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1. INTRODUCTION

Covering spaces are a fundamental construction in complex geometry. For
a given connected complex manifold Z, a �nite branched covering of Z is by
de�nition a �nite proper holomorphic mapping h : Y → Z of an irreducible
normal complex space Y onto Z. The rami�cation locus R is the hypersurface
in Y consisting of the points around which h is not biholomorphic. The image
of R under h is the branching locus B, which is a hypersurface in Z. The
restriction h0 : Y \ h−1(B) → Z \ B of h is a �nite unbranched covering. The
Grauert-Remmert correspondence h ↔ h0 gives an equivalence between �nite
unbranched coverings of Z \B and �nite coverings of Z branched at most at B,
in the holomorphic category, cf. [24], and further on in the algebraic category, as
shown by O. Zariski [42], cf. [38]. The topological version is due to R. Fox [23].

In this paper we aim to revisit and enlarge two classes of algebraic surfaces
that appear as desingularizations of branched coverings of the projective plane
P2. The particularity of the construction is that the coverings are Galois and
�nite abelian and the rami�cation locus consists of a union of lines. From
this deceivingly simple situation one obtains special, sophisticated surfaces
of general type S, such as the examples with vanishing geometric genus and
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irregularity pg(S) = q(S) = 0, due to P. Burniat [12], or those attaining the
Miyaoka-Yau bound c21(S) = 3c2(S), due to F. Hirzebruch [27].

An algebraic surface S, or simply a surface, will be here a complex projec-
tive variety of dimension 2. We refer to the monograph [7] for the fundamentals
of the theory of algebraic surfaces over the complex �eld, and to L. B�adescu [5, 6]
for algebraically closed �elds of arbitrary characteristic.

A smooth surface S is of general type if the canonical divisor KS is big.
Every such surface has a unique birational minimal model, i.e., it does not
contain any rational curve of self intersection −1, and for which the canonical
divisor is big and nef.

To a minimal surface S of general type with structure sheaf OS , one asso-
ciates several integer invariants (we use the notation hi(F) := dimCH

i(S,F),
for a sheaf F on S):

• the irregularity q(S) := h1(OS),
• the geometric genus pg(S) := h0(KS),

• the holomorphic Euler characteristic χ(S) := h0(OS)−h1(OS)+h2(OS),
• the Chern numbers c21(S) and c2(S).

All these numbers are invariants under deformations and they are de-
termined by the oriented topological type of S, more precisely by the Euler
number e(S) and the signature σ(S) of the intersection form on H2(S). They
are not independent as they satisfy a number of relations among themselves.
The Chern number c21(S) coincides with the self-intersection K2

S of the canon-
ical divisor, whereas c2(S) is the topological Euler characteristic e(S). The
holomorphic Euler characteristic may be expressed as χ(S) = 1− q(S)+pg(S).
The Noether's formula gives c21(S)+c2(S) = 12χ(S), and by the index theorem
we have that 3σ(S) = c21(S) − 2c2(S). The irregularity q(S) is equal to half
the �rst Betti number b1(S), by Hodge theory. Thus, the fundamental dis-
crete invariants of a minimal surface S of general type are the Chern numbers
c21(S) and c2(S). They characterize a surface up to a �nite number of families.
Sometimes is more convenient to work with c21(S) and χ(S) as basic invariants.

The geometric genus pg(S) and the irregularity q(S) are birational invari-
ants for a smooth surface S, whereas the Chern numbers are not.

The values of the Chern invariants are restricted by Noether's congruence

c21 + c2 ≡ 0 mod 12

and by the following inequalities:

c21 > 0, χ > 0, 2χ− 6 ≤ c21 ≤ 9χ.

With the exception of the Bogomolov-Miyaoka-Yau inequality c21 ≤ 3c2,
or equivalently c21 ≤ 9χ, all the rest are classical and elementary. Moreover, for
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irregular surfaces, i.e. q > 0, we have Debarre's inequality c21 ≥ 2χ. For all
these restrictions, see [7], chapter 7.

For every pair of positive integers a, b the coarse moduli space Ma,b of
surfaces S with c21 = a, c2 = b, is known to be a quasiprojective variety. In
other words, the surfaces S are parametrized by �nitely many irreducible fam-
ilies, thus in principle a classi�cation is possible. It is a very di�cult problem
to completely describe the moduli spaces Ma,b, but already the geographical
question, that is to decide whetherMa,b is non-empty for a given pair a, b, is
highly non-trivial.

The fundamental group π1(S) is the main invariant of a surface S which
distinguishes connected components of the moduli spaceMa,b. However, it is
not easy to determine π1(S), hence most often one calculates just its abelian-
ization H1(S).

2. ABELIAN COVERINGS OF THE PLANE RAMIFIED

OVER AN ARRANGEMENT OF LINES

In this section, we recall the basic facts about abelian Galois coverings
Y → P2 of the projective plane P2 branched along a line arrangement L in
P2. For all the details relevant to the case at hand, we refer to E. Hironaka's
memoir [25], whereas for the general theory to M. Namba's monograph [34].
Following Hirzebruch [27] and Kulikov [29], we show how to obtain a resolution
X of the singular points of Y in terms of the singular points of L, and we discuss
the Hirzebruch formulae for the Chern numbers of X. Finally, we describe a
procedure to compute the irregularity q(X), based on a formula of Sakuma [37]
expressing the �rst Betti number of an abelian branched covering in terms of
the characteristic varieties of rank one local systems on the complement of the
rami�cation locus.

