, and

L1 = (A1 +A2 +A3 + 2A4)X , L2 = (3A1 +A2 +A3 +A4)X ,

KX = (KP +X)X = OX(−1, 0,−1,−1) = (−A1 −A3 −A4)X ,

E = (uKX + vL1 + wL2)

=
(
(−A1 −A3 −A4)u+ v(A1 +A2 +A3 + 2A4)

+ w(3A1 +A2 +A3 +A4)
)
X
.

To compute c2(X), we follow the same argument as in Example 5.5. Ex-
pression (23) reads, for h = k = 2,

c2(X) = (4A1A2 + 3A1A3 + 3A1A4 + 2A2A3 + 2A2A4 + 2A3A4 +A2
1)X .

Now, let S be the Hilbert surface of the bipolarized 4-fold (X,L1, L2).
Keeping the notation as in Lemma 2.5, set La,b := aL1 + bL2 and let Γa,b be
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the Hilbert curve of the polarized 4-fold (X,La,b) obtained by cutting out S

with the plane πa,b : aw− bv = 0 in C3
(u,v,w). Take on X the ample line bundles

L1,0 = L1, L0,1 = L2, L2,1 = 2L1 + L2, L1,1 = L1 + L2,

and let Γ1,0, Γ0,1, Γ2,1, Γ1,1 be the Hilbert curves of the polarized 4-folds (X,L1),
(X,L2), (X, 2L1 + L2), (X,L1 + L2) obtained as section of S with the planes

π1,0 : w = 0, π0,1 : v = 0, π2,1 : 2w − v = 0, π1,1 : w − v = 0,

respectively. We denote with Γa,b the projective closure, in the projective plane
πa,b ⊂ P3

[u,v,w,ζ], of the Hilbert curve Γa,b occurring above. As pointed out

in Example 5.1, the projective Hilbert surface S2,2 ⊂ P3
[u,v,w,ζ] of equation

f(u, v, w)hom = 0, with h = k = 2, has the seven singular points[3

2
, 0, 1,±1

]
,
[3

2
, 1, 0,±1

]
, [1, 1, 0, 0], [5, 2, 1, 0], [2,−1, 1, 0].

We observe that π1,0 : w = 0 contains the points [1, 1, 0, 0] and
[

3
2 , 1, 0,±1

]
.

Therefore the projective Hilbert curve Γ1,0 ⊂ P2
[u,v,ζ] has three double points.

Similarly, π0,1 : v = 0 contains the points
[

3
2 , 0, 1,±1

]
, π2,1 : 2w − v = 0

contains the point [5, 2, 1, 0], while the plane π1,1 : w − v = 0 does not contain
singular points of S2,2. Thus, Γ0,1 ⊂ P2

[u,w,ζ] has (at least) two double points,

Γ2,1 ⊂ P2
[u,w,ζ] has (at least) one double point, and Γ1,1 ⊂ P2

[u,w,ζ] is a possibly
non-singular plane quartic.

By putting w = 0 in the equation of S2,2, we �nd for Γ1,0 ⊂ C2
(u,v) the

equation

p1

(1

2
+u, v

)
= u4 +3u2 +

51

8
v2 +

15

2
v4−9uv−21uv3−8u3v+

41

2
u2v2 +

3

16
= 0.

Furthermore, we check that Γ1,0 has indeed the three double points[
3
2 , 1,±1

]
and [1, 1, 0], whence Γ1,0 has genus 0. Similarly, for v = 0 we �nd for

Γ0,1 ⊂ C2
(u,w) the equation

p2

(1

2
+u,w

)
= 3u2+

45

4
w2+24w4+u4−49

4
uw−53uw3−11u3w+39u2w2+

3

16
= 0,

and Γ1,0 has in fact the two double points
[
− 3

2 ,−1, 1], [3
2 , 1, 1], so that it is a

curve of genus 1. Let Γ′2,1 be the projection of the curve Γ2,1 onto the plane

〈u,w〉. By putting v = 2w in the equation of S2,2, we get for Γ′2,1 the equation

p3

(1

2
+ u,w

)
= 3u2 + 74w2 + 1125w4 + u4 − 121

4
uw − 875uw3 − 27u3w

+ 240u2w2 +
3

16
= 0,

and Γ′2,1 has the only double point (5, 0), whence Γ2,1 has genus 2. This pro-
vides a further example of quartic Hilbert curve of genus 2 (compare with
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Example 5.5). The same procedure �nally yields for the projection of the curve
Γ1,1 onto the plane 〈u, v〉 the equation

p4

(1

2
+u, v

)
= 3u2+

145

4
v2+272v4+u4− 85

4
uv−304uv3−19u3v+119u2v2+

3

16
.

and the usual numerical check shows that Γ1,1 is a non-singular quartic curve
of genus 3.

