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1. INTRODUCTION

The purpose of this paper is to report the recent progress on the study
concerning free divisors, algebraic solutions of Painlev�e VI and �at structures.
Flat structure is established by K. Saito [17] when he investigated the struc-
ture of the moduli space of deformations of isolated singular points. Later B.
Dubrovin [6] generalised it so that the theory contains the 2D topological �eld
theory. In the formulation of B. Dubrovin the existence of potentials plays a
central role in the construction of Frobenius algebra structure on the tangent
space of the moduli space. C. Sabbah's book [15] is a nice introduction of
�at structure = Frobenius structure. In spite that potentials are important in
the theory developed by Dubrovin, Sabbah's book also treats the case of Saito
structure without the existence of the potential called �Saito structure without

a metric. Our original interest is the investigation of the relationship between
algebraic solutions of Painlev�e VI and certain kinds of holonomic systems of
linear di�erential equations in three variables whose singularities are contained
in free divisors. Recently we recognised the relationship between �at struc-
ture without a metric and our studies. Comparing our formulation with that of
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Sabbah, we are led to develop the theory of �at structure without a potential

which is same as the theory of Saito structure without a metric. Potential vector
�eld plays an important role in our theory. We note that the notion of potential
vector �eld is already introduced by Konishi and Minabe [12]. Potential vector
�eld is the object corresponding to the gradient vector �eld of the potential
in the theory of Saito structure with a metric. In the �rst part of this paper,
we formulate �at structures without potentials and mention their basic results
which are contained in [15] or its easy consequences. Then we introduce systems
of di�erential equations of n variables of rank n which is one of generalisations
of ordinary di�erential equations of Okubo type. The second half of this paper
is to show examples of potential vector �elds and free divisors derived from
them. These examples show that there are non-trivial examples of systems
of di�erential equations introduced in �4. Potential vector �elds which we
�rst treat are related to algebraic solutions of Painlev�e VI. Then we introduce
potentials which are related to real re�ection groups of types A3, B3, H3. They
are already treated in [6]. Our next examples of potential vector �elds are
related with three of fourteen exceptional singularities called E12, E13, E14 in
the sense of Arnol'd. The de�ning polynomials of free divisors naturally arising
from two of these examples are nothing but discriminants of complex re�ection
groups of No. 24 and No. 27 in Shephard-Todd notation (cf. [23]). The last
one is seeming new. It is known (cf. [6]) that discriminants of real re�ection
groups are obtained from corresponding potentials. This leads us to consider
the case of discriminants of complex re�ection groups. H. Terao [24] proved the
freeness of the zero locus of discriminants of irreducible �nite complex re�ection
groups. In �9, we discuss the existence of potential vector �elds for the case of
irreducible �nite complex re�ection groups.

In this paper, we only treat the case where a potential vector �eld con-
sists of polynomial entries. It is possible to construct potential vector �elds
which consist of algebraic functions at least when we treat algebraic solutions
of Painlev�e VI. The detail of the subject treated in this paper will be published
elsewhere [9].

2. DEFINITION OF A POTENTIAL VECTOR FIELD

In this section, we de�ne a potential vector �eld. This notion is found in
Konishi and Minabe [12].

Let x = (x1, x2, . . . , xn) be a standard coordinate system ofCn. We de�ne
an Euler vector �eld

E =
n∑
k=1

wkxk∂k,
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where ∂k = ∂/∂xk (k = 1, 2, . . . , n). We assume a condition on wk (k =
1, 2, . . . , n):

0 < w1 < w2 < · · · < wn.

We introduce weighted homogeneous polynomials h1(x), h2(x), . . . , hn(x) such
that

Ehj = (wj + wn)hj (j = 1, 2, . . . , n)
and that

hj =

 xjxn + h
(0)
j (x1, . . . , xn−1) (j = 1, 2, . . . , n− 1),

1

2
x2n + h(0)n (x1, . . . , xn−1) (j = n)

with polynomials h
(0)
j (x1, . . . , xn−1) of x′ = (x1, . . . , xn−1). Using hj(x) (j =

1, 2, . . . , n), we de�ne γij = ∂ihj and an n × n matrix C = (γij). It is easy to
see that γnj = xj (j = 1, 2, . . . , n). We de�ne matrices

B̃(p) = ∂pC (p = 1, 2, . . . , n).

We denote by b
(p)
ij the (i, j)-entry of B̃(p) and collect basic properties of

B̃(p) (p = 1, 2, . . . , n):

1. ∂pB̃
(q) = ∂qB̃

(p) (∀p, q),

2. b
(r)
pq = b

(p)
rq (∀p, q, r),

3. b
(p)
nq = δpq (∀p, q),

4. B̃(n) = In,

5. ∂nB̃
(p) = O (p = 1, 2, . . . , n− 1),

where δpq is Kronecker's delta and In is the identity matrix.

De�nition 1. If B̃(p)B̃(q) = B̃(q)B̃(p) (∀p, q = 1, 2, . . . , n), then ~h =
(h1, h2, . . . , hn) is called a potential vector �eld.

Remark 1. Let J be an n× n matrix whose (i, j)-entry is δi,n−j+1 for all
i, j. If CJ is symmetric, there is a weighted homogeneous polynomial P (x)
such that

∂iP = hn−i+1 (i = 1, 2, . . . , n).

Then P is called a prepotential in [6] and a potential in [15]. In this case
the commutativity of the matrices B̃(p) (p = 1, 2, · · · , n), namely, B̃(p)B̃(q) =
B̃(q)B̃(p) (∀p, q) implies a system of non-linear di�erential equations for the
potential P . This system is called WDVV-equation (cf. [6]). When CJ is not
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symmetric, there is no potential. In spite of this fact, we �nd that the potential
vector �eld is a solution of a certain system of non-linear di�erential equations
arising from the commutativity of matrices B̃(p) (p = 1, 2, · · · , n). In this sense,
B̃(p)B̃(q) = B̃(q)B̃(p) (∀p, q) is called a generalised WDVV equation.

In this paper, a coordinate system (x1, x2, . . . , xn) with a potential vector
�eld ~h = (h1, h2, . . . , hn) is called a �at coordinate system. From ~h, it is
possible to de�ne a Saito structure without a metric in the sense of Sabbah
[15]. If the matrix C de�ned by ~h satis�es the condition that CJ is symmetric
(cf. the notation in Remark 1), there is a potential P (x1, x2, . . . , xn) such that
∂iP = hn−i+1 (i = 1, 2, . . . , n). In this case, P de�nes a Saito structure with a
metric (cf. [15]). For this reason, we say that the latter is a �at structure with
a potential and the former is a �at structure without a potential.

3. FREE DIVISORS CONSTRUCTED
BY POTENTIAL VECTOR FIELDS

Let ~h = (h1, h2, . . . , hn) be a potential vector �eld. We de�ne an n × n
matrix T = (Tij) by

T =
n∑
j=1

wjxj∂jC =
n∑
j=1

wjxjB̃
(j)

and F (x) = detT . From the assumption, we �nd that

F (x) = c0x
n
n + p1(x

′)xn−1n + · · ·+ pn−1(x
′)xn + pn(x′)

for a constant c0 6= 0. We denote by Vi the vector �eld de�ned by

Vi =
n∑
j=1

Tij∂j (i = 1, 2, . . . , n).

The purpose of this section is to show that if F (x) is reduced, then the set
SF = {x ∈ Cn; F (x) = 0} is a free divisor. For the de�nition of free divisors,
we refer to [16]. This statement is already shown in [15]. Our proof employed
here is to construct a set of generators of logarithmic vector �elds along SF .

Proposition 1.

