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Let X be a surface with isolated singularities in the complex projective space P3

and let Y denote the smooth part of X. In this note we discuss, mostly on speci�c
examples, some aspects of the topology of such quasi-projective surfaces Y : the
fundamental groups and the associated Galois coverings, the second homotopy
groups and the mixed Hodge structure on the �rst cohomology group.
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1. INTRODUCTION AND STATEMENTS OF RESULTS

Surfaces theory is a classical subject, with a very rich history and a number
of excellent textbooks, as for instance [3, 7]. It is quite surpring that new open
questions arise even in such a classical subject, and one of the purposes of this
note is to state such an open question in Example 2.2 related to the cubic
surfaces in P3. These surfaces have been classi�ed already by Cayley, see for
a modern presentation [8]. Another open question in relation to the Zariski
sextic with 6 cusps appears in Example 2.3.

Let X be a surface with isolated singularities in the complex projective
space P3. Then it is well known that X is simply-connected, see for instance
[11]. Let Y denote the smooth part of X. So Y is obtained from X be removing
a �nite number of points. However, unlike the case when X is smooth, this
operation alters sometimes the fundamental groups and we may get quasi-
projective surfaces Y with π1(Y ) 6= 0. We omit the base points in this note,
since our spaces Y are path-connected, hence the isomorphism class of π1(Y, y)
is independent of y ∈ Y . For related results on fundamental groups of surfaces
we refer to [2, 16] and [17].

The �rst result describes the �rst integral homology group H1(Y ) of the
surface Y , which is exactly the abelianization of the fundamental group π1(Y ).
In the sequel Tors denotes the torsion part of a �nitely generated abelian group.
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Theorem 1.1. Let X be a surface with isolated singularities in P3, let Z
be the singular set of X and set Y = X \ Z. Then one has the following.

(i) H1(Y ) = H3(X). In particular, if X is a Q-manifold, e.g. when X
has only simple singularities of type An, Dn, E6, E7 and E8, then H1(Y ) =
TorsH2(X) is a �nite group.

(ii) H3(Y ) is a free abelian group of rank given by |Z| − 1.

Note that the surface Y is never a�ne, since a regular function φ de�ned
on Y extends to X, as X is normal, and hence φ has to be constant.

The next result shows that there is a geometrically induced epimorphism

Γg → π1(Y ),

where Γg is the fundamental group of a smooth plane curve of genus

g =
(d− 1)(d− 2)

2
.

Proposition 1.2. (i) For a generic plane H in P3, the intersection C =
X ∩H is a smooth curve contained in Y and the inclusion i : C → Y induces

an epimorphism
i] : π1(C)→ π1(Y ).

(ii) For any plane H in P3 such that the intersection C = X ∩ H is a

(possibly singular) curve contained in Y , the inclusion i : C → Y induces an

epimorphism
i] : π1(C)→ π1(Y ).

In particular, if Y contains a rational cuspidal plane curve C, then

π1(Y ) = 0.

Corollary 1.3. Let X be a surface with isolated singularities in P3. If

X is a surface of degree 3, then the fundamental group π1(Y ) of its smooth

part Y is abelian. More precisely, denote by X(4A1) the cubic surface in P3

having as singularities 4 nodes A1, and similarly for X(3A2), X(A1A5) and

X(2A1A3). Then the corresponding smooth quasi-projective surfaces Y (4A1),
Y (3A2), Y (A1A5) and Y (2A1A3) have the following fundamental groups.

π1(Y (4A1)) = π1(Y (A1A5)) = π1(Y (2A1A3)) = Z/2Z and π1(Y (3A2)) = Z/3Z.

For a description of the associated Galois coverings and the second homo-
topy groups of these surfaces see Example 2.2.

Remark 1.4. If X is a cubic surface with simple singularities in P3, then X
is an exemple of a log del Pezzo surface, see [1] for the corresponding de�nition.
It is known that the fundamental group of the smooth part Y of such a log del
Pezzo surface is always �nite, see [20, 21, 32]. For an extension of this result
to higher dimensional log Fano varieties see [19, 33].
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We have also the following.

