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1. INTRODUCTION

Let k be any field of characteristic # 3 containing a primitive third root of
unity w, respectively a field of characteristic # 2 containing a primitive fourth
root of unity 1.

We shall work over k unless otherwise stated.

One of the standard normal forms for the function fields of elliptic curves
is the following normal form, defining an affine plane curve with equation

Ey = {(z,y)ly* = x(z — 1)(z = \)}.
The curve E) is said to be harmonic if the cross ratio A € {—1,2,1/2},
and equianharmonic if ) is a primitive 6-th root of 1, A € {n,n7'}, n = —w.
These curves admit automorphisms of respective orders 4, 6, having a fixed
point.
In the harmonic case if we take the above normal form with A = —1, the
automorphism of order 4 is given by
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_ o 94t (zy) = (—x,ay). _
In the equianharmonic case it is easier to see the automorphism gg of order

6 by changing the normal form to

E, 2 {(z,y)ly* = 2* — 1},

o 96 : (z,y) = (wz, —y), ,
while using the Fermat normal form things are more complicated,

E, = {(z,y)ly* = 2* — 1},

so that

and

o 96 : (z,y) = (1/z,ny/z). .
Using instead the normal form where E, is birational to the singular plane

By = {(z,y)ly’ = 2*(z — 1)},

the automorphism takes the easier form
g6 = (z,y) = (2, 1Y),

and one sees immediately that the field of gg-invariant rational functions is the
field k(x).

Let now (z : y : 2) be homogeneous coordinates on P2, let

E6) :={(z:y:2)[y°z =2 - 23} CP?

be the projective model of the elliptic curve E,, on which the automorphism
ge acts by

o gs(z:y:2)=(wz:—y:2)
and similarly let

B4) ={(z:y:2)|y*z = z(2* — 2?)} C P?,
be the projective model of the elliptic curve E_1, on which the automorphism
g4 acts by
ga(@:y:z) = (—z:iy: 2).
When £k is the complex number field C, we have
(E(6)796) = (Tw’ *w) ’

where T,, = C/(Z + wZ) is the elliptic curve with period w, and —w is the
automorphism induced by multiplication by —w on C. We have such an iso-
morphism because gg acts on the holomorphic 1-form dx/y via multiplication
by —w.

Similarly

o (BE4),94) = (T},4) . .

Let now (C, g) be either (E(6), gs) or (E(4),g4), and let g act diagonally

on the Cartesian product C". We set

Zn(4) := B(4)", Z,(6) := E(6)".
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Definition 1.1. We define the Ueno-type manifold X, ¢ of dimension
n to be the minimal resolution of singularities of the normal variety Y, ¢ :=
Z,(6)/g6, while we reserve the name of Ueno-Campana manifold for the
Ueno-type manifold X, 4 of dimension n, which is the minimal resolution of
singularities of the normal variety Y, 4 := Z,,(4)/9a.

Observe that the quotient n-fold
Yn,6 = Zn(6)/96, n > 27

has finitely many singular points of type (1,1,1,---,1)/6, of type (1,1,1,--- ,1)/3
and of type (1,1,1,---,1)/2, which are all k-rational. X, ¢ is the blow up of
Y, 6 at the maximal ideals of these singular points: it is a smooth projective
n-fold defined over k.

It is classical that these manifolds are rational for n < 2, and the argu-
ments of Ueno [12] show that:

e the Kodaira dimension of X, ¢ is 0 if n > 6 and —oo if n < 5,
e the Kodaira dimension of X, 4 is 0 if n > 4 and —oo if n < 3.

Much later Kollar and Larsen |7| showed a more general result: if Z has
trivial canonical bundle and a finite group G acts on Z, either the quotient
Z/G has Kodaira dimension 0, or it is uniruled.

Ueno asked about separable unirationality of the manifold X34, and Ogu-
iso asked the similar question for X, ¢, 3 <n <5.

Interest for these open questions was revived by Campana, who showed
[1] that X3 4 is rationally connected and asked about rationality of X3 4; unira-
tionality was proven by Catanese, Oguiso and Truong in [2|, and later Colliot-
Thélene proved rationality in |3| using the conic bundle description of |2].