6. IMAGE OF THE HILBERT SURFACE IN P6

Let (X,L1, L2) be an n-dimensional bipolarized variety. In this section we
work in the projective space. For simplicity of notation, we then use the symbol
S to denote the Hilbert surface of (X,L1, L2) in P3

[x,y,z,ζ]. Keeping for the rest
the notation as in the previous sections, we make the change of homogeneous
coordinates [x, y, z, ζ] 7→

[
x− ζ

2 , y, z, ζ
]

=: [u, v, w, ζ], so that the central point
becomes C = [0, 0, 0, 1], and we consider the map Φ : P3

[u,v,w,ζ] → P6
[T0,T1,...,T6]

de�ned by

(26) [u, v, w, ζ] 7→ [u2, uv, v2, uw, vw,w2, ζ2].

Proposition 6.1. Let (X,L1, L2) be an n-dimensional bipolarized vari-

ety, n ≥ 3. Consider the map Φ : P3 → Q = P3/〈s〉 ⊂ P6 de�ned as in (26).
Then Φ is a two-to-one immersion outside the central point C of the Serre

involution s and the plane π∞ : ζ = 0.

Proof. Express the morphism Φ locally around C in a�ne coordinates as
(u, v, w) 7→ (u2, uv, v2, uw, vw,w2). Then the Jacobian matrix2u v 0 w 0 0

0 u 2v 0 w 0
0 0 0 u v 2w


has rank 3 except at C. Similarly, �x a point on the plane at in�nity, π∞ : ζ = 0,
e.g. [0, 0, 1, 0], and take (u, v, ζ) as local coordinates around it. Then Φ is locally
given by (u, v, ζ) 7→ (u2, uv, v2, u, v, ζ2). Therefore the Jacobian matrix2u v 0 1 0 0

0 u 2v 0 1 0
0 0 0 0 0 2ζ


has rank 3 except where ζ = 0. These local computations prove the result. �

Let Σ := Φ(S). Note that 〈s〉 acts on S, and Σ = S/〈s〉. The morphism
ϕ := Φ|S : S → Σ is two-to-one by Proposition 6.1. Moreover, Σ has a double
point at (the image of) the central point C for n odd, and it is smooth for n
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even. To have a global picture summarizing the situation as in [3, Formula (17)],
consider the Veronese embedding P3

[u,v,w,ζ] ↪→ P9
[x0,x1,...,x9] de�ned by

[u, v, w, ζ] 7→ [u2, uv, uw, uζ, v2, vw, vζ, w2, wζ, ζ2].

We have the following commutative diagram

(27) S ⊂ P3

ϕ

��

� � //

Φ

%%

V ⊂ P9

ρ

�� ��
Σ � � // Q ⊂ P6,

where ρ : V → Q is the two-to-one morphism obtained by projection of the
Veronese 3-fold V from the plane x0 = x1 = x2 = x4 = x5 = x7 = x9 = 0 onto
the quartic cone Q := P3/〈s〉 ⊂ P6 de�ned in P6 by the equations T0T2− T 2

1 =
T0T5 − T 2

3 = T2T5 − T 2
4 = 0. Precisely, Q is the cone over the Veronese surface

in P5 of equation T6 = 0 de�ned by the condition

rk

T0 T1 T3

T1 T2 T4

T3 T4 T5

 = 1.

The branch locus of ρ consists of the images of the central point C and the
plane at in�nity π∞ : ζ = 0, via Φ.

Proposition 6.2. Let (X,L1, L2) be an n-dimensional bipolarized vari-

ety, n ≥ 3. Assume that the projective Hilbert surface S is smooth. Then, for

suitable hyperplane sections h of S, the curve h/〈s〉 is a Castelnuovo curve in

P3.

Proof. Let Σ̃ be the desingularization of Σ. Then we have a commutative
diagram

S
ψ−→ Σ̃
↘ ↓ ν

Σ,

where ψ : S→ Σ̃ is a two-to-one map rami�ed in C (if C ∈ S) and along S∩π∞,
with π∞ : ζ = 0 the plane at in�nity, and ν : Σ̃→ Σ is a generically one-to-one
map. Let ψ′ := ν ◦ ψ : S→ Σ.