Let L be an arrangement of n lines L1, . . . , Ln in P2. The singular points
SingL of L are the intersection points among the lines. Denote by tm the
number of m-fold points of L, with m ≥ 2, that is the points Pi1,...,im =
Li1 ∩ · · · ∩ Lim on m lines of the arrangement.

The �rst homology group H1(P2\L) is free abelian of rank n−1 generated
by meridian loops λ1, . . . , λn around the lines of L, satisfying the relation λ1 +
· · ·+ λn = 0.

2.1. Chern numbers of abelian coverings

Let G = Zrp be an elementary abelian group for p a prime number and
k < n a positive integer. The Galois G-coverings g : Y → P2 branched along L
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are described by the epimorphisms φ : H1(P2 \ L)→ G, see for example [34].
By construction, Y is a normal surface with isolated singularities. The

singular points of Y can appear only over the intersection points of L. In order
to resolve the singularities of Y , we consider the blow up σ : P̃2 → P2 of all
the points in SingL. For such a point P let EP = σ−1(P ) be the exceptional
curve. Denote by λP the meridian loop around EP viewed as an element in
H1(P̃2 \ σ−1(L)) ∼= H1(P2 \ L) as identi�ed by σ∗. It is a standard fact that
λP = λi1 + · · ·+λim for P = Pi1,...,im = Li1 ∩· · ·∩Lim . We say that P ∈ SingL
is a non-branch point for φ if φ(λP ) = 0.

Let f : X → P̃2 be the covering associated to the epimorphism φ : H1(P̃2\
σ−1(L)) → G. We are going to make the following assumptions on φ, see
Kulikov [29]:

• r ≥ 2 and g is rami�ed over each line Li, that is φ(λi) 6= 0, for all
1 ≤ i ≤ n.
• all the m-fold points P = Pi1,...,im of L with m ≥ 2 are φ-good, that is
either all the pairs φ(λP ) and φ(λij ), 1 ≤ j ≤ m are Zp-linearly indepen-
dent or φ(λP ) = 0.

Under these assumptions, the surface X is smooth, cf. [29]. We have
that X gives a resolution ν of the singularities of Y that �ts in a commutative
diagram:

X
ν //

f

��

Y

g

��
P̃2

σ
// P2

Note that if for a double point P = Li1 ∩ Li2 the pair φ(λi1) and φ(λi2)
is Zp-linearly independent then Y already is smooth along g−1(P ). For that
reason, it is enough in the blow up σ to only consider the double points in
SingL that are non-branch points for φ.

The Chern numbers of the smooth surface X associated to the branched
covering Y were calculated by Kulikov in [29], extending the results of Hirze-
bruch from [27]. It turns out that c21(X) and c2(X) depend only on combina-
torial data extracted from the arrangement L and the epimorphism φ. More
precisely, on the number of lines n, the degree pr of the covering, and the num-
bers of branch and non-branch points in SingL relative to φ. Denote by t′m the
number of non-branch m-fold points, and by t′′m the number of branch m-fold
points for φ.

Theorem 2.1 (Kulikov). The Chern numbers of the surface X = X(L)
associated to a Zrp-covering of the plane rami�ed along an arrangement L of n
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lines are given by

c21(X) =pr−2[(np− 3p− n)2 −
∑
m≥2

(mp− p−m)2t′m

−
∑
m≥3

(mp− 2p−m+ 1)2t′′m]
(2.1)

c2(X) =pr−2[(3p2 − 2p2n+ 2pn+ p2
∑
m≥2

t′m

− t′′2 +
∑
m≥3

((m− 1)(p− 1)2 + 1)t′′m]
(2.2)

2.2. Irregularities of abelian coverings

The �rst Betti number b1(X) = 2q(X) of X, or equivalently its irregular-
ity, depends in principle on more complicated data than just the combinatorics
of L and φ. In [37], Sakuma gave a formula for computing the �rst Betti num-
bers of �nite abelian branched covers that we are going to state here in terms
of the �rst twisted cohomology group of the arrangement complement P2 \ L.

The rank one complex local systems on a �nite CW complex M are
parametrized by the character group T(M) := Hom(π1(M),C∗). The char-

acteristic varieties ofM record the jumps in dimension of the twisted cohomol-
ogy of characters, and can be calculated from Alexander matrices associated to
π1(M), see Hironaka [25].

For τ : π1(M)→ C∗ = Aut(C), we let H1(M, τ) be the cohomology of M
with coe�cients in the π1(M)-module Cτ on C with action γ · v = τ(γ)v, and
we denote its dimension by h1(M, τ) := dimCH

1(M, τ).
The d-th characteristic variety ofM is the subvariety of T(M), de�ned by

Vd(M) := {τ ∈ T(M) | dimCH
1(M, τ) ≥ d}.