In the case of the Ueno manifolds, Oguiso and Truong proved in [5] that
X3 is rational.

The main result of the present paper is the following.

THEOREM 1.2. X, ¢ is unirational.

Our description can be useful to attack the further questions:
Question 1.3. Is X4 ¢ rational?

Question 1.4. Is X5 ¢ unirational? Is X5 ¢ rational?

The rebirth of interest in the rationality of these manifolds stems also
from complex dynamics and entropy, since these manifolds admit an action by
GL(n,Z) (and indeed by GL(n, R,,), where R, is the cyclotomic ring Z[i],
resp. Zwl).

In fact, GL(n,Z) and GL(n, R,,) act on the product E(m)"; and, since
we divide by a central automorphism, the action first of all descends to the
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quotient, and then it extends biregularly to X, ,, since the resolution is just
obtained by blowing up the singular points of the quotient.

In the case of the Ueno manifolds, Oguiso and Truong proved in [5] that
X3 is rational. They not only proved the rationality of X3¢, but also showed
that in this way one gets a rational variety with a primitive automorphism of
positive entropy. Here, according to a concept introduced by De-Qi-Zhang (see
[13]), an automorphism f : X — X is said to be birationally inprimitive if there
is a nontrivial rational fibration 7 : X — Y, and a birational automorphism
¢ of Y such that mo f = ¢ o w. De-Qi-Zhang showed that if a threefold X
admits a primitive birational automorphism of positive entropy, then either X
is a torus, or it is a Q-Calabi-Yau manifold, or X is rationally connected.

Question 1.5. Does a similar result hold for X467

In another vein, our specific unirationality result lends itself to more gen-
eral questions. To formulate these, we need to briefly describe the steps of the
proof, and the analogy with the case of X3 4.

The first step of the proof is computational, and consists in finding a
minimal system of generators for the field of invariant rational functions on
E}.: here the cases of X34 and X4 are treated quite similarly. For instance,
in the case of X3¢ one finds three generators, hence these three elements are
algebraically independent and the variety is k-rational.

In the case of X34 we found 4 generators t1,t2,u1,u2 and one equation,
which can be written as a diagonal quadratic form of the form

u% — A(tl,tg)u% — B(tl,tg) =0.

We thus got, birationally, a conic bundle over the projective plane, and
the method of [2] consisted in showing that the conic bundle has a bisection Z
which is rational: then the pull back of the conic bundle to Z is a conic bundle
with a section hence it is rational.

Colliot-Thélene proved that the conic bundle does not have a section: in
fact, if K is the function field of the plane, A, B € K and to such a diagonal
conic over K one associates a central algebra over K, M4 g, generated by
1,4, 4,ij = —ji and defined by i? = A, j2 = B.

By a general theorem the algebra is a division algebra if and only if
the conic does not have any K-rational point (in the contrary case Mg p =
M (2,2, K)). Moreover, two such conics are K-isomorphic if and only if the cor-
responding algebras are isomorphic (they yield the same element of the Brauer
group).

Colliot-Thélene proved also that in this case the conic is isomorphic to
one of the form

u% —i—tlu% +to =1,
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hence the function field is generated by t1,u1,u2 and X34 is rational.
To prove here the unirationality of X4 , swe how that it is birational to
a diagonal cubic surface S over the function field K := k(t1,2)

A(ty, o) (uf — 1) + B(t1, t2)(ui — 1) + C(ty, ta)(uj — 1) = 0.

The surface S admits therefore 27 rational points (just let u; be a cubic
root of 1).

Then, by a theorem of B. Segre, it follows that S is unirational; we further
observe here that the degree of unirationality is at most 6, and we conjecture
it to be at most 2.

Using other classical results of B. Segre, Swinnerton-Dyer and Colliot-
Thélene on cubic surfaces and on diagonal cubic surfaces we show finally that
the surface S is K- unirational, but it is not K- rational.

We ask whether it is possible, like it was done for the conic bundle case,
to change the cubic surface birationally and obtain equations which imply the
rationality of X4¢.

