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Let Qd
n be the vector space of forms of degree d ≥ 3 on Cn, with n ≥ 2. This

note concerns the map Φ, introduced by J. Alper, M. Eastwood and the author,
that assigns every nondegenerate form f ∈ Qd

n the so-called associated form,
which is an element of Qn(d−2)

n derived from the Milnor algebra of the isolated
singularity of the zero set of f at the origin. We concentrate on two cases: those
of binary quartics (n = 2, d = 4) and ternary cubics (n = 3, d = 3), and show
that in these situations the map Φ induces a rational equivariant involution on
the projectivized space P(Qd

n). In particular, there exists a natural duality for
elliptic curves with nonvanishing j-invariant.
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1. INTRODUCTION

Let Qdn be the vector space of forms of degree d on Cn, where n ≥ 2,
d ≥ 3. Assuming that the discriminant of f ∈ Qdn does not vanish, de�neMf :=
C[z1, . . . , zn]/(fz1 , . . . , fzn) to be the Milnor algebra of the isolated hypersurface
singularity at the origin of the zero set of f . Let m be the maximal ideal ofMf .
One can then introduce a form de�ned on the n-dimensional quotient m/m2

with values in the one-dimensional socle Soc(Mf ) of Mf as follows:

m/m2 → Soc(Mf ),

x 7→ y n(d−2),

where y is any element of m that projects to x ∈ m/m2. There is a canonical
isomorphism m/m2 ∼= Cn and, since the Hessian of f generates the socle, there
is also a canonical isomorphism Soc(Mf ) ∼= C. Hence, one obtains a form f of

degree n(d−2) on Cn (i.e., an element of Qn(d−2)
n ), which is called the associated

form of f (see Section 2 for more detail on this de�nition).
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We study the morphism

Φ : Xd
n → Qn(d−2)

n , f 7→ f

of a�ne algebraic varieties, where Xd
n is the variety of forms in Qdn with nonzero

discriminant. One of the reasons for our interest in Φ is the following conjecture
proposed in [1] (see also [5]):

Conjecture 1.1. For every regular GLn(C)-invariant function S on Xd
n

there exists a rational GLn(C)-invariant function R on Qn(d−2)
n de�ned at all

points of the set Φ(Xd
n) ⊂ Qn(d−2)

n such that R ◦ Φ = S.

In [5], Conjecture 1.1 was shown to hold for binary forms (i.e., for n = 2)
of degrees 3 ≤ d ≤ 6, and in [1] its weaker variant was established for arbi-
trary n and d. Furthermore, in [2] the conjecture was con�rmed for binary
forms of any degree. While Conjecture 1.1 is rather interesting from the purely
invariant-theoretic viewpoint, it has an important implication for singularity
theory. Namely, as explained in detail in [1, 2], if this conjecture is estab-
lished, it will provide a solution, in the homogeneous case, to the so-called
reconstruction problem, which is the question of �nding a constructive proof of
the well-known Mather-Yau theorem (see [16, 20]). Settling Conjecture 1.1 is
part of our program to solve the reconstruction problem for quasihomogeneous
isolated hypersurface singularities. This amounts to showing that a certain
system of invariants introduced in [5] is complete, and Conjecture 1.1 implies
completeness in the homogeneous case.

The morphism Φ is quite natural and deserves attention regardless of
Conjecture 1.1. In fact, this map is interesting even for small values of n and
d. In what follows, we look at Φ in two situations: those of binary quartics
(n = 2, d = 4) and ternary cubics (n = 3, d = 3). These are the only choices
of n, d for which Φ preserves the form's degree. In this note, we observe
that, curiously, in each of the two cases the projectivization � of Φ induces an
equivariant involution on the image Xdn of Xd

n in the projective space P(Qdn),
with one SLn(C)-orbit removed (see Propositions 3.1 and 3.2 in Section 3). In
particular, � yields an equivariant involution on the space of elliptic curves with
nonvanishing j-invariant, which appears to have never been mentioned in the
extensive literature on elliptic curves. The duality induced by � will be studied
in detail in our forthcoming paper joint with J. Alper and N. Kruzhilin.