Set L := aL1 + bL2 for positive integers a, b. Then (X,L) is a polarized
3-fold whose Hilbert curve, say h, lies in a plane of |OP3(1)⊗ IC |, where IC is
the ideal sheaf of the point C in P3 (see Lemma 2.5).

Let h′ := ψ′(h), so that h̃ := ν−1(h′) = ψ(h). Note that h′ = h/〈s〉. The
restriction ψ|h : h→ h̃ is then a two-to-one map rami�ed at either n+ 1 points
(the n points h ∩ π∞ and the point C) or n points according to whether n is
odd or even. Hence, the assertion follows by [3, Proposition 5.2]. �
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Remark 6.3. Look again at diagram (27). We claim that Σ ↪→ Q ⊂ P6

embeds with degree 2n. To see this, note that a hyperplane section of Σ in P6

corresponds to a quadric surface in P3, whose equation only involves the terms
appearing in formula (26) (i.e., a quadric cone with vertex [0, 0, 1, 0]). Since
ϕ : S→ Σ is of degree two, one sees that deg(Σ), i.e., the degree of the 0-cycle
cut out on Σ by two general hyperplanes of P6, is then given by

1

2
S ·Q1 ·Q2 =

1

2
4 deg(S) = 2n,

for two general elements Q1, Q2 belonging to |OP3(2)|. Since a quadric section
of S is linearly equivalent to 2h, we conclude that the general hyperplane section
of Σ is numerically equivalent to twice the Castelnuovo curve h′ as in the proof
of Proposition 6.2.

7. SERRE INVARIANT SURFACES

This section is inspired by [3, Section 7]. Let A3 = A3
(x,y,z), P3 =

P3
[x,y,z,ζ], and let s : A3 → A3, s : P3 → P3 be the Serre involutions de�ned in

Section 1.
It is natural to consider a family of surfaces in a 3-dimensional space larger

than that of Hilbert surfaces; namely, the family of surfaces that are invariant
under the Serre involution. Let S be a possibly reducible and non-reduced
surface in P3 (respectively A3) of given degree d. We say that S is a Serre-

invariant surface if s(S) = S (respectively s(S) = S). The Serre involution
acts on S, so that we can consider the quotient S/〈 s 〉 and identify it with its
image on the cone over the Veronese surface, Q = P3/〈 s 〉 ⊂ P6.

Clearly, a Hilbert surface of a d-dimensional bipolarized variety is a Serre-
invariant surface of degree d.

A noteworthy property is that Serre-invariant surfaces are in fact zero sets
of polynomials with the same Serre-invariance as the Hilbert polynomial.

Claim 7.1. Let S be a Serre-invariant surface on A3, de�ned by a poly-

nomial F (x, y, z) of degree d. Then

F (x, y, z) = (−1)dF (1− x,−y,−z).
Proof. Since s(S) = S, and S is de�ned by a single polynomial up to

multiplication by a constant, we know that F (s(x, y, z)) = λF (x, y, z) for some
constant λ 6= 0. Thus,

F (x, y, z) = F (s2(x, y, z)) = F (s(s(x, y, z))) = λF (s(x, y, z)) = λ2F (x, y, z).

But s2(x, y, z) = (x, y, z), so that λ2 = 1, i.e., λ = ±1. To determine λ it is
enough to compare a non-zero monomial of maximal degree d, say cxaybzd−a−b,
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of F (x, y, z) with its corresponding monomial in F (s(x, y, z)). That is,

c(−x)a(−y)b(−z)d−a−b = (−1)dcxaybzd−a−b,

so that λ = (−1)d. �

Remark 7.2. With the notation as above, break up S as S = S1+S2+· · ·+
Sm, where Sµ is the union of all components of multiplicity µ = 1, 2, . . . ,m.
Then s(Sµ) = Sµ, and so Sµ and

(
Sµ
)

red
are also Serre-invariant surfaces.

We thus conclude that if Z is an irreducible and reduced component of S that
contains the central point C =

(
1
2 , 0, 0

)
, and if deg(Z) is even, then Z is singular

at
(

1
2 , 0, 0

)
(compare with Proposition 1.1).

Let us point out some consequences of Claim (7.1) (compare with (3) and
Proposition 1.1(2)).

1. If d is odd, then (( ∂
∂x

)r( ∂
∂y

)s( ∂
∂z

)t
F

)(1

2
, 0, 0

)
= 0

for all non-negative integers r, s, t with r + s+ t even.