ViF = wn(trB̃(i))F (i = 1, 2, . . . , n).

Proof. We introduce the following notation. If A is an n × n matrix, we
denote by Aij the (i, j)-entry of A and by A[i] = (Ai1, Ai2, · · · , Ain) the i-th
column vector of A. Then
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A =



A[1]
A[2]
·
·
·

A[n]

 .

It follows from the de�nition that

Tij = Eγij = E(∂ihj) = (wj + wn − wi)∂ihj = (wj + wn − wi)γij .

Since Tnj = wj∂nhj = wjxj , it follows that Vn = E. We use the notation
uij = wn + wj − wi for a moment. Then Tij = uijγij .

We are going to compute ViF . Since F =

∣∣∣∣∣∣∣∣∣
T [1]
T [2]
...

T [n]

∣∣∣∣∣∣∣∣∣, we have

ViF =

∣∣∣∣∣∣∣∣∣
ViT [1]
T [2]
...

T [n]

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
T [1]
ViT [2]

...
T [n]

∣∣∣∣∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣∣∣∣
T [1]
T [2]
...

ViT [n]

∣∣∣∣∣∣∣∣∣ .
Since T is invertible on Cn − SF , the vectors T [1], T [2], · · · , T [n] are linearly
independent on Cn − SF . As a consequence, ViT [j] is a linear combination of
T [1], T [2], · · · , T [n], namely, there are rational functions Sjk such that

ViT [j] =
n∑
k=1

SjkT [k].

Let S be an n× n matrix whose (j, k)-entry is Sjk. Since∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T [1]
...

T [j − 1]
ViT [j]
T [j + 1]

...
T [n]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T [1]
...

T [j − 1]∑n
k=1 SjkT [k]
T [j + 1]

...
T [n]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T [1]
...

T [j − 1]
SjjT [j]
T [j + 1]

...
T [n]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= Sjj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T [1]
...

T [j − 1]
T [j]

T [j + 1]
...

T [n]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= SjjF,

it follows that

ViF =
n∑
j=1

SjjF = (trS)F.
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On the other hand, it follows that

ViT =


ViT [1]

...
ViT [j]

...
ViT [n]

 = ST.

As a consequence, we have S = (ViT )T−1. Then we obtain a formula trS =
tr((ViT )T−1).

By the equations

(ViT )pq = ViTpq = upqViγpq = upq
∑

k Tik∂kγpq

= upq
∑

k Tik∂pγkq = upq
∑

k Tikb
(p)
kq = upq(TB̃

(p))iq,

T B̃(p) = B̃(p)T,

we have

(ViT )pq = upq(B̃
(p)T )iq.

As a consequence,

tr((ViT )T−1) =
∑
p,q

(ViT )pq(T
−1)qp =

∑
p,q

upq(B̃
(p)T )iq(T

−1)qp

=
∑
p,q

(wn − wp + wq)(B̃
(p)T )iq(T

−1)qp

=
∑
p,q

(wn − wp)(B̃(p)T )iq(T
−1)qp +

∑
p,q

wq(B̃
(p)T )iq(T

−1)qp.

We compute

U1 =
∑
p,q

(wn − wp)(B̃(p)T )iq(T
−1)qp

and

U2 =
∑
p,q

wq(B̃
(p)T )iq(T

−1)qp,

separately. For this purpose, we introduce the diagonal matrix

D = diag(w1, w2, . . . , wn).
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On the one hand,

U1 =
∑
p,q

(wn − wp)(B̃(p)T )iq(T
−1)qp

=
∑
p

(wn − wp)
∑
q

(B̃(p)T )iq(T
−1)qp =

∑
p

(wn − wp)((B̃(p)T )T−1)ip

=
∑
p

(wn − wp)b(p)ip

=
∑
p

(wn − wp)b(i)pp

= tr((wnIn −D)B̃(i)).

On the other hand,

U2

=
∑
p,q

wq(B̃
(p)T )iq(T

−1)qp =
∑
p,q

(B̃(p)TD)iq(T
−1)qp

=
∑
p

{
∑
q

(B̃(p)TD)iq(T
−1)qp} =

∑
p

((B̃(p)TD)T−1)ip

=
∑
p

(B̃(p)(TDT−1))ip =
∑
p

{
∑
q

b
(p)
iq (TDT−1)qp} =

∑
p,q

b(i)pq (TDT−1)qp

= tr(B̃(i)(TDT−1)) = tr((B̃(i)T )(DT−1)) = tr((TB̃(i))(DT−1))

= tr(T (B̃(i)D)T−1) = tr(B̃(i)D).

As a consequence,

tr((ViT )T−1) = U1 + U2 = tr((wnIn −D)B̃(i)) + tr(B̃(i)D)

= tr(wnB̃
(i) − [D, B̃(i)]) = wntrB̃(i).

Then we �nd that

trS = tr((ViT )T−1) = wntrB̃(i)

and the required formula is shown. �

Corollary 1. If F (x) is reduced, SF is free.

Proof. Since trB̃(i)is a polynomial of x, the equation

ViF = wn(trB̃(i))F

means that Vi is logarithmic along SF . Therefore by the criterion shown by K.
Saito [16], SF is free. �
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4. A GENERALISATION OF ORDINARY DIFFERENTIAL

EQUATIONS OF OKUBO TYPE

In this section we freely use the notation in previous sections without any
comment. The matrix T is de�ned by C and E (cf. �3). We always assume in
this section that (h1, h2, . . . , hn) is a potential vector �eld. Then by de�nition,
B̃(p)B̃(q) = B̃(q)B̃(p) for all p, q.

We de�ne a diagonal matrix B
(n)
∞ by

B(n)
∞ = diag(r + w1, r + w2, . . . , r + wn).

for some constant r ∈ C and show a formula for derivations of T .

Lemma 1. ∂pT = wnB̃
(p) − [B

(n)
∞ , B̃(p)] (p = 1, 2, . . . , n).

Proof. The proof of the lemma is accomplished by comparing the (i, j)-
entry of both sides for all i, j. Since EC = T and the (i, j)-entry of C is γij ,
it follows that the (i, j)-entry of ∂pT is

∂p(Eγij) = (wn − wi + wj)∂pγij = (wn − wi + wj)b
(p)
ij .

On the other hand, the (i, j)-entry of the matrix wnB̃
(p) − [B

(n)
∞ , B̃(p)] is

wnb
(p)
ij − (wi − wj)b(p)ij = (wn − wi + wj)b

(p)
ij .

Then the (i, j)-entry of the matrix ∂pT coincides with that of wnB̃
(p)−[B

(n)
∞ , B̃(p)]

and the lemma follows. �

We de�ne n× n matrices B(p) (p = 1, 2, . . . , n) by

(2) B(p) = −T−1B̃(p)B(n)
∞

and a system of di�erential equations

(3) ∂pY = B(p)Y (p = 1, 2, . . . , n).

Using the 1-form Ω de�ned by

Ω =

n∑
p=1

B(p)dxp,

the system (3) is rewritten by

(4) dY = ΩY.

Theorem 1. The system (4) is integrable.

Proof. The integrability condition for (4) is

(5) ∂pB
(q) − ∂qB(p) − [B(p), B(q)] = O (p, q = 1, 2, . . . , n).
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We will prove (5) assuming that B(p) is de�ned by (2). We need some
preparation to show the theorem. By direct computation we have

∂qB
(p) = −∂q(T−1)B̃(p)B

(n)
∞ − T−1(∂qB̃(p))B

(n)
∞

= T−1(∂qT )T−1B̃(p)B
(n)
∞ − T−1(∂qB̃(p))B

(n)
∞ .

