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1. INTRODUCTION

The analytic Radon transformation is one of the most important integral
transformations in mathematics, which is applied to the CT-scan, partial dif-
ferential equations and so on. In this paper, we study its topological analogy.
In our theory, the integral is based on the topological Euler characteristics of
subanalytic subsets (see [8, 16] etc.). Recently, the topological Radon trans-
formation is applied to class formulas for dual varieties in algebraic geometry,
sensor networks in applied mathematics and so on (see [1], [10�12] etc.).

We denote the �eld of real numbers or that of complex numbers by K (i.e.
K = R or C). We also denote by FN (k) the Grassmann manifold consisting of
k-dimensional linear subspaces in KN . Let p, q be positive integers satisfying
p < q, set X = FN (p) and Y = FN (q). Let us also set Sp = {(x, y) ∈
X × Y | x ⊂ y}, which is an incidence submanifold of X × Y , and consider the
diagram:

X × Y

pX

~~

pY

  

Sp
� ?

OO

fpww gp ''
X Y.

Here fp and gp are restrictions of natural projections pX and pY to Sp
respectively. By composing the inverse image by fp and the direct image by
gp, for a constructible function ϕ on X we de�ne the topological Radon trans-
form RSp(ϕ) of ϕ, which is a constructible function on Y . See Section 2 for the
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precise de�nitions. In [9], we proved an inversion formula for RSp . In partic-

ular, we explicitly construct a transformation R̂ considered as a left inverse
transformation of RSp . See Section 3.1 for the review. In this paper, we will
prove a range characterization of the topological Radon transformation RSp .
We characterize the images RSp(ϕ) of constructible functions ϕ on X by a

system of topological integral equations and prove that the transformation R̂
is also considered as a right inverse transformation of RSp for constructible
functions satisfying the system of topological integral equations.

On the range characterizations of topological integral transformations,
the following results are known in the previous studies. The range of the topo-
logical polar transformation of constructible functions on the Euclidean space
is characterized by a condition on topological integrals by Br�ocker [2]. It is
similar to our result to characterize the range of a topological integral trans-
formation by conditions on topological integrals. In [9], we obtained a partial
characterization of some images of the topological Radon transformation RSp

on the Grassmann manifold FN (p) by Young diagrams. In [10], we studied the
microlocal images of the topological Radon transformation on the projective
space by characteristic cycles of constructible functions.

In the analytic case, it is well-known that the range of the analytic d-
dimensional Radon transformation of C∞-functions on the Euclidean space is
characterized by a system of second order ultrahyperbolic di�erential equations
(see [5, 6] etc.). More generally, the range of the analytic Radon transformation
of C∞-functions on the Grassmann manifold is characterized by a system of
invariant di�erential equations (see [7] etc.).

Finally, the author would like to greatly appreciate several useful com-
ments of the referee.

2. PRELIMINARIES

2.1. Constructible functions

In this subsection, we recall the de�nition and basic properties of con-
structible functions. See [8] and [16] for more details. In the theory of o-minimal
structures [15], we can de�ne them in more general settings.

De�nition 2.1. Let X be a real analytic manifold. We say that an integer-
valued function ϕ : X −→ Z is constructible if there exists a locally �nite family
{Xi}i∈I of compact subanalytic subsets Xi of X such that ϕ is expressed by

ϕ =
∑
i∈I

ci1Xi (ci ∈ Z).
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Here 1Xi denotes the characteristic function of Xi. We denote the abelian
group of constructible functions on X by CF (X).

We de�ne several operations on constructible functions in the following
way.

De�nition 2.2 ([8, 16]). Let X and Y be real analytic manifolds and
f : Y −→ X a real analytic map from Y to X.

(i) (The inverse image) For ϕ ∈ CF (X), we de�ne the inverse image f∗ϕ ∈
CF (Y ) of ϕ by f by

f∗ϕ(y) = ϕ(f(y)).

(ii) (The integral) Let ϕ =
∑
i

ci1Xi ∈ CF (X) be a constructible function

on X and assume that its support supp(ϕ) is compact. Then we de�ne

the topological (Euler) integral

∫
X
ϕ ∈ Z of ϕ by∫

X
ϕ =

∑
i

ci · χ(Xi),

where χ(Xi) is the topological Euler characteristic of Xi.