Observe that the coefficients A(ty,t2), B(t1,t2), C(t1,t2) correspond to a
very special system of plane cubics, yielding the Del Pezzo surface of degree 2
which is the double cover of P? branched over a complete quadrilateral.

In particular, in the course of our proof, we show that our variety X, is
birational to a hypersurface X of bidegree (3,3) inside P? x P3.

Viewing X as a cubic surface S over the function field K := k(P?) =
k(t1,t2) it follows, by the cited theorem of Beniamino Segre, that X is K-
unirational if the surface S admits a K-rational point, and that there are many
such surfaces which are K-rational (note that then X is k-rational).

Question 1.6. Let X be a very general hypersurface of bidegree (3,3)
inside P? x P3.
Is X unirational? Is X rational?

2. Proof of Theorem (1.2)

Here n =4 and we set Z := Z4(6) and X := X456, g := g6-

We write Z := Z4(6) = C1 x Cy x C3 x C4, and let g := gg be the diagonal
action g(1) x g(2) x g(3) x g(4), where the curves (C;,g(i) (i = 1,2,3,4) are
birationally equivalent to (Ej, ge)-

Hence, we view C; as birational to the singular curve C? in the affine
space A? = Spec k[X;,Y;], and g(i) as the automorphism of C? defined by

O ={(Xy, V)Y = XF(X; — 1)}, giYi = —wYi, giXi=X; .
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The affine coordinate ring k[C?] of C? is
RICT] = k[XG, i)/ (V] = X (Xi = 1)) .

We set 2; := X;mod (Y,® — X2(X; — 1)), y; := Yimod (Y} — X2(X; — 1)).
Then y] (0 < j < 5) form a free k[x;]-basis of k[C?] over a polynomial ring
k[x;] and therefore 27y! (0 < j <5, 0 < m) form a free k-basis of k[C?].

Then (Z, g) is birationally equivalent to the affine fourfold

V= C% x CY x xCY x CY
with automorphism g = (g(1), g(2),9(3),g(4)), and with affine coordinate ring
E[V] = k[C7] ® k[C9] ® k[C3] @ k[CY] .

The subring k[z1,z2, 23, z4] of k[V] is a polynomial ring with four free
variables x1, xa, w3, x4 and k[V] is a free k[x1,x9,x3, z4]-module with free
basis

vty ys Pyt where 0 <my; <5
The rational function field k(Z) of Z is
k(Z) = k(V) = k(z1, 22,23, T4, Y1, Y2, Y3, Y4) -
In both k[V] and k(Z) = k(V'), we have

(2.1) yp =i (z;i— 1),
(2~2) g*yi = —Wy; , g*u’Uz’ =T .

Here and hereafter each equation shall be viewed as an equation in k(V).
The affine coordinate ring V/(g) is k[V]9", the invariant subring of k[V].
Thus, by (2.2),

4
(2.3) VI = klw1, o, w3, wa][y7" v 245y Y mi = 0 (mod 6)] .
=1
If 327, m; = 6k, then

myma s ma G)k(@)mg(ﬁ)mg(%)wm:( 2($171))k(%)m2(%)m3(%)mz&.

Y1 Y2 Y3 Yy =Y T
b ! Y1 Y1 Y1 ! Y1 Y1 Y1
Note that k(X) = Q(k[V]9"), the field of fractions of k[V]9".
Hence,
LemMA 2.1. k(X) = k(x1, 22,23, 24, t3 := %,tg = z—f,u = z—‘l*) with
relations precisely
2
(2 — 1 .
10 = mz(xi) , where 1 =2,3,4.

x%(xl -1)
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Proof. We only need to observe that the three relations above are all the
relations. Since [k(V) : k(x1, 2,73, 24)] = 6* and [k(V) : k(X)] = 6, it follows
that

[k(X) : k(x1,$2,$37x4)] = 63 .