Noting that TB̃(p) = B̃(p)T (p = 1, 2, . . . , n) and that ∂qB̃
(p) = ∂pB̃

(q), we have

∂pB
(q) − ∂qB(p)

= (T−1(∂pT )T−1B̃(q)B
(n)
∞ − T−1(∂pB̃(q))B

(n)
∞ )

−(T−1(∂qT )T−1B̃(p)B
(n)
∞ − T−1(∂qB̃(p))B

(n)
∞ )

= −T−1(∂pB̃(q) − ∂qB̃(p))B
(n)
∞ + T−1((∂pT )B̃(q) − (∂qT )B̃(p))T−1B

(n)
∞

= T−1((∂pT )B̃(q) − (∂qT )B̃(p))T−1B
(n)
∞ .

Furthermore we have

[B(p), B(q)] = T−1(B̃(p)B(n)
∞ B̃(q) − B̃(q)B(n)

∞ B̃(p))T−1B(n)
∞ .

We �rst treat the case q = n of (5). In this case, noting that B̃(n) =
In, ∂nT = wnIn, we have

∂pB
(n) − ∂nB(p) − [B(p), B(n)]

= T−1((∂pT )B̃(n) − (∂nT )B̃(p))T−1B
(n)
∞

−T−1(B̃(p)B
(n)
∞ B̃(n) − B̃(n)B

(n)
∞ B̃(p))T−1B

(n)
∞

= T−1{(∂pT )− wnB̃(p))− [B̃(p), B
(n)
∞ ]}T−1B(n)

∞ .

Then it follows from Lemma 1 that

∂pB
(n) − ∂nB(p) − [B(p), B(n)] = O.

We next treat the case p < n, q < n of (5). In this case

∂pB
(q) − ∂qB(p) − [B(p), B(q)]

= T−1((∂pT )B̃(q) − (∂qT )B̃(p))T−1B
(n)
∞

−T−1(B̃(p)B
(n)
∞ B̃(q) − B̃(q)B

(n)
∞ B̃(p))T−1B

(n)
∞

= T−1{(∂pT − B̃(p)B
(n)
∞ )B̃(q) − (∂qT − B̃(q)B

(n)
∞ )B̃(p)}T−1B(n)

∞ .

By Lemma 1, we have

(∂pT − B̃(p)B
(n)
∞ )B̃(q) − (∂qT − B̃(q)B

(n)
∞ )B̃(p)

= (wnB̃
(p) −B(n)

∞ B̃(p))B̃(q) − (wnB̃
(q) −B(n)

∞ B̃(q))B̃(p)

= (wnIn −B(n)
∞ )[B̃(p), B̃(q)]

= O.

As a consequence,

∂pB
(q) − ∂qB(p) − [B(p), B(q)] = O.

We have thus proved Theorem 1. �
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Remark 2. The 1-form Ω̃ de�ned by

Ω̃ =

n∑
p=1

B̃(p)dxp

is nothing but the Higgs �eld introduced in [15].

Remark 3. We put T0 = xnIn −
1

wn
T . Since T −wnxnIn does not depend

on xn and since B(n) = −T−1B(n)
∞ , the di�erential equation

(6) ∂nY = B(n)Y

turns out to be

(7) (xnIn − T0)∂nY = − 1

wn
B(n)
∞ Y.

Regarding (7) as an ordinary di�erential equation with respect to the vari-
able xn, (7) is called an ordinary di�erential equation of Okubo type. In this
sense, the system (4) (or (3)) is one of generalisations of Okubo type ordinary
di�erential equation to several variables case.

Remark 4. We already constructed the systems (4) for some of discrimi-
nant sets of complex re�ection groups (cf. [8, 10]). Other examples related with
algebraic solutions to Painlev�e VI will be given in a paper under preparation
(cf. [9]).

5. FREE DIVISORS AND POTENTIAL VECTOR FIELDS

In this section, we produce some of potentials and potential vector �elds
without potentials in three dimensional case. Related with real re�ection groups
of rank three, there are three kinds of potentials introduced in [6]:

A3 case : P =
x1x23+x

2
2x3

2 +
x21x

2
2

4 +
x51
60 ,

B3 case : P =
x1x23+x

2
2x3

2 +
x1x32
6 +

x31x
2
2

6 +
x71
210 ,

H3 case : P =
x1x23+x

2
2x3

2 +
x21x

3
2

6 +
x51x

2
2

20 +
x111
3960 .

In these cases, the polynomials de�ning free divisors are discriminants corre-
sponding to real re�ection groups. Concrete forms are given as follows.

∆A3 = −8x61 + 56x31x
2
2 + 27x42 − 16x41x3 − 144x1x

2
2x3 + 32x21x

2
3 + 64x33,

∆B3 = −(x31 − 3x1x2 + 3x3)(x
6
1 + 6x41x2 + 3x21x

2
2 + 8x32 − 18x1x2x3 − 9x23),

∆H3 = 1
8(−x151 − 10x121 x2 + 80x91x

2
2 + 20x61x

3
2 + 920x31x

4
2 + 216x52 − 10x101 x3

−1200x41x
2
2x3 − 1800x1x

3
2x3 + 100x51x

2
3 + 1000x21x2x

2
3 + 1000x33).
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It is known (and easy to see) that each of ∆A3 , ∆B3 , ∆H3 is weighted homoge-
neous.

It is underlined here that polynomials of the right hand sides of

∆A3 |x1=0 = 27x42 + 64x33,
∆B3 |x1=0 = 3x3(−8x32 + 9x23),
∆H3 |x1=0 = 27x52 + 125x33.

are de�ning polynomials of curve singularities of types E6, E7, E8.

This observation suggests the existence of the relationship between free
divisors and 1-parameter deformation of singularities on plane curves and nat-
urally leads us to the following consideration. Among the fourteen exceptional
singularities in the sense of Arnol'd, we consider

E12 : x7 + y3, E13 : y(x5 + y2), E14 : x8 + y3.

Corresponding to these polynomials, we introduce potential vector �elds and
weighted homogeneous polynomials which de�ne free divisors as follows.

(I) E12 case

In this case, we put

h1 = 1
3(−x31x2 + 9x32 + 3x1x3),

h2 = 1
45(x51 + 45x21x

2
2 + 45x2x3),

h3 = 1
126(−4x71 + 189x41x

2
2 + 1134x1x

4
2 + 63x23).

Then (h1, h2, h3) is a potential vector �eld and F (x) = detT de�nes a free
divisor, where

F (x) = 1
3087(1344x91x2 − 3843x61x

3
2 + 260820x31x

5
2 + 157464x72 + 448x71x3

−22491x41x
2
2x3 − 142884x1x

4
2x3 + 3087x21x2x

2
3 + 3087x33).

It is clear from the de�nition that F (0, x2, x3) = 17496
343 x

7
2 + x33. On the other

hand, F (x) is regarded as the discriminant of the complex re�ection group
No. 24 in [23].

(II) E13 case

In this case, we put

h1 = 1
1215(−4x61 − 270x41x2 + 1215x21x

2
2 + 3645x32 + 1215x1x3),

h2 = 1
2187(40x71 + 108x51x2 + 2430x31x

2
2 − 3645x1x

3
2 + 2187x2x3),

h3 = 1
21870(−560x101 + 4800x81x2 + 37800x61x

2
2 + 382725x21x

4
2

−137781x52 + 10935x23).

