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1. INTRODUCTION

The purpose of this paper is to report the recent progress on the study
concerning free divisors, algebraic solutions of Painlevé VI and flat structures.
Flat structure is established by K. Saito [17] when he investigated the struc-
ture of the moduli space of deformations of isolated singular points. Later B.
Dubrovin [6] generalised it so that the theory contains the 2D topological field
theory. In the formulation of B. Dubrovin the existence of potentials plays a
central role in the construction of Frobenius algebra structure on the tangent
space of the moduli space. C. Sabbah’s book [15] is a nice introduction of
flat structure = Frobenius structure. In spite that potentials are important in
the theory developed by Dubrovin, Sabbah’s book also treats the case of Saito
structure without the existence of the potential called “Saito structure without
a metric. Our original interest is the investigation of the relationship between
algebraic solutions of Painlevé VI and certain kinds of holonomic systems of
linear differential equations in three variables whose singularities are contained
in free divisors. Recently we recognised the relationship between flat struc-
ture without a metric and our studies. Comparing our formulation with that of
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Sabbah, we are led to develop the theory of flat structure without a potential
which is same as the theory of Saito structure without a metric. Potential vector
field plays an important role in our theory. We note that the notion of potential
vector field is already introduced by Konishi and Minabe [12]. Potential vector
field is the object corresponding to the gradient vector field of the potential
in the theory of Saito structure with a metric. In the first part of this paper,
we formulate flat structures without potentials and mention their basic results
which are contained in [15] or its easy consequences. Then we introduce systems
of differential equations of n variables of rank n which is one of generalisations
of ordinary differential equations of Okubo type. The second half of this paper
is to show examples of potential vector fields and free divisors derived from
them. These examples show that there are non-trivial examples of systems
of differential equations introduced in §4. Potential vector fields which we
first treat are related to algebraic solutions of Painlevé VI. Then we introduce
potentials which are related to real reflection groups of types As, B3, Hs. They
are already treated in [6]. Our next examples of potential vector fields are
related with three of fourteen exceptional singularities called Fi2, E13, E14 in
the sense of Arnol’d. The defining polynomials of free divisors naturally arising
from two of these examples are nothing but discriminants of complex reflection
groups of No. 24 and No. 27 in Shephard-Todd notation (cf. [23]). The last
one is seeming new. It is known (cf. [6]) that discriminants of real reflection
groups are obtained from corresponding potentials. This leads us to consider
the case of discriminants of complex reflection groups. H. Terao [24] proved the
freeness of the zero locus of discriminants of irreducible finite complex reflection
groups. In §9, we discuss the existence of potential vector fields for the case of
irreducible finite complex reflection groups.

In this paper, we only treat the case where a potential vector field con-
sists of polynomial entries. It is possible to construct potential vector fields
which consist of algebraic functions at least when we treat algebraic solutions
of Painlevé VI. The detail of the subject treated in this paper will be published
elsewhere [9].

2. DEFINITION OF A POTENTIAL VECTOR FIELD

In this section, we define a potential vector field. This notion is found in
Konishi and Minabe [12].
Let x = (21,9, ...,2,) be astandard coordinate system of C". We define

an Euler vector field .

E = Z W0k,
k=1
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where Oy = 0/0x; (k = 1,2,...,n). We assume a condition on wy (k =
1,2,...,n):
O<w <wgy <+ < wp.
We introduce weighted homogeneous polynomials hj(x), ha(x), ..., hy(z) such
that
Ehj = (wj —|—wn)hj (] =1,2,... ,n)
and that
) a:jxn+h§o)(x1,...7xn,1) j=12,...,n—1),
j =

1 .
§x31+h$10)(x1a"'al‘n*1) (] :TL)

with polynomials hgo)(xl, cooyp_y) of &' = (x1,...,2p—1). Using hj(z) (j =
1,2,...,n), we define v;; = 0;h; and an n x n matrix C' = (v;5). It is easy to
see that v,; = 2; (j =1,2,...,n). We define matrices

B® = 0,C (p=1,2,...,n).

We denote by bg) the (i,7)-entry of B®) and collect basic properties of
B® (p=1,2,...,n):

1. 8,89 = 0,80 (vp, )
2. b = b5 (vp, g, ),

3. bgﬁ} =0pg (Y, @),
4. BM =1,
5.0,BP =0 (p=1,2,...,n—1),
where d,, is Kronecker’s delta and I, is the identity matrix.

Definition 1. If BWBW@W = B@WRB® (¥p, ¢ = 1,2,...,n), then h =
(h1,ha, ..., hy) is called a potential vector field.

Remark 1. Let J be an n X n matrix whose (i, j)-entry is &; ;41 for all
i,7. If CJ is symmetric, there is a weighted homogeneous polynomial P(z)
such that

OP =hp_ir1 (i=1,2,...,n).

Then P is called a prepotential in [6] and a potential in [15]. In this case
the commutativity of the matrices B®) (p =1,2,---,n), namely, B B@) —
B@WB®) (¥p, q) implies a system of non-linear differential equations for the
potential P. This system is called WDVV-equation (cf. [6]). When CJ is not



484 Mitsuo Kato, Toshiyuki Mano and Jiro Sekiguchi 4

symmetric, there is no potential. In spite of this fact, we find that the potential
vector field is a solution of a certain system of non-linear differential equations
arising from the commutativity of matrices B®) (p = 1,2,--- ,n). In this sense,
B B@ = Bl B® (Vp, q) is called a generalised WDVV equation.

In this paper, a coordinate system (z1, zo,...,x,) with a potential vector
field h = (h1,ha,...,hy) is called a flat coordinate system. From h, it is
possible to define a Saito structure without a metric in the sense of Sabbah
[15]. If the matrix C defined by h satisfies the condition that C'J is symmetric
(cf. the notation in Remark 1), there is a potential P(x1,z2,...,%,) such that
OiP = hp—i+1 (i =1,2,...,n). In this case, P defines a Saito structure with a
metric (cf. [15]). For this reason, we say that the latter is a flat structure with
a potential and the former is a flat structure without a potential.