Thus, the equation above for ¢ = 2 is the minimal equation of to over
k(z1, 22,23, 24), the equation above for ¢ = 3 is the minimal equation of t3 over
k(x1, o, x3,24)(t2) and the equation above for i = 4 is the minimal equation
of ty over k(x1,xe,xs,x4)(te, t3), as desired. [

Define:

I I X1
(2.4) Uy i= 13, uz =ty uy = —t5 .
To 25 T3 3 x4 4

Then

LEMMA 2.2. k(X) = k(z1,ug, us, uq, ta, ts, t4) with relations precisely
Uj T .
—- = -—5————, where:=2,3,4.
3 u(r—1)+1

Proof. By the definition

x
u; = 1t§’ ,
Ty
the equation in Lemma (5.1) is
1
2ol
Tr1 — 1
Thus,
zi=ut(r; —1)+1.
Therefore,

k(X) = k(l‘l, uz, u3, U4, t27 t37 t4)
with relations precisely

ui X 2 uf(z1—1)+1"

Dividing both sides by ¢} # 0 in k(V), we complete the proof. [
LEMMA 2.3. k(X) = k(ug, us, uq, ta, t3, t4) with relations precisely
’U/Q—t% . U3—t§ . U4—ti

3 3 - .3 :

Proof. The equations in Lemma (2.2) are linear with respect to z;.
In fact, by clearing the denominator

3

wi(xy — 1) +u; = tg’xl ,
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that

(2.5)

(v

is (by adding —t3x1 + u — u; to both sides),
(u3 — )z = ud — u; .

Observe that u3 — u; # 0 in k(V)). Thus, this is equivalent to

This implies the result. 0O

Observe that u; # 0 in k£(V) and define:

1 to 1 ts 1 (7
Vg im — , Wy = — , V3= — , W3 = — , Vg = , Wy i=— — .
uz U2 ug us Uy U4

LEMMA 2.4. k(X) = k(ve, v3,v4, wa, w3, wq) with relations precisely
—D)(wi —1) = (v — 1) (w3 — 1), (v —1)(ws —1) = (v — 1)(wi —1) .

Proof. By the definition, v; = 1/u;, w; = t;/u; and u; = 1/v;, t; = wiu; =

w; Jvg, it follows that

new

k(UQ,Ug,U4,t2,t3,t4) = k(vg,vg,v4,w2,w3,w4) .

Observe that

u; — t3 _ (1/u;)? — (t;/u;)? _ v? — w3} 14 1—w}
u?—ui 1—(1/ui)2 1-— fUZQ 1—2}1.2 )

Hence, the precise relations in Lemma (2.3) are rewritten in terms of the

variables as

l—wg_l—wg_l—wi’

1—03 N 1—v§ N 1—1& ’
By clearing the denominators, we obtain the precise relations that we

claimed. O

(2.6)

Observe that v; — 1 # 0 in k(V') and define:
V3 — 1 Vg4 — 1

, S4 1= .
Vo — 1 Vo — 1

S3 —

LEMMA 2.5. k(X) = k(ss3, s4, w2, w3, wy) with relations precisely

(53 — s4)s354(w3 — 1) — (53 — 1)sg(wi — 1) + (54 — 1)s4(wi —1) =0 .
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Proof. The defining equation of s; is linear in both s; and wv;, hence it
follows that

k(X) = k(v2, v3, va, wa, w3, wa) = k(v2, 53, 4, w2, w3, wa) -
Since
UZ‘—i-l:(Ui—l)—i-Q , Uiz—l: (Ui_1)(Ui+1):3i<v2_1)(3i(v2_1)+2)
and v2 — 1 # 0 in k(V), the relations in Lemma (2.4) are precisely
s3(s3(vy — 1) +2)(ws — 1) = (vy + 1)(wi — 1),
s4(s4(vy — 1) +2)(ws — 1) = (vy + 1)(wi — 1) .
Both are linear in terms of vy, more explicitly, these two equations are
equivalent to
(s2(ws — 1) — (w3 — 1)) (v — 1) = —2s3(wi — 1) + 2(w3 — 1) .
(s1(w3 — 1) = (wi = 1))(v2 = 1) = =2s4(w3 — 1) + 2(w] ~ 1) .
Observe that
—s; (wh —1) + (w} — 1) #0
in k(V) and recall that k is not of characteristic 2. Then these two equations
are equivalent to
vo—1  —sy(wi—1)+ (wi—1)  —sy(wj —1)+ (wf-1)
2 sjwi—1) = (wi—1)  sj(wd—1)— (wi-1)

