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Following the work of Kuo and Paunescu [4], we look at the classical problem of
classifying function germs (C2, 0) → (C, 0). The aim is to �nd a condition which
is �ner than the classi�cation by topological type, but which does not generate
too many strata. This paper describes an altered version of Morse stability which
is invariant under linear coordinate change. It also lists the classi�cation under
Morse stability of the low order jet spaces J4

(2,1)(C) and J5
(2,1)(C), and gives a

brief comparison to the classical classi�cation by topological type.
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1. INTRODUCTION

This work follows that of Kuo and Paunescu [4]. Morse stability is an
equivalent relation for germs which is stronger than topological equivalence. In
this paper we use a modi�ed version of Morse stability to classify the jet space
J5
(2,1)(C).

Under topological equivalence, two jets f and g are equivalent if there is
a germ of homeomorphism h such that f = g ◦ h. Morse equivalence requires
a deformation F (x, y, t) within the jet space such that F (x, y, 0) = f(x, y),
F (x, y, 1) = g(x, y), that for each t ∈ C2 with |t| ≤ 1, ft = F (x, y, t) is
topological equivalent to f , and also places some equivalence conditions on the
polars of ft. Loosely speaking, that the structure of the polars of f is preserved
when the polars are truncated at their respective order of contact with the roots
of f .

The original de�nition uses the standard polar fx = ∂f/∂x. For the
classi�cation of jet spaces this is undesirable as the classi�cation would not be
preserved by linear coordinate change. For example, consider the jets g(x, y) =
x3 + y3 and h(x, y) = x3 + xy2, gx = 3x2 and hx = 3x2 + y2. These are not
Morse equivalent as g has one polar x = 0 while h has two polars. However,
they are di�eomorphically equivalent. If we use the generic polars, the roots of
fx + cfy for generic c, then they are equivalent.
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The �rst section recalls the de�nition of Morse stability and gives our
modi�ed version. The second section contains some lemmas which are helpful
in the classi�cation. The third section quotes the classi�cation of J5. Its
proof along with the classi�cation of J6

(2,1)(C), will follow in the author's thesis.
The classi�cation is also compared to the classical classi�cation by topological
type. Compare Arnold [1] for the classical classi�cation under topological and
di�eomorphic equivalence.

2. DEFINITION OF MORSE EQUIVALENCE

Below we recall the de�nition of Morse equivalence as stated in the paper
of Kuo and Paunescu [4].

Throughout this section, let f(x, y) be an analytic map germ at 0 of a
map C2 → C. Note that although we will use Puiseux series with potentially
fractional exponents, we always choose the Puiseux expansion with order at
least 1. For example using x = y2 instead of y = x

1
2 .

We start with some de�nitions. Let {ri} be the set of Newton-Puiseux
roots of f , and λ a Newton-Puiseux arc in C2 at 0, O(λ(y)) ≥ 1.

The height of λ relative to f is

hf (λ) = max(O(λ− ri)) ,

where O(λ) denotes the order of λ.
The truncation of λ with respect to f , denoted by λf , is λ with all terms

of order greater than hf (λ) deleted.
The Lojasiewicz exponent of an arc Lf (λ) with respect to f is the order

of f(λ(y), y).
The valuation of λ at f , valf (λ), is the pair consisting of the coe�cient

and the exponent of the lowest order term in f(λ).
Speci�cally, if x = λ(y) is the Puiseux expansion of λ, (or y = λ(x),

but by applying a change of coordinates if necessary we assume all the roots
will have expansions of the form x = λ(y)) then we can substitute this into
the expression f = u(x, y)

∏
i(x − ri(y)), where u(0, 0) 6= 0 and ri(y) are the

Puiseux expansions of the roots. The pair consisting of coe�cient and exponent
of the lowest order term in this expansion is valf (λ).

We shall now de�ne the tree model of f =
∏
i(x − ri(y)), introduced

by Kuo and Lu in [3]. To construct the tree of f , we �rst draw a vertical
segment, called the main trunk and write next to it the multiplicity of f . Let
b1 = min{O(ri − rj}). We now draw a horizontal line, called a bar, touching
the top of the trunk and mark it with the number b1, which is the height
of the bar. Now we divide the roots into groups which have order of contact
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greater than b1. For each such group, we draw a vertical segment, called a
trunk, and write next to it the number of members in that group. This is the
multiplicity of the trunk. If the trunk is of multiplicity 1, it is called a twig,
and we will omit its multiplicity. For each trunk T with multiplicity greater
than 1, let bT = min{O(ri − rj |ri, rj ∈ T}). We then draw a bar at the top of
the trunk, and mark it bT . This procedure is repeated until all new trunks are
of multiplicity 1.

The result of this procedure is called the tree model of f . For more details
see Kuo-Lu [3].

Let fx be the partial derivative of f with respect to x, and de�ne fy
similarly. The generic polars of f are the roots of fx+ cfy, where c is a generic
complex number.