3. FREE DIVISORS CONSTRUCTED
BY POTENTIAL VECTOR FIELDS

Let h = (h1,ha,...,hy,) be a potential vector field. We define an n x n
matrix T' = (T35) by

T = ijmjﬁj(? = ij;vjé(j)
7j=1 7j=1

and F'(z) = detT. From the assumption, we find that
F(z) = corp +pr(a)ay ™ 4 -+ pooi(2')an + pa(2')
for a constant cg # 0. We denote by V; the vector field defined by

Vi=> T;0; (i=1,2,...,n).
j=1

The purpose of this section is to show that if F'(x) is reduced, then the set
Srp = {x € C™; F(x) = 0} is a free divisor. For the definition of free divisors,
we refer to [16]. This statement is already shown in [15]. Our proof employed
here is to construct a set of generators of logarithmic vector fields along Sp.

PROPOSITION 1.
ViF = w,(trBF  (i=1,2,...,n).

Proof. We introduce the following notation. If A is an n X n matrix, we
denote by A;; the (i, j)-entry of A and by A[i] = (Ai1, Aiz, -+, Ain) the i-th
column vector of A. Then



5 Flat structures without potentials 485

It follows from the definition that
Tz‘j = E'Yz'j = E(&h]) = (wj —+ Wy, — wi)ﬁihj == (w]' + Wy — wi)%'j.

Since T,,; = w;0,hj = wjx;, it follows that V,, = E. We use the notation
u;j = Wy + w; — w; for a moment. Then Tj; = w;;i;.

T[]
T72]
We are going to compute V;F. Since F' = .|, we have
Tn]
ViT[1] T[] T[]
T2 ViT[2] T2
Vil = : + : ot :
Tn] Tn] ViT'n]
Since T is invertible on C" — Sp, the vectors T'[1], T'[2], --- ,T[n] are linearly
independent on C" — Sp. As a consequence, V;T'[j] is a linear combination of
T[1], T[2], ---,T[n|, namely, there are rational functions Sj;, such that

ViT[j] = STIk].
k=1

Let S be an n x n matrix whose (j, k)-entry is Sjj. Since

T[1] T[] T[1] T[1]
T —1] T —1] T[j—1] T[j—1]

ViT[j] = 22:1 SjkT[k] = SjjT[ ] = SJJ T[J] = SJJFv
T[j+1] T+ 1] T[j+1] T[j+1]

T[n] ) T[n] T[n]

it follows that
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On the other hand, it follows that

ViT[]
ViT = | ViTlj] | =5T.

ViTn]

-1

As a consequence, we have S = (V;T)T~". Then we obtain a formula trS =

tr((ViT)TY).
By the equations

(ViT)pq = ViTpg = upgViypg = Upg D, Tik’akﬂpq
= tpg X TikOp Vg = Upg D Tikbl(@? = “pq(TB(p))iq’

TB® — BT

we have

(ViT)pg = upq (B(p)T)iq

As a consequence,

tr(ViT)T™) = Z(VT Jpa(T™ )gp = Zupq ia(T™ Vg

P
= Z(wn —wp + wq)(B( )T)iq( 1)qp
g
= Z(wn - wp)(B(p) )iq( Jap + Z Wq(B™T)ig( _l)qp-
P

We compute

U= Z(wn - wp)(B(p)T)iq(T_l)qp

and

-1
qu T)iq( )aps

separately. For this purpose, we introduce the diagonal matrix

D = diag(wy,wa, . .., wy,).
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On the one hand,

Uy = Z(wn_wp)(B(p)T)iq(Til)qp

= Z(wn — wp) Z(B(p)T)iq(T_l)qp = Z(wn wp)((B(p)T)T_l)w
= Z(wn - wp)bg)
= Z(wn - wl’)bplz2
P
= tr((wnl, — D)BM)

On the other hand,

= qu T)ig( _1)qp:Z(B(p)TD>iq(T_1)qp

p.q

= Z{Z B(p TD) zq 1 qp} = Z B(p)TD)T_l)ip
= Z(B( P TDT ™))y = Z{Zb (TDT )gp} = > BNTDT ™)y

= tr(BY(TDT" )):tr((B(l)T)(DT 1) = tr((TBDY(DT™1))
= tr(T(BYD)T™1) = tr(BYD).
As a consequence,

tr(ViT)T~1) = Uy + Uz = te((wnl,, — D)BY) + tr(BY D)
= tr(wnB(’) [D,B(i)]) = wytrB®.

Then we find that
trS = tr((V;T)T™) = w,trBY)

and the required formula is shown. [
COROLLARY 1. If F(z) is reduced, Sp is free.
Proof. Since trB®is a polynomial of z, the equation
ViF = wy, (trBY)F

means that V; is logarithmic along Sp. Therefore by the criterion shown by K
Saito [16], SF is free. O
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4. A GENERALISATION OF ORDINARY DIFFERENTIAL
EQUATIONS OF OKUBO TYPE

In this section we freely use the notation in previous sections without any
comment. The matrix 7" is defined by C' and E (cf. §3). We always assume in
this section that (hi, ha,...,hy) is a potential vector field. Then by definition,
BW)B@ = B@B® for all p, q.

We define a diagonal matrix ng) by
B = diag(r 4+ wy,r +wa, ..., 7 + wy).
for some constant » € C and show a formula for derivations of 7.
LEMMA 1. 0,7 = w,B® — [BY B®] (p=1,2,...,n).

Proof. The proof of the lemma is accomplished by comparing the (i, j)-
entry of both sides for all ¢, j. Since EC = T and the (4, j)-entry of C is 7,5,
it follows that the (i, j)-entry of 9,T is

ap(E'Yij) = (wn —w; + wj)apyij = (wn —w; + wj)bl(ﬁ’)
On the other hand, the (i, j)-entry of the matrix w, B®) — [Béz), B®)] is

bl(é)) — (w; — wj)b@ = (wyp, —w; + wj)b<P).

Wn j ij

Then the (7, j)-entry of the matrix 0,7 coincides with that of wnB(p)—[BC(Q), BW)]
and the lemma follows. O

We define n x n matrices B®) (p=1,2,...,n) by
(2) B — _T—lg(p)Bég)
and a system of differential equations
(3) 8,Y = BPY (p=1,2,...,n).
Using the 1-form €2 defined by

fz::jijzaﬂﬂdmp,
p=1

the system (3) is rewritten by
(4) dy = Qv.