Thus,

k(X) = k(337547w27w37w4) s

with the above precise relation, that is (by taking the inverse and multiply
by —1)
siwi —1) — (wi—1)  sj(ws —1) — (wj—1)
s3(w§ —1) — (w§ — 1) sg(wi —1) — (wi~-1)°
Observe that
si(wy —1) = (w) —1) = (57 — si) (w3 — 1) + (si(w3 — 1) = (w] — 1)) .

i

Thus, the equation above is equivalent to

(F-s)wi—1) (5 s)(wi-1)

s3(wy — 1) — (w§ — 1) sa(wy —1) — (wi — 1)

whence, equivalent to

+1,

(s3 — s3) _ (s — s4)
s3(wy —1) = (w§ —1)  sa(wi —1) = (wi —1)~




346 Fabrizio Catanese, Keiji Oguiso and Alessandro Verra 10

by wi—1 # 0in k(V). By clearing denominators, the last equation is equivalent
to

(53 = s3)(sa(w3 — 1) = (wi = 1)) = (5] — sa)(s3(w3 — 1) — (w5 — 1)) =0,

which is nothing but the equation claimed (just make the equation as an equa-
tion with respect to w? —1). O

To proceed with the proof of Theorem (1.2), consider the affine hypersur-
face H defined by

(53 — 54)s354(w3 — 1) — (s3 — 1)s3(wi — 1) + (54 — 1)54(10% -1)=0

in the affine space A% with affine coordinates (s3, s4, w2, w3, wy).
Since X is of dimension 4, Lemma (2.5) means that X is birational to H.

Remark 2.1. The projection 7 : H — A? defined by
(83, 84, w2, w3, wy) = (83, 84)

makes H a fibration of cubic surfaces over the affine space A? with affine coor-
dinates (s3, s4).

Let 1 be the generic point of A? and let H,, be the generic fiber. Then the
projective completion Fn of Hy in P‘f] is a smooth cubic surface S over the field
k(ss3,s4) (by the Jacobian criterion and the fact that & is not of characteristic
3) with a rational point (1,1,1) € H,(k(s3,s4)).

The above remark shows that it is sufficient to show that H,, is unirational
over K := k(s3,s4) (i.e., there is a dominant rational map IP)% — — — H, over
k(ss3,s4)): because then, k(ss3, s4) being purely transcendental, this means that
there is a dominant rational map ]P’i — — — X over k, that is, X is unirational
over k.

The K-unirationality of S = H, follows by a theorem of Segre (see [8], see
also the extension to higher dimensional cubic hypersurfaces done by Kolldr in
[6], Theorem 1), asserting that a smooth cubic surface with a K-rational point
is K-unirational.

In the next section we shall give an upper bound of the K-unirationality
degree, and show that S is not K-rational.

3. DIAGONAL CUBIC SURFACES AND THEIR RATIONALITY

We begin this section recalling several known results, which immediately
imply the claimed assertion that our cubic surface S is not K-rational.

Let S be a nonsingular cubic surface defined over a field K: then Swinner-
ton-Dyer completed earlier results by B. Segre in [10] showing
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THEOREM 3.1 (Swinnerton-Dyer [11]). A smooth cubic surface S defined
over a field K is birational to P if and only if

1) it has a K-rational point
and

2) S contains a set X, of pairwise disjoint lines which is defined over
K (i.e., invariant under the Galois group Gal(K,K)) and has cardinality n €
(2,3, 6.

If one drops the second condition, then one has

THEOREM 3.2 (Segre [9]). A smooth cubic surface S defined over a field
K is K-unirational if and only it has a K-rational point.

Recall now that a diagonal cubic surface S is a cubic surface
4
ScPy, S= {(901,9627903,$4)’Zai$? = 0},
i=1

and one says that S is defined over K if a; € K,Vi=1,...,4.