2. If d is even, then the above equality holds for all non-negative integers r,
s, t with r + s+ t odd.

3. The central point C of the Serre involution belongs to a smooth Serre-
invariant surface of degree d if and only if d is odd.

Let Vd be the closure in |OP3(d)| of the family of Serre invariant surfaces
of degree d, and identify the group A of a�ne transformations of A3

(x,y,z) with

the subgroup of PGL(4;C) �xing the plane at in�nity π∞ : ζ = 0. Let G be
the subgroup of A de�ned by

G := {g ∈ A | g ◦ s = s ◦ g}.

We then have the following result.

Theorem 7.3. Let G and Vd be as above. Then

1. dim(G) = 9;

2. For d even,

dim(Vd) =
1

3
a(a+ 1)(2a+ 1) +

3

2
a(a+ 1) + a, where a =

d

2
;

while, for d odd,

dim(Vd) =
1

3
a(a+ 1)(2a+ 1) +

5

2
a(a+ 1) + 3a+ 2, where a =

d− 1

2
.

Proof.Wemake the usual change of homogeneous coordinates [x, y, z, ζ] 7→[
x − ζ

2 , y, z, ζ
]

=: [u, v, w, ζ], so that the central point becomes C = [0, 0, 0, 1].
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With respect to the new coordinates, the Serre involution is represented by the
matrix

A =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 =

(
−I 0
0 1

)
.

On the other hand, any a�ne transformation g ∈ G is represented by a
matrix of PGL(4;C), of the form

M =


a b c d
a′ b′ c′ d′

a′′ b′′ c′′ d′′

0 0 0 1

 =

(
N d
0 1

)
,

where, with clear meaning of the symbols, N is the non-singular matrix

N =

 a b c
a′ b′ c′

a′′ b′′ c′′

 and d =

 d
d′

d′′

 .

Therefore, (
−N −d
0 1

)
= AM = MA =

(
−N d
0 1

)
.

This gives the three linearly independent conditions d = d′ = d′′ = 0. We
then conclude that dim(G) = 9.

Let Φ : P3 → Q be the double cover de�ned by the Serre involution, where
Q ⊂ P6 is a cone over the Veronese surface

(
P2,OP2(2)

)
. Let v be its vertex;

so v = Φ(C). Recall that Φ is rami�ed at the central point C and along the
plane at in�nity π∞.

Let β : P → P3 be the blowing-up at C, and let E1 be the exceptional
divisor. Note that P is a P1 bundle over P2; in fact, P = P

(
OP2 ⊕ OP2(1)

)
.

Denoting by π : P → P2 the bundle projection and letting M1 = π∗OP2(1),
we have that the classes of E1 and M1 generate the Picard group of P , and
β∗OP3(1) = OP (E1+M1). Now let ν : Q̃ → Q be the minimal desingularization
of the Veronese cone, and let α : P → Q̃ be the double cover induced by Φ,
which gives rise to the commutative diagram

P

β
��

α // Q̃

ν

��
P3 Φ // Q.

Note that Q̃ = P
(
OP2 ⊕OP2(2)

)
. Call π′ : Q̃ → P2 the bundle projection,

let E2 = ν−1(v) and set M2 = π′∗OP2(1). Note that E2 is the section of π′
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corresponding to the surjection onto the trivial summand. In particular, M3
2 =

0 and E2 ·M2
2 = 1. Clearly, the classes of E2 andM2 generate the Picard group

of Q̃; moreover, α∗E2 = 2E1, α
∗M2 = M1, and ν∗OQ(1) = OQ̃(E2 + 2M2),

where OQ(1) = OP6(1)Q. Now let S ⊂ P3 be a Serre invariant smooth surface
of degree d.

First suppose that d is even. Then S does not contain C; moreover,
S̃ := β−1(S) ∈ |d(E1 +M1)|. On the other hand, S̃ = α∗S ′, where S ′ ⊂ Q̃ is a
surface not intersecting E2 (because Φ(S) = ν(S ′) does not contain the vertex
v of Q). In other words,

(28) OE2(S ′) = OE2 .

By what we said before we can write (up to linear equivalence) S ′ =
aE2+bM2 for some integers a and b. Recalling that OE2(E2) = OE2(−2), while
M2E2

= OE2(1), condition (28) gives b = 2a. In conclusion, S ′ ∈ |a(E2 +2M2)|.
Next, let us relate a and d. Since S ′E2

is trivial, we have

d = S ·
(
OP3(1)

)2
= S̃ ·(E1 +M1)2 = S̃ ·M2

1 = α∗S ′ ·(α∗M2)2 = (degα) S ′ ·M2.