(iii) (The direct image) Let ψ ∈ CF (Y ) such that f |supp(ψ) : supp(ψ) −→ X

is proper. Then we de�ne the direct image

∫
f
ψ ∈ CF (X) of ψ by f by

(∫
f
ψ

)
(x) =

∫
Y

(ψ · 1f−1(x)).

The group of constructible functions is isomorphic to the Grothendieck
group of the derived category of R-constructible sheaves via the local Euler-
Poincar�e index. We can easily see that the operations in De�nition 2.2 are well-
de�ned and satisfying functorial properties by this identi�cation. See [8, 13]
for more details. In particular, the following properties will be used later.

Proposition 2.3. Let X,Y, Z be real analytic manifolds and f : Y −→ X,

g : Z −→ Y real analytic proper maps.

(i) (Functoriality [14]) For ϕ ∈ CF (X), ψ ∈ CF (Z), we have

g∗(f∗ϕ) = (f ◦ g)∗ϕ,∫
f

(∫
g
ψ

)
=

∫
f◦g

ψ.

(ii) (Base change formula [14]) Let W be also a real analytic manifold. As-
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sume that the diagram

Z

g
��

t //W

s
��

Y
f // X

is a Cartesian square of real analytic maps. Then for ψ ∈ CF (Y ) we

have

s∗
(∫

f
ψ

)
=

∫
t
(g∗ψ).

(iii) (Projection formula [12]) For ϕ ∈ CF (X), ψ ∈ CF (Y ), we have∫
f
(f∗ϕ · ψ) = ϕ ·

∫
f
ψ.

2.2. Topological Radon transforms

In this subsection, let us de�ne our main subject: the topological Radon
transforms. See [9, 14] for more details.

Let X and Y be real analytic manifolds and S a locally closed subanalytic
subset ofX×Y . For simplicity, we assume thatX and Y are compact. Consider
the diagram:

(2.1) X × Y

pX

��

pY

��

S
� ?

OO

fww g ''
X Y,

where pX and pY are natural projections and f and g are restrictions of pX and
pY to S respectively. Note that we can generalize the de�nitions of the inverse
image and the direct image to f and g. In the situation above, we de�ne the
topological Radon transforms for constructible function as follows.

De�nition 2.4. For a constructible function ϕ ∈ CF (X) on X, we de�ne
the topological Radon transform RS(ϕ) ∈ CF (Y ) of ϕ by

RS(ϕ) =

∫
g
f∗ϕ =

∫
pY

1S · p∗Xϕ.

Similarly, for a constructible function ψ ∈ CF (Y ) on Y , we de�ne the
transposed transform tRS(ψ) ∈ CF (X) of ψ by

tRS(ψ) =

∫
f
g∗ψ =

∫
pX

1S · p∗Y ψ.
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We consider 1S as the kernel function of transformations RS and tRS .
In the theory of integral transformations, it is important to study the

following problems: (1) inversion formula (2) range characterization (3) support
theorem. In this paper, we study the second problem of topological Radon
transforms on Grassmann manifolds. Note that the �rst and third problems
for them were studied in [9] and [10] respectively. Note also that the second
problem of that was partially studied in [3, 9] and [10].

By Proposition 2.3, we have the following property, which will be used in
Section 3.2.

Proposition 2.5 ([12]). For ϕ ∈ CF (X) and ψ ∈ CF (Y ), we have∫
Y
ψ · RS(ϕ) =

∫
X

tRS(ψ) · ϕ.

Proof. Let πX : X −→ {pt} and πY : Y −→ {pt} be natural projections.
By Proposition 2.3, we have∫

πY

ψ ·
∫
g
f∗ϕ

=

∫
πY

∫
g
(g∗ψ) · (f∗ϕ) =

∫
πX

∫
f
(g∗ψ) · (f∗ϕ) =

∫
πX

ϕ ·
∫
f
g∗ψ. �

2.3. GRASSMANN MANIFOLDS AND SCHUBERT VARIETIES

In this subsection, we recall the de�nition of Grassmann manifolds and the
Euler characteristic of special Schubert varieties, which will play an important
role in Section 3. See [4, 9] for the detail.