Then (h1, h2, h3) is a potential vector �eld and F (x) = detT de�nes a free
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divisor, where

F (x)
= 1

66430125(1019200x151 + 26568000x131 x2 − 119070000x111 x
2
2 + 242028000x91x

3
2

+2552885100x71x
4
2 + 9786308868x51x

5
2 − 5933538765x31x

6
2

+16070775840x1x
7
2 + 7873200x101 x3 − 69984000x81x2x3

−570807000x61x
2
2x3 − 6178001625x21x

4
2x3 + 2295825120x52x3

+1968300x51x
2
3 + 88573500x31x2x

2
3 − 199290375x1x

2
2x

2
3 + 66430125x33).

It is clear from the de�nition that F (0, x2, x3) = 864
25 x

5
2x3 + x33. On the other

hand, F (x) is regarded as the discriminant of the complex re�ection group
No. 27 in [23].

(III) E14 case

In this case, we put

h1 = 1
315(10x91 − 252x61x2 − 945x31x

2
2 + 945x32 + 315x1x3),

h2 = 1
1155(560x111 − 990x81x2 + 8316x51x

2
2 + 10395x21x

3
2 + 1155x2x3),

h3 = 1
95550(−382720x161 − 2593920x131 x2 + 7023744x101 x

2
2 − 786240x71x

3
2

+20638800x41x
4
2 + 6191640x1x

5
2 + 47775x23).

Then (h1, h2, h3) is a potential vector �eld and F (x) = detT de�nes a free
divisor, where

F (x)
= 1

8232000(−408608000x241 + 3486336000x211 x2 + 11964637440x181 x
2
2

+24377746176x151 x
3
2 − 68291566560x121 x

4
2 + 84987403200x91x

5
2

+31905997200x61x
6
2 + 55510434000x31x

7
2 + 2531725875x82

+154560000x161 x3 + 1089446400x131 x2x3 − 3063432960x101 x
2
2x3

+355622400x71x
3
2x3 − 9668484000x41x

4
2x3 − 3000564000x1x

5
2x3

−4704000x81x
2
3 + 79027200x51x2x

2
3 + 148176000x21x

2
2x

2
3 + 8232000x33).

It is clear from the de�nition that F (0, x2, x3) = 19683
64 x82 + x33. There is no

complex re�ection group of rank three whose discriminant coincides with F (x).

Remark 5. The polynomials corresponding to the singularities E12, E13,
E14 given above are obtained by the method explained in [19]. By the method
there one of the authors (J.S) obtained more than sixty de�ning polynomials
of free divisors corresponding to the singularities E12, E13, E14. Among such
polynomials only the three given above and two others are those which are
constructed by potential vector �elds.

We explain how to �nd potential vector �elds by taking E12 case as an
example. Since (w1, w2, w3) = (2, 3, 7) in this case, we de�ne
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h1 = s11x
3
1x2 + s12x

3
2 + x1x3,

h2 = s21x
5
1 + s22x

2
1x

2
2 + x2x3,

h3 = s31x
7
1 + s32x

4
1x

2
2 + s33x1x

4
2 + 1

2x
2
3,

and put ~h = (h1, h2, h3) for some constants sij . Using ~h, we de�ne C and

B̃(p) (p = 1, 2, 3) as in �2. Then the condition that ~h is a potential vctor �eld
is equivalent to B̃(1)B̃(2) = B̃(2)B̃(1). If s22 = 0, we don't obtain a free divisor
and ~h is not a potential vector �eld. On the other hand, if s22 6= 0, we obtain

h1 = −1
3s22x

3
1x2 + s12x

3
2 + x1x3,

h2 =
s222

15s12
x51 + s22x

2
1x

2
2 + x2x3,

h3 = − 2s322
21s12

x71 +
3s222
2 x41x

2
2 + 3s12s22x1x

4
2 + 1

2x
2
3.

If s22s12 6= 0, then ~h is a potential vector �eld. If we choose s22 = 1, s12 = 3,
then the potential vector �eld in this case is obtained.

6. ALGEBRAIC SOLUTIONS OF PAINLEV�E VI

AND FLAT STRUCTURES

In this section, we mention the relationship between the system of di�er-
ential equations (4) and algebraic solutions of Painlev�e VI. Algebraic solutions
of Painlev�e VI are studied by many authors. The readers who are interested
in this subject, refer to [3�7, 11, 13] and references there. For our purpose we
assume that n = 3 and w3 = 1. The condition w3 = 1 is satis�ed if we change
wj by wj/w3 (j = 1, 2, 3). Since F = detT is a cubic polynomial of x3, let
zj(x

′) (j = 1, 2, 3) be de�ned by

F (x) =

3∏
i=1

(x3 − zi(x′))

and let
δF (x′) =

∏
i 6=j

(zi(x
′)− zj(x′))

be the discriminant of F as a polynomial of x3, where x
′ = (x1, x2). We

consider B(3) = −T−1B̃(3)B
(3)
∞ as before. It follows from the de�nition that

if i 6= j, the (i, j)-entry of FB(3) is a linear function of x3. Noting this, we
de�ne zij(x

′) (i 6= j) by the condition that x3 = zij(x
′) is the zero of the (i, j)-

entry of FB(3). If each of the diagonal entries of B
(3)
∞ is not zero, that is,

r 6= −wk (k = 1, 2, 3), then by an easy computation, we have

zij =
det(T )(T−1)ij

Tij

∣∣∣∣
x3=0

.
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This formula holds for j 6= k in the case r = −wk. It can be shown that

if the (k, k)-entry of the diagonal matrix B
(3)
∞ is zero, namely, if r = −wk and

j 6= k, then

wij =
zij(x

′)− z1(x′)
z2(x′)− z1(x′)

is an algebraic solution of Painlev�e VI as a function of

t =
z3(x

′)− z1(x′)
z2(x′)− z1(x′)

.

7. SOME EXAMPLES OF POTENTIAL VECTOR FIELDS

FOR GIVEN WEIGHT SYSTEMS

In this section, we treat the case n = 3 and give some examples of potential
vector �elds which consist of polynomials by determining the commutativity
condition on B̃(1), B̃(2).

7.1. The case w1 = 1, w2 = 2, w3 = 5

We �rst treat the case where w1 = 1, w2 = 2, w3 = 5. Then the compo-
nents of potential vector �eld ~h = (h1, h2, h3) take the forms

h1 = s11x
6
1 + s12x

4
1x2 + s13x

2
1x

2
2 + s14x

3
2 + x1x3,

h2 = s21x
7
1 + s22x

5
1x2 + s23x

3
1x

2
2 + s24x1x

3
2 + x2x3,

h3 = s31x
10
1 + s32x

8
1x2 + s33x

6
1x

2
2 + s34x

4
1x

3
2 + s35x

2
1x

4
2 + s36x

5
2 + x23/2,

where sij are constants to be determined. The matrix C is de�ned as before,
namely, the (i, j)-entry of C is ∂ihj and B̃

(p) = ∂pC (p = 1, 2, 3). In this case
B̃(3) = I3 and the commutativity condition is

(8) B̃(1)B̃(2) = B̃(2)B̃(1).

Then by direct computation, we obtain at least two non-trivial solutions to (8),
namely solutions of generalised WDVV-equation. Both have two parameters.

The �rst one is given by the following polynomials.

h1 = −(4s313x
6
1 + 90s213s14x

4
1x2 − 135s13s

2
14x

2
1x

2
2 − 135s314x

3
2 − 135s214x1x3)

/(135s214),
h2 = −(−40s413x

7
1 − 36s313s14x

5
1x2 − 270s213s

2
14x

3
1x

2
2 + 135s13s

3
14x1x

3
2

−81s314x2x3)/(81s314),
h3 = (−560s613x

10
1 + 1600s513s14x

8
1x2 + 4200s413s

2
14x

6
1x

2
2 + 4725s213s

4
14x

2
1x

4
2

−567s13s
5
14x

5
2 + 135s414x

2
3)/(270s414).