THEOREM 1. The system (4) is integrable.

Proof. The integrability condition for (4) is
(5) 9,B9 —9,BP — [BP) BD=0 (pq=1,2,...,n).
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We will prove (5) assuming that B®) is defined by (2). We need some
preparation to show the theorem. By direct computation we have

9,B® = —9,(T-\)B® B — 7-1(9,B®)B{Y
~1(9,T)T'B® B — 7-1(9,B®)BY.
Noting that TB®) = B®T (p = 1,2,...,n) and that 9,B%) = 9,B? we have
apB(q) _ an(p)
= (T40,T)T'B@B — T—l(apfz(q))Bég))

( 19, T) IB@B‘) ~1(9,B@)BL)
(9 B( ®) B + 7-1((8,T)B@ — (9,T)B®)T-1 B
<<a T)B( < T)B( > 1B,

Furthermore we have
(B®), @] = 1=1(BW) (M gla) _ gla) g pe)yp—1g(n).
We first treat the case ¢ = n of (5). In this case, noting that B =
I,, 0,T = wyl,, we have
apB(n) —8,B® — [B(p), B(n)}
= T7-Y(0,T)B™ — (8,T) BT~ B
—1(55(19)3(()2‘)35(”) _ B(”)BC(,Z)B(Z’))T_IB&L)
= T7H(,T) - w, BP)) — [B®), Bég)]}T_lBéZ).
Then it follows from Lemma 1 that
3p3(n) —0,B® —[B® BM] = 0.
We next treat the case p < n, ¢ < n of (5). In this case
apB(q) _ an(p) _ [B(p), B(q)]
= T7-Y(8,T)B@ — (8,T)B® T~ B
~1(BWBW B — p@pBM pwyr-1p
= 7Y, — BWB{M)BW@ — (9,7 — B@BB® -1 B
By Lemma 1, we have
(8,T — B(p)B(”)) R(q) _ (9,T — B g ))B(p)
= (wnB(P) (”)B(p)) (@) — (wng@) B(”) (q)) B®
= (wnl, — BSH[B®W, B@)
= 0.
As a consequence,
8pB(Q) _ an(p) —[B®), B9] = 0.
We have thus proved Theorem 1. [
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Remark 2. The 1-form  defined by
Q= Z B (p)d:xp
p=1
is nothing but the Higgs field introduced in [15].

1
Remark 3. We put Ty = x,I,, — —T. Since T —w,x, 1, does not depend

n

on x, and since B = —T*le)Z), the differential equation
(6) d,Y = B™y

turns out to be

(7) (%h—nmy:—iﬂgy

n
Regarding (7) as an ordinary differential equation with respect to the vari-
able x,, (7) is called an ordinary differential equation of Okubo type. In this
sense, the system (4) (or (3)) is one of generalisations of Okubo type ordinary
differential equation to several variables case.

Remark 4. We already constructed the systems (4) for some of discrimi-
nant sets of complex reflection groups (cf. [8, 10]). Other examples related with
algebraic solutions to Painlevé VI will be given in a paper under preparation

(ct. [9]).

5. FREE DIVISORS AND POTENTIAL VECTOR FIELDS

In this section, we produce some of potentials and potential vector fields
without potentials in three dimensional case. Related with real reflection groups
of rank three, there are three kinds of potentials introduced in [6]:

2 2
Agcase: P = 111342rx2$3 + 12 + gé,

24 .2
T1T3+T5T 1T xac a7
B3 case : P:13223+12+ 2 4+ L

2 2

; . _ xriz3tries acla:Q z3 x2

Hjcase: P = 5 + 5>+ +3960.

In these cases, the polynomials defining free divisors are discriminants corre-
) Yy

sponding to real reflection groups. Concrete forms are given as follows.

Ay, = —828 + 562323 + 2725 — 16951333 - 144$1x2x3 + 322323 + 6443,
AB3 (acl - 3x1x2 + 3z3) (2§ + 6.7,‘1$2 + 3331:52 + 8x2 — 18z 2023 — 9:63)
Ap, = g(—2}® — 102{%xs + 802923 + 202923 + 9202323 + 21623 — 102123

—1200x§x3x3-1800x1x2x3-+100x1x3-+1000x1x2x34—1000x3)
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It is known (and easy to see) that each of A4y, Ap,, Ap, is weighted homoge-
neous.
It is underlined here that polynomials of the right hand sides of

Ay lz =0 = 2725 + 6423,
AB;; ‘Il:() = 3%3(—81’% + 91‘%),
Apty)ay—0 = 2725 + 12523,

are defining polynomials of curve singularities of types Fg, Fr, Fs.

This observation suggests the existence of the relationship between free
divisors and 1-parameter deformation of singularities on plane curves and nat-
urally leads us to the following consideration. Among the fourteen exceptional
singularities in the sense of Arnol’d, we consider

Epo 2’ + y3, FEi3: y(:c5 + y2), Eyy o 2®+ y3.

Corresponding to these polynomials, we introduce potential vector fields and
weighted homogeneous polynomials which define free divisors as follows.

(I) Eyg case
In this case, we put

hy = ;1;( 9U1332 + 93:2 + 3z123),
hs = 126( Az] + 1893«"1%’2 =+ 11343611'2 + 63x3)

Then (hy, he, h3) is a potential vector field and F(x) = detT defines a free
divisor, where

F(z) = 355 (13442 my — 38432923 + 2608202323 + 15746427 + 448z 23
—22491x{x325 — 14288411 x573 + 3087w w073 + 308723).
It is clear from the definition that F(0,22,23) = 232827 4+ 23. On the other
hand, F(z) is regarded as the discriminant of the complex reflection group
No. 24 in [23].

(IT) Ey3 case
In this case, we put

hy = o (—42§ — 270x1x2 + 12151‘1562 + 364523 + 12152123),

he = —(40301 + 108:1:1x2 + 2430301302 - 3645x1x2 + 2187x2x3)

hs = % =5 (— 560219 + 480025z + 378002523 + 3827252225
—13778123 + 1093523).