More speci�cally, we can assume f(x, y) is mini-regular in x,

f(x, y) = unit ·
∏
i

(x− ri(y)), Oy(ri) ≥ 1,

where ri(y) are fractional power series. Let us write

f(λ(y), y) =

{
aye + · · · if f(λ(y), y) 6= 0,

0y∞ if f(λ(y), y) = 0,

where a 6= 0, e <∞, and 0y∞ is a symbol. Then, by de�nition,

valf (λ) =

{
aye in the former case,

0y∞ in the latter case.

Example 2.1. Consider the polynomial f(x, y) = (x2 − y3)2 + xy5. The
four Newton-Puiseux roots are:

x = y
3
2 +

1

2
iy

7
4 + . . .

x = y
3
2 − 1

2
iy

7
4 + . . .

x = −y
3
2 +

1

2
y

7
4 + . . .

x = −y
3
2 − 1

2
y

7
4 + . . . .

The tree model of f will have a bar at height 3
2 , with two trunks of

multiplicity two on it. On top of both those trunks will be another bar at
height 7

4 , both of which have two twigs. This tree is given in the diagram
below.
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1.5
2 2

1.75 1.75

The roots of the generic polar are:

x = λ1(y) =
1

4
y2 +

1

64
y3 + . . .

x = λ2(y) = y
3
2 − 1

8
y2 + . . .

x = λ3(y) = −y
3
2 − 1

8
y2 + . . . .

The truncation of the roots is simply x = 0 and x = ±y
3
2 . Now:

f(
1

4
y2 +

1

64
y3 + . . . , y) = y6 +

1

8
y7 +H.O.T. .

Hence, valf (λ1) = y6. Similarly, valf (λ2) = y
13
2 , and valf (λ3) = −y

13
2 .

The set of critical points of the valuation function at f is denoted by

Cr(f) = {γi | γi a generic polar of f} .
Let F (x, y, t) be an analytic function such that F (x, y, 0) = f . For �xed

t we write ft for F (x, y, t). We can de�ne the valuation function of F as the
valuation functions at ft for each t. Likewise if we denote the set of generic
polars of ft by {γft,i}, the set of critical points of the valuation function of F
is: Cr(F ) = {(γft,i, t)}.

Let IC be the complex unit interval, IC = {t ∈ C
∣∣ |t| ≤ 1}. We say F is

an almost Morse stable deformation if there exists a homeomorphism (using
the topology de�ned in Kuo-Paunescu [4])

τ : Cr(f)× IC → Cr(F ), (γf,i, t)→
(
τ(γft,i, t), t

)
,

which preserves the Lojasiewicz exponent of each element of Cr(f).

De�nition 2.2 (Morse Stable Deformation [4]). An almost Morse stable
deformation F is Morse stable if it preserves the tree model and the critical
points of the valuation functions at ft(x, y) for all t. Speci�cally, if γ is in Cr(f)
and γ′ is another point in Cr(f) which leaves the tree of f from the same bar
then ft(γ) and ft(γ

′) will be on the same bar in the tree model of ft for all t
and additionally,

valft(γt) = valft(γ
′
t) i� valf (γ) = valf (γ

′) .



5 Morse classi�cation of low order jet space 565

We say that two germs f(x, y) and g(x, y) are Morse equivalent f
M∼ g

if there is a Morse stable deformation ft(x, y) such that f0 = f and f1 = g.
As Morse equivalency requires the bar spaces to be equivalent, if f and

g are Morse equivalent they have the same tree and hence are topologically
equivalent. Recall that two germs f1, f2 are topologically (right) equivalent if
there is a germ of homeomorphism h : C2 → C2 such that f1 = f2 ◦ h. From
Burau [2] (see also Zariski [6]) and Parusinski [5] two germs are topologically
(right) equivalent if and only if their tree models coincide.

3. TECHNICAL LEMMAS

Consider the space Jk(2,1) of all k-jets at 0 of holomorphic functions C2 → C
with the natural vector space structure.

Lemma 3.1. The Lojasiewicz exponent for all polar curves are preserved

under linear change of coordinates. In particular, f(x, y) is Morse equivalent

to f(ax+ by, cx+ dy) whenever ad− bc 6= 0.

Proof. Let g(x, y) = f(ax+ by, cx+ dy). Writing fx for ∂
∂xf(x, y) and fy

for ∂
∂yf(x, y), we have gx = afx + cfy and gy = bfx + dfy. We want to show

that for generic k, gx+kgy will have equivalent polars to fx+k1fy for some k1,
and then show that the set of all k1 corresponding to generic k forms a dense
set in C2. In particular, k1 is generic and so fx + k1fy is a generic polar of f .

gx + kgy = afx + cfy + k(bfx + dfy)

= (a+ bk)fx + (c+ dk)fy

= (a+ bk)
(
fx +

c+ dk

a+ bk
fy

)
for bk 6= −a

Note that from the assumption ad − bc 6= 0 at least one of a and b must
be non-zero. Hence, there will be at most one value of k for which bk = −a.
For all other values of k we can set k1 = c+dk

a+bk . Now this function k → c+dk
a+bk is

de�ned on C− {−ab } → C for b 6= 0 and C→ C for b = 0 and maps bijectively

onto either C−{db} (for b 6= 0) or C (for b = 0). So for almost all k, k1 =
c+dk
a+bk

will be in a dense subset of C. Hence, g(x, y) has the same generic polars as
f(x, y).

