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1. INTRODUCTION

We look at deformations of germs of isolated singularities from K" to K*
(n = k) (K =R or C) and the relation with their natural stratification in some
tame category (algebraic, analytic, semi-algebraic, subanalytic, polynomially
bounded o-minimal structure (see [18, 20]). The word tame in what follows
will refer to one of these categories.

We say that two map germs f : (R",0) — (R*,0) and g : (R",0) — (R*,0)
are topologically right equivalent if there exists a germ of homeomorphism
h: (R™ 0) — (R™, 0) such that go h = f. Then the topological type of a germ
represents its right equivalence class.

A family of map germs is the germ at {0} x RP of some continuous map
F: (R"xRP, {0} xRP) — (R* 0). We will usually denote a family of map germs
by f; := (R",0) — (R¥,0) t € R where fi(z) = F(t,z). (Notice that a family
of map germs is more than just a germ f; := (R",0) — (R¥,0) for each t € RP.)
A family of map germs F : (R" x RP, {0} x RP — (R*,0) is said to have no
coalescing of critical points if there is a neighborhood U of {0} x RP in R™ x RP
and a representative F’ of F' so that F’ restricted to U n {t} x (R™ — {0}) is a
submersion for each ¢ € RP. Otherwise the family is said to coalesce.

Ezample 1.1. Consider the family f; : (R,0) —» (R,0), t € R, fi(z) =
x3 — 3ta?.

The points where f; fails to be a submersion are x = 0 and x = 2t. Hence,
fi coalesces since any neighborhood of {0} x R in R x R contains points of the
line x = 2t with z &£ 0.
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Notice that fo = 23 is topologically right equivalent to the identity but if
t & 0 then f; has either a maximum or a minimum at 0 so f; could not possibly
be topologically right equivalent to the identity.

Fig. 1. Coalascing of critical points from ¢ < 0 to t > 0.

Example 1.2. Let f, 1 K > K, t € K, fi(x) = 2%(z* + t?).
{f+} has no coalescing if K = R but coalesces if K = C.

t 4

Fig. 2. No coalascing in R, coalesces in C.
Erample 1.3. Let f; : R2 > R, te R, fi(z,y) = y? — t?2% — 23,

The points where f; fails to be a submersion are y = z = 0 and y =
3z +2t2 = 0. Hence, {f:} coalesces since any neighborhood of {0} x R in R? x R
contains points of the curve x = —%tQ with ¢ £ 0.
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Ezample 1.4 (T. Kuo [10]). Let f;:R — R, teR, fi(x) =222 —2z7t+2212.

t

\
t=4 25
; ; t=3x5

The points where {f;} fails to be a submersion are on the points of the
curves t = 4x° and t = 32°. Hence, {f;} coalesces.

Notice that, along each level curve z%t? — 227t + 22'2 = ¢, ¢ + 0, the
values of ¢ reach a local minimum on ¢ = 42° and a local maximum on ¢ = 32°.
{f:} is not topologically trivial along the t-axis.

Suppose however that f; : (R™,0) — (RF,0), t € RP is a family of map
germs with no coalescing of critical points. Can the topological types of the f;
change? In the complex case there is almost a complete result. From the non-
splitting of vanishing cycle (see |7, 11, 12]), no coalescing for family of complex
analytic germs is equivalent to the constancy of Milnor’s number [15]; Lé and
Ramanujam and combined with H.King have shown that if f; : (C™,0) — (C,0)
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is a family of germs of analytic functions with no coalescing and n # 3 then
the topological type of each f; is the same. (The case n = 3 is unknown).

The corresponding real result is true for n < 3, (see [3, 8]), but it is far
from true in large dimensions. In particular H. King gave an example for each
n > 5 of a family of polynomial germs f; : (R™,0) — (R,0), ¢t € R, with no
coalescing of critical points so that for each ¢ & 0, f; is not topologically right
equivalent to fo. Thus, in the real case it is possible to have no coalescing
and changing topological type, even for polynomials. However, this is a rather
subtle phenomenon when it does occur.