H

Then (hi, ho, h3) is a potential vector field and F(x) = detT defines a free
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divisor, where

= semoras (101920021° 4 265680002132y — 119070000m}1x§ + 24202800093?9:3
+25528851002] x5 + 9786308868x1x2 - 5933538765x1:c2
+16070775840x1x2 + 787320021025 — 6998400025 z273
—570807000301362;63 — 61780016259019523:3 + 2295825120:52953
+19683002522 + 8857350023 z922 — 19929037521 2322 4 6643012523).

It is clear from the definition that F(0,22,23) = 82a3z5 + 23. On the other
hand, F(z) is regarded as the discriminant of the complex reflection group
No. 27 in [23].

(ITI) Eq4 case
In this case, we put

h = 51=(1029 — 2529:1332 — 9457323 + 945m2 + 315x1x3)

hy = —(56090%1 - 990x1x2 - 8316x1x2 + 103952323 + 1155x923),

hs = 952—50( 382720216 — 259392021379 + 70237442123 — 786240z ] 3
+20638800x {23 + 6191640x1x3 + 4777523).

Then (hi, ho, h3) is a potential vector field and F(x) = detT defines a free
divisor, where

F(z)
= o000 (—4086080002%* + 348633600023 22 + 1196463744021 x3
+24377746176x}5xg - 6829156656%}%‘21 + 84987403200m1xg
3190599720031:1%2 55510434000x1x2 - 2531725875362
4154560000216 23 + 1089446400213 2973 — 3063432960210 x2x3
—1—355622400301362:(:3 — 9668484000z {x4xs — 300056400021 v573
—4704000x5 22 + 7902720025 w273 + 14817600023 2323 + 823200023).

It is clear from the definition that F(0,z2,x3) = 196483133 + 3. There is no

complex reflection group of rank three whose discriminant coincides with F'(x).

Remark 5. The polynomials corresponding to the singularities Fio, E13,
Ey4 given above are obtained by the method explained in [19]. By the method
there one of the authors (J.S) obtained more than sixty defining polynomials
of free divisors corresponding to the singularities E19, E13, F14. Among such
polynomials only the three given above and two others are those which are
constructed by potential vector fields.

We explain how to find potential vector fields by taking Fjs case as an
example. Since (wy,we,ws3) = (2,3,7) in this case, we define
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— 3 3
hl = S11T7T2 + 512%5 + 21703,

_ 5 2,.2
hy = S2127 + S22x7x5 + Tox3,

_ 7 4.2 4 1,.2
hs = s3121 + s322705 + $332125 + 513,

and put h = (h1, h2, h3) for some constants s;;. Using H, we define C' and
B®) (p=1,2,3) as in §2. Then the condition that his a potential vctor field
is equivalent to BMB®@ = B@ B If 595 = 0, we don’t obtain a free divisor
and h is not a potential vector field. On the other hand, if s9s # 0, we obtain

_ 1 3 3
hi = —35s2xiT2 + 51225 + 173,
_ 522 .5 2,.2
ho = 15515 L1 + So2x1 %5 + T2T3,
285, 7 3855, 4 2 4 1.2
hy = —gp2a) + —52a1x; + 35125222125 + 53,

If s92819 # 0, then his a potential vector field. If we choose so2 = 1,512 = 3,
then the potential vector field in this case is obtained.

6. ALGEBRAIC SOLUTIONS OF PAINLEVE VI
AND FLAT STRUCTURES

In this section, we mention the relationship between the system of differ-
ential equations (4) and algebraic solutions of Painlevé VI. Algebraic solutions
of Painlevé VI are studied by many authors. The readers who are interested
in this subject, refer to [3-7, 11, 13| and references there. For our purpose we
assume that n = 3 and ws = 1. The condition w3 = 1 is satisfied if we change
w; by wj/ws (j = 1,2,3). Since F' = detT is a cubic polynomial of x3, let
zj(2") (7 = 1,2, 3) be defined by

3
F(a) = [[(xs — zi(2"))
i=1
and let
op(@) = [J(z:() = 2i("))
i#]
be the discriminant of F as a polynomial of z3, where 2/ = (z1,22). We

consider B®) = —T_IB(?’)BQ) as before. It follows from the definition that
if i # j, the (i,)-entry of FB®) is a linear function of z3. Noting this, we
define z;;(z') (i # j) by the condition that x3 = z;;(2’) is the zero of the (4, j)-
entry of FB®), If each of the diagonal entries of Béz) is not zero, that is,
r # —wy (k= 1,2,3), then by an easy computation, we have

det(T)(T_l)Z-j

Fij = T

ij

x3=0
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This formula holds for j # k in the case r = —wy. It can be shown that
if the (k, k)-entry of the diagonal matrix Bég) is zero, namely, if r = —wy and
j # k, then

o z(a) — = (@)
: . : o Zz%ﬂf’) — z1(e)
is an algebraic solution of Painlevé VI as a function of
‘o z3(2’) — z1(2')
 m(2) — 21 ()’
7. SOME EXAMPLES OF POTENTIAL VECTOR FIELDS
FOR GIVEN WEIGHT SYSTEMS

In this section, we treat the case n = 3 and give some examples of potential
vector fields which consist of polynomials by determining the commutativity
condition on BY, B®),

7.1. The case wy =1, we = 2, wzg =5

We first treat the case where w; = 1, wg = 2, wg = 5. Then the compo-
nents of potential vector field h = (hy, ho, h3) take the forms

h1 = 81137615 + 8121’4115132 + 8131‘%33% + 814.%% + 21703,

ho = 891%] + 820272 + 23733 + Soqm175 + o273,

hs = 33137}0 + 33236?3162 + 8331'(151'% + 334x‘11x% + 33533%33‘21 + 336373 + w§/2,
where s;; are constants to be determined. The matrix C' is defined as before,
namely, the (i, j)-entry of C'is 9;h; and B® = 0,C (p =1,2,3). In this case
B®) = I3 and the commutativity condltlon is

(8) BW B2 — g M)
Then by direct computation, we obtain at least two non-trivial solutions to (8),

namely solutions of generalised WDV V-equation. Both have two parameters.
The first one is given by the following polynomials.

hi = — (453528 + 908235147 10 — 135513830303 — 13553 ,25 — 13552, 7173)
/(135s,),
hy = ( 40313x1 3631331430?362 270s%45%, 2323 + 13551383 ,2123

h3 ( 5608131‘ + 16008138141’1$2 + 4200813814x1$2 + 4725313814.%'%.%%

These polynomials contain parameters si3, s14. If s13 =1, si4 = 3, then these
polynomials coincide with those introduced in (IT) Ey3 case of §5.
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The second one is given by the following polynomials.

hi = (253528 + 135slgs§4x%x§ + 135s§>4x§ + 135s§4m1x3) /(135s2)),

hy = x2(2513x1 + 10813514x1x2 + 15513314x1x2 + 15s%,23)/(15s%,),

hs = (4585210 + 540513514:1:1362 + 162053553, 2123 + 364552551, 2273
+729s135%,25 + 121551,23)/(2430s%,).