Now we need to �nd a deformation. Firstly if ad = 0 then bc 6= 0 and
at least one of a, d must be 0. If precisely one is we can use the following
deformation to get to the case where ad 6= 0:
If a = 0, set A(t) = kt, where |k| < |bc|/|d|, and B(t) = b, C(t) = c,D(t) = d
if d = 0, set D(t) = kt, where |k| < |bc|/|a|, and A(t) = a,B(t) = b, C(t) = c
if both a and d are 0, set A = kt, D(t) = t where |k| < |bc|, and B(t) =
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b, C(t) = c
and consider the deformation F (x, y, t) = f(A(t)x+B(t)y, C(t)x+D(t)y).

In all these cases |A(t)D(t)| ≤ |k| < |bc| for all t, which implies A(t)D(t)−
B(t)C(t) 6= 0 for all t with |t| ≤ 1. Hence, all of these deformations are Morse
stable. From these deformations and the transitive property of equivalence
relationships we may assume ad 6= 0.

Now consider the deformationG(x, y, t) = f(A(t)x+B(t)y, C(t)x+D(t)y)
where A,B,C,D are de�ned as follows:

A(t) = a

B(t) = b(1− t)
C(t) = c(1− t)
D(t) = d+ bc/a(t2 − 2t)

In this case:

A(t)D(t)−B(t)C(t) = ad+ bc(t2 − 2t)− bc(1− 2t+ t2)

= ad− bc

Hence, this deformation is Morse stable and so f(ax+by, cx+dy) is Morse
equivalent to f(ax, (d+bc/a)y). As this is true for any a, b, c, d with ad−bc 6= 0,
f(x, y) is Morse equivalent to f(ax, dy) for any a, d 6= 0.

The remaining deformations can be constructed piecewise analytically,
using the transitive property of an equivalence relation. �

Lemma 3.2. If f(x, y) is a polynomial in x and y with a non-zero linear

term, f is Morse equivalent to g(x, y) = x.

Proof. For any polynomial f(x, y) with non-zero linear term, the generic
polar fx+cfy will have non-zero constant term. Hence, there are no roots of the
generic polar at 0 and so f will be trivially Morse equivalent to g(x, y) = x. �

Lemma 3.3. If f(x, y) = Hk(x, y) +Hk+1(x, y) + . . . , is mini-regular in

x, i.e. Hk(1, 0) 6= 0, and λ is a generic polar of f with Lojasiewicz exponent

Lf (λ) > k then the truncated polar λf is the same as if we had de�ned λ using

the truncated roots of fx.

This is not the case for roots with Lojasiewicz exponent k. For example,
the generic polars of x3+ y3 are the roots of x2+ cy2, while the standard polar
is x = 0 (with multiplicity 2).

Proof. As f is mini-regular, (k, 0) is on the Newton polygon of f . This
implies the gradient of all edges of the Newton polygon of f are at least 1.
Choose such a coordinate system and write f(x, y) =

∑
i,j ai,jx

iyj .
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The Newton diagram of fx can be obtained by deleting all dots (i, j) with
i < 1, and shifting all other dots 1 unit to the left, i.e. (i, j) → (i − 1, j).
Similarly, the Newton diagram of fy consists of (i, j − 1) with j ≥ 1. The
Newton polygon of fx will have edges parallel to all the edges of NP (f) for
which the highest dot has x coordinate ≥ 1, shifted one unit left. Similarly,
the Newton polygon of fy will have edges parallel to all the edges of NP (f) for
which the lowest dot has y coordinate ≥ 1.

From this we can determine the Newton diagram, and hence Newton
polygon, of fx + cfy. Note that if (i, j) is a dot on fx and fy then it will be
a dot on fx + cfy for all but one value of c. Hence, for generic c the Newton
diagram of fx + cfy will consist of all dots from the Newton diagram of fx
and fy.

Note that there will always be a dot at (k − 1, 0) due to mini-regularity.
In addition the order of fx is k− 1, and the order of fy is at least k− 1. Hence,
fx + cfy is mini-regular in x and so the edges of NP (fx + cfy) have gradient
≤ −1.

Now for i, j ≥ 1, if there is a dot at (i, j) on NP (f), there will be dots
at (i − 1, j) and (i, j − 1) on NP (fx + cfy). So lot (p, q) be a dot on an edge
E of NP (fx + cfy) with p ≥ 1. If (p, q) is also on the Newton polygon of fy,
then there is a dot (p − 1, q + 1) on the Newton diagram of fx. Now if E is
the lowest edge of NP (fx + cfy) and has gradient −1 this dot (p − 1, q + 1)
will also be on E, and E will be the same as the lowest edge of fx . However,
if E has gradient < −1, then this dot will be below E, which contradicts the
convex nature of the Newton polygon. So if (p, q) is on NP (fx + cfy), it can
only be a dot on fy if it is on the lowest edge E1 and E1 has gradient −1, or if
it is on the highest edge Eh with gradient < −1.