Now let the space M be the complement M(A) = P2 \ A of an arrange-
ment A of n lines in P2. The characteristic varieties Vd(A) := Vd(M(A)) of
arrangement complements are known to be the union of subtori of the charac-
ter torus T(M(A)) ∼= (C∗)n−1, cf. Arapura [1], possibly translated by torsion
characters, see [4, 11, 20, 21]. Morever, these subtori intersect pairwise only in
�nitely many torsion points. In fact, the subtori structural property of Vd(M)
holds more generally, for M = P \ D a smooth quasi-projective variety, the
complement of a normal crossing divisor D in a smooth projective variety P ,
and it is related with the existence of pencils of hypersurfaces on M , as shown
by Arapura [1], see [1, 4, 13, 19, 21].
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There are a number of types of irreducible components in Vd(A), see [2,
19, 39]. The simplest ones, the local components, determined by the points in
SingA of multiplicity m ≥ 3. Then components that depend on subtler data,
that take into account the relative position of those intersection points. The
coordinate components, which are contained in a subtorus Tk = {tk = 1} of
T(M), or in a translated coordinate subtorus τTk, and the global or essential
components, those that are not translated coordinate components.

Let τ be a character on M(A). Denote by Aτ the subarrangement of A
consisting of the lines L so that τ(λL) 6= 1. For a subarrangement B ⊆ A we
denote by τ|B the pull-back of τ to T(M(B)).

Theorem 2.2 (Sakuma). The �rst Betti number of the surface X = X(L)
associated to an abelian Galois covering of P2 de�ned by an epimorphism φ :
H1(P2 \ L)→ G and rami�ed along an arrangement of lines L is given by

(2.3) b1(X) =
∑

16=ρ∈Ĝ

h1(M(Lρφ), ρφ|Lρφ),

where Ĝ is the set of characters ρ : G→ C∗ of the abelian group G.

Note that the knowledge of the characteristic varieties Vd(A) for all the
subarrangements A of L are in general needed to calculate the Betti number
b1(X(L)).

The twisted cohomology groups H1(M(A), τ), and so the cohomology
jumping loci Vd(A), can be calculated, by a standard method, using Fox cal-
culus, from a presentation of the fundamental group π1(M(A)), see Suciu [39]
for references and more details. The group π := π1(M(A)) admits a presen-
tation 〈x1, . . . , xn | w1, . . . , wm〉 having all relators w1, . . . , wm commutators in
the free group generated by x1, . . . , xn. Explicit and e�cient methods to de-
rive such presentations, based on braid monodromy techniques, are available,
see [2, 14, 17], and in the case of real complexi�ed line arrangements, also [26].

3. A CLASS OF ALGEBRAIC SURFACES

Following the procedures outlined in Section 2, we construct branched
covering surfaces associated to a class of line arrangements in P2, and we cal-
culate their Chern numbers and their irregularities, or equivalently their �rst
Betti numbers.

We �rst introduce the arrangements L in P2 used to construct the alge-
braic surfaces X(L) whose invariants we are going to determine. This family of
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arrangements At(n1, n2, n3) depends on a triple of positive integers n1, n2, n3
and another integer t ≥ 0.

We start from three lines in general position intersecting in three points
P1, P2, P3, say the coordinate lines in P2 and the triangle they form. Then,
for each i we add ni − 1 lines through Pi to obtain an arrangement L of n =
n1+n2+n3 lines. The points appearing as intersections of the added n−3 lines
are either 2-fold or 3-fold. We denote by t the number of those triple points. If
t = 0 then clearly the number of double points is equal to

∑
i<j(ni−1)(nj−1).

It follows, by adding the
∑

i(ni − 1) = n− 1 double points on the sides of the
triangle P1P2P3, that the arrangement L with t = 0 has a total of s−n double
points, where s =

∑
i<j ninj . Observe that in general we have that 3t ≤ s− n.

We denote a line arrangement L constructed as above by At(n1, n2, n3).
The combinatorial characteristics of At(n1, n2, n3) are as follows: t2 = s−n−3t
double points, t ≥ 0 triple points not on the triangle and the points Pi of
multiplicities mi = ni + 1.

α02
P1

α03

α12,2P2

α12,1

α13,1

P3

α13,2α01

α23,1

α23,2

Fig. 1. The arrangement A0(3, 3, 3).

Assume from now on that ni ≥ 2. We address the concrete realizabil-
ity of these arrangements and their combinatorics, by linear equations. More
precisely, when speaking about L = At(n1, n2, n3), we are going to use the
following de�ning equations

x1x2x3
∏

1≤l<n3

(x1 − z12,lx2)
∏

1≤l<n2

(x1 − z13,lx3)
∏

1≤l<n1

(x2 − z23,lx3),

where zij,l are all non-zero. Note that three lines x1−z12x2 = 0, x1−z13x3 = 0,
and x2 − z23x3 = 0 are concurent if and only if z12z23 = z13.

We are indexing the lines of L, as well as the corresponding generators
λ0k, λij,l of H1(P2 \ L) and α0k, αij,l of π1(P2 \ L), in the following manner:

{L0k = {xk = 0}}1≤k≤3, {Lij,l = {xi − zij,lxj = 0}}1≤i<j≤j≤3,1≤l<nk .