These polynomials contain parameters s13, s14. If s13 = 1, s14 = 3, then these
polynomials coincide with those introduced in (II) E13 case of �5.



15 Flat structures without potentials 495

The second one is given by the following polynomials.

h1 = (2s313x
6
1 + 135s13s

2
14x

2
1x

2
2 + 135s314x

3
2 + 135s214x1x3)/(135s214),

h2 = x2(2s
3
13x

5
1 + 10s213s14x

3
1x2 + 15s13s

2
14x1x

2
2 + 15s214x3)/(15s214),

h3 = (4s613x
10
1 + 540s413s

2
14x

6
1x

2
2 + 1620s313s

3
14x

4
1x

3
2 + 3645s213s

4
14x

2
1x

4
2

+729s13s
5
14x

5
2 + 1215s414x

2
3)/(2430s414).

These polynomials contain parameters s13, s14 as in the previous case. In this
case we obtain an algebraic solution of Painlev�e VI:

t = −(s+ 2)2(s− 3)3

(s+ 3)3(s− 2)2
, w =

3(s+ 2)(s− 3)

(s+ 3)2(s− 2)
,

which is �rst obtained by Kitaev [11]. The free divisor is isomorphic to the
hypersurface of C3 de�ned as the zero locus of the polynomial

f(y1, y2, y3) = y3(729y101 − 2430y81y2 + 3105y61y
2
2 − 1900y41y

3
2 + 560y21y

4
2

−64y52 − 54y51y3 + 90y31y2y3 − 40y1y
2
2y3 + y23).

This means that the choice of the parameters s13, s14 is not essential as far as
we treat free divisors.

7.2. The case w1 = 1, w2 = 2, w3 = 6

In this case, there are at least two potential vector �elds.
The �rst one is given by

h1 = x1(s1x
4
1x2 + s2x

3
2 + x3),

h2 = (25s21x
8
1 − 63s22x

4
2 + 42s2x2x3)/(42s2),

h3 = (1250s31x
12
1 + 12375s21s2x

8
1x

2
2 + 2079s32x

6
2 + 495s2x

2
3)/(990s2).

The polynomial de�ned as det(T ) coincides with

(−5s1x
4
1x2 + s2x

3
2 + x3)

×(250s31x
12
1 + 225s21s2x

8
1x

2
2 + 1890s1s

2
2x

4
1x

4
2 + 189s32x

6
2 − 270s1s2x

4
1x2x3

+162s22x
3
2x3 − 27s2x

2
3)

up to a constant factor. In this case, we obtain an algebraic solution of
Painlev�e VI:

t =
(s− 1)2(s+ 2)

(s+ 1)2(s− 2)
, w =

(s− 1)(s+ 2)

s(s+ 1)
,

which is �rst obtained by Dubrovin [6].
The second one is given by

h1 = x1(s1x
6
1 − 2s2x

3
2 + x3),

h2 = −x2(14s1x
6
1 − s2x32 − x3),

h3 = (8820s21x
12
1 + 27720s1s2x

6
1x

3
2 + 396s22x

6
2 + 55x23)/110.
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The polynomial de�ned as det(T ) coincides with

(21s1x
6
1 + 6s2x

3
2 + x3)

×(196s21x
12
1 − 1064s1s2x

6
1x

3
2 + 4s22x

6
2 − 28s1x

6
1x3 − 4s2x

3
2x3 + x23).

In this case, we obtain an algebraic solution of Painlev�e VI: w2 = t (cf. [13],
Solution II).

7.3. The case w1 = 1, w2 = 2, w3 = 7

In this case, there is at least one potential vector �eld.
The polynomials of the potential vector �eld are

h1 = (5s42x
8
1 + 56s1s

3
2x

6
1x2 − 630s21s

2
2x

4
1x

2
2 + 945s41x

4
2 + 945s31x1x3)/(945s31),

h2 = (−175s52x
9
1 + 540s1s

4
2x

7
1x2 + 1134s21s

3
2x

5
1x

2
2 + 11340s31s

2
2x

3
1x

3
2

+8505s41s2x1x
4
2 + 8505s41x2x3)/(8505s41),

h3 = (−400s82x
14
1 + 167440s1s

7
2x

12
1 x2 − 91728s21s

6
2x

10
1 x

2
2 − 851760s31s

5
2x

8
1x

3
2

+3865680s41s
4
2x

6
1x

4
2 + 2948400s51s

3
2x

4
1x

5
2 + 8845200s61s

2
2x

2
1x

6
2

+1263600s71s2x
7
2 + 552825s61x

2
3)/(1105650s61)

and the polynomial F = det(T ) is given by

F = − 7
273375s91

(−20s42x
7
1 − 132s1s

3
2x

5
1x2 + 180s21s

2
2x

3
1x

2
2 − 540s31s2x1x

3
2

+135s31x3)× (−5200s82x
14
1 + 30240s1s

7
2x

12
1 x2 − 214704s21s

6
2x

10
1 x

2
2

−504000s31s
5
2x

8
1x

3
2 + 398160s41s

4
2x

6
1x

4
2 + 3175200s51s

3
2x

4
1x

5
2

+1134000s61s
2
2x

2
1x

6
2 + 777600s71s2x

7
2 − 25200s31s

4
2x

7
1x3

−158760s41s
3
2x

5
1x2x3 − 793800s61s2x1x

3
2x3 − 99225s61x

2
3).

The algebraic solution of Painlev�e VI corresponding to this case is equivalent
to Klein solution obtained by Boalch [3] (and Solution 8 of [13]). It is un-
derlined here that the algebraic solution corresponding to the potential vector
�eld shown in the E12-singularity (cf. �5) is also Klein solution (= Solution 8
of [13]).

8. FROM FREE DIVISORS TO FLAT STRUCTURES

WITHOUT POTENTIALS

In this section, we continue the study on the construction of potential
vector �elds which consist of polynomials in the three dimensional case.

8.1. The case FB,6

The polynomial

(9) FB,6 = 9x1x
4
2 + 6x21x

2
2x3 − 4x32x3 + x31x

2
3 − 12x1x2x

2
3 + 4x33
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is introduced in [20]. It is clear from the de�nition that FB,6 is weighted homo-
geneous with the weight system (w1, w2, w3) = (1, 2, 3) same as the discriminant
of the real re�ection group of type B3. The zero locus of FB,6 is free because
of the existence of Saito matrix

M =

 x1 2x2 3x3
2x2 3x1x2 + 5

2x3
9
2x

2
2 + 15

2 x1x3
3x3

3
4(15x22 + x1x3) 18x2x3

 .

As is shown in [22], there are three holonomic systems of rank two. One of
them is de�ned by

(10)


V1u = r1u,
V2u = 1

12(20r1 − 7)x1u,
V3V3u = − 1

16(20r1 − 7){2(10r1 + 1)x22 − 3x1x3}u
+10(r1 + 1)x2V3u,

where V1, V2, V3 are vector �elds de�ned by

t(V1, V2, V3) = M t(∂1, ∂2, ∂3).