TuroreM 1.5 (H. King [8]). Let f; : (R™,0) — (R*,0), t € R? be a family
of map germs with no coalescing of critical points and suppose there is a family
of homeomorphism germs g; : (R",0) — (R¥,0) t € RP so that the germ at
0 of each set g; o f, 1(0) is the germ of fgl(O). Then there is a family of
homeomorphism germs hy : (R™,0) — (R*,0) t € R? and a neighborhood V of 0
in RP so that the germ at O of f; o hy is the germ of fo for each t € V.

THEOREM 1.6 (Lé-Ramanujam [13], H. King [8]). Suppose f; : (C™,0) —
(C,0), t € R is a continuous family of complex analytic germs with no coalescing
and n F 3. Then there is a continuous family of germs of homeomorphisms

he : (C™,0) — (C™,0) so that fo = fio hy, for all t € CP.

2. UNIFORM RADIUS

Let p: (R™,0) —» (R*,0) be a smooth and tame function (eg. a positive
polynomial function) such that p~1(0) = {0}.

An important example is given by the square of the distance function
p(z) = |z1)? + ..+ |z, |2

We can see, by using the curve selection lemma, that such control function
is submersive in a neighborhood of 0.

Definition 2.1. Let p : (K™, 0) —» RT be a germ of a tame submersion such
that p~1(0) = {0}.

For a smooth tame map germ f : (K" 0) — (K¥ 0) with an isolated
critical point at 0, define p(f), the p-radius of f, to be the smallest critical value
of the “control function” p(x) restricted to the smooth manifold f~1(0) — {0}.
If there are no critical values then p(f) = oo.

Remark 22. 1f k =1, p(f) = inép(:r) where C' = {z € f~1(0) — {0} | du f
x€E
Here we use the following notation: df = (%""’E’W)’ def =
0 0 n 0
(L, 2 and |dof |2 = X0, [ 222

ox1’ ) 0xn




5 Uniform radius and equisingularity 523

Definition 2.3. We say that a family of tame map germs at {0} x KP of
some continuous map {f;} : (K® x KP,{0} x KP) — (K*,0), has a p-uniform
radius if there is a § > 0 so that p(f;) > ¢ for all £ € KP.

The notion of uniform radius, used in this paper is a generalization of
the “uniform Milnor radius”, where p, is the squared distance function. See for
example [9], where the uniform Milnor radius takes an important role in the
proof of the blow-Nash triviality for a family of Nash set germs.

THEOREM 2.4. Suppose fi : (K",0) — (K*,0), t € RP is a smooth family
of tame map germs with no coalescing and has a p-uniform radius. Then there
is a continuous family of homeomorphism germs hy : (K™, 0) — (K", 0) so that
fo = frohg, for all t € RP i.e. the family is topologically trivial.

Proof. Let us set for r > 0, S(r) ;== {x e K" : p(x) =r} and U(r) = {x €
K" : p(x) < r}.

Let ' : (K" xRP, {0} xRP) — (K¥,0), be a representative of {f;}, F(x,t) =
fi(z) and G = (F, p).

By the assumption on {f;}, there exists ro such that for 0 < r < rg, (0,7)
is a regular value of the restriction of G to (U(r) — {0}) x RP then for each
0 < r < rg, S(r) is a smooth manifold diffeomorphic to the n — 1 unit sphere,
G 10,7) = F~10) n (S(r) x RP) is a smooth manifold and the restriction of
the projection on the second factor, m : G=(0,r) — RP has no critical points.

Let X(F,r) := the set of singular points of the restriction of F' to S(r) xRP.
Let d(r) be a continuous function on |0, 7] such that

0 < d(r) < the distance of ©(F,7) to F~10) n (S(r) x RP).
Such function exists because for any 0 < r < rg,
Y(F,r) n F7H0) n (S(r) x RP) = ¢&.
Let

01 = {01150 < pla) < . s, 2, ) < "4
d(p(x))
5 .