We consider coverings associated to an epimorphism φ : H1(P2 \ L)→ Zrp
with p prime and r ≥ 2, satisfying the conditions from subsection 2.1, that is
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φ(λi) 6= 0, for all 1 ≤ i ≤ n, and all the intersection points of L are φ-good,
and, in addition, the conditions that all double points and the points Pi are
indeed branch points.

We are going to distinguish two types of epimorphisms φ, according to
the kind of φ-goodness condition the triple points not on the triangle P1P2P3

satisfy. More precisely, those φ for which all such triple points are branch points,
which we call of Hirzebruch type, and respectively those φ for which they are all
non-branch points, which we call of Burniat type. The di�erence is as follows.
In the �rst case, we have a contribution of t to the number t′′3 of branch 3-fold
points, whereas t′3 = 0. In the second case, we have a contribution of t to the
number t′3 of non-branch 3-fold points, whereas t′′3 = 0 (unless some ni = 2). In
both cases, we are going to have t′2 = 0 and t′′2 = s−n− 3t, and a contribution
of 1 to the branch mi-fold points from Pi.

An immediate application of the Hirzebruch-Kulikov formulae from Theo-
rem 2.1 gives the Chern numbers of the covering surface X = X(At(n1, n2, n3))
associated to an epimorphism φ of the two types.

Proposition 3.1. The Chern numbers of the surface X = X(L) associ-
ated to a Zrp-covering of Hirzebruch type of P2 rami�ed along an arrangement

L = At(n1, n2, n3) of n lines are given by

(3.1) c21(X) = pr−2[p2(2s− 4n+ 6− t) + p(4t− 4s+ 4n) + (2s− 4t)]

(3.2) c2(X) = pr−2[p2(s− 2n+ 3− t) + p(2t− 2s+ 2n) + (s+ 3)]

Proposition 3.2. The Chern numbers of the surface X = X(L) asso-

ciated to a Zrp-covering of Burniat type of P2 rami�ed along an arrangement

L = At(n1, n2, n3) of n lines are given by

(3.3) c21(X) = pr−2[p2(2s− 4n+ 6− 4t) + p(12t− 4s+ 4n) + (2s− 9t)]

(3.4) c2(X) = pr−2[p2(s− 2n+ 3− 2t) + p(6t− 2s+ 2n) + (s+ 3− 3t)]

The irregularity q(X) of the surfaceX = X(L) associated to a Zrp-covering
φ of P2 rami�ed along an arrangement L = At(n1, n2, n3) of n lines is more
di�cult to determine, as it depends on more than just the combinatorics of L
and φ. We are going to focus here on the two extreme cases, namely r = n− 1
and r = 2.

We will use Sakuma's formula 2.3 to derive the Betti numbers in these
two cases. The results will be a consequence of an explicit description of the
characteristic varieties of M = M(L) for the arrangements L = At(n1, n2, n3)
of n lines.
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First we identify the character torus T(M) = Hom(π1(M),C∗) ∼= (C∗)n−1
with a subset of (C∗)n as follows

T(M) ∼= {t01t02t03t12,1 . . . t12,n3−1t13,1 . . . t13,n2−1t23,1 . . . t23,n1−1 = 1}.

We denote the local component in V1(M(L)) coming from a point P ∈
SingL by CP . Thus, we have in T(M) the following local components for
V1(M):

CPk = {t0it0jtij,1 . . . tij,nk−1 = t0k = tik,1 = · · · = tik,nj−1 =

= tjk,1 = · · · = tjk,ni−1 = 1},

for the mk-fold point Pk = L0i ∩ L0j ∩ Lij,1 ∩ · · · ∩ Lij,nk−1, and

CQ = {t12,l3t13,l2t23,l1 = 1, t01 = t02 = t03 = 1, tij,l = 1,

for all 1 ≤ i < j ≤ 3, l 6= lk},

for a triple point Q = L12,l3 ∩ L13,l2 ∩ L23,l1 .

For π1(M(L)) we employ presentations inspired by those derived in [3, 16],
where our situation in which t = 0 it is a particular case. We use Terada
type meridian generators which satisfy commutator relators among them: α0k,
1 ≤ k ≤ 3 around the lines L0k, and αij,l, 1 ≤ i < j ≤ j ≤ 3, 1 ≤ l < nk around
the lines Lij,l. We take advantage of the nice form of this presentation for
π1(M(L)) to write an explicit formula for the boundary maps in dimensions up
to 2 in the chain complex of the universal abelian cover of M(L), by means of
the Fox free calculus, see [39] for the outline of the procedure. We then calculate
the dimension h1(M(L), τ) of the twisted cohomology of M(L) arriving at the
following statement, whose detailed proof will be given elsewhere.