In the latter case, consider NP (fx+ cfy) compared to NP (f) shifted one
unit to the left: as we are sliding for a root x = γ(y), the x coordinates of the
dots on the Newton diagram of f will all be integers (the y coordinates will be
in Q). Hence, the x coordinate of the lowest dot of the highest edge of NP (f)
will be at least 1. In particular, the Newton polygon of both fx and fx+cfy will
be identical to NP (f) shifted one unit to the left up except for the highest edge
of this. Now the corresponding edges of NP (fx+ cfy) will have lower gradient
than the highest edge of NP (f). So the contact order between the roots of
fx+ cfy and f will be equal to the negative of the gradient of the highest edge
of NP (f). Hence, sliding along these higher edges of NP (fx + cfy) will not
change the truncated polars.

Now consider sliding towards a root of fx + cfy. Let x = a1y
α1 be the

�rst approximation to the polar. If α1 = 1 and x = a1y is a multiple root of
multiplicity m of f(x, y) = 0 then x = a1y is a root of multiplicity m − 1 of



568 Michael Barwick 8

both fx and fy, and we may factorise fx+ cfy to see that x = a1y is a multiple
root of multiplicity m− 1 (for c generic). In this case Lf (λ) > k If x = a1y is
not a root of f then x = a1y is the truncated generic polar and by considering
f(a1y, y) the Lojasiewicz exponent Lf of x = a1y is k.

So for all polars with Lojasiewicz exponent larger than k the truncated
polar is the same with the generic polar as simply using fx. �

This may be restated as:

Corollary 3.4. Let f be mini-regular in x, and let {ri} be the set of

Puiseux roots of f . If the contact order of a generic polar λ with {ri} is greater
than one (it leaves the tree of f at height greater than one), then the truncation

λf is also a truncated root of fx.

We now quote the truncation theorem from Kuo and Paunescu [4].

De�nition 3.5 (Puiseux Root Truncation). Let f(x, y) =
∏
i(x− ri(y))mi

be mini-regular in x. For each i let ei = maxj 6=i{Oy(ri − rj)} and let r̂i be ri
with all terms of order greater than ei deleted. These are the truncated roots
of f . If there is only one root, f(x, y) = (x− r(y))m, then let r̂ = r.

The Puiseux root truncation of f is f̂root(x, y) =
∏
i(x− r̂i(y))mi .

Theorem 3.6 (Truncation Theorem (Kuo-Paunescu [4])). f(x, y) is Morse

equivalent to f̂root(x, y).

An immediate consequence of this is the following lemma:

Lemma 3.7. If f(x, y) has no multiple roots, and we let l = max{L(γ) | γ ∈
Cr(f)}, then f is l-su�cient in the sense that adding terms of order higher than

l will not change the Morse type of f .

Proof. Note that the multiplicity of f must be less than or equal to l.

We may assume f(x, y) is mini-regular in x. Let g(x, y) = f(x, y) +
Hl+1(x, y) + Hl+2(x, y) + H.O.T. . We want to show that the Puiseux root
truncations of f and g are identical.

Now consider the process of sliding for a root r of g(x, y): Assume we have
an approximation x = λi−1 =

∑i−1
j=1 ajy

αj , we construct the Newton polygon
of f relative to λi−1: f(x+ λi−1(y), y) and choose an edge Ei of gradient −αi
(where 1 ≤ α1 < α2 < . . . . We �nd a root ai of the associated polynomial of
Ei. Our new approximation is x = λi =

∑i
j=1 ajy

αj . As the exponents αi are
increasing, each edge Ei will be higher than the previous one. So in particular,
if the highest edge Eh corresponding to the highest order term ahy

αh in the
truncated root r̂ = λh is below the line x+ y = l+1 in the Newton diagram of
f(x+ λh(y), y), then all other edges Ei will also be below that line.
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Now the Lojasiewicz exponent of an arc λ is simply the y-coordinate of
the lowest dot on the y-axis in f(x+λ(y), y). So the highest dot on Eh is below
the line x + y = l + 1 (since f was assumed to be mini-regular, the slope of
Eh is less than −1). So all edges that we slide along to �nd r are below the
line x + y = l + 1. Also, since 1 ≤ α1 < α2 < . . . , all dots resulting from
the additional terms Hl+1(x, y) +Hl+2(x, y) +H.O.T. in g(x, y) will be on or
above this line. Hence, the edges of the Newton polygon of f(x + λi(y), y)
will be the same as the edges of g(x + λi(y), y) for all approximations λi to a
root r. Hence, the truncated polars of f and g will be the same, and so by
the truncation theorem f is Morse equivalent to g. (Using the deformation
G(x, y, t) = f(x, y) + t×H.O.T. .) �

Lemma 3.8. If f(x, y) is a jet with quadratic �rst term such that the

Lojasiewicz exponent of the polar of f is l, then f is Morse equivalent to x2+yl

in Jw(2,1)(C) for all w ≥ l.