It is possible to obtain a di�erential equation of u from (10) of the form

(11) ∂23u+
P1(x)

(x3 − as)FB,6
∂3u+

P2(x)

(x3 − as)FB,62
u = 0,

where P1(x), P2(x) are polynomials of x3 and are rational functions of x′ =
(x1, x2) and as = as(x

′) is a rational function of x′. Putting u = FB,6
αy for a

constant α, we obtain a di�erential equation for y from (11). In this case, if
α = 5r1−4

45 , then the equation for y takes the form

(12) y′′+

(
(1− β)

F ′B,6
FB,6

− 1

x3 − as

)
y′+

(
c0x

2
3 + c1x3 + c2
FB,6

− c0
x3 − as

)
y = 0,

where
y′ = ∂3y, y

′′ = ∂23y, F
′
B,6 = ∂3FB,6,

β is a constant and c0, c1, c2 are rational functions of x′. By regarding (14)
as an ordinary di�erential equation with respect to the variable x3, there are
four regular singular points x3 = z1, z2, z3,∞ and an apparent singular point
x3 = as, where z1, z2, z3 are roots of the equation FB,6 = 0 as a cubic polynomial
of x3. Then

w =
as − z1
z2 − z1

is an algebraic solution of Painlev�e VI with respect to the variable t = z3−z1
z2−z1 . By

direct computation we �nd that the solution (w, t) is equivalent to solution 27
in [4] (= Solution 13 in [13]).
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The question to be answered is how to construct a �at structure related
to the algebraic solution derived above manner. For this purpose, we start with
the polynomials h1, h2, h3 of x1, x2, x3 with coe�cients sij to be determined:

h1 = x1(s11x
15
1 + s12x

10
1 x2 + s13x

5
1x

2
2 + s14x

3
2) + x1x3,

h2 = s21x
20
1 + s22x

15
1 x2 + s23x

10
1 x

2
2 + s24x

5
1x

3
2 + s25x

4
2 + x2x3,

h3 = s31x
30
1 + s32x

25
1 x2 + s33x

20
1 x

2
2 + s34x

15
1 x

3
2 + s35x

10
1 x

4
2 + s36x

5
1x

5
2

+s37x
6
2 + 1

2x
2
3.

The weight system for these polynomials is (w1, w2, w3) = (1, 5, 15). The matrix
C is de�ned as before, namely, the (i, j)-entry of C is ∂ihj and B̃

(p) = ∂pC (p =
1, 2, 3). By the condition

(13) B̃(1)B̃(2) = B̃(2)B̃(1),

we obtain at least four non-trivial potential vector �elds. Among others we
treat the case:

h1 = − 2
33s23x

11
1 x2 − 4s25

3 x1x
3
2 + x1x3,

h2 = − 5s223
684s25

x201 + s23x
10
1 x

2
2 + s25x

4
2 + x2x3,

h3 =
20s323

2349s25
x301 + 8

9s
2
23x

20
1 x

2
2 − 16s23s25x

10
1 x

4
2 +

32s225
15 x62 + 1

2x
2
3.

In this case F = det(T ) is de�ned by
(14)
F = 25

27s25
(−400s423x

40
1 x2 − 4480s323s25x

30
1 x

3
2 − 399744s223s

2
25x

20
1 x

5
2

+1313280s23s
3
25x

10
1 x

7
2 + 34560s425x

9
2 − 150s323x

30
1 x3 − 16740s223s25x

20
1 x

2
2x3

+320760s23s
2
25x

10
1 x

4
2x3 − 45360s325x

6
2x3 + 4860s23s25x

10
1 x2x

2
3

+9720s225x
3
2x

2
3 + 3645s25x

3
3).

Remark 6. By the substitution (x1, x2, x3) = (y
1/10
1 , y2, y3), the poly-

nomial (14) becomes a polynomial F̃ (y1, y2, y3) of (y1, y2, y3). Then by an
appropriate coordinate transformation y1 = u1x2 + u2x

2
1, y2 = u3x1, y3 =

x3 + u4x2x1 + u5x
3
1, F̃ (y1, y2, y3) turns out to be FB,6 (cf. (11)) up to a non-

zero constant factor.

Remark 7. We explain the reason why each component of the potential
vector �eld in this case is a weighted homogenous polynomial of weight system
(1,5,15). The argument of �nding a �at structure related with the algebraic
solution obtained above starts with constructing a system of di�erential equa-
tions of rank three from the system (10) by middle convolution. By analysis of
the new system of rank three, we �nd the existence of a �at coordinate system
of weight system (1,5,15) in this case.



19 Flat structures without potentials 499

8.2. The case FH,2

The polynomial

(15) FH,2 = 100x31x
4
2 + x52 + 40x41x

2
2x3 − 10x1x

3
2x3 + 4x51x

2
3 − 15x21x2x

2
3 + x33

is also introduced in [20]. Clearly FH,2 is weighted homogeneous of type
(w1, w2, w3) = (1, 3, 5) same as the discriminant of the real re�ection group
of type H3. The zero locus of FH,2 is free because of the existence of its Saito
matrix

M=

 x1 3x2 5x3
3x2 36x21x2 + 6x3 90x1x

2
2 + 90x21x3

5x3 −10
3 (12x31 − 55x2)x1x2 −50

3 (6x31x
2
2 − x32 + 6x41x3 − 18x1x2x3)

.
In this case, there are two holonomic systems of rank two (cf. [22]). One of
them is given by

(16)



V1u = r1u,
V2u = 3(4r1 − 1)x21u,

V3V3u = −25
9

 4(−1 + 4r1)(17 + 4r1)x
8
1

−12(−27 + 100r1 + 40r21)x
5
1x2

+15(−7 + 20r1 + 60r21)x
2
1x

2
2

+8(12r1 − 1)x31x3 − 9(10r1 − 1)x2x3

u

−20
3 (2 + r1)x1(4x

3
1 − 15x2)V3u,

where V1, V2, V3 are vector �elds de�ned by

t(V1, V2, V3) = M t(∂1, ∂2, ∂3).

It is possible to show by an argument similar to the case (10) that there is an
algebraic solution of Painlev�e VI derived from (16) equivalent to solution 29 in
[4] (= Solution 18 in [13]).

To �nd a potential vector �eld which is related to solution 29 in [4], we
consider the three polynomials with coe�cients sij to be determined:

h1 =x1(s11x
10
1 + s12x

8
1x2 + s13x

6
1x

2
2 + s14x

4
1x

3
2 + s15x

2
1x

4
2 + s16x

5
2) + x1x3,

h2 =s21x
12
1 + s22x

10
1 x2+ s23x

8
1x

2
2+ s24x

6
1x

3
2+ s25x

4
1x

4
2+ s26x

2
1x

5
2+ s27x

6
2+ x2x3,

h3 =s31x
20
1 + s32x

18
1 x2+ s33x

16
1 x

2
2+ s34x

14
1 x

3
2+ s35x

12
1 x

4
2+ s36x

10
1 x

5
2+ s37x

8
1x

6
2

+s38x
6
1x

7
2 + s39x

4
1x

8
2 + s3,10x

2
1x

9
2 + s3,11x

10
2 + x23/2,

so that ~h = (h1, h2, h3) is a potential vector �eld. In this case, h1, h2, h3 are
weighted homogeneous of weight system (w1, w2, w3) = (1, 2, 10). The matrix
C is de�ned as before, namely, the (i, j)-entry of C is ∂ihj and B̃

(p) = ∂pC (p =
1, 2, 3). By the condition

(17) B̃(1)B̃(2) = B̃(2)B̃(1),
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we obtain at least two non-trivial potential vector �elds. We treat one of them
de�ned by the polynomials below:

h1 = −3s24
10 x

7
1x

2
2 − 21s27

5 x1x
5
2 + x1x3,

h2 = − s224
275s27

x121 + s24x
6
1x

3
2 + s27x

6
2 + x2x3,

h3 =
2s324

125s27
x181 x2 +

51s224
25 x121 x

4
2 − 51s24s27x

6
1x

7
2 +

119s227
10 x102 + 1

2x
2
3.