Let N be a positive integer. We denote the �eld of real numbers or that
of complex numbers by K (i.e. K = R or C).

De�nition 2.6. For k = 0, 1, 2 . . . , N , we denote by FN (k) the Grassmann
manifold consisting of k-dimensional linear subspaces L ' Kk in KN . That is,
we set
FN (k) = {L | L is a k-dimensional linear subspace in KN (through the origin)}.

In the case k = 0, FN (0) = {0}. And in the case k = 1, FN (1) is nothing
but the (N − 1)-dimensional projective space PN−1. By projectivizing each
linear subspace, we could identify FN (k) with the set of all (k− 1)-dimensional
linear subspaces in PN−1. In this paper we do not use this identi�cation. For
simplicity, we set FN (k) = ∅ unless 0 ≤ k ≤ N .

Let us explain a cell decomposition of the Grassmann manifold FN (k).

De�nition 2.7. Let k be a positive integer satisfying 1 ≤ k ≤ N .
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(i) We call a sequence of integers σ = (σ1, σ2, . . . , σk) a Young diagram with
at most k rows and N − k columns if σ satis�es

N − k ≥ σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0.

We denote by I(N, k) the set of all Young diagrams with at most k rows
and N − k columns.

(ii) We �x a complete �ag (i.e. a sequence of linear subspaces)

{0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ VN = KN , dimVi = i (i = 1, 2, . . . , N)

in KN . For a Young diagram σ = (σ1, . . . , σk) ∈ I(N, k), we de�ne the
Schubert cell corresponding to σ by

Ω◦σ

=

{
L ∈ FN (k)

∣∣∣∣ dim(L ∩ VN−k−σi+i) = i,
dim(L ∩ VN−k−σi+i−1) = i− 1

(i = 1, 2, . . . , k)

}
.

Note that we often identify a Young diagram with a collection of boxes
arranged in left justi�ed rows, with a weakly decreasing number of boxes in
each row.

In this paper, we use the generalized binomial coe�cient de�ned by(
n

m

)
=

{(
n
m

)
(0 ≤ m ≤ n),

0 (otherwise).

Proposition 2.8. Let k be a positive integer satisfying 1 ≤ k ≤ N .

(i) For a Young diagram σ = (σ1, σ2, . . . , σk) ∈ I(N, k), we have

Ω◦σ ' Kk(N−k)−|σ|,

where we set |σ| = σ1 + σ2 + · · ·+ σk.

(ii) The Grassmann manifold FN (k) has the following cell decomposition

FN (k) =
⊔

σ∈I(N,k)

Ω◦σ.

(iii) The Euler characteristic of the Grassmann manifold FN (k) is computed

as follows.

(a) In the case K = C, we have

χ(FN (k)) =

(
N

k

)
.

(b) In the case K = R, we have

χ(FN (k)) =


0 (k(N − k) is odd),([N

2

][
k
2

]) (otherwise).
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Here [ · ] is the �oor function. For a real number t ∈ R, [t] is the

largest integer not greater than t.

For the proof of Proposition 2.8 (iii), see for example ([9], Appendix).
In Section 3, the following special subvariety Ω(N, k, l,m) of the Grass-

mann manifold FN (k) plays an important role.

De�nition 2.9. For l = 0, 1, . . . , N , let us �x an l-dimensional linear sub-
space Vl ' Kl in KN . For m = 0, 1, . . . , N , we set

Ω(N, k, l,m) = {L ∈ FN (k) | dim(L ∩ Vl) = m}.
Note that Ω(N, k, l,m) might be the empty set in some cases.

By using Young diagrams, the Euler characteristic of Ω(N, k, l,m) is com-
puted as follows.

Proposition 2.10. (i) In the case K = C, we have

χ(Ω(N, k, l,m)) = χ(FN−l(k −m))χ(Fl(m)) =

(
N − l
k −m

)(
l

m

)
.

(ii) In the case K = R, we have

χ(Ω(N, k, l,m))

= (−1)(k+m)(l+m)χ(FN−l(k −m))χ(Fl(m))

=


0 ((k −m)(N − l − k +m) or m(l −m) is odd),

(−1)k(l−m)

([N−l
2

][
k−m
2

])([ l2][
m
2

]) (otherwise).