2. PRELIMINARIES

Let Qdn be the vector space of forms of degree d on Cn where n ≥ 2. The
standard action of GLn = GLn(C) on Cn induces an action on Qdn as follows:

(C · f)(z) := f
(
z C−T )
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for C ∈ GLn, f ∈ Qdn and z = (z1, . . . , zn) ∈ Cn. Two forms that lie in
the same GLn-orbit are called linearly equivalent. Below we will be mostly
concerned with the induced action of SLn = SLn(C).

To every nonzero f ∈ Qdn we associate the hypersurface

Vf := {z ∈ Cn : f(z) = 0}

and consider it as a complex space with the structure sheaf induced by f .
The singular set of Vf is then the critical set of f . In particular, if d ≥ 2
the hypersurface Vf has a singularity at the origin. We are interested in the
situation when this singularity is isolated, or, equivalently, when Vf is smooth
away from 0. This occurs if and only if f is nondegenerate, i.e., ∆(f) 6= 0,
where ∆ is the discriminant (see Chapter 13 in [9]).

For d ≥ 3 de�ne

Xd
n := {f ∈ Qdn : ∆(f) 6= 0}.

Observe that GLn acts on the a�ne varietyXd
n and note that every f ∈ Xd

n

is stable with respect to this action, i.e., the orbit of f is closed in Xd
n and has

dimension n2 (see, e.g., Corollary 5.24 in [17]).
Fix f ∈ Xd

n and consider the Milnor algebra of the singularity of Vf , which
is the complex local algebra

Mf := C[[z1, . . . , zn]]/(f1, . . . , fn),

where C[[z1, . . . , zn]] is the algebra of formal power series in z1, . . . , zn with
complex coe�cients and fj := ∂f/∂zj , j = 1, . . . , n. Since the singularity of Vf
is isolated, the algebraMf is Artinian, i.e., dimCMf <∞ (see Proposition 1.70
in [10]). Therefore, f1, . . . , fn is a system of parameters in C[[z1, . . . , zn]].
Since C[[z1, . . . , zn]] is a regular local ring, f1, . . . , fn is a regular sequence in
C[[z1, . . . , zn]]. This yields that Mf is a complete intersection.

It is convenient to utilize another realization of the Milnor algebra. Namely,
we can write

Mf = C[z1, . . . , zn]/(f1, . . . , fn).

Let m denote the maximal ideal ofMf , which consists of all elements rep-
resented by polynomials in C[z1, . . . , zn] vanishing at the origin. The maximal
ideal is nilpotent and we let ν := max{η ∈ N | mη 6= 0} be the socle degree
of Mf .

SinceMf is a complete intersection, by [3] it is a Gorenstein algebra. This
means that the socle of Mf , de�ned as

Soc(Mf ) := {x ∈ m : xm = 0},

is a one-dimensional vector space over C (see, e.g., Theorem 5.3 in [12]). We
then have Soc(Mf ) = mν . Furthermore, Soc(Mf ) is spanned by the element of
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Mf represented by the Hessian H(f) of f (see, e.g., Lemma 3.3 in [18]). Since

H(f) is a form in Qn(d−2)
n , it follows that ν = n(d− 2) (see [1, 2] for details).

Let ω : Soc(Mf )→ C be the linear isomorphism de�ned by the condition

ω(H(f)) = 1 (with H(f) viewed as an element of Mf ). Introduce f ∈ Qn(d−2)
n

by the formula

f(z) := ω
(

(z1z1 + · · ·+ znzn)n(d−2)
)
,

where zj is the element of the algebraMf represented by the coordinate function
zj ∈ C[z1, . . . , zn] (which is not to be confused with the jth component of the
vector z = (z1, . . . , zn) ∈ Cn). We call f the associated form of f . Observe
that f is a coordinate representation of the following Soc(Mf )-valued function
on the quotient m/m2:

x 7→ yn(d−2),

where y is any element of m that projects to x ∈ m/m2.
To give an expanded expression for f , observe that if i1, . . . , in are non-

negative integers such that i1 + · · ·+ in = n(d− 2), the product zi11 · · · zinn lies
in Soc(Mf ), hence we have

zi11 · · · z
in
n = µi1,...,in(f)H(f)

for some µi1,...,in(f) ∈ C. In terms of the coe�cients µi1,...,in(f) the form f is
written as

f(z) =
∑

i1+···+in=n(d−2)

(n(d− 2))!

i1! · · · in!
µi1,...,in(f)zi11 · · · z

in
n .