These polynomials contain parameters si13, s14 as in the previous case. In this
case we obtain an algebraic solution of Painlevé VI:

(5+2)%(s-3)° 3(s+2)(s—3)
) w = YRS
(s +3)3(s —2)2 (s+3)2%(s—2)
which is first obtained by Kitaev [11|. The free divisor is isomorphic to the
hypersurface of C? defined as the zero locus of the polynomial
F(y1,92,y3) = y3(72991° — 2430yfy2 + 3105473 — 19001y + 560y7y3
—64y3 — 54yTys + 90yTy2ys — 40y1y3Ys + ¥3)-

This means that the choice of the parameters s13, s14 is not essential as far as
we treat free divisors.

7.2. The case wy =1, we = 2, wz = 6

In this case, there are at least two potential vector fields.
The first one is given by

hy = x1(s127m2 + 323:2 + x3),
ho = (255228 — 63s323 + 4252552563)/(4252)
hs = (125083212 4+ 1237552 s98x3 + 20795328 + 4955023) /(990s2).
The polynomial defined as det(T") coincides with
(—5313613:2 + $973 + 13)
X(2505?$%2 + 22552892873 + 189051 sz w3 + 1895325 — 27051 soxix973
+162s3x375 — 27s923)

up to a constant factor. In this case, we obtain an algebraic solution of

Painlevé VI:
(s —1)%(s+2) (s =1)(s+2)

Gr12(s—20 7 s+l
which is first obtained by Dubrovin [6].
The second one is given by

t =

_ 6 3
h1 = x1(s125 — 2s9x5 + x3),

hQ = —1:2(1481:61 — SQ(E% — xg)

hs = (88205312 + 2772051 892523 + 3965325 + 5523)/110.
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The polynomial defined as det(T") coincides with

(215129 + 65223 + x3)

x (19652212 — 106451 892523 + 45325 — 28512875 — dsgadzs + 23).
In this case, we obtain an algebraic solution of Painlevé VI: w? = ¢ (cf. [13],
Solution IT).

7.3. The case w1 =1, we =2, wg =7

In this case, there is at least one potential vector field.
The polynomials of the potential vector field are
hy = (5s328 + 5651532519 — 63052 830123 + 945s1ws + 945351%1:03)/(9453?),
ho = (1755323 + 54051552 xo + 113452 s3x303 + 1134053532323
+850551sox125 + 850551 wa73)/(850557),
hs = (—400s5x1* + 16744051 slx1229 — 9172852521022 — 85176053 552523
1386568057 s329x5 + 294840053 szt + 884520059 53222
+1263600s] soz% + 552825s§22) /(1105650s¢)
and the polynomial F' = det(T) is given by

F = =g (-20s52] — 1325153275 + 180ss3aias — 540s¢spw123
+135s323) x (—5200s521* + 3024051 sTa12wy — 21470457 521023

—504000s3 552523 + 398160s7s52523 + 317520059 32123
+1134000s$ 522225 + 7776005 s9x] — 25200535377 w3
—158760s} 5325 w975 — 79380058 sox1 2323 — 992255523).

The algebraic solution of Painlevé VI corresponding to this case is equivalent

to Klein solution obtained by Boalch [3] (and Solution 8 of [13]). It is un-

derlined here that the algebraic solution corresponding to the potential vector

field shown in the Ejo-singularity (cf. §5) is also Klein solution (= Solution 8

of [13]).

8. FROM FREE DIVISORS TO FLAT STRUCTURES
WITHOUT POTENTIALS

In this section, we continue the study on the construction of potential
vector fields which consist of polynomials in the three dimensional case.

8.1. The case Fpg

The polynomial

(9) Fpg = 9x125 + 6232373 — 4wdws + 2323 — 12012023 + 423
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is introduced in [20]. It is clear from the definition that Fjp ¢ is weighted homo-
geneous with the weight system (wy, we, ws) = (1,2, 3) same as the discriminant
of the real reflection group of type Bs. The zero locus of Fpg is free because
of the existence of Saito matrix

X1 21’2 3.%'3
M = 229 3r1x9 + %.563 x% + 125:E1563
3z3 3(1523 4 2123) 18z913

N

As is shown in [22], there are three holonomic systems of rank two. One of
them is defined by

Viu = ru,
(10) Vou = i( Ory — 7)x1u,
ViVsu = - (20r — 7){2010r + 1)23 — 3z123}u

+10(ry + 1)22V3u,
where Vi, Vo, V3 are vector fields defined by
Y(Vi, Vo, V3) = M*(01, 0o, 03).
It is possible to obtain a differential equation of u from (10) of the form
Py () Py(z)

11 02u + _
(1 3 (x3 —as)Fpe (3 — as)Fpe?