Proof. It is enough to consider the case where m ≤ k− 1, m ≤ l, N − l ≥
k −m. Let us use the following two special Young diagrams

σ1 = (

m times︷ ︸︸ ︷
N − k − l +m, . . . , N − k − l +m,

(k −m) times︷ ︸︸ ︷
0, . . . , 0 ),

σ2 = (

(m+ 1) times︷ ︸︸ ︷
N − k − l +m+ 1, . . . , N − k − l +m+ 1,

(k −m− 1) times︷ ︸︸ ︷
0, . . . , 0 ).

Moreover, we set

I(σ1, σ2) = {σ ∈ I(N, k) | σ1 ⊂ σ, σ2 6⊂ σ}.
Then we have a cell decomposition of Ω(N, k, l,m)

Ω(N, k, l,m) =
⊔

σ∈I(σ1,σ2)

Ω◦σ.

In order to compute χ(Ω(N, k, l,m)), let us consider the shortest ways
that connect from P1 to P2 through P3 in the Fig. 1 below.
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Fig. 1

(i) In the case K = C, since χ(Ω◦σ) = 1 for σ ∈ I(N, k), we have

χ(Ω(N, k, l,m)) = #I(σ1, σ2) =

(
N − l
k −m

)(
l

m

)
.

(ii) In the case K = R, since χ(Ω◦σ) = (−1)k(N−k)−|σ| for σ ∈ I(N, k), we
have

χ(Ω(N, k, l,m))

= (−1)k(N−k){#{σ ∈ I(σ1, σ2) | |σ| is even }
−#{σ ∈ I(σ1, σ2) | |σ| is odd }}.

Let us set

eN (k) = #{σ ∈ I(N, k) | |σ| is even },
oN (k) = #{σ ∈ I(N, k) | |σ| is odd }.

(ii-a) In the case where |σ1| = m(N − k − l +m) is even, since we have

#{σ ∈ I(σ1, σ2) | |σ| is even } = eN−l(k −m)el(m) + oN−l(k −m)ol(m),

#{σ ∈ I(σ1, σ2) | |σ| is odd } = eN−l(k −m)ol(m) + oN−l(k −m)el(m),

we have

χ(Ω(N, k, l,m))

= (−1)k(N−k)(eN−l(k −m)− oN−l(k −m))(el(m)− ol(m))

= (−1)k(N−k) · (−1)(k−m)(N−l−k+m)χ(FN−l(k −m)) · (−1)m(l−m)χ(Fl(m)).

(ii-b) In the case where |σ1| = m(N − k − l +m) is odd, since we have

#{σ ∈ I(σ1, σ2) | |σ| is even } = eN−l(k −m)ol(m) + oN−l(k −m)el(m),

#{σ ∈ I(σ1, σ2) | |σ| is odd } = eN−l(k −m)el(m) + oN−l(k −m)ol(m),

we have

χ(Ω(N, k, l,m)) = (−1)k(N−k)+1(eN−l(k−m)−oN−l(k−m))(el(m)−ol(m))

= (−1)k(N−k)+1 · (−1)(k−m)(N−l−k+m)χ(FN−l(k−m)) · (−1)m(l−m)χ(Fl(m)).

This completes the proof. �
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Remark 2.11. The referee pointed out that the elements in Ω(N, k, l,m)
for each �xed m-dimensional linear subspace of Vl form a topological space
homotopic to FN−l(k−m) and we can give more geometrical proof for Propo-
sition 2.10.

3. TOPOLOGICAL RADON TRANSFORMS

ON GRASSMANN MANIFOLDS

Let p, q be positive integers satisfying 1 ≤ p ≤ q ≤ N . Set X = FN (p)
and Y = FN (q). For r = 0, . . . , p, we also set

Sr = {(x, y) ∈ X × Y | dim(x ∩ y) = r}.
Let us consider the diagram (2.1) for X = FN (p), Y = FN (q) and S = Sr.

We denote the restrictions of pX (resp. pY ) to Sr by fr (resp. gr). Then we
de�ne the topological Radon transformation by

RSr =

∫
gr

fr
∗ =

∫
pY

1Sr · p∗X : CF (X) −→ CF (Y )

and its transposed transformation by

tRSr =

∫
fr

gr
∗ =

∫
pX

1Sr · p∗Y : CF (Y ) −→ CF (X).