Proof. First note that as a quadratic function has only one generic polar,
the additional conditions for an almost Morse stable deformation to be Morse
stable are trivially true. So when constructing a deformation we only have to
consider the Lojasiewicz exponent of the generic polar.

Now let f be a jet of order 2 with generic polar γ and Lf (γ) = l. Note that
in this case l will always be an integer, so dle = l. As the x2+y2 case is covered
as part of the general quadratic case in the next chapter, we can without loss of
generality assume that the quadratic term in f is x2, i.e. f = x2+R(x, y), where
the order of R is at least 3. Write valf (γ) = ayl. Consider the deformation
ft = x2 +R(x, ty) + (1− tl)ayl.

∂

∂x
ft + c

∂

∂y
ft = 2x+Rx(x, ty) + ctRy(x, ty) + acl(1− tl)yl−1.

For t 6= 0 the only possible di�erence between the Newton polygon of ∂
∂xft +

c ∂∂yft(x, y) and the Newton polygon of ∂
∂xf + c ∂∂yf(x, ty) will be the dot at

(0, l − 1). Hence, the generic polar of ft, γt(y) will be the same as γ(ty) up to
the term of order l − 1.

As l > 2, we may ignore the term in yl−1 and all higher order terms, as
the truncated generic polar will be γft(y) = γf (ty).

Now consider valft(γt): the valuation of γft(y) = γf (ty) in ft(x, y) is at
lyl.

As ft = f(x, ty) + (1− tl)ayl, the valuation of γft(y) in ft will be

valft(γft) = atlyl + a(1− tl)yl = ayl.

Hence, the Lojasiewicz exponent is preserved and so f is Morse equivalent
to x2+R(x, 0)+yl, which is trivially Morse equivalent to x2+yl. As this holds
for any such f , all jets of order 2 are Morse equivalent in Jw. �
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This also shows that in su�ciently large jet spaces, the classi�cation of
jets with quadratic �rst term is the same as the classi�cation of those jets under
topological triviality. But as we will see in the next lemma, the classi�cations
di�er in lower order jet spaces.

Lemma 3.9. The jets x2 + xyn−1 and (x+ y2)2 + xn−1 are not equivalent

in Jn but are equivalent in Jn+1.

Proof. Assume there is a ft(x, y) = F (x, y, t) such that f0(x, y) = x2 +
xyn−1 and f1 = (x+y2)2+xn−1. Write F (x, y, t) = (x−a2(t)y2)2+

∑
i,j bi,j(t)x

iyj ,
with b1,n−1(0) = 1, and bi,j(0) = 0 for all other i, j. Now let x = γ(y, t) =
a2(t)y

2+a3(t)y
3+ . . . , be the generic polar. Note that ai(0) = 0 for i < n−1.

Now assume that by restricting t to some subset A of IC, where 0 is a limit
point of A, that there is k such that for |t| su�ciently small |ak(t)| ≥ |aj(t)| for
all j, 2 ≤ j ≤ n− 2. (Note that from now on we assume t ∈ A.) Consider the
term in yn+k−1 in the above expansion. This is:

b1,n−1(t)ak(t) +

n−2∑
i

ai(t)b1,n+k−1−i +
∑
i,j|i≥2

∑
(a
mi,j,2

2 a
mi,j,3

3 ...)bi,j(t) ,

where the nested sum is over all possible sets of indicesmi,j,l such that
∑

lmi,j,l =
i and j+2mi,j,2+3mi,j,3+ · · · = n+ k− 1. i.e. this is the sum of all additional
terms contributing to the dot at (0, n+ k − 1).

So for t 6= 0:

b1,n−1(t)ak(t) = −
n−2∑
i

ai(t)b1,n+k−1−i −
∑
i,j|i≥2

∑
(a
mi,j,2

2 a
mi,j,3

3 ...)bi,j(t) .

By assumption, this must be 0 for all t with |t| ≤ 1. Now consider the
magnitude of each of the terms: as F is smooth, by continuity for every ε > 0
there exists δ such that if |t| < δ, |b1,n−1(t) − 1| < ε, |b1,n−1−i(t)| < ε, and
ai(t) < ε when i < n− 1. Hence, for such t and ε < 1

n ,∣∣ n−2∑
i

ai(t)b1,n+k−1−i
∣∣ < ε2

n
< ε .

So near t = 0 we must have:∣∣b1,n−1(t)ak(t) + ∑
i,j|i≥2

∑
(a
mi,j,2

2 a
mi,j,3

3 ...)bi,j(t)
∣∣ ≤ ε ,

hence ∣∣b1,n−1(t)ak(t)∣∣ < ∣∣ ∑
i,j|i≥2

∑
(a
mi,j,2

2 a
mi,j,3

3 ...)bi,j(t)
∣∣+ ε .
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As |ak(t)| ≥ |aj(t)| for all j, 2 ≤ j ≤ n− 2,∣∣ ∑
i,j|i≥2

∑
(a
mi,j,2

2 a
mi,j,3

3 ...)bi,j(t)
∣∣ ≤ ∣∣ ∑

i,j|i≥2

∑
(a
mi,j,2

k a
mi,j,3

k ...)bi,j(t)
∣∣

≤ |a2k|
∑
i,j|i≥2

Mi,j |bi,j(t)| ,

hence,

|b1,n−1(t)ak(t)| ≤ |a2k|
∑
i,j|i≥2

Mi,j |bi,j(t)|+ ε

(1− ε)|ak| ≤ |ak|2
∑
i,j|i≥2

Mi,j |bi,j(t)|+ ε

1 ≤ |ak|
∑
i,j|i≥2

Mi,j |bi,j(t)|+ 2ε .