Osu + u =0,
where Pj(z), Py(z) are polynomials of x3 and are rational functions of z’ =
(x1,x2) and as = as(2’) is a rational function of z/. Putting u = Fp¢®y for a

constant a we obtain a differential equation for y from (11). In this case, if

a= 5” , then the equation for y takes the form
F| 1 coT2 + 123 + ¢ o
12) o'+ (1 - B)=-2L — y’+(°3 -~ >y: :
(12) ( )FB,G T3 — as Fpg T3 — as
where

y' =03y, y' = 03y, Fp¢=0sFpg,

B is a constant and c¢g,c1,co are rational functions of 2’/. By regarding (14)
as an ordinary differential equation with respect to the variable x3, there are
four regular singular points x3 = 21, 29, 23,00 and an apparent singular point
x3 = as, where 21, 29, 23 are roots of the equation Fp g = 0 as a cubic polynomial

of z3. Then
s — 21

w =
22— 2

is an algebraic solution of Painlevé VI with respect to the variable ¢t = 2 2L By

direct computation we find that the solution (w,t) is equivalent to solution 27
in [4] (= Solution 13 in [13]).
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The question to be answered is how to construct a flat structure related
to the algebraic solution derived above manner. For this purpose, we start with
the polynomials hi, ha, h3 of x1, 22,23 with coefficients s;; to be determined:

hy = z1(s1137° + 5120102 + s132523 + s14a3) + @123,
ho = 5212 + s9001%29 + 52321022 + 942723 + 9575 + w273,
_ 30 25 20,.2 153 10,4 5.5
hz = s3127° + 532:11:1 T2 + $33T1°T5 + $3427°T5 + S35%] L5 + 536TTT
+537xg + 5.7:%.

The weight system for these polynomials is (w1, wa, w3) = (1,5, 15). The matrix
C is defined as before, namely, the (4, j)-entry of C is 0;h; and BP) = 0,C (p =
1,2,3). By the condition

(13) BWBE = p@pRA)

we obtain at least four non-trivial potential vector fields. Among others we
treat the case:

_ 2 11 4s 3
hy = — 3538231 T2 — “5oT1TH + T1T3,
5533 20 10,2 4
ha = _684?;5551 + 523715 + S25T5 + X273,
_ 20s33 30 , 8.2 20,2 0.4, 32% 6, 1.2
hs = s3i500-07 + 983307 ¥5 — 16593805@1 @5 + 2505 + 505,

In this case F' = det(T) is defined by
(14)

F = 2725525 (400533701079 — 4480535 50523023 — 39974453553, 22025
+1313280s9353:71027 + 3456053579 — 1503,73023 — 16740825 805202023 23
4320760523535 7102323 — 45360532573 + 48602359571 w023
+9720s3, 2322 + 364550573).

Remark 6. By the substitution (z1,z9,z3) = (yi/lo,yg,yg), the poly-
nomial (14) becomes a polynomial F(yl,yg,yg) of (y1,y2,y3). Then by an
appropriate coordinate transformation y; = ujxe + uﬂ%, Yo = U3T1, Y3 =
T3 + uarory + uset, F(y1,ye,y3) turns out to be Fgg (cf. (11)) up to a non-
zero constant factor.

Remark 7. We explain the reason why each component of the potential
vector field in this case is a weighted homogenous polynomial of weight system
(1,5,15). The argument of finding a flat structure related with the algebraic
solution obtained above starts with constructing a system of differential equa-
tions of rank three from the system (10) by middle convolution. By analysis of
the new system of rank three, we find the existence of a flat coordinate system
of weight system (1,5,15) in this case.
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8.2. The case Fp 2

The polynomial
(15) Fro = 100z325 + x5 + 40212323 — 10212323 + 4ofxs — 15232003 + 23

is also introduced in [20]. Clearly Fp o is weighted homogeneous of type
(w1, w2, w3) = (1,3,5) same as the discriminant of the real reflection group
of type H3. The zero locus of Fp o is free because of the existence of its Saito
matrix

T 3%2 5.%‘3
M=\ 3xy 36x%x2 + 6x3 901‘135% + 90{E%£C3
Sug  —32(1223 — 5520)miwe  —3 (62323 — 23 + 6aias — 182 z0u3)

In this case, there are two holonomic systems of rank two (cf. [22]). One of
them is given by

‘/11/, =nu,
Vou = 3(4r; — 1)23u,
4(—1 +4r1)(17 + 4r12)x§5
[ g
+8(12r — Dadzs — 9(10r; — 1)zaz3
—%(2 + T‘1):IZ1(4$:1S — 15(62)V3U,

where Vi, Vo, V3 are vector fields defined by
H(Vi, Va, V) = MY (0, D2, 03).

It is possible to show by an argument similar to the case (10) that there is an
algebraic solution of Painlevé VI derived from (16) equivalent to solution 29 in
[4] (= Solution 18 in [13]).

To find a potential vector field which is related to solution 29 in [4], we
consider the three polynomials with coefficients s;; to be determined:

hi :xl(snm%o + Slgx%’vz + 813.%(13%'% + 8141'[11.1’% + 8151’%1'3 + 8161‘2) + 2173,
ho :(921:5%2—# 822%%01‘2—}- 523x§m§+ Sg4x?x§+ 52533‘1195‘21%— 5261;%3334— 827:cg+ T3,
ha 2831.7}%0—1— 832.7};{81‘24- 533@630%—1— 834:6%4.%‘3—1— 33536%2:16‘21—# 536.%%03}%4- 5371‘?3/;3
+s38252] + s39z128 + 53107329 + 8311230 + 23 /2,
so that h = (h1, he, hg) is a potential vector field. In this case, hy, ha, hs are
weighted homogeneous of weight system (wy,ws, ws) = (1,2,10). The matrix

C is defined as before, namely, the (i, j)-entry of C is 0;h; and BW®) = 0,C (p =
1,2,3). By the condition

(17) BUBE® — BB,
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we obtain at least two non-trivial potential vector fields. We treat one of them
defined by the polynomials below:

_ 3s 7.2 21s 5
hi=— 1(2)4x r5 — 7527$1$2 + r173,
2
_ s 12
h/2 —_— 2752;127$1 + 524.1711)32 + 327.7;2 + :BQ:Es,
_ 253, 18 51 Slads pl2 7 9827 210
hs = i@ w2 + 21205 — B5lsgysoralal + + 953

In this case, F' = det(T) is given by
(18)
F = 4(—108s3,239 — 20520053, s27734 23 — 187650053, 53, 21525
—507195000s2 53,2229 + 17485031253243279{;?3:52 + 14056875055, 37
—67500324327:018:752:173 - 877500032432733 x2x3 + 223593750824 83,28 x5 25
—5315625053,23073 + 70312552483, 282322 + 140625053, x523
+781250s3,23) /(312553 ).