In general case, we do not expect that the transposed transformation tRSr

is a left inverse transformation ofRSr . In [9], we proved an inversion formula for
RSp . The aim of this paper is to characterize the range of RSp in CF (FN (q)).

3.1. A review of an inversion formula for topological Radon

transforms on Grassmann manifolds

For the reader's convenience, let us recall brie�y our explicit construction
of a left inverse transformation of RSp in [9]. For i = 0, . . . , p, let us consider
the following commutative diagram:

Sp ×
Y
Si

sp,i
��

hp

xx

hi

&&
Sp

gp ''

fp

yy

X ×X
ρ1

tt

ρ2

**

Si
fi

%%giww
X Y X,

where ρ1, ρ2 (resp. hp, hi) are the natural projections from X ×X to each X
(resp. from Sp ×

Y
Si to Sp and Si respectively) and sp,i : Sp ×

Y
Si −→ X × X
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is the natural projection from Sp ×
Y
Si to X ×X. Then by Proposition 2.3 for

ϕ ∈ CF (X) we have

(3.1) tRSi ◦ RSp(ϕ) =

∫
fi

g∗i

∫
gp

f∗pϕ =

∫
ρ2

(∫
sp,i

1Sp×
Y
Si

)
ρ∗1ϕ.

For j = 0, . . . , p, we set

Zj = {(x1, x2) ∈ X ×X | dim(x1 ∩ x2) = j}.

For (x1, x2) ∈ Zj , by considering the condition in the quotient space
KN/x1 we have

s−1p,i (x1, x2) = {y ∈ FN (q) | x1 ⊂ y, dim(x2 ∩ y) = i}
' {y ∈ FN−p(q − p) | dim(x3 ∩ y) = i− j}
= Ω(N − p, q − p, p− j, i− j),

where x3 is a (p − j)-dimensional linear subspace. Thus, χ(s−1p,i (x1, x2)) is

constant on Zj , which we set aij = χ(s−1p,i (x1, x2)). By Proposition 2.10, aij is
explicitly computed as follows.

(i) In the case K = C, we have

(3.2) aij =

(
N − 2p+ j

q − p− i+ j

)(
p− j
i− j

)
.

(ii) In the case K = R, we have

(3.3) aij =


0

(
(q − p− i+ j)(N − p− q + i)
or (i− j)(p− i) is odd

)
,

(−1)(q−p)(p−i)
([N−2p+j

2

]
[
q−p−i+j

2

])(
[
p−j
2

]
[
i−j
2

]) (otherwise).

By using aij , we have

(3.4)

∫
sp,i

1Sp×
Y
Si =

p∑
j=0

aij1Zj (i = 0, 1, . . . , p).

Therefore by (3.1) and (3.4) we obtain

(3.5) tRSi ◦ RSp(ϕ) =

p∑
j=0

aij

(∫
ρ2

1Zj · ρ∗1ϕ
)
.

By the computation above, let us construct a left inverse transformation of
RSp as follows. Let us set A = (aij)0≤i,j≤p. Note that the (p+1)×(p+1) matrix
A is a lower triangular one. We denote its determinant by λp,q = detA and its
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(k + 1, p + 1)-cofactor by dk (k = 0, 1, . . . , p). Then we de�ne a constructible
function Kp,q ∈ CF (X × Y ) by

Kp,q =

p∑
k=0

dk1Sk

and a new transform R̂(ψ) of ψ ∈ CF (Y ) by

(3.6) R̂(ψ) =

∫
pX

Kp,q · p∗Y ψ =

p∑
k=0

dk
tRSk

(ψ).

By (3.5) and the equality∫
ρ2

1Zp · ρ∗1ϕ = ϕ,

we obtain the following inversion formula for RSp in [9].

Theorem 3.1 ([9]). (i) For ϕ ∈ CF (X), we have

R̂ ◦ RSp(ϕ) = λp,q · ϕ.
(ii) If one of the following conditions

(a) K = C and p+ q ≤ N ,

(b) K = R, p+ q ≤ N and q − p is even,

are satis�ed, then λp,q does not vanish.