Here Mi,j is the number of di�erent sets of indices mi,j,l. Now as each
Mi,j is bounded, ak → 0, and there are a �nite number of combinations i, j,
we have that at least one of the bi,j(t) must approach in�nity as t approaches
zero. Hence, F is not smooth, which is a contradiction, and so x2 + xyn−1 and
(x+ y2)2 + xn−1 are not equivalent in Jn.

Now to show these jets are equivalent in Jn+1, consider the deformation
in Jn+1 de�ned by F (x, y, t) = (x + t/2y2)2 + xyn−1 + t/2yn+1 + xn−1 for
small t: For t = 0, the truncated polar is x = −1/2yn−1, which has valuation
−1/4y2n−2. For t 6= 0 the truncated polar is x = −t/2y2 − 1/2yn−1, which has
valuation (−1/4 + (t/2)n−1)y2n−2 for t 6= 2 n−1

√
1/4. As n ≥ 4, |2 n−1

√
1/4| > 1,

and so this deformation is Morse stable. �

Consider the space Jn(2,1)(C). This has a natural vector space representa-

tion in C
n2+3n

2 constructed in the following way:
Let f(x, y) =

∑
i,j ai,jx

iyj . We associate f with the point

(a1,0, a0,1, a2,0, a1,1, . . . ) ∈ C
n2+3n

2 .

Lemma 3.10. Consider the subspace of Jn(2,1) consisting of the homoge-

neous jets of order n (plus the origin). This is the subspace given by ai,j = 0

for i + j < n. For Hn(x, y) in this plane, write Hn =
∏k
i (aix + biy)

mi where

ai/bi = aj/bj if and only if i = j. The classi�cation of Hn under Morse equiv-

alency is entirely determined by the set of multiplicities {mi}. This is also the

classi�cation by topological type, with a stratum for each partition of n. (A

partition of n is an unordered set of positive integers mi such that
∑

imi = n.)

Proof. First note that if two jets have di�ering sets of indices {mi} then
they have di�erent topological type, and so are not Morse equivalent. Hence,
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that many classes are necessary, we now prove that is su�cient:
We may write fx = Rx(x, y)

∏k
i (aix + biy)

mi−1 and fy = Ry(x, y)
∏k
i (aix +

biy)
mi−1, for some polynomials Rx and Ry. Note that these will both be ho-

mogeneous of order k− 1, and have no shared roots with each other or f(x, y).

Now fx + cfy = (Rx(x, y) + cRy(x, y)
∏k
i (aix + biy)

mi−1. Hence, the
generic polars consist of: the root of f(x, y); aix+ biy = 0 for each i = 1, . . . , k
with multiplicity mi − 1 (when mi ≥ 2) and Lojasiewicz exponent ∞ and the
roots of Rx(x, y) + cRy(x, y) = 0. As c is generic and Rx and Ry share no
roots with each other or with f(x, y), the equation Rx(x, y) + cRy(x, y) = 0
has k− 1 roots of multiplicity 1 and Lojasiewicz exponent n, all of which have
distinct valuation. Hence, two homogeneous polynomial germs have the same
Morse type if and only if they have the same set of multiplicities. It remains to
construct a deformation, which can easily be done piecewise, using the transitive
property of equivalence relations. �

Lemma 3.11. Consider the subspace of Jn(2,1) consisting of polynomials of

the form Hn−1 +Hn (including the trivial polynomial). This corresponds to a

subspace in the natural vector space representation of Jn(2,1), given by ai,j = 0

for i + j < n − 1. For f(x, y) = Hn−1 + Hn, in this plane, write Hn−1 =∏
i(aix+ biy)

mi where ai/bi = aj/bj ⇒ i = j. We can now write f as:

f =
∏
i

(aix+ biy)
mi +

∏
i

(aix+ biy)
ni ×R(x, y) ,

where R(x, y) is the polynomial such that Hn =
∏
i(aix+ biy)

ni × R(x, y) and
R(x, y) shares no roots with Hn−1. Note that some or all of the ni may be zero.

The Morse classi�cation of f is entirely determined by the set of multiplicities

{mi} and {ni} and is also the same as classi�cation by topological type.

Proof. Note that by using a suitable coordinate change we may assume
ai = 1 for all i.