Theorem 3.3. The characteristic variety V1(L) of M =M(L) is the fol-

lowing union of subtori pairwise intersecting only in the unit 1 of the character

torus:

V1(L) = CP1 ∪ CP2 ∪ CP3 ∪ CQ1 ∪ · · · ∪ CQt ∪D1 ∪ · · · ∪Dβ,

where β = β(L) is the number of type Aq complex re�ection subarrangements

of L. The dimension of the cohomology H1(M, τ) of M with coe�cients in the

rank one local system τ 6= 1 is then determined by the components of V1(L) as
follows:

h1(M, τ) =


0 if τ 6∈ V1(L)
1 if τ ∈ V1(L) \ (CP1 ∪ CP2 ∪ CP3)

2 if τ ∈ Dk ∩Dl

ni if τ ∈ CPi



364 Daniel Matei 10

There are two facts that facilitate the computation of the �rst Betti
numbers of the surfaces X = X(L). The �rst, and most important, is that
At(n1, n2, n3) may be taken to be subarrangements of certain re�ection ar-
rangements Bq described below, or of their deformations. The second is that
sometimes At(n1, n2, n3) may be realized by linear equations with real coe�-
cients.

Example 3.4. Let Bq be the family of full monomial arrangements, see Orlik-
Terao [35], corresponding to the complex re�ection groups of type G(q, 1, 3), q ≥
1, and de�ned by the polynomials

x1x2x3(x
q
1 − x

q
2)(x

q
1 − x

q
3)(x

q
2 − x

q
3).

Presentations for π1(M(Bq)) are determined by D. Cohen in [15], see
also [33].

Notice that Bq is an arrangement At(q+1, q+1, q+1) in our class, with t =
q2. We also need the monomial arrangements Cq, which the subarrangements of
Bq corresponding to the irreducible complex re�ection groups G(q, q, 3), q ≥ 2,
and de�ned by the polynomials

(xq1 − x
q
2)(x

q
1 − x

q
3)(x

q
2 − x

q
3).

Note that B1 is isomorphic to C2, and that B1,B2 are real re�ection ar-
rangements.

The irreducible components of the characteristic varieties V1(M(Aq)) of
the monomial arrangements Aq = Bq, Cq are discussed extensively in Cohen-
Suciu [17]. The non-local ones turn out to be in correspondence with the
monomial subarrangements of Aq, and they are coordinate components if the
subarrangement is proper, and essential otherwise. Moreover, all of them are
subtori of dimension 2, passing through the unit 1 of T(M(Aq)), and intersect-
ing in �nitely many torsion points. With exception of the case q = 3, where
there are more of them, there is a unique essential component in V1(M(Aq)),
cf. [17].

The global component of V1(Bq) is the following 2-dimensional subtorus
of the character torus T(M(Bq)) ⊂ (C∗)3q+3

(3.5) D={t0k= tqij,1, tij,1= . . .= tij,q, tij,1tik,1tjk,1=1, 1≤ i<j≤3, k 6= i, j}.
The global component of V1(Cq) is the following 2-dimensional subtorus

of the character torus T(M(Cq)) ⊂ (C∗)3q

(3.6) D = {tij,1 = · · · = tij,q, tij,1tik,1tjk,1 = 1, 1 ≤ i < j ≤ 3, k 6= i, j}.
The covering associated to φ : H1(P2 \ L) → H1(P2 \ L,Zp) ∼= Zn−1p is

known as the congruence covering, see [25, 37, 39]. Notice that φ is a Hirzebruch
type epimorphism, as all the multiple points of L are branching points for φ.
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Proposition 3.5. The �rst Betti number of the surface X = X(L) as-

sociated to the Zn−1p congruence covering of P2 rami�ed along an arrangement

L = At(n1, n2, n3) of n lines is given by

(3.7) b1(X) =
∑
m≥3

tmb(p,m) + b(p, 3)β(L),

with β(L) =
∑

q≥1 βq(L), where βq(L) is the number of subarrangements of L
isomorphic to type Aq monomial arrangements, and

b(p,m) = (p− 1)
[
(m− 2)pm−2 − 2(pm−3 + · · ·+ p+ 1)

]
.

We note that b(p,m) is the �rst Betti number of X(P), the surface as-
sociated to the Zm−1p congruence covering of P2 rami�ed along a pencil of m
lines P through a point, cf. [40]. In that paper, Tayama shows that, for an
arbitrary line arrangement L in P2, the right hand side of (3.7), truncated to∑

m≥3 tmb(p,m)+ b(p, 3)β1(L), is a lower bound for the Betti number b1(X) of
the surface corresponding to the congruence covering.

Proposition 3.6. The �rst Betti number of the surface X = X(L) associ-
ated to the Z2

p-covering of Hirzebruch type of P2 rami�ed along an arrangement

L = At(n1, n2, n3) can take the following values

(3.8) b1(X) =

{
0 if p = 2

either 0 or p− 1 if p odd prime

The �rst Betti number of the surface X = X(L) associated to the Z2
p-

covering of Burniat type of P2 rami�ed along an arrangement L = At(n1, n2, n3)
is given by

(3.9) b1(X) = 0.

With Theorem 3.3 in hand, the calculation of the Betti number of the
congruence coverings from Proposition 3.5 is immediate.