By Theorem 3.1, under the condition of (ii) we can completely reconstruct
the original function ϕ ∈ CF (X) from its topological Radon transform RSp(ϕ).

In this meaning, we see R̂ as a left inverse transformation of RSp . Hereafter,
we always assume the condition of Theorem 3.1 (ii). Therefore, we assume that
there exists the left inverse transformation R̂ of RSp by our method.

3.2. A range characterization of RSp (1)

In this subsection, we observe that for ϕ ∈ CF (X) the topological Radon
transform RSp(ϕ) satis�es a system of topological integral equations. First,
by similar computation to obtain (3.5), for ψ ∈ CF (Y ) let us compute RSp ◦
tRSi(ψ) as follows. For i = 0, 1, . . . , p, let us consider the following commutative
diagram:

Si ×
X
Sp

ti,p
��

h′i

xx

h′p

&&
Si

fi ''

gi

zz

Y × Y
π1

tt

π2

**

Sp
gp

%%fpww
Y X Y,
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where π1, π2 (resp. h′i, h
′
p) are the natural projections from Y × Y to each Y

(resp. from Si ×
X
Sp to Si and Sp respectively) and ti,p : Si ×

X
Sp −→ Y × Y is

the natural projection from Si ×
X
Sp to Y × Y . Then for ψ ∈ CF (Y ) we have

(3.7) RSp ◦ tRSi(ψ) =

∫
gp

f∗p

∫
fi

g∗i ψ =

∫
π2

(∫
ti,p

1Si×
X
Sp

)
π∗1ψ.

For j = 0, . . . , q, we set

Wj = {(y1, y2) ∈ Y × Y | dim(y1 ∩ y2) = j}.
For (y1, y2) ∈Wj , by considering the condition in y2 ' Kq we have

t−1i,p (y1, y2) = {x ∈ FN (p) | dim(x ∩ y1) = i, x ⊂ y2}
' {x ∈ Fq(p) | dim(x ∩ y3) = i}
= Ω(q, p, j, i),

where y3 = y1 ∩ y2 is a j-dimensional linear subspace. Thus, χ(t−1i,p (y1, y2))

is constant on Wj , which we set bij = χ(t−1i,p (y1, y2)) and B = (bij)0≤i≤p
0≤j≤q

. By

Proposition 2.10, bij is explicitly computed as follows.

(i) In the case K = C, we have

(3.8) bij =

(
q − j
p− i

)(
j

i

)
.

(ii) In the case K = R, we have

(3.9) bij =


0 ((q − p− j + i)(p− i) or i(j − i) is odd),

(−1)p(j−i)
([ q−j

2

]
[
p−i
2

])(
[
j
2

]
[
i
2

]) (otherwise).

By using bij , we have

(3.10)

∫
ti,p

1Si×
X
Sp =

q∑
j=0

bij1Wj (i = 0, 1, . . . , p).

Therefore by (3.7) and (3.10) we have

RSp ◦ tRSi(ψ) =

q∑
j=0

bij

(∫
π2

1Wj · π∗1ψ
)
.

By (3.6), we obtain

(3.11) RSp ◦ R̂(ψ) =

p∑
k=0

dkRSp ◦ tRSk
(ψ) =

p∑
k=0

q∑
j=0

dkbkj

∫
π2

1Wj · π∗1ψ.
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Now, for ϕ ∈ CF (X) let us consider the case ψ = RSp(ϕ). By Proposi-
tion 2.5, for j = 0, 1, . . . , q and y2 ∈ Y we have

(3.12)

(∫
π2

1Wj · π∗1ψ
)

(y2) =

∫
Y
1Wj (·, y2)·RSp(ϕ) =

∫
X

tRSp(1Wj (·, y2))·ϕ.

For l = 0, 1, . . . , p and (x, y2) ∈ Sl, by considering the condition in the
quotient space KN/x we have

{y ∈ FN (q) | x ⊂ y, dim(y ∩ y2) = j}
' {y ∈ FN−p(q − p) | dim(y ∩ y3) = j − l}
= Ω(N − p, q − p, q − l, j − l),

where y3 is a (q− l)-dimensional linear subspace. Thus, the Euler characteristic
of the set {y ∈ FN (q) | x ⊂ y, dim(y ∩ y2) = j} is constant on Sl, we set it cjl
and C = (cij)0≤i≤q

0≤j≤p
. By Proposition 2.10, cjl is explicitly computed as follows.