In this case, F = det(T ) is given by
(18)
F = 4(−108s524x

30
1 − 205200s424s27x

24
1 x

3
2 − 1876500s324s

2
27x

18
1 x

6
2

−507195000s224s
3
27x

12
1 x

9
2 + 1748503125s24s

4
27x

6
1x

12
2 + 140568750s527x

15
2

−67500s324s27x
18
1 x2x3 − 8775000s224s

2
27x

12
1 x

4
2x3 + 223593750s24s

3
27x

6
1x

7
2x3

−53156250s427x
10
2 x3 + 703125s24s

2
27x

6
1x

2
2x

2
3 + 1406250s327x

5
2x

2
3

+781250s227x
3
3)/(3125s227).

Moreover, the algebraic solution of Painlev�e VI corresponding to the potential
vector �eld de�ned by the polynomials h1, h2, h3 is solution 29 in [4].

Remark 8. As in the case of FB,6, by the substitution (x1, x2, x3) =

(y
1/6
1 , y2, y3), the polynomial (18) becomes a polynomial F̃ (y1, y2, y3) of

(y1, y2, y3). Then by an appropriate coordinate transformation y1 = u1x2 +
u2x

2
1, y2 = u3x1, y3 = x3 + u4x2x

2
1 + u5x

5
1, F̃ (y1, y2, y3) turns out to be FH,2

(cf. (15)) up to a non-zero constant factor.

9. POTENTIAL VECTOR FIELDS FOR DISCRIMINANTS

OF COMPLEX REFLECTION GROUPS

The notion of free divisors is formulated by K. Saito (cf. [16]) and the
freeness of the discriminant sets of irreducible �nite real re�ection groups in
the quotient space by the group action is �rstly shown in [16]. In the case of
discriminant sets of irreducible �nite complex re�ection groups, the freeness is
shown by Terao [24] (see also Orlik and Terao [14]). Flat structure for the case
of �nite real re�ection groups is �rstly treated in [18] and its existence in this
case is shown in [17]. In this section we discuss the existence of potential vector
�elds for the case of �nite complex re�ection groups. Flat structure without
potential is constructed by a potential vector �eld.

Irreducible �nite complex re�ection groups are classi�ed by Shephard-
Todd [23]: There is an in�nite family G(de, d, r), plus 34 exceptional groups
G4, G5, . . . , G37. In this section we only treat the exceptional and rank> 2
case. Among the 34 groups, the groups Gk (4 ≤ k ≤ 22) have rank 2 and
the remaining groups Gk (23 ≤ k ≤ 37) have rank> 2. Real re�ection groups
are also contained in these groups. In fact, G23, G28, G30, G35, G36, G37 are
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real re�ection groups of types H3, F4, H4, E6, E7, E8, respectively. Taking
our attention to discriminants, those of G25, G26, G32 are same as those of
W (A3), W (B3), W (A4), respectively. For this reason, we concentrate our at-
tention to the groups G24, G27, G29, G31, G33, G34.

In general, let G be an irreducible �nite complex re�ection group of rank
n. If V is a standard representation space of G, there are basic invariants
xk (k = 1, 2, . . . , n) of the ring of G-invariant polynomials on V . Let wk be
the degree of xk. Then we may assume that 0 < w1 < w2 < · · · < wn
since we treat the groups G24, G27, G29, G31, G33, G34 and the assumption
0 < w1 < w2 < · · · < wn is satis�ed for all these groups. The discriminant
for G is G-invariant and as a consequence, it is regarded as a polynomial of
x1, x2, . . . , xn. For this reason we write ∆G(x1, x2, . . . , xn) for the discriminant.
As a polynomial of xn, the degree of ∆G is equal or greater than n. It is known
(cf. [14], [2]) that degxn ∆G = n for that case G = G24, G27, G29, G33, G34 and
degxn ∆G = n + 1 for the case G = G31. To construct the system of the form
(4) we need the condition degxn ∆G = n. As a consequence, in the following
we treat the �ve groups G24, G27, G29, G33, G34 but exclude group G31.

ST Rank Degrees

24 3 4,6,14
27 3 6,12,30
29 4 4,8,12,20
33 5 4,6,10,12,18
34 6 6,12,18,24,30,42

The argument to derive potential vector �elds related to the groups G24, G27,
G29, G33, G34 is as follows. Let ~h = (h1, h2, . . . , hn) be a potential vector �eld
and let C be the n × n matrix whose (i, j)-entry is ∂ihj . Then it is su�cient
to solve the condition that ∂pC (p = 1, 2, . . . , n) commute each other for the
existence of hp (p = 1, 2, . . . , n).

Let G be one of these groups. Orlik and Terao [14] obtained basic deriva-
tions of the discriminant for the case G24 and Bessis and Michel [2] did for
the cases G27, G29, G33. Using the results of [14] and [2], we compute poten-
tial vector �elds for these cases. Potential vector �elds for the cases G24, G27

are already introduced in E12 case and E13 case of �5 and those for the three
cases G29, G33 are given below. As to the case G34, we �nd neither refer-
ence on the concrete form of the discriminant nor that on its basic derivations.
Therefore, assuming the existence of a potential vector �eld, we determine poly-
nomials h1, h2, . . . , h6 given below by direct computation. It is provable that
~h = (h1, h2, . . . , h6) is a potential vector �eld. In fact, de�ne the 6× 6 matrix
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C whose (i, j)-entry is ∂ihj . Then the matrices B̃(i) = ∂iC (i = 1, 2, . . . , 6)
commute each other. This implies that T = x1B̃

(1) + · · ·+ 5x5B̃
(5) + 7x6B̃

(6) is
a Saito matrix of the polynomial F = det(T ) and F = 0 is a free divisor in C6.

It is plausible that F is the discriminant of the group G34 if x1, x2, . . . , x6
are identi�ed with appropriate basic invariants of the ring of G34-invariant
polynomials. As an evidence to support this observation we have shown that
if G is an irreducible �nite complex re�ection group and it is well-generated in
the sense of [1], there is a unique �at structure for the discriminant of G.

(1) G29 case

h1 = (−3x21x
2
2 + 4x32 + 2x31x3 + 6x1x2x3 + 3x23 + 6x1x4)/6,

h2 = (−x71 + 7x51x2 + 7x31x
2
2 + 14x1x

3
2 + 7x41x3 − 14x21x2x3 − 14x22x3 + 7x1x

2
3

+14x2x4)/14,
h3 = (x81 + 2x61x2 + 8x41x

2
2 − 6x21x

3
2 − 4x42 + 6x51x3 + 12x31x2x3 + 8x1x

2
2x3

+8x21x
2
3 + 2x2x

2
3 + 4x3x4)/4,

h4 = (13x101 + 70x81x2 − 70x61x
2
2 + 200x41x

3
2 + 120x21x

4
2 + 56x52 + 20x71x3

+100x51x2x3 + 160x31x
2
2x3 − 200x1x

3
2x3 + 130x41x

2
3 + 120x21x2x

2
3 + 60x22x

2
3

+40x1x
3
3 + 20x24)/40.