Proof of Proposition 3.5. As observed by Suciu in [39], the calculation
of b1(X) in the case of congruence Zn−1p coverings reduces to a counting of
p-torsion points:

b1(X) =
∑

τ∈Torsp T(M)

h1(M(Lτ ), τ|Lτ ),

A character τ 6= 1 will contribute a non-zero h1 if and only if τ|Lτ it is a
torsion point of order p lying on some essential global component of V1(Lt). One
may verify, following arguments similar to Cohen-Suciu [17], that the only non-
local components of V1(L) are those induced from the essential components in
V1(A) of the monomial subarrangements A of L. Thus, we only have to add up,
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for each monomial and pencil subarrangement, the number of p-torsion points
that do not lie on any coordinate subtorus. For a component of dimension d
will there are b(p, d+ 1) such p-torsion points.

This count will be enough as long as the points τ that potentially may
contribute a h1 = 2 are contained in some coordinate subtorus of T(M(Lτ )).
Indeed, suppose τ is a p-torsion point in the intersection of two non-local com-
ponents D′∩D′′ of V1(L). Let A′ and A′′ be the monomial subarrangements of
L for which the pull-backs of D′ and D′′ are essential global components. Then
clearly Lτ is a proper subarrangement of either A′ and A′′, and using again [17],
one may check that Lτ is never a monomial or a pencil subarrangement, so it
does not have a global component in V1.

It remains to record the dimensions of the components in V1(L) and use
their correspondence with the the points in SingL and to the monomial subar-
rangements of L. �

We turn now to the calculation of the �rst Betti number of the surfaces
X = X(L) associated to the Z2

p-coverings of P2 rami�ed over L = At(n1, n2, n3).

Proof of Proposition 3.6. By Sakuma's formula (2.3), the �rst Betti num-
ber of the surface X = X(L) associated to the epimorphism φ : H1(P2\L)→ G
is calculated from the twisted cohomology H1(M(A), τ) of certain subarrange-
ments A = Lρφ in L, constructed from φ and the set of characters ρ : G→ C∗
of the abelian group G = Z2

p, as follows

b1(X) =
∑

16=ρ∈Ĝ

h1(M(Lρφ), ρφ|Lρφ).

We shall take advantage of two key facts: all the points in SingL are
required to be φ-good, and the subarrangements A of L are again in the same
class, thus their twisted cohomology is known from Theorem 3.3. The �rst
thing to point out regarding the latter fact is that there are only two types of
subarrangements A of L that support global components in their characteristic
varieties, namely either A = P a pencil of lines through a point of multiplicity
at least 3, or A = B a non-pencil monomial arrangement. The second feature
is that we may ignore the torsion characters in V2, as their support is neither
pencil nor monomial, as a consequence of the results in [17], thus they do not
in fact contribute to the Betti number.

Fix a1, a2 generators forG = Z2
p, and let φ be de�ned by φ(α0k) = au0k1 av0k2

and φ(αij,l) = a
uij,l
1 a

vij,l
2 , where the u′s and the v′s are residues modulo p. Then

let ρ be a non-trivial character of G, and set ξ1 := ρ(a1) and ξ2 := ρ(a2), where
ξ1 = ξµ1 and ξ2 = ξµ2 for some �xed primitive root of unity ξ of order p.
Note that if for some α we have φ(α) = au1a

v
2 6= 1, and τ(α) = ξu1 ξ

v
2 = 1 then
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u, v must satisfy µ1u + µ2v ≡ 0. If ξ1 = 1 then v = 0, hence φ(α) = au1 ,
whereas if ξ2 = 1 then u = 0, hence φ(α) = av2. If neither ξ1, ξ2 equals 1, then

v ≡ −µ1µ−12 u, and φ(α) = (a1a
−µ1µ−1

2
2 )u. In all three cases, for �xed ξ1, ξ2, we

obtain that all images φ(α) of elements α in ker τ belong to the same cyclic
subgroup of G = Z2

p. This implies that two lines L,L′ in L intersecting in a
double point P cannot be both out of Lτ . If not, their meridians α, α′ would
be in ker τ , and by the previous remark, would be linearly dependent over Zp,
thus violating the φ-good condition for P .

Suppose τ = ρφ is a character in T(M) that contributes to b1(X) a
positive value h1(τ) := h1(M(Lρφ), ρφ|Lρφ). If Lτ = L, that is no coordinate of
τ is equal to 1, then V1(M(L)) must contain an irreducible component that is
global, but this only happens if L is the monomial arrangement Bq. Then τ must
satisfy the equations (3.5) de�ning the global component. That yields words in
ker τ , and as discussed before their images generate a cyclic subgroup of Z2

p, say
A = 〈a〉. If φ is Hirzebruch type then we may assume φ(αij,1αik,1αjk,1) = a.
Then one must have φ(α01α02α03) = φ(αij,1αik,1αjk,1) = aq from (3.5). We end
up with a2q = 1, which implies p = 2 and q = 1. We reach a contradiction, since
Lτ = L forces τ = −1, but τ01τ02τ03 should be 1. If φ is Burniat type, then
φ(αij,1αik,1αjk,1) = 1, which forces in turn φ(α0iα0jα

q
ij,1) = φ(α01α02α03) =

φ(αij,1αik,1αjk,1)
q = 1, a contradiction, as Pk are branch points for φ.