(i) In the case K = C, we have

(3.13) cjl =

(
N − p− q + l

q − p− j + l

)(
q − l
j − l

)
.

(ii) In the case K = R, we have

(3.14) cjl =


0

(
(q − p− j + l)(N − 2q + j) or
(j − l)(q − j) is odd

)
,

(−1)(q−p)(q−j)
([N−p−q+l

2

]
[
q−p−j+l

2

])(
[
q−l
2

]
[
j−l
2

]) otherwise.

By using cjl, we have

tRSp(1Wj (·, y2))(x) = χ({y ∈ FN (q) | x ⊂ y, dim(y ∩ y2) = j})(3.15)

=

p∑
l=0

cjl1Sl
(x, y2).(3.16)

By (3.12), (3.16), we have the relations of (p+ 1) transforms RS0(ϕ),. . .,
RSp(ϕ):

(3.17)

∫
π2

1Wj · π∗1RSp(ϕ) =

p∑
l=0

cjlRSl
(ϕ) (j = 0, 1, . . . , q).

Let us set C1 = (cij)0≤i≤q−p−1
0≤j≤p

and C2 = (cij)q−p≤i≤q
0≤j≤p

. Then the relations
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(3.17) are equivalent to the following systems of linear equations:

∫
π2

1W0 · π∗1RSp(ϕ)

...∫
π2

1Wq−p−1 · π∗1RSp(ϕ)

 = C1

RS0(ϕ)
...

RSp(ϕ)

 ,



∫
π2

1Wq−p · π∗1RSp(ϕ)

...∫
π2

1Wq · π∗1RSp(ϕ)

 = C2

RS0(ϕ)
...

RSp(ϕ)

 .

By (3.13) and (3.14), the (p+1)×(p+1) matrix C2 is upper triangular and
regular under the assumption of Theorem 3.1 (ii) (In this section, we always
assume the condition of Theorem 3.1 (ii)). We denote by µij the (i+ 1, j− q+
p+1) component of the matrix C1C

−1
2 . That is, (µij)0≤i≤q−p−1

q−p≤j≤q
= C1C

−1
2 . Note

that µij is explicitly computable by Proposition 2.10. Therefore, we obtain the
following theorem.

Theorem 3.2. In the situation above, assume the condition of Theorem

3.1 (ii). Then for ϕ ∈ CF (X) the topological Radon transform ψ = RSp(ϕ) of

ϕ satis�es the following system of topological integral equations:

(3.18)

∫
π2

1Wi · π∗1ψ =

q∑
j=q−p

µij ·
∫
π2

1Wj · π∗1ψ (i = 0, 1, . . . , q − p− 1).

De�nition 3.3. We denote by ˜CF (FN (q)) the set of all constructible func-
tions ψ ∈ CF (Y ) satisfying the condition (3.18).

Note that ˜CF (FN (q)) is an Abelian subgroup of CF (FN (q)).

3.3. A range characterization of RSp (2)

In this subsection, we prove the following theorem.

Theorem 3.4. Assume the condition of Theorem 3.1 (ii). Then we have

RSp ◦ R̂(ψ) = λp,q · ψ

for ψ ∈ ˜CF (FN (q)). Here R̂ and λp,q are de�ned in Section 3.1.
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Proof. First, note that we rewrite the condition (3.18) as the matrix equa-
tion

(3.19)



∫
π2

1W0 · π∗1ψ
...∫

π2

1Wq · π∗1ψ

 =

(
C1

C2

)
C−12



∫
π2

1Wq−p · π∗1ψ
...∫

π2

1Wq · π∗1ψ

 .

For ψ ∈ ˜CF (FN (q)), by (3.11) and (3.19) we have

RSp ◦ R̂(ψ) =

p∑
k=0

q∑
j=0

dkbkj

∫
π2

1Wj · π∗1ψ

=
(
d0 d1 · · · dp

)
BCC−12



∫
π2

1Wq−p · π∗1ψ
...∫

π2

1Wq · π∗1ψ

 .