Proposition 1.5. Let X be a surface with isolated singularities in P3, let

Z be the singular set of X and set Y = X \ Z. For each singular point z ∈ Z,
let Lz denote the link of the singularity (X, z). Then there is a morphism

Πz∈Zπ1(Lz)→ π1(Y ),

where Πz∈Zπ1(Lz) denotes the free product of the family of groups (π1(Lz))z∈Z ,
whose image is not contained in any normal subgroup of π1(Y ).

One can ask about the mixed Hodge structures on the surfaces Y . Here
is the answer.

Theorem 1.6. Let X be surface with isolated singularities in P3, let Z be

the singular set of X and set Y = X \ Z. Then H3
c (Y ) = H3(X) is a pure

Hodge structure of weight 3 and by duality, H1(Y ) is a pure Hodge structure of

weight 1.

The cohomology groups H2
c (Y ) = H2(X) have a more complicated mixed

Hodge structure, in general with several possible weights, for more on this
subject see [12] and [14].

The Hodge theoretic result in Theorem 1.6 has the following pure topo-
logical consequence. Let C : g(x, y, z) = 0 be a reduced curve in P2 of degree
d. Consider the surfaces XC : g(x, y, z) + td = 0, whose singularities are the
degree d suspension of the singularities of the curve C. Let YC be the smooth
part of XC as above and denote by FC the Milnor �ber of g, namely the a�ne
smooth surface

FC : g(x, y, z) = 1
in C3. Then clearly FC ⊂ YC is a Zariski open subset and hence the inclusion
j : FC → YC induces an epimorphism π1(FC) → π1(YC). By duality, we get a
monomorphism j∗ : H1(YC ,Q)→ H1(FC ,Q).

Proposition 1.7. The image of the monomorphism j∗ : H1(YC ,Q) →
H1(FC ,Q) is exactly H1(FC ,Q)6=1, the non-�xed part of H1(FC ,Q) under the

monodromy action.

This result allows us to construct many examples of surfaces XC such that
H1(YC ,Q) (and presumably π1(Y )) is quite large, e.g. using as C various line
arrangements in P2, see [25, 30, 31] for various monodromy computations in
this case. To increase these groups, one may also use non-linear arrangements
as well, as described for instance in Example 5.14 in [13]. One example using
Zariski sextic curve with 6 cusps is given in Example 2.3 below.

Some open questions appear in Example 2.2 and Example 2.3. A ma-
jor open question is to develop a general strategy for the computation of the
fundamental groups for this class of surfaces.
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This note gives a number of (very limited) answers to questions that Ciro
Ciliberto asked me some time ago. I would like to thank him for asking the
questions and for explaining to me the role of del Pezzo surfaces in Exam-
ple 2.2 and Remark 2.5. Many thanks also to De-Qi Zhang for his comments
on the fundamental groups of log del Pezzo surfaces and open K3 surfaces,
incorporated essentially in Remarks 1.4 and 2.6 below.

2. THE PROOFS AND ADDITIONAL EXAMPLES

We consider �rst Theorem 1.1. We apply Lefschetz duality theorem, see
for instance [28], p. 297 to the compact relative 4-manifold (X,Z), where Z is
the �nite set of singular points of the surface X. Since any pair of algebraic
sets is triangulable, it follows that the pair (X,Z) is taut, see [28], p. 291,
and hence we have an isomorphism Hk(Y ) = H4−k(X,Z). To prove the �rst
claim (i), we take k = 1 and the long exact sequence of the pair (X,Z) yields
an isomorphism H3(X,Z) = H3(X). If X is a Q-manifold, it follows that
b3(X) = b1(X) = 0 and hence H3(X) is a �nite group. It remains to use
the standard fact that TorsH2(X) = TorsH3(X), see [28], p. 244. For the
classi�cation of simple singularities A,D,E and their properties we refer to
[10, 11]. To prove the claim (ii), we take k = 3 in the above isomorphism and
get H3(Y ) = H1(X,Z). Then the long exact sequence of the pair (X,Z) yields

b3(Y ) = |Z| − 1.

