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INTRODUCTION

Let (X,B) be a log canonical model with standard coe�cients. That is X
is a normal projective variety, B =

∑
i biEi is a Q-Weil divisor with coe�cients

bi belonging to the standard set {1− 1
m ;m ∈ Z≥1} ∪ {1}, KX +B is Q-ample

and (X,B) has at most log canonical singularities. The normalized volume of
(X,B) is de�ned as v = d

√
(KX +B)d, where d = dimX. By [1, 6, 3, 4], the

volume v belongs to a DCC set, and there exists a positive integer r, bounded
above only in terms of d and v, such that the linear system |r(KX +B)| is base
point free (in particular, r(KX + B) is a Cartier divisor). The DCC property
means that if t is a real number and v > t, then v ≥ t + ε, where ε depends
only on d and t.

In this note, we estimate the gap and index bounds ε and r in the sim-
plest possible case, when X is a projective space and the components of B are
hyperplanes in general position, and t is rational. According to [6], the sharp
bounds of the simplest case are possibly optimal in the general case.

To formulate our main result, we de�ne a sequence of integers (up,q)p,q≥1
by the recursion u1,q = q, up+1,q = up,q(up,q + 1). Then up,q is a polynomial in

q with leading term q2
p−1

, and the following formulas hold:

p∑
i=1

1

1 + ui,q
=

1

q
− 1

up+1,q
,

p∏
i=1

(1 + ui,q) =
up+1,q

q
.
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The sequence (1+up,1)p≥1 = (2, 3, 7, 43, ...) is called the Sylvester sequence
in the literature (see [5, 6]), and also the sequence tp,q = 1+up,q was considered
in [7].

Theorem 0.1. Let (Pd,
∑

i biEi) be a log structure such that the (Ei)i
are general hyperplanes and the coe�cients bi belong to the standard set. Let

v = deg(K +B). Let t ≥ 0 be a rational number, with qt ∈ Z for some integer

q ≥ 1.

a) If v > t, then v ≥ t+ q(1−{t})
ubtc+d+3,q

.

b) If v = t, then there exists an integer 1 ≤ r ≤ ubtc+d+2,q

q(1−{t}) such that the linear

system |r(K +B)| is base point free.

Theorem 0.1 is in fact combinatorial, about bounding the representations
of a given rational number as a sum of Egyptian fractions. Any positive rational
number x admits a representation as a sum of Egyptian fractions

x =
1

m1
+ · · ·+ 1

mk
,

where mi are positive integers and k is su�ciently large. If x = p
q is the reduced

form, we can write x =
∑p

i=1
1
q . From a representation with k terms we can

construct another one with k + 1 terms, using the formula

1

m
=

1

m+ 1
+

1

m(m+ 1)
.

A canonical representation is provided by the greedy algorithm: if x >
0, let m ≥ 1 be the smallest integer such that mx ≥ 1, and replace x by
x − 1

m ; if x = 0, stop. After each step, the numerator of the reduced fraction
decreases strictly, and therefore the algorithm stops in �nite time, and produces
a representation of x as a sum of k Egyptian fractions (k ≤ bxc+q{x} if qx ∈ Z).

If k is �xed, it is easy to see that x admits only �nitely many represen-
tations with k Egyptian fractions. The following is an e�ective version of this
fact, which is a restatement of Theorem 0.1.

Theorem 0.2. Let 1 ≤ m1 ≤ · · · ≤ mk be integers. Let δ ≥ −1 with

qδ ∈ Z for some integer q ≥ 1.

a) If
∑k

i=1
1
mi

< k − δ, then
∑k

i=1
1
mi
≤ k − δ − q(1−{δ})

ubδc+2,q
.

b) If
∑k

i=1
1
mi

= k − δ, then lcm(m1, . . . ,mk) ≤
ubδc+1,q

q(1−{δ}) .

Moreover, equality holds in a) if and only if δ < 0, or δ = r
q ∈ [0, 1), (mi)i =

(1, . . . , 1, 1+qr ), or 1 ≤ δ = s− 1
q , (mi)i = (1, . . . , 1, 1+u1,q, . . . , 1+us,q). Equality

holds in b) if and only if δ = s− 1
q , (mi)i = (1, . . . , 1, 1+u1,q, . . . , 1+us,q, us+1,q),

or δ = 2− r
q and (mi)i = (1, . . . , 1, 1+qr , q(1+q)r ).
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The case k− δ = 1 is known (Kellogg [5], Curtiss [2], Soundararajan [8]),
with b) replaced by the same bound for mk instead of the least common mul-
tiple. We use the method of Soundararajan [8].

Note that in b), the positive integers m1, . . . ,mk are bounded above by
ubδc+1,q

q(1−{δ}) , a constant depending only on δ. Therefore k−δ admits at most �nitely
many representations as a sum of k Egyptian fractions.

1. PROOF OF ESTIMATES

Lemma 1.1 ([8]). Consider real numbers x1 ≥ x2 ≥ · · · ≥ xn > 0 and

y1 ≥ y2 ≥ · · · ≥ yn > 0 such that
∏
i≤k xi ≥

∏
i≤k yi for all k. Then

∑
i xi ≥∑

i yi, with equality if and only if xi = yi for all i.