Now suppose that Lτ is a proper subarrangement of L, that is some
coordinates of τ are equal to 1. If Lτ is a non-pencil monomial arrangement
then either we repeat the argument using the equations (3.5) if Lτ is of type Bq,
or we argue similarly using the equations (3.6) if Lτ is of type Cq. We remain
with the case Lτ = P is a pencil of lines, that is only the multiple points in L
may contribute positively to the Betti number.

α02
P1

α03

α12P2

α01

P3

α13

P0

α23

Fig. 2. The braid arrangement A1(2, 2, 2).

First note that at most one pencil subarrangement P of L may in fact
contribute, as τ uniquely determines Lτ . Then if P does contribute, then its
contribution is precisely p − 1. Finally, for the Burniat type no contributions
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really occur. �

The number β = β(L) is de�ned in terms of the monomial arrangements,
the simplest of which is the braid arrangement, which occurs as A = A1(2, 2, 2)
in our family. We discuss next this arrangement and the non-local component
D that appears in V1(A).

Example 3.7. The arrangement A = A1(2, 2, 2) in Figure 3 is known under
various names, braid arrangement, complete quadrilater, Ceva arrangement,
type A2 Coxeter re�ection arrangement, etc., see [17, 39]. It has n = 6 lines,
t2 = 3 double points, and t3 = 4 triple points. As de�ning equations for A, we
take

x1x2x3(x1 − x2)(x1 − x3)(x2 − x3).
For the fundamental group π1(M) of the complement M =M(A) we use

a presentation due to Terada [41], with generators αij , 0 ≤ i < j ≤ 3 satisfying
α01α02α12α03α13α23 = 1 and for all i < j < k the commutator relators

[αijαikαjk, αij ] = 1, [αijαikαjk, αij ] = 1, [αijαikαjk, αij ] = 1.

The characteristic variety V1(A) consists of 5 irreducible components, 2-
dimensional subtori C0, C1, C2, C3, D of the torus T(M) = {t01t02t03t12t13t23 =
1} ∼= (C∗)5 ⊂ (C∗)6. Four of the components are local, determined by the 4
triple points Pi = Ljk ∩ Ljl ∩ Lkl

Ci := CPi = {tjktjltkl = tij = tik = til = 1}, 0 ≤ i ≤ 3, {i, j, k, l} = {0, 1, 2, 3}.

The remaining component D is supported on the entire arrangement

D = {t01 = t23, t02 = t13, t03 = t12, t01t02t03 = 1}.

The appearance of this non-local essential component is due to the pres-
ence of a pencil of conics in P2 whose special �bers form a partition of the lines
of A, see [19, 22, 32] for the whole story.

α02
P1

α03

α12

P2

α13

P3

α01

α23

Fig. 3. The Arvola arrangement A0(2, 2, 2).
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The twisted cohomology H1(M, τ) of M for 1 6= τ ∈ T(M) is then given
by

h1(M, τ) =

{
0 if τ 6∈ V1(A)
1 if τ ∈ V1(A) \ {1}.

An application of Sakuma's formula gives, as explained in the proof of
Proposition 3.5, b1(Xp) = 5(p − 1)(p − 2) for the Hirzebruch type surface Xp

associated to the Z5
p congruence covering, see [25, 40, 39]. From Proposition 3.1,

the Chern numbers of Xp are equal to c21(Xp) = 5p3(p − 2)2 and c2(Xp) =
p3(2p2− 10p+15), see [27, 25, 39]. For p > 2 the surface Xp is of general type,
and X2 it is a K3-surface, cf. [27]. The most interesting case is the one for
p = 5, where c21 = 3c2.

We see now to the Hirzebruch type surface Xp,2 associated to a Z2
p-

covering. We ignore the case p = 2 as X2,2 is not of general type. Using
Sakuma's formula we obtain that either b1(Xp,2) = 0 or b1(Xp,2) = p − 1, re-
covering, for p = 5, the computations of Bauer-Catanese [10] and Ishida [28].
By Proposition 3.1, the Chern numbers of Xp,2 are c21(Xp,2) = 5(p − 2)2 and
c2(Xp,2) = 2p2 − 10p+ 15. Again for p = 5, we get c21 = 3c2.

Finally, for the Burniat type surfaces Xp,2 we have that b1(Xp,2) = 0, and
c21(Xp) = 5p2−12p+15, c2(Xp) = p2−6p+12, but these surfaces are not very
interesting.

Example 3.8. The arrangement A = A0(2, 2, 2) in Figure 3.7 is a defor-
mation of the braid arrangement, �rst considered by Arvola, and which enjoys
interesting homotopy properties, see [3]. It has n = 6 lines, t2 = 6 double
points, and t3 = 3 triple points. Note that t = 0, thus there is no di�erence
between the Hirzebruch and Burniat types. As de�ning equations for A, we
take

x1x2x3(x1 − x2)(x1 − x3)(x2 − zx3), z 6= 0, 1.

α02
P1

α03

α12,2P2

α12,1

Q3

α13,1

P3

α13,2

Q2

α01

Q1

α23,1

α23,2

α02
P1

α03

α12,2P2

α12,1

α13,1

P3

α13,2α01

α23,1

Q1

α23,2

Fig. 4. The Burniat arrangements At(3, 3, 3), t = 3 and t = 1.