The proof of Proposition 1.2 follows from the Zariski theorem of Lefschetz
type stated for instance in [11], p. 25 and the fact that X admits the obvious
Whitney regular strati�cation given by Y and the �nite set Z, see for instance
in [11], p. 5. For the part (ii), one has to use the careful description of �good�
hyperplanes in this case given in loc.cit. Moreover, an irreducible projective
curve is simply-connected if and only if it is a rational cuspidal curve, i.e. C is
rational and any singular point of C is unibranch.

To prove Corollary 1.3, for the �rst claim we just apply Proposition 1.2
and the fact that Γ1 = Z2 to get that π1(Y ) is abelian.

For the computation of the fundamental groups of the surfaces, Y (4A1),
Y (3A2), Y (A1A5) and Y (2A1A3), we use the corresponding results for the
second homology groups described in [11], p. 165.

The proof of Proposition 1.5 follows by applying the van Kampen theorem
to the open covering Y, Z ′ of X, where Z ′ is obtained as follows. Take a mimal
tree T formed of simple non-intersecting arcs connecting the points in Z. Add
for each z ∈ Z a small contractible neighborhood Bz of z in X such that
B∗z = Bz \ {z} is homotopically equivalent to the link Lz. Then Z

′ is a tubular
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open neighborhood of T ∪ ∪z∈ZBz. It follows that Y ∩ Z ′ has the homotopy
type of the join of the links Lz, and hence

π1(Y ∩ Z ′) = Πz∈Zπ1(Lz).

On the other hand, Z ′ is contractible and X is simply-connected, so van
Kampen theorem implies that the inclusion Y ∩ Z ′ → Y induces a morphism
π1(Y ∩ Z ′) → π1(Y ) whose image is not contained in any normal subgroup of
π1(Y ).

We consider now Theorem 1.6. Note that the �rst part of this proof gives
an alternative proof for the claim (i) in Theorem 1.1. The exact sequence with
compact supports for the pair (X,Z) yields the isomorphism H3

c (Y ) = H3(X)
of MHS (short for mixed Hodge structures). The result follows using the fact
that H3(X) is a pure Hodge structure, see [29]. For duality between H3

c (Y )
and H1(Y ) we refer to [26].

Finally, to prove Proposition 1.7, we recall that we have a splitting

H1(FC ,Q) = H1(FC ,Q)1 ⊕H1(FC ,Q)6=1,

where H1(FC ,Q)1 has pure weight 2 and H1(FC ,Q)6=1 has pure weight 1, see
[14]. Moreover, it is shown in [14] and in [15] that

dimH1(YC ,Q) = dimH3(XC ,Q) = dimH1(FC ,Q)6=1.

This clearly completes the proof. �

Remark 2.1. It follows from Theorem 1.1 (ii) that the three surfaces
Y (4A1), Y (A1A5) and Y (2A1A3) have distinct third Betti numbers, namely
3, 1 and 2, hence they are not homotopically equivalent to each other.

Example 2.2. It follows from Corollary 1.3, that each of the surfaces,
Y (4A1), Y (3A2), Y (A1A5) and Y (2A1A3) has a �nite unrami�ed cover which
is a simply-connected surface, i.e. the corresponding universal covering. In the
case of the surface Y (3A2), we can chose the equation for X(3A2) to be

f = xyz − t3 = 0

and hence the map p : P2 → X(3A2) given by

p([u, v, w]) = [u3, v3, w3, uvw]

is rami�ed precisely over the singular set Z, see also [11], p. 166. Hence, the
universal cover of Y (3A2) is obtained from P2 by deleting 3 points. This also
implies π2(Y (3A2)) = π2(P2) = Z.

For the other three universal covering surfaces, the construction involves
Cremona transformations and del Pezzo surfaces of degree 6, i.e. surfaces
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obtained from P2 by blowing up 3 points. The easiest case to describe is for
the surface X(4A1). Consider the classical Cremena rational map

c1 : P2 → P2, [x, y, z] 7→ [yz, xz, xy].