By (3.13) and (3.14), the (p+1)-th row vector of C−12 is
(
0 0 · · · 0 1

)
.

By Proposition 3.7 below, we have

RSp ◦ R̂(ψ) =
(
0 0 · · · 0 λp,q

)
C−12



∫
π2

1Wq−p · π∗1ψ
...∫

π2

1Wq · π∗1ψ


= λp,q

∫
π2

1Wq · π∗1ψ

= λp,q · ψ.

This proves Theorem 3.4. �

Remark 3.5. In the special case p+q = N , we can easily show ˜CF (FN (q)) =
CF (FN (q)) since q − p ≤ dim(y1 ∩ y2) ≤ q for any two q-dimensional linear
subspaces y1, y2 ∈ FN (q). In this case, Theorem 3.4 was proved in ([9], Theo-
rem 4.1).

On ˜CF (FN (q)), we consider R̂ as not only a left inverse transformation
of RSp but also a right inverse one. By Theorems 3.2 and 3.4, we obtain the
following result.
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Corollary 3.6. We have the inclusions:

λp,q · ˜CF (FN (q)) ⊂ Image(RSp) (= RSp(CF (FN (p)))) ⊂ ˜CF (FN (q))

in CF (FN (q)).

We may consider Corollary 3.6 as a range characterization theorem of the
topological Radon transformation RSp . Note that by introducing the theory
of the Q (or R)-valued constructible functions we could obtain more explicit
range characterization. Equivalently, we have the equality:

Image(RSp)⊗Z Q = ˜CF (FN (q))⊗Z Q
in CF (FN (q))⊗Z Q.

Finally, in order to complete the proof of Theorem 3.4 above, let us prove
the following proposition.

Proposition 3.7. In the situation of Theorem 3.4, we have the following

equality of matrices

(3.20)
(
d0 d1 · · · dp

)
BC =

(
0 0 · · · 0 λp,q

)
.

Proof. Note that for i, k = 0, 1, . . . , p we have

(3.21)

q∑
j=0

bijcjk =
k∑
l=0

ailblk.

Since di is the (i + 1, p + 1)-cofactor of A = (aij)0≤i,j≤p (i = 0, 1, . . . , p)
and λp,q = detA, we have

p∑
i=0

di

q∑
j=0

bijcjk

=

p∑
i=0

di

k∑
l=0

ailblk =

k∑
l=0

blk

p∑
i=0

diail =

k∑
l=0

blkδl,pλp,q = δk,pλp,q.

Here δl,p denotes the Kronecker's delta. Therefore we obtain the equa-
lity (3.20).

Let us explain the outline of the proof of (3.21). In computations, the
following formula, proved by induction on k, is useful:

(3.22)

q∑
j=0

(
q − p
j − i

)(
j

k

)(
N − p− q + k

q − p− j + k

)
=

k∑
l=0

(
q − p
k − l

)(
i

l

)(
N − 2p+ l

q − p− i+ l

)
.

In the case K = C, by (3.2), (3.8), (3.13) and (3.22) we have
q∑
j=0

bijcjk =

q∑
j=0

(
q − j
p− i

)(
j

i

)(
N − p− q + k

q − p− j + k

)(
q − k
j − k

)
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=
(q − k)!k!

(p− i)!i!(q − p)!

q∑
j=0

(
q − p
j − i

)(
j

k

)(
N − p− q + k

q − p− j + k

)

=
(q − k)!k!

(p− i)!i!(q − p)!

k∑
l=0

(
q − p
k − l

)(
i

l

)(
N − 2p+ l

q − p− i+ l

)

=
k∑
l=0

(
N − 2p+ l

q − p− i+ l

)(
p− l
i− l

)(
q − k
p− l

)(
k

l

)

=
k∑
l=0

ailblk.

In the case K = R, let us consider the following four cases: (ii-1) p, q,N
are odd, (ii-2) p, q are odd and N is even, (ii-3) p, q,N are even, (ii-4) p, q are
even and N is odd. Note that we assume that q− p is even here. In each case,
we compute the both sides of (3.21) by (3.3), (3.9) and (3.14). By using the
equality (3.22), we could obtain (3.21). Since the computations are similar to
the case K = C, we omit the details. �
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