We will �rst slide for the roots of f(x, y) to show topological type is
determined by the multiplicities mi and ni. Now in the Newton polygon of
f , the dots from Hn−1 will form an edge. The solutions of this edge will be
x = −biy. (Note that this will be the only edge unless one of the bi is zero,
but in that case we can still use x = −biy, it will simply have no e�ect on the
Newton polygon. In addition, only one of the bi can be zero.)

Now consider the Newton polygon of f(x−biy, y): from evaluatingHn−1(x−
biy, y) there will be a line between (n− 1, 0) and (mi, n−mi− 1). In addition,
by evaluating Hn(x− biy, y) there will be a dot at (ni, n− ni), and potentially
other dots on the line between (n, 0) and (ni, n− ni). These are all of the dots
on the Newton polygon of f(x−biy, y). Hence, the leading edge will be between
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the dot (mi, n−mi − 1) and the dot (ni, n− ni). There will be no additional
dots on this edge, and no dots to the left of this edge. We will write the equa-
tion for this edge as E(x, y) = ami,n−mi−1x

miani,n−nix
niyn−ni So x = −biy is

a root of multiplicity ni and there are mi − ni additional roots:

x = r(y) = −biy + ωmi−ni
(mi−ni)

√
− ani,n−ni

ami,n−mi−1
y

mi−ni+1

mi−ni +H.O.T. ,

where ωmi−ni is one of the (mi − ni)-th complex roots of 1. As these roots
all have multiplicity one we have �nished sliding. Hence, the tree of f(x, y) is
determined by {mi} and {ni}.

Now consider the Newton polygon of fx(x− biy, y)+ cfy(x− biy, y). This
will have dots at (mi − 1, n − mi − 1), (ni − 1, n − ni), (mi, n − mi − 2) and
(ni, n−ni−1). The second dot will only exist if ni ≥ 1. In this case the leading
edge of this will be between (mi−1, n−mi−1) and (ni−1, n−ni). Otherwise,
the leading edge will be between (mi − 1, n−mi − 1) and (0, n− 1).

So for ni ≥ 1, the polars are x = −biy with multiplicity ni−1 and mi−ni
additional polars

x = γ(y) = −biy + ωmi−ni
(mi−ni)

√
− niani,n−ni

miami,n−mi−1
y

mi−ni+1

mi−ni +H.O.T. .

These polars are clearly distinct from each other and from the roots.
Hence, in this case we have found the truncated polars. By substituting these
into f the Lojasiewicz exponent of each of these is:

n−mi − 1 +mi
mi − ni + 1

mi − ni
By substituting these polars into the leading edge of f(x− biy, y) we can

also see that the relationship between the valuations will be the same for any
jet with the same set of multiplicities.

If ni = 0, there cannot be a dot at (ni− 1, n−ni) in the Newton polygon
of fx(x− biy, y) + cfy(x− biy, y), so the leading edge of this will have gradient
mi

1−mi
. Hence, the polars found by sliding along this edge will be of the form:

x = −biy +O(y
mi

mi−1 ) +H.O.T. .

But the leading edge of f(x− biy, y) are will be between (mi, n−mi − i)
and (0, n). Hence, the roots found by sliding along this edge will be of the form

x = r(y) = −biy ++O(y
mi+1

mi ) +H.O.T. .

As mi
mi−1 >

mi+1
mi

and the term of order y
mi+1

mi exists, the truncated polar
is x = −biy of multiplicity mi − 1, and Lojasiewicz exponent n.

Hence, the multiplicities {mi} and {ni} determine the Morse type of f .
A deformation can again be constructed in a piecewise manner. �



574 Michael Barwick 14

4. RESULTS

The Morse classi�cations of J1
(2,1)(C), J

2
(2,1)(C) and J

3
(2,1)(C) are the same

as the classi�cation by topological type.
The Morse classi�cations of J4

(2,1)(C) and J5
(2,1)(C) are listed in the fol-

lowing tables. Each strata is de�ned using a reference element, the Lojasiewicz
exponents of the polar(s) is also given. Partly for simplicity and partly by
convention we will not always use mini-regular expressions for the strata. For
example, x2y+y4 is the standard expression for the simple singularityD5 in two
complex dimensions. It could however be represented using the mini-regular
jet x2(x+ y) + (x+ y)4. Similar coordinate changes can be used for the other
strata to obtain mini-regular expressions.

The results will simply be quoted here, the proof and a more detailed
discussion will follow in the author's PhD thesis.

Theorem 4.1. The Morse classi�cation for J4
(2,1)(C) is:

Strata Containing Lojasiewicz Exponent(s)

0 n/a
x n/a

x2 + y2 2
x2 + y3 3
x2 + y4 4

(x+ y2)2 + x2y 5
x2 + xy3 6

(x+ y2)2 + x3 6
(x+ y2)2 + x3y 7
(x+ y2)2 + x4 8

x2 ∞
x3 + y3 (3, 3)
x2y + y4 (3, 4)
x2y + xy3 (3, 5)

x2y (3,∞)
x3 + y4 (4, 4)
x3 + xy3 (4.5, 4.5)
x3 + x2y2 (6,∞)

x3 ∞
x4 + y4 (4, 4, 4)
x4 + x2y2 (4, 4,∞)
x4 + x3y (4,∞)

x4 + 2x2y2 + y4 (4,∞,∞)
x4 ∞
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This classi�cation is almost identical to the classi�cation under topolog-
ical equivalence with the exception of the strata containing x2 + xy3 and the
strata containing (x+ y2)2 + x3, which by lemma 3.9 are disjoint in J4 but are
connected under topological equivalence, and indeed under Morse equivalence
in all higher order jet spaces.

