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INTRODUCTION

Let (X, B) be a log canonical model with standard coefficients. That is X
is a normal projective variety, B = ), b;F; is a Q-Weil divisor with coefficients
b; belonging to the standard set {1 — L;m € Z>1} U {1}, Kx + B is Q-ample
and (X, B) has at most log canonical singularities. The normalized volume of
(X, B) is defined as v = {/(Kx + B)%, where d = dim X. By [1, 6, 3, 4], the
volume v belongs to a DCC set, and there exists a positive integer r, bounded
above only in terms of d and v, such that the linear system |r(Kx + B)| is base
point free (in particular, r(Kx + B) is a Cartier divisor). The DCC property
means that if ¢ is a real number and v > ¢, then v > t + ¢, where ¢ depends
only on d and t.

In this note, we estimate the gap and index bounds € and r in the sim-
plest possible case, when X is a projective space and the components of B are
hyperplanes in general position, and ¢ is rational. According to [6], the sharp
bounds of the simplest case are possibly optimal in the general case.

To formulate our main result, we define a sequence of integers (up q)p,g>1
by the recursion uj 4 = ¢, Upy1,9 = Upq(Uupq + 1). Then u, 4 is a polynomial in
q with leading term q2p71, and the following formulas hold:

"o 1 1 u Upg1
== 1A+ uig) ===
Z.Z_; Ltuig g Uptig le[l v q
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The sequence (14w 1)p>1 = (2,3,7,43, ...) is called the Sylvester sequence
in the literature (see [5, 6]), and also the sequence t, ; = 14w, 4 was considered
in [7].

THEOREM 0.1. Let (P4, b,F;) be a log structure such that the (E;);
are general hyperplanes and the coefficients b; belong to the standard set. Let
v=deg(K + B). Let t > 0 be a rational number, with qt € Z for some integer
q=>1.

a) If v > t, then v > t + LU=}

Ult|+d+3,q
b) If v =t, then there exists an integer 1 < r < % such that the linear
system |r(K + B)| is base point free.

Theorem 0.1 is in fact combinatorial, about bounding the representations
of a given rational number as a sum of Egyptian fractions. Any positive rational
number x admits a representation as a sum of Egyptian fractions

1 1
my mg
where m; are positive integers and k is sufficiently large. If z = % is the reduced
form, we can write z = Y ¢ _, %. From a representation with k£ terms we can
construct another one with k£ + 1 terms, using the formula
1 1 1

m  m+1 +m(m+1)'

A canonical representation is provided by the greedy algorithm: if x >
0, let m > 1 be the smallest integer such that max > 1, and replace x by
T — E; if x =0, stop. After each step, the numerator of the reduced fraction
decreases strictly, and therefore the algorithm stops in finite time, and produces
arepresentation of z as a sum of k Egyptian fractions (k < |z|+q{z}if gz € Z).

If k is fixed, it is easy to see that x admits only finitely many represen-
tations with k& Egyptian fractions. The following is an effective version of this
fact, which is a restatement of Theorem 0.1.

THEOREM 0.2. Let 1 < my < --- < my be integers. Let 6 > —1 with
qd € Z for some integer ¢ > 1.
o) IF S8 & <k =0, then Y8 ) b <k — 5 — 40101

Us)+2,q

b) IfF o =k — 6, then lem(my, ..., my) < :(Lfig’}q),
Moreover, equality holds in a) if and only if 6 < 0, ord = g €0,1),(my;); =
(1,...,1, 1+q) orl <§= s—% (ml)l =(1,...,1, 14uyq,...,14+usq). Equality
holds in b) if and only if § = s— 7 Limi)i=(1,..., 1, 14ur g, ..., 14+us g, Ust1,4),

ord=2—1¢and (m;);i =(1,...,1, ltg q(1+q))

r r
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The case k — 0 = 1 is known (Kellogg [5], Curtiss [2], Soundararajan [8]),
with b) replaced by the same bound for my, instead of the least common mul-
tiple. We use the method of Soundararajan [8].