This map has p1 = [1, 0, 0], p2 = [0, 1, 0] and p3 = [0, 0, 1] as indeterminacy
points, see Example 1.5.1 in [18]. Let S denote the del Pezzo surface obtained by
blowing-up these 3 points and note that c1 lifts to a regular map c′1 : S → S,
which is an involution, i.e. c′21 = Id, and has 4 �xed points, namely the
points in S corresponding to the points [1,±1,±1] in P2. It follows that the
quotient surface S/ < 1, c′1 >, which has 4 nodes, can be identi�ed to X(4A1).
This implies π2(Y (4A1)) = π2(S) = Z4, by an easy application of Hurewicz
Theorem.

To get the universal cover of Y (2A1A3), we start with the �rst degenerate
standard quadratic transformation

c2 : P2 → P2, [x, y, z] 7→ [y2, xy, xz],

see [18], p. 15, which is also an involution, i.e. c22 = Id, and has p1 and p3 as
indeterminacy points. This map has 2 lines of �xed points, namely the lines
x ± y = 0 meeting at the point p3. After blowing up p1, p3 and an in�nitely
near point p′2, we get as above the degree 2 covering over X(2A1A3). The
A3 singularity occurs as the Z/(2)-quotient of an A1 singularity, which in turn
comes from the contraction of a (−2)-curve obtained in the blowing-up process,
see [18], p. 15.

Finally, to get the universal cover of Y (A1A5), we start with the second

degenerate standard quadratic transformation

c3 : P2 → P2, [x, y, z] 7→ [x2, xy, y2 − xz],

see [18], p. 16, which is also an involution, i.e. c23 = Id, and has p3 as its
unique indeterminacy point. This map has a smooth conic of �xed points,
namely y2 − 2xz = 0, passing through the point p3. After blowing up p3 and
2 in�nitely near points p′1 and p′2, we get as above the degree 2 covering over
X(A1A5). The A5 singularity occurs as the Z/(2)-quotient of an A2 singularity,
which in turn comes from the contraction of a chain of two (−2)-curves obtained
in the blowing-up process, see [18], p. 16.

Example 2.3. Here is an example of a surfaceX such that the fundamental
group π1(Y ) is in�nite. Let X be the surface given by

(x2 + y2)3 + (y3 + z3)2 + t6 = 0,

the degree 6 cover of P2 rami�ed over the Zariski sextic with 6 cusps on a
conic. It is well known that b3(X) = 2, see for instance in [11], p. 210. It



7 On the topology of some quasi-projective surfaces 327

would be interesting to check whether H3(X) = Z2 and also to determine the
fundamental group π1(Y ) in this classical example.

Remark 2.4. When b1(Y ) = b3(X) > 0, then one can use Theorem 2 in
[17] to compute the germs at the origin of the characteristic varieties V 1

r (Y )1
in terms of the resonance varieties germs R1

r(X̃)0, where X̃ is a resolution of
singularities for X. Note that there is no dominant morphism from Y to non
proper curve C, since such a curve is necessarily a�ne and we can repeat the
map extension described after Theorem 1.1.

Remark 2.5. Some of the considerations in this paper can be applied to
a complete intersection surface X with isolated singularities in Pn with n ≥ 4.
The case when X is the intersection of two quadrics in P4 is considered in
Proposition 4.3 in [9], where the corresponding group H1(Y ) is computed and
found to be Z/2Z in two cases, namely for Y (4A1) and for Y (2A1A3), with
an obvious notation. A generic hyperplane section of X in this case is again a
curve of genus one, hence we get as in Corollary 1.3 that one has

π1(Y ) = H1(Y ) = Z/2Z,

in these cases as well. It would be interesting to �nd an analog of Proposition 1.7
in the case of complete intersections of codimension > 1. The corresponding
degree 2 universal covering spaces associated with Y (4A1) and Y (2A1A3) have
a simple geometrical description in terms of del Pezzo surfaces of degree 8.
There are two types of such surfaces.

The �rst type is the product S = P1 × P1, which has the involution ι :
S → S given by ι([x, y], [u, v]) = ([y, x], [v, u]), which has 4 �xed points, namely
([1,±1], [1,±1]). It can be shown that the quotient S/ < 1, ι > is nothing else
but the surface X(4A1). This also implies π2(Y (4A1)) = π2(S) = Z2.