Proof. Soundararajan [8] deduces this lemma from Muirhead's inequality.
We give here a direct proof, by induction on n. If xi = yi for some i, we may
remove the i-th terms from both n-tuples, and conclude by induction; therefore
we may suppose xi 6= yi for every i. If xi > yi for all i, the conclusion is
clear. Suppose xi < yi for some i. Let l = min{i;xi < yi}. Then l > 1 and
xi > yi for every i < l. Let t = min{xl−1

yl−1
, ylxl } > 1. De�ne (x′i)i by x

′
i = xi, for

i /∈ {l−1, l}, and x′l−1 =
xl−1

t , x′l = txl. One checks that x
′
1 ≥ x′2 ≥ ... ≥ x′n > 0,∏k

i=1 x
′
i ≥

∏k
i=1 xi for all k, and xl−1+xl > x′l−1+x

′
l, hence

∑n
i=1 xi >

∑n
i=1 x

′
i.

Since either x′l−1 = yl−1 or x
′
l = yl,

∑n
i=1 x

′
i ≥

∑n
i=1 yi by induction. Therefore∑n

i=1 xi >
∑n

i=1 yi. The claim on equality is clear. �

Lemma 1.2. Consider real numbers x1 ≥ x2 ≥ · · · ≥ xn > 0 and y1 ≥
y2 ≥ · · · ≥ yn > 0 such that

∑
i≥k xi ≥

∑
i≥k yi for all k. Then

∏
i xi ≥

∏
i yi,

with equality if and only if xi = yi for all i.

Proof. As in the previous lemma we use induction on n, so that we may
suppose xi 6= yi for every i. In particular, xn > yn. If xi > yi for every i, the
claim is clear. So suppose that xi < yi for some i. Let k = max{i;xi < yi}.
Then k < n and xi > yi for every i ≥ k + 1. In particular,

yk+1 < xk+1 ≤ xk < yk.

De�ne (y′i)i by y
′
i = yi for i /∈ {k, k + 1}, y′k = yk − ε, y′k+1 = yk+1 + ε,

where ε = min{xk+1 − yk+1, yk − xk} > 0. The following hold:

• y′1 ≥ · · · ≥ y′n > 0.

•
∑

i≥j yi ≤
∑

i≥j y
′
i, with equality for j 6= k + 1. And

∑
i≥j xi ≥

∑
i≥j y

′
i

for all j.

• y′ky′k+1 − ykyk+1 = ε(yk − yk+1 − ε) > 0. Therefore
∏
i y
′
i >

∏
i yi.
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By induction, the claim holds for (xi) and (y′i), since either xk = y′k or
xk+1 = y′k+1. Therefore

∏
i xi ≥

∏
i y
′
i, so that

∏
i xi >

∏
i yi. �

For the next proposition we need the following lemma whose proof is
obvious.

Lemma 1.3. Let n, p, q be positive integers with 1 − 1
n ≤

p
q < 1. Then

n ≤ q.

Proposition 1.4. Let s ≥ 0, 1 ≤ r ≤ q be integers. If 1 ≤ n1 ≤ · · · ≤ nk
are integers such that

∑k
i=1

1
ni
< k − s+ r

q , then
∑k

i=1
1
ni
≤ k − s+ r

q −
r

us+1,q
.

Equality holds if and only if ni = 1 for i ≤ k − s and ni =
1+ui−k+s,q

r for

i > k − s.

Proof. We use induction on s to prove that if 1 ≤ n1 ≤ · · · ≤ nk are
integers such that k − s + r

q −
r

us+1,q
≤

∑k
i=1

1
ni
< k − s + r

q , then ni = 1 for

i ≤ k − s and ni =
1+ui−k+s,q

r for i > k − s.
If s = 0, then k ≤

∑k
i=1

1
ni
< k + r

q , so that ni = 1 for all i.

Let s ≥ 1. The right inequality yields s ≤ k. Denote mi = 1 for 1 ≤ i ≤
k − s and mi =

1+ui−k+s,q
r for k − s < i ≤ k. We have

k∑
i=1

1

mi
= k − s+ r

q
− r

us+1,q
,

k∏
i=1

mi =
us+1,q

rsq
.

Our hypothesis can be rewritten as

1− q

us+1,q
≤ q

r
(s− k +

k∑
i=1

1

ni
) < 1.

The middle term can be represented as a fraction with denominator r
∏
i ni.

By Lemma 1.3,
us+1,q

q ≤ r
∏k
i=1 ni. Therefore

∏k
i=1mi ≤

∏k
i=1 ni. Then we

can de�ne

j = max{1 ≤ l ≤ k;
∏
i≥l

mi ≤
∏
i≥l

ni}.

Assume j = k, that is mk ≤ nk. Then
∑k−1

i=1
1
mi
≤

∑k−1
i=1

1
ni
< (k − 1) −

(s−1)+ r
q . By induction, ni = mi for every i ≤ k−1. It follows that nk = mk.