Observe that, in the case where the field K is moreover algebraically
closed, then such a diagonal cubic surface S is projectively equivalent to the
Fermat cubic surface. For diagonal cubic surfaces it is easy to find the lines
lying on it, moreover they have a special geometry; recall for this the definition
of Eckardt points: these are the points P where the tangent plane intersects
the surface S in a set of three lines passing through P.

PROPOSITION 3.3. Let K be a field of characteristic # 2,3 and containing

a primitive third root of unity w. Let S be, as above, a diagonal cubic surface
defined over K (i.e., a; € K ).

4
S C PS ) S = {(.’1717.’13271'37334)‘ Zalﬂg? = 0}
=1
Then the 27 lines of S, defined over a field extension of K, are the three
sets of 9 lines obtained, for each partition {1,2,3,4} = {i,j} U {h,k}, by the

equations
3 3 3
a;rj + a;x; = apty + apxy =0,
i.e.,

3 3
€T; = )\z'jsz Tp = )\hkxk,ai)\,—j +a; =0, ah)\hk + ap = 0.

Moreover, the surface possesses exactly 18 Eckardt points, defined on the
algebraic closure of K by the equations v; = x; = 0,1 <14,5 < 4.

Proof. The first assertion being clear, we prove the second assertion. Since
the coeflicients a; are not zero, due to the smoothness of S, the complete
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intersection I" of S with the Hessian surface Hg = {z1x2x324 = 0} of S consists
of 4 smooth plane cubics, which intersect in the nine points x; = x; = 0, ahxfb—i—
akxi = 0, which are therefore the singular points of I'. Notice that an Eckardt
point must be a singular point of I'; conversely, at one such point the tangent
plane is the plane
{ylynana}, + yraxai = 0}.

Since ahxz + akx% = 0, the intersection of S with the tangent plane is the
union of the three lines

{ylyszn = ynwr, aiyy + apyp =0}, O

Remark 3.1. The maximum number of Eckardt points that a smooth cubic
surface can have is exactly 18.

This can be shown using the model of the cubic surface as the blow-up of
the plane in six points not lying on a conic. The analysis using the parabolic
curve I'; which is a complete intersection of type (3,3), hence has arithmetic
genus equal to 19, and degree equal to 12, seems more complicated.

THEOREM 3.4. Let K be a field of characteristic # 2,3 and containing a
primitive third root of unity w. And let S be a smooth diagonal cubic surface
defined over K and with equation

S = {(z1, 22, 23, xa) a1 (27 — 23) + az(23 — #3) + az(a3 — ) = 0}.
Then there is a dominant rational map IP’%( — S of degree at most 6.

Proof. Observe first of all that S is smooth if and only if ajazas(a; +az +
az) # 0.

Secondly, S contains the 27 points whose coordinates are cubic roots of
1. As we have shown, these are not Eckardt points.

Assume now that P € S is a K-rational point, so that the curve

Cp=5n (TPS)

intersection of the surface with the tangent plane in P is defined over K, and
has a singular point at P.

Case 1): Cp is irreducible.

Then Cp is birational to }P’}(, and we have a birational parametrization
A € K — Py € Cp. Observe that the plane (TpS) meets the lines contained in
S in a finite set, hence through the general point Py passes no line contained
in S.

Then we let Dy = SN (Tp,S), which is in general an irreducible cubic,
singular in Py: hence there is a dominant rational map ¢ : IP’}( X IP’}( — 5.

In this case the degree of v is equal to 6.
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In fact, Cp maps to a curve C’ of degree 6 on the dual surface SV of S,
and the condition for a point z € S that z € TS means that the dual plane z*
contains the point (73,5)*.

So, if we intersect the curve C’ with the plane z* we obtain 6 points: this
show that the degree of the map % is 6.

Case 2): Cp has two components, a line L and a conic Q.

In this case L is K-rational. In general, if a cubic S contains such a K-
rational line, then the pencil of planes m; O L yields a dominant rational map
¢ : PI. x PL. — S of degree 2. Because for each point P’ € L the tangent plane
in P’ intersects S in L U Qpr, and for general P’ € L, K-rational, the conic
Qp: is irreducible and contains P’, hence we obtain a dominant rational map
o : IP’}( X IP)}( — S. For a general x € S, the plane spanned by « and L intersects
S as LUQ, and @Q intersects L in two points: hence the degree of ¢ equals 2.