It is not hard to observe that each µi1,...,in is a regular function on Xd
n,

therefore

µi1,...,in =
Pi1,...,in
∆pi1,...,in

,

for some Pi1,...,in ∈ C[Qdn] and nonnegative integer pi1,...,in .
Consider the morphism

Φ: Xd
n → Qn(d−2)

n , f 7→ f

of a�ne varieties. This map is rather natural; in particular, the following
equivariance property holds:

Proposition 2.1 ([1]). For every f ∈ Xd
n and C ∈ GLn one has

Φ(C · f) = (detC)2
(
C−T · Φ(f)

)
.

The present note concerns two situations: the case of binary quartics and
that of ternary cubics. In the next section we will give an explicit description
of the morphism Φ in these situations and state our results.
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3. DUALITY FOR BINARY QUARTICS

AND TERNARY CUBICS

We will now projectivize the setup of Section 2 and replace the action of
GLn with that of SLn. Namely, let P(Qdn) be the projectivization of Qdn, i.e.,
P(Qdn) := (Qdn \ {0})/C∗. In what follows we often write elements of P(Qdn) as
forms meaning that they are considered up to scale. The action of SLn on Qdn
induces an SLn-action on P(Qdn), and for f ∈ P(Qdn) we denote its orbit SLn ·f
by O(f). Further, de�ne Xdn ⊂ P(Qdn) to be the image of Xd

n under the quotient
morphism Qdn \ {0} → P(Qdn). Clearly, for f ∈ Xdn the orbit O(f) is closed in
Xdn and has dimension n2 − 1.

The map Φ descends to a morphism

� : Xdn → P(Qn(d−2)
n ).

By Proposition 2.1, the morphism � is equivariant in the following sense:

�(C · f) = C−T · �(f), f ∈ Xdn, C ∈ SLn .

Hence, in the case when � maps the variety Xdn into the semistable locus

P(Qn(d−2)
n )ss of P(Qn(d−2)

n ), it gives rise to a morphism φ of good GIT quo-
tients for which the following diagram commutes:

Xdn
� //

��

P(Qn(d−2)
n )ss

��

Xdn// SLn
φ // P(Qn(d−2)

n )ss// SLn .

In the diagram, the quotient on the left is a�ne and geometric, and the
one on the right is projective. Furthermore, Xdn is a Zariski open subset of the
stable locus P(Qdn)s, hence the a�ne quotient Xdn → Xdn// SLn is a restriction of
the projective quotient P(Qdn)ss → P(Qdn)ss// SLn. Observe that the situation
n = 2, d = 3 is trivial and can be excluded from consideration. Indeed, since all
nondegenerate binary cubics are pairwise linearly equivalent, X3

2 = P(Q3
2)

ss =
P(Q3

2)
s is a single orbit and X3

2// SL2 is a point. For elementary introductions
to GIT quotients and various notions of stability we refer the reader to [17] and
Chapter 9 in [14].

We focus on the morphism � in two cases. Indeed, notice that for all pairs
n, d (excluding the trivial situation n = 2, d = 3) one has n(d−2) ≥ d, and the
equality holds precisely for two pairs: n = 2, d = 4 and n = 3, d = 3. We will
now explain that in each of these two cases � maps Xdn to P(Qdn)ss and induces
an equivariant involution on the variety Xdn with one orbit removed. Some of
the facts that follow can be extracted from articles [4, 5].
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Let n = 2, d = 4. It is a classical result that every nondegenerate binary
quartic is linearly equivalent to a quartic of the form

(3.1) qt(z1, z2) := z41 + tz21z
2
2 + z42 , t 6= ±2

(see pp. 277�279 in [7]). A straightforward calculation yields that the associated
form of qt is

(3.2) qt(z1, z2) :=
1

72(t2 − 4)
(tz41 − 12z21z

2
2 + tz42).

For t 6= 0,±6 the quartic qt is nondegenerate, and in this case the asso-
ciated form of qt is proportional to qt, hence �

2(qt) = qt. As explained below,
the exceptional quartics q0, q6, q−6, are pairwise linearly equivalent.

It is easy to show that P(Q4
2)

ss is the union of X4
2 (which coincides with

P(Q4
2)

s) and two orbits that consist of strictly semistable forms:
O1 := O(z21z

2
2), O2 := O(z21(z21 + z22)), of dimensions 2 and 3, respectively.