For π1(M(A)) we employ a presentation due to Cohen-Falk-Randell [16],
which we rewrite using Terada type generators αij , 0 ≤ i < j ≤ 3 satisfying
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α01α02α12α03α13α23 = 1 and the commutator relators

[αijαikαjk, αij ] = 1, [αijαikαjk, αij ] = 1, [αijαikαjk, αij ] = 1,

for all i < j < k, except i = 1, j = 2, k = 3, and

[α12, α13] = 1, [α12, α23] = 1, [α13, α23] = 1,

[α01, α23] = 1, [α02, α13] = 1, [α03, α12] = 1.

The characteristic variety V1(A) consists of 3 irreducible components, 2-
dimensional subtori C1, C2, C3 of the torus T(M) = {t01t02t03t12t13t23 = 1} ∼=
(C∗)5 ⊂ (C∗)6. All components are local, determined by the 3 triple points
Pi = Ljk ∩ L0j ∩ L0k

Ci := CPi = {tjkt0jt0k = tij = tik = t0i = 1}, 1 ≤ i ≤ 3, {i, j, k} = {1, 2, 3}.

From Proposition 3.5, we have b1(Xp) = 3(p−1)(p−2) for the surface Xp

associated to the Z5
p congruence covering, see [25, 40, 39]. From Proposition 3.1,

c21(Xp) = 6p3(p− 2)2 and c2(Xp) = 3p3(p2 − 4p+ 5), see [25, 39].
The surface Xp,2 associated to a Z2

p-covering is regular, as we have
b1(Xp,2) = 0. From Proposition 3.1, c21(Xp) = 6(p − 2)2 and c2(Xp) =
3(p2 − 4p+ 5). The surface X3,2 is the most interesting as it has c21 = c2 = 6,
hence vanishing geometric genus pg = 0. We can show that π = π1(X3,2) is the
abelian extension of its abelianization

0→ Z6 = [π, π]→ π → Z3
3 → 0,

recovering, in particular, the computation of π/[π, π] = H1(X3,2) = Z3
3 by

Kulikov [29].

Example 3.9. The arrangements A = At(3, 3, 3), with 0 ≤ t ≤ 4 were �rst
considered by P. Burniat [12]. It has n = 9 lines, t2 = 18 − 3t double points,
t3 = t triple points, and t4 = 3 quadruple points. In Figures 1 and 4 we see the
cases t = 0, 1, 3.As de�ning equations for A, we take

x1x2x3
∏

1≤i<j≤3
(xi − zij,1xj)(xi − zij,2xj),

with zij,l 6= 0 and zij,1 6= zij,2, for all 1 ≤ i < j ≤ 3 and l = 1, 2, and so
that the coe�cients {zij,l} satisfy precisely t collinearity relations. The case
t = 4 is realized by the monomial arrangement B2. The case t = 2 has two
non-isomorphic realizations, according as the two triple points lie on a line of
A or not, see Figure 5.

The number of monomial subarrangements of A takes the values β =
0, 1, 6, 12, corresponding to t = 0, 1, 3, 4, whereas for t = 2 two values may
occur β = 4 or β = 2.
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It follows from Proposition 3.5 that b1(Xp) = 3b(p, 4) + (β + t)b(p, 3), for
the Hirzebruch congruence covering surface Xp, thus b1(Xp) = (p−1)[6p2+(β+
t− 2)p− 2β − 2t− 6]. From Proposition 3.1, the Chern numbers are c21(Xp) =
p6[p2(24− t)+p(4t−72)+54−4t] and c2(Xp) = p6[p2(12− t)+p(2t−36)+30].

We now turn to Z2
p-coverings. As before, if t = 0, there is no di�erence

between the Hirzebruch and Burniat covering types.
The Hirzebruch type surface Xp,2 is regular b1(Xp,2) = 0. The Chern

numbers of Xp,2 are c21 = p2(24 − t) + p(4t − 72) + 54 − 4t and c2 = p2(12 −
t) + p(2t − 36) + 30. For p = 2, we get c21 = c2 = 6, no matter the value of t.
We thus obtain a surface X2,2 with vanishing geometric genus and irregularity
pg = q = 0, which seems to be new.

The Burniat type surface Xp,2 is also regular b1(Xp,2) = 0. The Chern
numbers of Xp,2 are c

2
1 = p2(24− 4t) + p(12t− 72) + 54− 9t and c2 = p2(12−

2t) + p(6t − 36) + 30 − 30t. For p = 2, we get c21 = 6 − t and c2 = 6 + t,
hence again pg = q = 0. The surfaces X2,2 for 0 ≤ t ≤ 4 are the classical
Burniat surfaces [12]. They were analyzed in detail via modern techniques
by Peters [36], Kulikov [29], and more recently by Bauer-Catanese [9] using a
di�erent approach.

α02
P1

α03

α12,2P2

α12,1

α13,1

P3

α13,2

Q2

α01

Q1

α23,1

α23,2

α02
P1

α03

α12,2P2

α12,1
Q2

α13,1

P3

α13,2α01

α23,1

Q1

α23,2

Fig. 5. The Burniat arrangements A2(3, 3, 3).
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