(2) G33 case

h1 = (−2x1x
3
2 + 2x31x3 + 3x22x3 + 6x1x2x4 + 3x3x4 + 3x1x5)/3,

h2 = (−4x61+ 60x31x
2
2 + 15x42+ 30x1x

2
3+ 60x31x4− 30x22x4+ 15x24+ 30x2x5)/30,

h3 = (4x71 + 12x41x
2
2 + 9x1x

4
2 + 36x31x2x3 − 2x32x3 + 6x21x

2
3 + 12x41x4

+18x1x
2
2x4 + 6x2x3x4 + 9x1x

2
4 + 3x3x5)/3,

h4 = (20x61x2 + 24x31x
3
2 − 3x52 + 12x51x3 + 18x21x

2
2x3 + 12x1x2x

2
3 + x33

+24x31x2x4 + 6x32x4 + 18x21x3x4 + 3x2x
2
4 + 3x4x5)/3,

h5 = (64x91 + 576x61x
2
2 + 48x62 + 288x51x2x3 + 432x21x

3
2x3 + 144x41x

2
3 + 24x2x

3
3

+48x61x4 + 144x31x
2
2x4 − 36x42x4 + 432x21x2x3x4 + 72x1x

2
3x4 + 144x31x

2
4

+72x22x
2
4 + 12x34 + 9x25)/18.

(3) G34 case (Conjecture)

h1 = (20x41x
2
2 + 120x21x

3
2 − 60x42 − 12x51x3 + 60x31x2x3 − 180x1x

2
2x3 + 135x21x

2
3

+135x2x
2
3 + 120x41x4 − 180x21x2x4 + 540x22x4 + 270x1x3x4 + 405x24

+180x31x5 + 540x1x2x5 + 405x3x5 + 405x1x6)/405,
h2 = (64x91 − 288x71x2 − 1728x51x

2
2 + 1728x31x

3
2 − 2592x1x

4
2 + 432x61x3

+3888x41x2x3 + 3888x21x
2
2x3 + 1944x32x3 + 972x31x

2
3 + 729x33 − 1296x51x4

+7776x31x2x4 + 8748x21x3x4 − 2916x2x3x4 − 5832x1x
2
4 + 3888x41x5

−2916x21x2x5 − 2916x22x5 + 4374x1x3x5 + 4374x4x5 + 4374x2x6)/4374,

h3 = (64x101 + 3456x81x2 + 6624x61x
2
2 + 2160x41x

3
2 + 3888x52 + 7776x71x3

+19440x51x2x3 + 32400x31x
2
2x3 + 7776x1x

3
2x3 + 19440x41x

2
3

+26244x21x2x
2
3 + 2916x22x

2
3 + 7290x1x

3
3 + 9504x61x4 + 38880x41x2x4
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−11664x21x
2
2x4 − 3888x32x4 + 25272x31x3x4 + 34992x1x2x3x4 + 8748x23x4

+5832x21x
2
4 + 8748x2x

2
4 + 11664x51x5 + 25272x31x2x5 + 17496x1x

2
2x5

+26244x21x3x5+ 8748x2x3x5+ 26244x1x4x5+ 6561x25+ 6561x3x6)/6561,
h4 = (1152x111 + 832x91x2 + 23616x71x

2
2 − 13824x51x

3
2 + 34560x31x

4
2 + 7776x81x3

+42768x61x2x3 + 16200x41x
2
2x3 + 7776x21x

3
2x3 − 5832x42x3 + 17496x51x

2
3

+27216x31x2x
2
3 + 23328x1x

2
2x

2
3 + 13122x21x

3
3 + 2916x2x

3
3 + 12960x71x4

−25920x51x2x4 + 103680x31x
2
2x4 − 31104x1x

3
2x4 + 19440x41x3x4

+69984x21x2x3x4 − 5832x22x3x4 + 17496x1x
2
3x4 + 38880x31x

2
4

−46656x1x2x
2
4 − 4374x3x

2
4 + 2592x61x5 + 21384x41x2x5 − 5832x21x

2
2x5

+11664x32x5 + 26244x31x3x5 + 17496x1x2x3x5 + 6561x23x5 − 8748x21x4x5
+17496x2x4x5 + 13122x1x

2
5 + 13122x4x6)/13122,

h5 = (10496x121 + 70656x101 x2 + 86976x81x
2
2 + 233856x61x

3
2 − 25920x41x

4
2

−20736x62 + 71808x91x3+ 264384x71x2x3+ 393984x51x
2
2x3+ 129600x31x

3
2x3

+93312x1x
4
2x3 + 165888x61x

2
3 + 408240x41x2x

2
3 + 221616x21x

2
2x

2
3

+134136x31x
3
3 + 87480x1x2x

3
3 + 10935x43 + 22464x81x4 + 209088x61x2x4

+38880x41x
2
2x4 + 233280x21x

3
2x4 + 23328x42x4 + 241056x51x3x4

+272160x31x2x3x4 + 139968x1x
2
2x3x4 + 209952x21x

2
3x4 + 87480x2x

2
3x4

+19440x41x
2
4 + 349920x21x2x

2
4 − 69984x22x

2
4 + 139968x1x3x

2
4 − 17496x34

+10368x71x5 + 38880x51x2x5 + 93312x31x
2
2x5 − 23328x1x

3
2x5

+134136x41x3x5 + 227448x21x2x3x5 + 52488x22x3x5 + 104976x1x
2
3x5

+198288x31x4x5 + 104976x1x2x4x5 + 78732x3x4x5 + 78732x21x
2
5

+26244x2x
2
5 + 39366x5x6)/39366,

h6 = (109056x141 + 433664x121 x2 + 1983744x101 x
2
2− 400512x81x

3
2 + 2784768x61x

4
2

−282240x41x
5
2 + 967680x21x

6
2 + 207360x72 + 403200x111 x3

+2395008x91x2x3 + 3709440x71x
2
2x3 + 6096384x51x

3
2x3 − 846720x31x

4
2x3

−725760x1x
5
2x3 + 1611792x81x

2
3 + 4445280x61x2x

2
3 + 3492720x41x

2
2x

2
3

+1360800x21x
3
2x

2
3 + 462672x42x

2
3 + 1496880x51x

3
3 + 2857680x31x2x

3
3

+734832x1x
2
2x

3
3 + 489888x21x

4
3 + 91854x2x

4
3 + 177408x101 x4

+80640x81x2x4 + 3499776x61x
2
2x4 − 3870720x41x

3
2x4 + 2540160x21x

4
2x4

−653184x52x4 + 1439424x71x3x4 + 7039872x51x2x3x4 + 3991680x31x
2
2x3x4

+1741824x1x
3
2x3x4 + 2721600x41x

2
3x4 + 1388016x21x2x

2
3x4

+244944x22x
2
3x4 + 857304x1x

3
3x4 + 1874880x61x

2
4 − 3175200x41x2x

2
4

+5225472x21x
2
2x

2
4 + 925344x31x3x

2
4 + 2939328x1x2x3x

2
4 + 306180x23x

2
4

+1469664x21x
3
4−816480x2x

3
4−8064x91x5+ 254016x71x2x5+ 217728x51x

2
2x5

+362880x31x
3
2x5 + 544320x1x

4
2x5 + 707616x61x3x5 + 1632960x41x2x3x5

+2122848x21x
2
2x3x5 − 326592x32x3x5 + 1714608x31x

2
3x5

+1224720x1x2x
2
3x5 + 183708x33x5 + 816480x51x4x5 + 4572288x31x2x4x5

−1959552x1x
2
2x4x5 + 2694384x21x3x4x5 + 979776x2x3x4x5

−244944x1x
2
4x5 + 1102248x41x

2
5 + 979776x21x2x

2
5 + 489888x22x

2
5

+734832x1x3x
2
5 + 367416x4x

2
5 + 137781x26)/275562.
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Remark 9. (1) As for the case G31, you can �nd basic derivations of the
discriminant in [2] and a system of di�erential equations in [21].

(2) D. Bessis [1] discussed the existence of �at structures of discriminants
of complex re�ection groups. The de�nition of �at structure in [1] is seemingly
weaker than the original Saito's de�nition.
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