Assuming j < k, we derive a contradiction. Then
∏
i≥j ni ≥

∏
i≥jmi and∏

i≥p ni <
∏
i≥pmi for every j < p ≤ k. It follows that

∏p
i=j ni >

∏p
i=jmi for

every j ≤ p < k. We rewrite this as

p∏
i=j

1

mi
≥

p∏
i=j

1

ni
(j ≤ p ≤ k),
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with strict inequality for p 6= k. By Lemma 1.1,
∑k

i=j
1
mi

>
∑k

i=j
1
ni
. On the

other hand,
∑j−1

i=1
1
ni
< k−s+ r

q . By induction,
∑j−1

i=1
1
ni
≤

∑j−1
i=1

1
mi

. Therefore∑k
i=1

1
ni
<

∑k
i=1

1
mi

, a contradiction. �

Remark 1.5. Notice that since 1 + u1,q and 1 + u2,q are relatively prime,
if s ≥ 2 equality is achieved only for r = 1.

Proposition 1.6. Let s ≥ 0 and 1 ≤ r ≤ q be integers. If 1 ≤ n2 ≤ · · · ≤
nk are integers such that

∑k
i=1

1
ni

= k − s + r
q , then lcm(n1, . . . , nk) ≤ us,q

r .

Equality holds if and only if ni = 1 for 1 ≤ i ≤ k − s, ni =
1+ui−k+s,q

r for

k − s < i < k and nk =
us,q
r .

Proof. We prove by induction on s that if 1 ≤ n2 ≤ · · · ≤ nk are integers
such that

∑k
i=1

1
ni

= k − s + r
q and lcm(n1, . . . , nk) ≥ us,q

r , then ni = 1 for

1 ≤ i ≤ k − s, ni =
1+ui−k+s,q

r for k − s < i < k and nk =
us,q
r .

It follows that s ≥ 1. If s = 1, we must have (ni) = (1, . . . , 1, qr ), so the

conclusion holds. Suppose s ≥ 2. Let mi = 1 for 1 ≤ i ≤ k−s, mi =
1+ui−k+s,q

r

for k−s < i < k and mk =
us,q
r . We have m1 ≤ · · · ≤ mk,

∑k
i=1

1
mi

= k−s+ r
q

and
∏k
i=1mi =

u2s,q
rsq .

Step 1: We claim that
∑

i≥l
1
ni
≥

∑
i≥l

1
mi

for every 1 ≤ l ≤ k.
Indeed, equality holds for l = 1. Let 1 < l ≤ k − s + 1. Then

∑
i<l

1
ni
≤

l − 1 =
∑

i<l
1
mi

. Therefore
∑

i≥l
1
ni
≥

∑
i≥l

1
mi

. Let k − s + 1 < l ≤ k. Then∑l−1
i=1

1
ni

< k − s + r
q = (l − 1) − (l + s − k − 1) + r

q . By Proposition 1.4,∑l−1
i=1

1
ni
≤

∑l−1
i=1

1
mi

. Therefore
∑

i≥l
1
ni
≥

∑
i≥l

1
mi

.

Step 2: By Step 1 and Lemma 1.2, we obtain
∏
i

1
ni
≥

∏
i

1
mi

, that is∏
i ni ≤

∏
imi. And equality holds if and only if ni = mi for all i.

Step 3: Denote L = lcm(n1, . . . , nk). We claim that L2 ≤ q
∏k
i=1 ni.

Indeed, q | L and ni | lcm(q, n1, . . . , n̂i, . . . , nk) for all i. Fix a prime p.
The power of p in L is the highest power of p occuring in the prime decom-
position of q, n1, . . . , nk. From above, the maximum is attained at least twice.
Therefore L2 ≤ q

∏k
i=1 ni.

Step 4: We obtain L2 ≤ q
∏k
i=1 ni ≤ q

∏k
i=1mi =

u2s,q
rs . Since s ≥ 2, we

obtain L ≤ us,q
r . We assumed the opposite inequality, so L =

us,q
r . It follows

that
∏k
i=1 ni =

∏k
i=1mi, so ni = mi for all i. �

Remark 1.7. Note that equality is achieved if
1+ui−k+s,q

r for k− s < i < k
and

us,q
r are integers, that is if and only if s = 1 and r | q, or s = 2 and r | 1+q,

or s ≥ 3 and r = 1.
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Proof of Theorem 0.2.Write δ = s− r
q , where s = bδc+1 and r = q(1−{δ}).

Then k − δ = k − s+ r
q , and we may apply Propositions 1.4 and 1.6. �

Proof of Theorem 0.1. Order the coe�cients of B as 0 ≤ b1 ≤ · · · ≤ bk <
1 = bk+1 = · · · = bk+c. Let bi = 1 − 1

mi
, for 1 ≤ i ≤ k. Then

∑k
i=1

1
mi

=

k − (d − c + 1 + v). Denote r = lcm(mi). By Theorem 0.2, r ≤ ubtc+d−c+2,q

q(1−{t}) .
Then rB is a divisor with integer coe�cients, and since the ambient space is
Pd, the semipositive Cartier divisor r(K +B) is base point free. �
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