Theorem 4.2. The classi�cation of J5
(2,1)(C) is given in the following

tables:

Strata Lojasiewicz Exponent(s)

Trivial Strata

0 n/a
x n/a

Homogeneous Quintics

x5 + y5 (5, 5, 5, 5)
x5 + x2y3 (5, 5, 5,∞)

x(x2 + y2)2 (5, 5,∞,∞)
x5 + x3y2 (5, 5,∞)

x3y2 (5,∞,∞)
x4y (5,∞)
x5 (∞)

Quartic First Term

x4 (∞)
x4 + y4 (4, 4, 4)
x4 + y5 (5)
x4 + xy4 (51

3 , 5
1
3 , 5

1
3)

x4 + x2y3 (6, 6,∞)
x4 + x3y2 (8,∞)

x3y (4,∞)
x3y + y5 (4, 5)
x3y + xy4 (4, 5.5, 5.5)
x3y + x2y3 (4, 7,∞)

x2y2 (4,∞,∞)
x2y2 + (x+ y)5 (4, 5, 5)
x2y2 + x(x+ y)4 (4, 5, 6)

x2y2 + x5 (4, 5,∞)
x2y2 + xy(x+ y)3 (4, 6, 6)

x2y2 + x4y (4, 6,∞)
x4 + x2y2 (4, 4,∞)

x4 + x2y2 + y5 (4, 4, 5)
x4 + x2y2 + xy4 (4, 4, 6)



576 Michael Barwick 16

Strata Lojasiewicz Exponent(s)
Cubic First Term

x3 (∞)
x3 + y3 (3, 3)

x2y (3,∞)
x2y + y4 (3, 4)
x2y + y5 (3, 5)

y(x+ y2)2 + x3 (3, 6)
x2y + xy4 (3, 7)

y(x+ y2)2 + x3y (3, 7)
y(x+ y2)2 + x4 (3, 8)
y(x+ y2)2 + x4y (3, 9)
y(x+ y2)2 + x5 (3, 10)

y(x+ y2)2 + x3(x+ y2) (3, 11)
x3 + y4 (4)
x3 + xy3 (4.5, 4.5)
x3 + y5 (5)

x3 + 3x2y2 + 3xy4 (6)
x3 + xy4 (6, 6)

x(x+ y2)2 + x2y3 (6, 7)
x(x+ y2)2 + x4 (6, 8)
x(x+ y2)2 + x4y (6, 9)
x(x+ y2)2 + x5 (6, 10)

x3 + x2y2 (6,∞)
x(x+ y2)2 (6,∞)
x3 + x2y3 (9,∞)

Quadratic First Term
x2 ∞

x2 + y2 2
x2 + y3 3
x2 + y4 4
x2 + y5 5
x2 + xy3 6

(x+ y2)2 + x3y 7
(x+ y2)2 + x4 8

x2 + xy4 8
(x+ y2)2 + x4y 9
(x+ y2)2 + x5 10

(x+ y2)2 + 2(x2y + x3)(x+ y2)− x5; 11
(x+ y2)2 + x4 + x3y2 12

(1 + y)(x+ y2)2 + (x2y − 1
2x

3)(x+ y2)− 1
4x

5 12
(x+ y2)2 + 2x2y3 + 2x3y − x5 13
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There are 5 additional strata compared to the classi�cation by topological
type, 2 quadratic and 3 cubic. These are all pairs of strata that are topologically
equivalent. Four of the pairs are distinct due to the deformation condition, in all
these cases deformations may be constructed in J6. Speci�cally, these pairs are:

x2 + xy4
M� (x+ y2)2 + x4

(x+ y2)2 + x4 + x3y2
M� (1 + y)(x+ y2)2 + (x2y − 1

2
x3)(x+ y2)− 1

4
x5

x2y + xy4
M� y(x+ y2)2 + x3y

x3 + x2y3
M� x(x+ y2)2

The cubic strata x3+xy4 and x3+3x2y2+3xy4 are not Morse equivalent
in any higher order jet space as x3+xy4 has two polars, while x3+3x2y2+3xy4

has one polar of multiplicity two. They are topologically equivalent as they have
the same tree model. The other distinct strata are all due to the deformation
condition, and are equivalent to the corresponding strata in J6.

Example 4.3. In J6 the jets x4+x2y4 and x4+x2y4+x2y4 are not Morse
equivalent, as the two non-zero polars of x4 + x2y4 have the same valuation,
while the two non-zero polars of x4 + x2y4 + x2y4 have di�erent valuations.
These jets are topologically equivalent. (N.B. there are no examples of this
type in J5.)
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