Moreover, the algebraic solution of Painlevé VI corresponding to the potential
vector field defined by the polynomials hi, h, hs is solution 29 in [4].

Remark 8. As in the case of Fpg, by the substitution (z1,292,23) =

(y}/ﬁ,yg,yg), the polynomial (18) becomes a polynomial F(yi,ya,y3) of
(Y1,92,93). Then by an appropriate coordinate transformation y; = uiz2 +
U3, Yo = u3w1, Y3 = T3 + uaTex] + usxy, F(y1,y2,y3) turns out to be Fpo
(cf. (15)) up to a non-zero constant factor.

9. POTENTIAL VECTOR FIELDS FOR DISCRIMINANTS
OF COMPLEX REFLECTION GROUPS

The notion of free divisors is formulated by K. Saito (cf. [16]) and the
freeness of the discriminant sets of irreducible finite real reflection groups in
the quotient space by the group action is firstly shown in [16]. In the case of
discriminant sets of irreducible finite complex reflection groups, the freeness is
shown by Terao [24] (see also Orlik and Terao [14]). Flat structure for the case
of finite real reflection groups is firstly treated in [18] and its existence in this
case is shown in [17]. In this section we discuss the existence of potential vector
fields for the case of finite complex reflection groups. Flat structure without
potential is constructed by a potential vector field.

Irreducible finite complex reflection groups are classified by Shephard-
Todd [23]: There is an infinite family G(de,d,r), plus 34 exceptional groups
G4,G5,...,Gs7. In this section we only treat the exceptional and rank> 2
case. Among the 34 groups, the groups Gy (4 < k < 22) have rank 2 and
the remaining groups Gy (23 < k < 37) have rank> 2. Real reflection groups
are also contained in these groups. In fact, Gas, Gag, G3g, G35, Gsg, G37 are
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real reflection groups of types Hs, Fy, Hy, Fg, E7, Eg, respectively. Taking
our attention to discriminants, those of Gaos, Gog, (G32 are same as those of
W (As), W(B3), W(A4), respectively. For this reason, we concentrate our at-
tention to the groups G24, G27, GQQ, G31, G33, G34.

In general, let G be an irreducible finite complex reflection group of rank
n. If V is a standard representation space of (G, there are basic invariants
x (k= 1,2,...,n) of the ring of G-invariant polynomials on V. Let wy be
the degree of zp. Then we may assume that 0 < w; < we < -+ < wy,
since we treat the groups Ga4, Go7, Gag, G31, G33, G4 and the assumption
0 < wp < wy < --- < wy is satisfied for all these groups. The discriminant
for G is G-invariant and as a consequence, it is regarded as a polynomial of
x1,%2,...,T,. For this reason we write Ag(x1,xa, ..., x,) for the discriminant.
As a polynomial of z,,, the degree of Aq is equal or greater than n. It is known
(cf. [14], [2]) that deg, Ag = n for that case G = Gag, Ga7, G29, G33, G34 and
deg, Ag =n+1 for the case G = G31. To construct the system of the form
(4) we need the condition deg, Ag = n. As a consequence, in the following
we treat the five groups Gag, Ga7, Gog, Gss, G34 but exclude group Gs;.

ST || Rank | Degrees

24 3 146,14

27 3 |6,12,30

29 41 4,8,12,20

33 5146,10,12,18

34 6 | 6,12,18,24,30,42

The argument to derive potential vector fields related to the groups Gag, Go7,
Gag, Ga3, Gy is as follows. Let h = (h1,ha,...,hy) be a potential vector field
and let C' be the n x n matrix whose (7, j)-entry is 0;h;. Then it is sufficient
to solve the condition that 9,C (p = 1,2,...,n) commute each other for the
existence of hy, (p =1,2,...,n).

Let G be one of these groups. Orlik and Terao [14] obtained basic deriva-
tions of the discriminant for the case G4 and Bessis and Michel [2| did for
the cases Ga7, Gag, G33. Using the results of [14] and [2], we compute poten-
tial vector fields for these cases. Potential vector fields for the cases Gaog, Gor
are already introduced in Fq9 case and F13 case of §5 and those for the three
cases (g, G33 are given below. As to the case G34, we find neither refer-
ence on the concrete form of the discriminant nor that on its basic derivations.
Therefore, assuming the existence of a potential vector field, we determine poly-
nomials hi, ha, ..., hg given below by direct computation. It is provable that
h = (h1,ha, ..., hg) is a potential vector field. In fact, define the 6 x 6 matrix
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C whose (i, j)-entry is d;hj. Then the matrices BY) = 9;C (i = 1,2,...,6)
commute each other. This implies that T = xlé(l) 44 5x5B(5) + 7x63(6) is
a Saito matrix of the polynomial F' = det(T) and F = 0 is a free divisor in C°.

It is plausible that F'is the discriminant of the group Gsq if 21,29, ..., x4
are identified with appropriate basic invariants of the ring of Gas-invariant
polynomials. As an evidence to support this observation we have shown that
if G is an irreducible finite complex reflection group and it is well-generated in
the sense of [1], there is a unique flat structure for the discriminant of G.

(1) Gog case

hi= (-3 1952 + 43 + 2x1x3 + 612073 + 3903 + 6901304)/6

he = (=7 + Talxg + 72323 + 14z 23 + Trjzs — 1423wy — 14ades + Tz 23
+14x2x4)/14

hs = (2§ + 2:1:1x2 + 8x1x2 62323 — 4o + 6x5w3 + 1203203 + 812303
+8:B1:L‘3 + 2:L‘2:L‘3 + 4:E3:c4)/4

hy = (132]° + 70282y — 702923 + 200301372 + 120:1;13:2 + 56235 + 20:(;1363
+10023 2923 + 160232323 — 200212573 + 1302123 + 120022923 + 602323
+40z123 + 2027) /40.