We shall however see in theorem 3.5 that for a diagonal cubic surface with
a K-rational point the existence of a K- rational line implies the birationality
of S with P%.

Case 3): Cp consists of three lines.

Then, since P is singular for Cp, at least two of these lines contain P.
If there is one of the three lines which does not contain P, then this line is
K-rational, and we are done as in case 2). There remains only

Case 4): Cp consists of three lines passing through P, and none of them
is K-rational.

Then P is classically called an Eckardt point and since P is K-rational
the three lines passing through P form a Galois orbit.

We conclude that the number of such points is at most 9, hence we
have shown that there is a dominant rational map ) : IP’%( — S of degree at
most 6. U

The following theorem was first stated by Segre in [9] and [10], and was
then also proven by Colliot-Thélene, Kanevsky, Sansuc in [4].

THEOREM 3.5 (Segre, Colliot-Thélene, Kanevsky and Sansuc). Let K be
a field of characteristic # 2,3 and containing a primitive third root of unity w.
And let S be a smooth diagonal cubic surface defined over K and with equation

S = {(z1, zo, x3, 24)|a123 + apxh + azxd + agxs = 0}.

Then S is K-rational if and only if it has a K-rational point and there is
a permutation a,b,c,d of the four coefficients aq,...,aq such that ac/bd has a
cubic root in K.

Proof. Without loss of generality we may assume that a; = 1.
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Recall that for a diagonal cubic surface S the 27 lines are grouped into 3
subsets R; of 9 elements, corresponding to indices i = 2, 3, 4.
In fact, write {1,2,3,4} = {1,7} U{j, k}: then any line has the form

x1 + Biwi = 0,25 + B prr = 0,
where 33 = aj, 533,1% = ay/a;.

This shows that S has a K-rational line if and only if there is a permu-
tation a, b, ¢, d of the four coefficients aq, ..., a4 such that a/b and ¢/d have a
cubic root in K.

Consider now the field extension K’ generated by the cubic roots of the
coefficients ag, as, aq (recall that we are assuming that a; = 1).

Then the Galois group G := Gal(K',K) is (Z/3)™,m = 1,2,3. Each set
R; is a union of Galois orbits, and it is a single Galois orbit if the field extension
K; generated by a;, ax/a; has degree 9.

We already observed that K; = K for some ¢ if and only if there is a
K-rational line.

In this case two lines

1+ Biwi = 0,25 + B pzr = 0,
T+ ﬁ;xl =0,z; + ﬁ;kxk =0,
are K-rational and skew if 8; # 3!, B, 1 # B}k

In this way we have found three pairwise disjoint and K-rational lines,
and S is rational by the criterion of Segre and Swinnerton-Dyer.

Now, if there is no K-rational line, then all the Galois orbits inside R; have
either cardinality 9, or are three orbits of cardinality 3. But in this case the field
extension K; generated by a;, ar/a; has degree 3. If a; € K or ai/a; € K then
the orbits consist of incident lines, and one cannot apply the criterion of Segre
and Swinnerton-Dyer. The only possibility is that both a; ¢ K, a/a; ¢ K but
ak/ajai e K.

Then we get a Galois orbit of 3 pairwise disjoint lines, and we need to

have a K-rational point in order to apply the criterion of Segre and Swinnerton-
Dyer. O

We can now show that our surface S is not K-rational.

THEOREM 3.6. Let K := k(s3,s4) and let S be the diagonal cubic surface
of equation

(s3— 34)3334(95:1" — xi) — (s3— 1)33(3:% — xi) + (s4 — 1)34($§ — wi) =0.
Then S is not K -rational.