The universal covering space of Y (2A1A3) can be described as follows. On
the minimal resolution X ′ of X = X(2A1A3) we have the three (−2)-curves
E1+E2+E3 (E2 being the �central� one) in the resolution of the A3 singularity
and two (−2)-curves E4, E5 resolving the two A1 points. The double cover of
Y gives rise to a double cover of X ′ branched along the sum of some of the
curves Ei, which must be divisible by 2 in Pic(X ′). The branch divisor is
E1 +E3 +E4 +E5, thus the double cover X

′′ possesses two (−1)-curves E′4, E
′
5

over E4, E5, and a cycle E′1 + E′2 + E′3 over E1 + E2 + E3, with E
′
1, E

′
3 being

(−1)-curves and E′22 = −4. By contracting all the (−1) curves we see that E′2
becomes a (−2)-curve and in fact we get in this way a Hirzebruch surface F2.
If we contract this last (−2)-curve, we get the cone S in P3 over a smooth conic
Q, say Q : x2− yz = 0. Then S is a singular (log) del Pezzo surface of degree 8
and it is the double cover of X rami�ed exactly over the singular points. The
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corresponding involution of S can be taken to be [x, y, z, t] 7→ [−x, y, z,−t],
whose �xed points are precisely

(i) [0, 0, 0, 1], the vertex of the cone, which gives the A3- singularity in the
quotient X, and

(ii) the two points [0, 1, 0, 0] and [0, 0, 1, 0], which give the two A1 singu-
larities of X. This proof also implies π2(Y (2A1A3)) = π2(Q) = Z.

Remark 2.6. Corollary 1.3 and Remark 2.5 describe the fundamental
groups of the smooth part Y of some singular del Pezzo surfaces X, i.e. sur-
faces X with an ample anticanonical divisor −KX . For the reader convenience,
and for their beauty, we recall below some similar results on the fundamental
groups in the case of singular K3-surfaces, i.e. surfaces with KX = 0.

(i) Let �rst X be a K3-surface with 16 A1-singularities, for instance the
surface in P3 given by the equation

x4 + y4 + z4 − (x2 + y2 + z2)t2 − x2y2 − x2z2 − y2z2 + 1 = 0.

Such a surface X can be obtained as the quotient of an Abelian surface
A under the involution a 7→ −a, see [23]. Since A is a quotient C2/Λ, with Λ
a lattice of rank 4, we get a map p : C2 → X, presenting X as the quotient of
C2 under the non-commutative subgroup Λ̃ spanned by Λ (regarded as trans-
lations) and the involution v 7→ −v inside the group of a�ne transformations
of the plane C2. It follows that C2 \ p−1(Z)→ Y is a universal covering for Y ,
where Z is the singular part of X, with deck transformation group π1(Y ) = Λ̃.
We also get π2(Y ) = π2(C2 \ B) = 0, since B = p−1(Z) is discrete, hence of
real codimension 4.

(ii) Let now X be a K3-surface with 8 cusps A2 and no other singularities.
Some of these surface can embedded in P3 and the corresponding equations
can be found in [5]. For such surfaces, one has either π1(Y ) = (Z/3Z), or
π1(Y ) = (Z/3Z)2, see [22], Table 1, case p = 3, c = 8.

(iii) Let nowX be aK3-surface with 9 cusps A2 and no other singularities.
None of these surface can embedded in P3, see [5]. For such surfaces, one has
an extension

0→ Λ→ π1(Y )→ Z/3Z→ 0

where Λ a lattice of rank 4 as above, see [22], Table 1, case p = 3, c = 8.
Moreover, one has as above π1(Y ) = Λ̃, where Λ̃ is the subgroup of the group
of a�ne transformations of the plane C2 generated by Λ and an order 3 linear
automorphism of C2 preserving Λ, see [24], Example 1 and [27]. An alternative
approach is described in [4], and one may wonder if the fundamental groups
π1(Y ) are the same for these two distinct examples.

As above, we also get π2(Y ) = 0.
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For other low degree cuspidal surfaces X in P3 admiting degree 3 unrami-
�ed covering over their smooth part Y , in particular a discussion of irreducible
families of such surfaces, see [6].

Acknowledgments. Partially supported by Institut Universitaire de France.
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