(2) Gss case

hi = (- 2:clx2 + 2x1x3 + 33:23:3 + 6x1T0m4 + 3374 + 31:1:L'5)/3
he = (—4z5+ 603:1932 + 151:2+ 30x1x3+ 60$1x4— 30x23:4+ 15x4+ 30z225) /30,
hs = (427 + 12x1$2 + 9z175 + 36x13:2:v3 — 22313 + 62323 + 12012y
+1871 7324 + 6221374 + 9x1:z4 + 3$3x5)/3
hy = (20x1x2 + 24:613}2 —3z5 + 12:U1:L‘3 + 18x1;1:2:v3 + 12212023 + 73
+24x3 w914 + 6x2x4 + 18:51:1c3:c4 + 3z0x3 + 3x4x5)/3
hs = (6429 + 5762523 + 48:172 + 288m1x2m3 + 432x1:p2x3 + 144x1$3 + 24352:53
+4820w4 + 144a323 24 — 362574 + 43223202324 + T2212374 + 1442323
+722222 + 1223 + 922)/18.

(3) G34 case (Conjecture)

hi = (20z3z3 + 1201:1562 — 6023 — 12x1x3 + 60x1x2$3 — 180z 7373 + 135x1x3
+135:U2x3 + 1201’1.%'4 — 180w1x2x4 + 5401:2x4 + 270x1x374 + 405:64
+180z3x5 + 54021 2275 + 4052375 + 40571 26) /405,

hy = (642 — 288x1x2 —1728z%22 + 1728w1:r2 — 2592[E1$2 + 432x13:3
+3888$1x2$3 + 3888z x%xg + 1944x2x3 + 9729:1:1:3 + 729$3 — 12963:‘;’1’4
+ 777623 z0w4 + 8748220324 — 2916290374 — 58327127 + 3888z]ws5
—2916:[%:U2$5 — 2916x%x5 + 4374211305 + 43742475 + 4374(62336)/4374,

hs = (64210 + 3456x§x2 + 66242522 + 21603:‘1*933 + 388825 + 7776x{m3
+1944Ox1x2x3 + 32400z x%xg + 7776:613523:3 + 1944Om1:c3
+26244:U11‘2x3 + 291622 :L'3 + 7290x1:v3 + 9504:1?11'4 + 38880x1x2$4
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—11664:513;21’4 — 3888372x4 + 252729613333:4 + 34992x1x01314 + 87483531'4
—1-5832381;84 + 87487972 + 116642325 + 2527273 x0m5 + 1749621 2375
+26244:c1x3x5+ 8748 xox3xs+ 26244x1 145+ 6561x5+ 6561:1:33:6)/6561

hy = (1152211 + 832229 + 236162722 — 138242323 + 34560361:62 + 7776m1x3
+42768xla:2x3 + 16200 a:%mg + 7776 :chg - 5832372903 + 174969;13:3
+27216$1x2x3 + 23328712322 + 131222323 + 29162923 + 129602724
—259203611:21'4 + 103680x x%m — 31104x1x21:4 + 19440$1$3$4
+69984x§x2x3x4 - 5832x2x3:1:4 + 17496331:1:3564 + 38880z 23
—46656x1$21‘4 4374$3x4 + 259228x5 + 213842t wows — 5832$1$’2$5
+11664x2a:5 + 26244$1:103x5 + 17496z x92375 + 65619633:5 8748x1x4x5
+17496x91 425 + 13122361;105 + 13122;1:4%)/13122

hs = (104961:%2 + 706562129 + 869763;1372 + 233856x1x2 — 25920223
—2073625 + 71808z{z3+ 264384:c1x2x3+ 393984x1x2x3+ 129600232323
+93312x1x2x3 + 165888;01333 - 408240951:62333 - 221616x%:c§x§
—|—134136m1x3 + 874803:1x2:r3 + 10935:U3 + 22464931x4 + 209088m1x2x4
+38880x a:%m + 233280z 3 w374 + 233287574 + 2410563:1x3x4
+272160:1:19521:3:C4 + 139968x1$2x39§4 + 20995222 x3x4 + 874809521:3:64
—1—19440361:1:4 + 349920x1x2x4 69984.7)2.7]4 + 139968z w3707 — 1749623
+10368x1:1:5 + 388803:1902565 + 93312232325 — 23328z 7305
+134136$1$‘3x5 + 2274483?11‘2.%'31'5 + 52488$21‘3.%'5 + 104976:)611'3305
+198288a:1x4x5 4+ 104976120145 + 78732137475 + 78732561365
+26244x2x5 + 39366905336)/39366

he = (10905621 + 43366421279 + 1983744:61 x3— 400512901562 + 27847682513
—2822403:1902 + 9676807 x5 + 207360902 + 4032003:1 x3
+23950089:11:2:c3 + 3709440:51:623:3, + 6096384x1:1;2x3 - 846720x§x3x3
—725760x1 2573 + 1611792:61963 + 4445280:619623:3 + 3492720961332:133
+1360800x x%x% + 462672x2x3 + 1496880:1:1x3 + 2857680x1x2x3
+734832:U1:L‘2x3 + 489888:U1:L‘3 + 918542923 + 17740871024
+80640x1x2x4 + 34997763;13:2964 — 3870720x x%m + 25401609613323:4
—653184x5z, + 14394242 w374 + 703987223 202374 + 399168023 052374
+1741824x1:z:2x3m4 + 2721600z 2324 + 13880163:1952;0%3:4
—|—244944m2x3:134 + 857304m1x3m4 + 187488025x% — 3175200x1x2x4
+5225472x x%xﬁ + 925344371903354 + 2939328z z9z325 + 3061802323
+146966423 25 —816480x2x] — 8064z x5+ 254016x{x2x5+ 217728251375
+362880x x§x5 + 544320m1x2x5 + 707616x1x3x5 + 16329602} xoz 375
—|—21228489311:2:C3335 — 3265921:2563335 + 1714608x1$3x5
+1224720x1x2x3m5 + 183708963:1:5 + 816480x1x4:1:5 + 45722881’?3?2.%4%’5
—1959552x1x2x4x5 + 2694384x1x3$4x5 + 979776x0x32425
—244944:U1:L‘4x5 + 11022481‘1955 + 97977623 w022 + 4898887322
+73483211 w372 + 3674162422 + 13778122) /275562.
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Remark 9. (1) As for the case Gz, you can find basic derivations of the

discriminant in [2| and a system of differential equations in [21].

(2) D. Bessis |1] discussed the existence of flat structures of discriminants

of complex reflection groups. The definition of flat structure in [1] is seemingly
weaker than the original Saito’s definition.
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