Proof. The four coefficients are (s3 — $4)$354, —(s3 — 1)s3, (54 — 1)s4 and
their sum f = (s3 — 84)8354 — (83 — 1)s3 + (84 — 1)84.
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Take a permutation a, b, ¢ of the first three coefficients and consider fa/bc.
This is a fraction with relatively prime numerator and denominator, and such
that the denominator is not a cube; hence fa/bc is not a cube in K, and by
the previous theorem 3.5 S is not K-rational. [

4. SPECIAL GEOMETRY OF X,

Let us analyse the equation of the hypersurface H.
It is a diagonal cubic surface in the variables w;, with equation

a(s3, 54) (w3 — 1) 4 b(s3, s4)(wi — 1) 4 ¢(s3,84) (w3 — 1) =0
where the coefficients a, b, ¢ are cubic polynomials
a:= (s3— 84)8384, b:= —(s3 —1)s3, c:=(s4 — 1)s4
The coeflicients a, b, ¢ yield a rational map ¢ of the plane P? into P2, given

by the system of cubics which, in homogeneous coordinates (ug,us,us) (here
S3 = ug/ug, 4 = ug/us) reads out as

¢<UQ,U3,U4) = [(U,3 — U4)U3U4 . (UQ — U3)UQU3 . (U4 — UQ)U4U2].

The cubic polynomials a, b, c are products of linear forms and the inde-
terminacy locus of ¢ is the set of 7 points

{(1,1,1),(0,1,1),(1,0,1), (1,1,0), (1,0,0), (0, 1,0), (0,0, 1).}

Hence, ¢ is a double covering, and induces a birational involution on the
source P2, which is classically called the Geiser involution.

These seven base points are simple base points and blowing up the plane
P? at them one obtains a Del Pezzo surface of degree 2, F', which is a double
cover of the plane branched on a curve B of degree 4.

In order to compute effectively B, we calculate the ramification divisor of
¢, which is given by the determinant of the Jacobian matrix of ¢.

Thus, the equation R(usg,us,us) of the ramification divisor is the deter-
minant of the following matrix

0 25354 — SZ s?,) — 28384
s?l — 28984 0 28984 — s%
25953 — s% s% — 28953 0

An elementary calculation yields

R<UQ, us, U4) = 6UQU3U,4(UQ — U3)(U3 - U4)(U4 — U2).
Thus, the ramification divisor consists of six lines, which are contracted
to the 6 points

{(0,1,-1),(1,0,1),(1,0,-1),(1,0,0),(0,1,0),(0,0,1).}
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The six lines of the ramification divisor intersect in the four points
{e,e1,e9,e3} ={(1,1,1),(1,0,0),(0,1,0),(0,0,1)},
through each of which three of the lines meet, and in the further three points
{P1, P, Ps} ={(0,1,1),(1,0,1),(1,1,0)},

where only two lines of the sixtuple pass.

In the Del Pezzo surface F' the strict transforms of the six lines are (—2)
(smooth) rational curves, the points e, e, ez, e3 yield (—1) (smooth) rational
curves, which are seen to be part of the ramification divisor of the degree 2
morphism

¢: F —P?
since the strict transform of R contains these curves with multiplicity 3. Since
the strict transform of R contains the (—1) (smooth) rational curves, blow up
of the points P;, with multiplicity 2, these curves are not in the ramification
divisor of .

The conclusion is that the branch locus is the image of the 4 curves blow
up of e, eq,e0, €3, i.¢.,

B = {(a,b,c)|labc(a + b+ c) = 0}.
Hence, the Del Pezzo surface F, the double cover of P? branched on B, is

contained in the line bundle L over P? whose sheaf of sections is Op2(2), and
is defined there by the equation

52 =abcla+ b+ c).

5. SOME REMARKS IN THE CASE N =5

Our computation for n = 4 is quite symmetric with respect to the variables
with index > 3. So exactly the same computation yields:

LEMMA 5.1. k(X5) = k(s3, s4, S5, w2, w3, wy, ws) with relations precisely
(53 — s4)s384(w3 — 1) = (s3 — 1)sg(wi — 1) — (54 — 1)s4(wi — 1),
(53 — s5)8385(ws — 1) = (53 — 1)sz(ws — 1) — (55 — 1)s5(ws — 1) .

In other words, X5 is birational to the above complete intersection in A"

with affine coordinate
(53, 84, 85, Wa, w3, W4, W5)

defined by the above equations of bidegree (3,3).
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