Notice that O1 is closed in P(Q4
2)

ss and is contained in the closure of O2. We
then observe that � maps X4

2 onto P(Q4
2)

ss \ (O2 ∪O3), where O3 := O(q0) (as
we will see shortly, O3 contains the other exceptional quartics q6, q−6 as well).
Also, notice that � maps the 3-dimensional orbit O3 onto the 2-dimensional
orbit O1.

Thus, we obtain:

Proposition 3.1. The morphism � restricts to an equivariant involutive

automorphism of X4
2 \O3, which for t 6= 0,±6 establishes a duality between the

quartics C · qt and C−T · q−12/t with C ∈ SL2, hence between the orbits O(qt)
and O(q−12/t).

In order to understand the induced map φ of GIT quotients, we note that
the algebra of invariants C[Q4

2]
SL2 is generated by a pair of elements I2, I3 (the

latter invariant is called the catalecticant), where the subscripts indicate their
degrees (see, e.g., pp. 41, 101�102 in [7]). One has

(3.3) ∆ = I32 − 27 I23 ,

and for a binary quartic of the form

f(z1, z2) = az41 + 6bz21z
2
2 + cz42

the values of I2 and I3 are computed as

(3.4) I2(f) = ac+ 3b2, I3(f) = abc− b3.

It then follows that the algebra C[X4
2 ]GL2 ' C[X4

2]
SL2 is generated by the

invariant

(3.5) J :=
I32
∆
.
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Therefore, the quotient X4
2//GL2 ' X4

2// SL2 is the a�ne space C, and
P(Q4

2)
ss// SL2 can be identi�ed with P1, where both O1 and O2 project to the

point at in�nity in P1.
Next, from formulas (3.1), (3.3), (3.4), (3.5) we calculate

(3.6) J(qt) =
(t2 + 12)3

108(t2 − 4)2
for all t 6= ±2.

Clearly, (3.6) yields

(3.7) J(q0) = J(q6) = J(q−6) = 1,

which implies that q0, q6, q−6 are indeed pairwise linearly equivalent as claimed
above and that the orbit O3 is described by the condition J = 1.

Using (3.2), (3.6) one obtains

J(qt) =
J(qt)

J(qt)− 1
for all t 6= 0,±6.

This shows that the map φ extends to the automorphism φ̃ of P1 given
by

ζ 7→ ζ

ζ − 1
.

Clearly, one has φ̃ 2 = id, that is, φ̃ is an involution. It preserves P1 \
{1,∞}, which corresponds to the duality between the orbitsO(qt) andO(q−12/t)

for t 6= 0,±6 noted above. Further, φ̃(1) = ∞, which agrees with (3.7) and
the fact that O3 is mapped onto O1. We also have φ̃(∞) = 1, but this identity
has no interpretation at the level of orbits. Indeed, � cannot be equivari-
antly extended to an involution P(Q4

2)
ss → P(Q4

2)
ss as the �ber of the quotient

P(Q4
2)

ss// SL2 over the point at in�nity contains O1, which cannot be mapped
onto O3 since dimO1 < dimO3.

Let n = 3, d = 3. Every nondegenerate ternary cubic is linearly equivalent
to a cubic of the form

(3.8) ct(z1, z2, z3) := z31 + z32 + z33 + tz1z2z3, t3 6= −27

(see, e.g., Theorem 1.3.2.16 in [19]). The associated form of ct is easily found
to be

(3.9) ct(z1, z2, z3) := − 1

24(t3 + 27)
(tz31 + tz32 + tz33 − 18z1z2z3).

For t 6= 0, t3 6= 216 the cubic ct is nondegenerate, and in this case the
associated form of ct is proportional to ct, hence �

2(ct) = ct. Below we will see
that the exceptional cubics c0, c6τ , with τ

3 = 1, are pairwise linearly equivalent.
It is well-known (see, e.g., Theorem 1.3.2.16 in [19]) that P(Q3

3)
ss is the

union of X3
3 (which coincides with P(Q3

3)
s) and the following three orbits that
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consist of strictly semistable forms: O1 := O(z1z2z3), O2 := O(z1z2z3 + z33),
O3 := O(z31 + z21z3 + z22z3) (the cubics lying in O3 are called nodal). The
dimensions of the orbits are 6, 7 and 8, respectively. Observe that O1 is closed
in P(Q3

3)
ss and is contained in the closures of each of O2, O3. We then see that

� maps X3
3 onto P(Q3

3)
ss \ (O2 ∪ O3 ∪ O4), where O4 := O(c0) (as explained

below, O4 also contains the other exceptional cubics c6τ , with τ
3 = 1). Further,

note that the 8-dimensional orbit O4 is mapped by � onto the 6-dimensional
orbit O1.