Note that in b), the positive integers mj,...,my are bounded above by
:(Lfi B’}q), a constant depending only on §. Therefore k—§ admits at most finitely

many representations as a sum of k Egyptian fractions.

1. PROOF OF ESTIMATES

LemMA 1.1 ([8]). Consider real numbers 1 > x9 > -+ > x, > 0 and
Y1 >y2 > o0 >y > 0 such that [[,cp xi > [[;<p vi for all k. Then 37, x; >
>, Vi, with equality if and only if z; = y; for all i.

Proof. Soundararajan [8] deduces this lemma from Muirhead’s inequality.
We give here a direct proof, by induction on n. If x; = y; for some i, we may
remove the i-th terms from both n-tuples, and conclude by induction; therefore
we may suppose x; # y; for every i. If x; > y; for all 4, the conclusion is
clear. Suppose x; < y; for some . Let [ = min{i;x; < y;}. Then [ > 1 and
x; > y; for every i < 1. Let t = min{;lj , %} > 1. Define (}); by z} = x;, for
i ¢ {I-1,1}, and 2]_, = ®7, &} = tay. One checks that 2} > ab > ... > ), > 0,
Hle x> Hle z; for all k, and @1 +x; > «)_,+x), hence " x; > > " | @)
Since either ;_; = y;—1 or ) =y, >y &, > Y 1", y; by induction. Therefore

Yomy i > > y;. The claim on equality is clear. O

LEMMA 1.2. Consider real numbers 1 > x9 > -+ > x, > 0 and y; >

Yo = -+ > Y > 0 such that Zizk T > Eizk y; for all k. Then [, z; > [, vi,
with equality if and only if x; = y; for all 7.

Proof. As in the previous lemma we use induction on n, so that we may
suppose x; # y; for every ¢. In particular, z, > y,. If x; > y; for every i, the
claim is clear. So suppose that z; < y; for some i. Let k = max{i;z; < y;}.
Then k < n and x; > y; for every ¢ > k + 1. In particular,

Y+l < Tp+1 < T < Yk-
Define (y;); by i = yi for i ¢ {k,k+1}, v}, = yr — €, )1 = Uks1 + 6,
where € = min{zy+1 — Yk+1,Yx — zx} > 0. The following hold:
oy > >y, >0.
® D isi¥i <D s i, With equality for j # k+ 1. And 30 2 > Y v
for all j.
® YY1 — YkUkt1 = €(Ur — Yrt1 — €) > 0. Therefore [T, v > T, vi-
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By induction, the claim holds for (z;) and (y;), since either z; = ) or
Thy1 = Ypyq- Therefore [T, x; > [, u;, so that [[;; > [[ui. O

For the next proposition we need the following lemma whose proof is
obvious.

LEMMA 1.3. Let n,p,q be positive integers with 1 — 1 < 2 < 1. Then

n <q.

3
Q3

PROPOSITION 1.4. Let s >0,1<r<qbe integers Ifl1<n <--- <my
are integers such that S~ <k—s+¢, then S L<k—s+r——r

i=1 n; q Ust1,q "
Equality holds if and only if n; = 1 for 1 < k—sand n; = Huz;& for
1>k —s.

zln

Proof. We use induction on s to prove that ifl<n <--- < ng are
integers such that k — s + g 5+1q < El 1o <k—s —|— , then n; = 1 for
igk—sandnzszorz>k—s

If s =0, thenk:<zZ 1—<k—|—f so that n; =1 for all 4.
Let s > 1. The right 1nequahty ylelds § < k. Denote m; =1for 1 <i <
k—sandm,—Lf*”fork—s<z§k. We have

k

1 r r i U
1
E — =k—5+-— 7||Tnlzﬂ
m;

U s
i=1 4 Ustle 9

Our hypothesis can be rewritten as

s—kz+zn

=1

1—

us+1,q

The middle term can be represented as a fraction with denominator r [ [, n;.
By Lemma 1.3, u‘%ql’q <r Hle n;. Therefore Hle m; < Hle n;. Then we

can define
j=max{l1 <1<k [[m: <[]}

i>l i>l
Assume j = k, that is my < ng. Then Zl 1 mi < Zf:_f n% (k—1)—

(s—1)+<Z - By induction, n; = m; for every i < k — 1. It follows that n, = my,.