Hence,

d = 2a(E2 + 2M2) ·M2
2 = 2a,

i.e., d = 2a also in this case. In other words,

S ′ ∈
∣∣∣d
2

(E2 + 2M2)
∣∣∣.

Now we are ready to proceed with the computation as in [3, Section 7].

The surfaces on Q̃ which pull back to an S̃ on P constitute a family of
dimension h0

(
Q̃, a(E2 + 2M2)

)
− 1, where a = d

2 . Thus, this is the dimension
dim(Vd) we are looking for, when d is even. Recall that E2 + 2M2 is the
tautological line bundle of E := OP2⊕OP2(2). Then π′∗

(
a(E2 +2M2)

)
= Sa(E),

the a-th symmetric power of E . We have

(29) Sa(E) = OP2 ⊕OP2(2)⊕OP2(4)⊕ · · · ⊕ OP2(2a).

Therefore,

h0
(
P2, Sa(E)

)
= 1 + 6 + 15 + · · ·+

(
2a+ 2

2

)
= 1 +

a∑
k=1

(
2k + 2

2

)
.

In conclusion, recalling that

(30)
a∑
k=1

k2 =
1

6
a(a+ 1)(2a+ 1),
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we get

dim(Vd) = h0(Q̃, a(E2 + 2M2))− 1 = h0(P2, Sa(E))− 1 =
a∑
k=1

(
2k + 2

2

)

=

a∑
k=1

(2k2 + 3k + 1) =
1

3
a(a+ 1)(2a+ 1) +

3

2
a(a+ 1) + a,

where a = d
2 .

Now suppose that d is odd. In this case the surface S contains C as a
simple point (being smooth). Hence, its proper transform via β, S̃ = β∗S−E1,
belongs to |β∗OP3(d)− E1| = |(d− 1)(E1 +M1) +M1|. Note that

d = S ·
(
OP3(1)

)2
= (S̃ + E1) ·

(
β∗
(
OP3(1)

))2
= S̃ · (E1 +M1)2 = S̃ ·

(
(E1 +M1) · E1 +M1 · E1 +M2

1

)
= 1 + S̃ ·M2

1

(here we use the relationOE1 = (β∗S)E1 = OE1(S̃+E1), so that S̃E1 = OE1(1)).
As before, S̃ = α∗S ′, where S ′ ⊂ Q̃ is a surface. Note however that S̃ intersects
E2, since now Φ(S) = ν(S ′) contains v. Up to linear equivalence we can write
again S ′ = aE2 + bM2. Thus, the above relation gives

d− 1 = S ·M2
1 = α∗(S ′) ·

(
α∗(M2)

)2
= (degα)S ′ ·M2

2 = 2(aE2 + bM2) ·M2
2 = 2a.

On the other hand, we have

S̃ · E1 ·M1 = S̃E1 ·M1E1
=
(
OE1(1)

)2
= 1.

Therefore,

1 = S̃ · E1 ·M1 = α∗S ′ · 1

2
α∗E2 · α∗M2

=
1

2
(degα)S ′ · E2 ·M2 = (aE2 + bM2) · E2 ·M2

= OE2(−2a+ b) · OE2(1) = −2a+ b.

In conclusion, a = d−1
2 and b = 2a+ 1 = d. In other words,

S ′ ∈
∣∣∣d− 1

2
(E2 + 2M2) +M2

∣∣∣.
Now, arguing in the same way as in the d even case, we �nd for d odd

dim(Vd) = h0
(
Q̃, a(E2 + 2M2) +M2

)
− 1,

where a = d−1
2 . Noting that π′∗

(
a(E2 + 2M2) + M2

)
= Sa(E) ⊗ OP2(1) and

taking into account (29), we get

Sa(E)⊗OP2(1) = OP2(1)⊕OP2(3)⊕OP2(5)⊕ · · · ⊕ OP2(2a+ 1).
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Therefore,

h0
(
P2, Sa(E)⊗OP2(1)

)
= 3 + 10 + · · ·+

(
2a+ 3

2

)
= 3 +

a∑
k=1

(
2k + 3

2

)
.

Eventually, recalling (30) again, we obtain

dim(Vd) =
1

3
a(a+ 1)(2a+ 1) +

5

2
a(a+ 1) + 3a+ 2,

where a = d−1
2 . �
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