Hence, we obtain:

Proposition 3.2. The morphism � restricts to an equivariant involutive

automorphism of X3
3\O4, which for t 6= 0, t3 6= 216 establishes a duality between

the cubics C · ct and C−T · c−18/t with C ∈ SL3, therefore between the orbits

O(ct) and O(c−18/t).

To determine the induced map φ of GIT quotients, we recall that the
algebra of invariants C[Q3

3]
SL3 is generated by the two Aronhold invariants I4,

I6, where, as before, the subscripts indicate the degrees (see pp. 381�389 in [7]).
One has

(3.10) ∆ = I26 + 64 I34,

and for a ternary cubic of the form

f(z1, z2, z3) = az31 + bz32 + cz33 + 6dz1z2z3

the values of I4 and I6 are calculated as

(3.11) I4(f) = abcd− d4, I6(f) = a2b2c2 − 20abcd3 − 8d6.

It then follows that the algebra C[X3
3 ]GL3 ' C[X3

3]
SL3 is generated by the

invariant

(3.12) J :=
64 I34

∆
.

Hence, the quotient X3
3//GL3 ' X3

3// SL3 is the a�ne space C, and
P(Q3

3)
ss// SL3 is identi�ed with P1, where O1, O2, O3 project to the point

at in�nity in P1.
Further, from formulas (3.8), (3.10), (3.11), (3.12) we �nd

(3.13) J(ct) = − t3(t3 − 216)3

2633(t3 + 27)3
for all t with t3 6= −27.

From identity (3.13) one obtains

(3.14) J(c0) = J(c6τ ) = 0 for τ3 = 1,

which implies that the orbit O4 is given by the condition J = 0 and that the
four cubics c0, c6τ are indeed pairwise linearly equivalent.
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Using (3.9), (3.13) we see

J(ct) =
1

J(ct)
for all t 6= 0 with t3 6= 216.

This shows that the map φ extends to the involutive automorphism φ̃ of
P1 given by

ζ 7→ 1

ζ
.

The involution φ̃ preserves P1 \ {0,∞}, which agrees with the duality
between the orbits O(ct) and O(c−18/t) for t 6= 0, t3 6= 216 established above.

Next, φ̃(0) = ∞, which corresponds to (3.14) and the fact that O4 is mapped
onto O1. Also, one has φ̃(∞) = 0, but this identity cannot be illustrated by
a correspondence between orbits. Indeed, � cannot be equivariantly extended
to an involution P(Q3

3)
ss → P(Q3

3)
ss as the �ber of the quotient P(Q3

3)
ss// SL2

over the point at in�nity contains O1, which cannot be mapped onto O4 since
dim O1 < dim O4.

Remark 3.3. We note that a cubic proportional to (3.9) previously ap-
peared in [8] (see p. 405 therein) as a Macaulay inverse system for the Milnor
algebraMct , but it has never been studied systematically. In fact, we now know
(see Corollary 3.3 in [1]) that the associated form of any f ∈ Xd

n is an inverse
system for Mf . This result has been instrumental in our recent work on the
morphism Φ including the progress on Conjecture 1.1. For details on inverse
systems we refer the reader to [8, 13, 15] (the brief survey given in [6] is also
helpful).

If we regard X3
3 as the space of elliptic curves, the invariant J of ternary

cubics translates into the j-invariant, and one obtains an equivariant involution
on the locus of elliptic curves with nonvanishing j-invariant. It is well-known
that every elliptic curve can be realized as a double cover of P1 branched over
four points (see, e.g., Exercise 22.37 and Proposition 22.38 in [11]). Therefore,
it is not surprising that the cases of binary quartics and ternary cubics con-
sidered above have many similarities. The duality obtained in these situations
in Propositions 3.1 and 3.2 will be studied in detail in our forthcoming article
joint with J. Alper and N. Kruzhilin.
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