Assuming j < k, we derive a contradiction. Then [], > n; > [1; > m; and
[Lispni <llis,mu for every j < p < k. It follows that - i > T _;m for
every j < p < k. We rewrite this as

Hi ﬁi <p<k)
Lo =1 (G <p<k),



5 On representations by Egyptian fractions 335

with strict 1nequahty for p # k. By Lemma 1.1, ZZ i > Z L. On the

ng
other hand, Y7~} o < k—s+7. By induction, STl L <yt 1 . Therefore
Sk Lok Log contradlctlon O

i=1 n; —
=1 n, =1 m;?’

Remark 1.5. Notice that since 1 + w1 4 and 1 + ug 4 are relatively prime,
if s > 2 equality is achieved only for r = 1.

PROPOSITION 1.6. Let s > O and 1 <r < q be integers. If 1 <ng < --- <
ny are integers such that 3% =k —s+ 7, then lem(ng, ... ny) < =22,

zln
Equality holds if and only if n;, = 1 for 1 < i < k—3s, n; = Huz;ﬂ for
k—s<z<kandnkfﬂ

Proof. We prove by induction on s that if 1 < ng < .- < ny are integers
such that Zl 1 =k—s —I—S and lem(nq,...,ng) > %, then n; = 1 for
1SzSk—s,nz—%ﬂfork—s<i<kandnk:%.

It follows that s > 1. If s = 1, we must have (n;) = (1,...,1,2), so the

Ly

conclusion holds. Suppose s > 2. Let m; = 1for 1 <i < k—s, m,—w

for k—s <i < kand my = =22, Wehavemlg---gmk,Zflm —k—s—l-
2

and Hl | m; = ng

Step 1: We claim that > 5, - > Zpl - for every 1 <1 < k.

Indeed, equality holds for | = 1 Let 1 < l <k-—s+1 Then ), 1 o <
l—l—ZKlm Therefore Z>ln > Ez>lm Let k —s+1 <1 <k. Then
DI gy T + I=00-1)—-(U+s—k— 1) + - By Proposition 1.4,

i=1 n;

-1 1 -1

> S Dt Therefore Zpl n = ZDZ mg

Step 2. By Step 1 and Lemma 1.2, we obtain [], n% > HZ > that is
[L; 7 <11, mi. And equality holds if and only if n; = m; for all 4.

Step 8: Denote L = lem(ng,...,ng). We claim that L% < qu:l n;.

Indeed, ¢q | L and n; | lem(q,n1,...,n;,...,ng) for all i. Fix a prime p.
The power of p in L is the highest power of p occuring in the prime decom-
position of ¢,n1,...,ng. From above, the maximum is attained at least twice.
Therefore L% < qu:l n;.

2

Step 4: We obtain L? < qu:l n; < quzl m; = —%%. Since s > 2, we
obtain L < @ We assumed the opposite inequality, so L = jq. It follows
that Hle n; = Hle m;, so n; = m; for all 2. [

Remark 1.7. Note that equality is achieved if % fork—s<i<k
and % are integers, that is if and only if s =1 and r | ¢, or s =2 and r | 1 +g,
ors>3and r=1.
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Proof of Theorem 0.2. Write § = s—¢, where s = |6]+1 and r = ¢(1—-{d}).
Then k-0 =k —s+ g, and we may apply Propositions 1.4 and 1.6. [

Proof of Theorem 0.1. Order the coefficients of Bas 0 <b; <--- <bp <

1 =1bgy1 = - = bgge. Let by = 1—mii, for 1 < ¢ < k. Then Zlemii =
k—(d—c+14wv). Denote r = lem(m;). By Theorem 0.2, r < %.

Then rB is a divisor with integer coefficients, and since the ambient space is
P¢, the semipositive Cartier divisor 7(K + B) is base point free. [
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