Then {Uy, Us} is an open covering of (U(rg) — {0}) x RP. Since F has no
coalescing of critical points, we may suppose that the restriction of (F,7) to
(U(rp) — {0}) x R? is a submersion on K¥ x RP. Let ¢!, 1 < < p, be a smooth
lift by (F, ) of the vector field -

Since Us is disjoint from the singular points of G, £(G), and p does not
depend on the parameter ¢, then the restriction of (G, ) to

Us = {(x,t) 10 < p(z) < 1o, dist((z,t),2(F, p(x))) >
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(U(ro) — {0}) x RP — (@) is a submersion, and hence on Us. Let &5,1 < i < p,
be a smooth lift by (G, 7) of the vector field a%'

Now, let {¢1, p2} be a partition of unity associated to the covering {U, Ua}.
We define, for 1 < i < p, the vector field £ on (U(rg) — {0}) x RP, by

£ = p1€] + 285

By construction & is smooth tangent to the level surface of F, and con-
trolled by p. We extend, for 1 < i < p, £ to U (ro) xRP, by £'(0,t) = . By con-
struction, ¢ is controlled and locally integrable, then integrable (see [6]). For
(xz,t) € U(rq) x RP, let qﬁ’tm7t)(s) be the integral curve of ¢ satisfying the initial
condition ¢, t)(t) = (z,t). For small 0 < 7 < 19, we define a homeomorphism
h': Uz xRP — U by hi(z,t) = (Z)éx’[))(t). Let h(z,t) = h1(h2(... (RP(z,1),1))...).
Then h is a homeomorphism and we have F o h(z,t) = fo(z). O

Remark 2.5. We may suppose in theorem 2.4, that the family is only
continuous with respect to the parameter, by applying theorem 1 of H. King [8].

2.1. Sufficient conditions for uniform radius and no coalescing

Definition 2.6. Let f : (K",0) — (K¥,0) (n > k) be a smooth tame
map germ. Let p : (K", 0) - R* be a germ of a tame submersion such that
571(0) = {0},

We denote by J,(f) the Fukuda’s ideal associated to (f, p) i.e. the jaco-
bian ideal of the map germ (f, p) generated by fi,..., f, and (k+1) x (k+1)
minors of the jacobian matrix

oft ofi
or1 " Oxn
D(-fUl,..-,an) % %
Op o
or1 "  Oxzn

THEOREM 2.7 (T. Fukuda [4]). Suppose fi : (R™,0) — (R,0), t € RP is
a continuous family of analytic function germs and let p : (K™, 0) - R™ be a
germ of an analytic submersion in o punctured neighborhood of 0 € R™ and such
that p~1(0) = {0}.

Suppose that:

{u(ft) = p(fo) <o, teRP and

. On _ . On
dlmRm—dlmRm<O® t e RP

Then the family f; : (R™,0) — (R,0), t € RP is with no coalescing and a
p-uniform radius, therefore it is topologically trivial.
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Proof. The condition u(f;) = u(fo) < oo, ¢ € RP implies that {f;} is
with no coalescing and dimp % = dimpg % < o0, t e RP implies that
{f:} has p-uniform radius. [J

THEOREM 2.8 (T. Fukuda [4]). Suppose f; : (R",0) — (R* 0), t € R?
(n > k) is a continuous family of analytic map germs and let p : (K™, 0) > RT
be a germ of an analytic submersion such that p~*(0) = {0}. Suppose that:

(@)
dimgp ——— = dimg ——— < teRP

Jo(ft) Jp(fo)
Then the family of zero sets {f7(0)}sero is topologically trivial.

n
t

Proof. In fact, the conditon dimg % = dimg % < oo for t € RP,
implies that there exists a neighborhood U of 0 in R™ such that U n {f; =

Jo(fi) = 0} = {0} for all ¢, i.e. {fi} has p-uniform radius. [

Let us fix a vector w = (wy,...,wy) € N® — {0}. We will usually refer to
w as the vector of weights. Let h € O,, h # 0, the degree of h with respect to
w, or w-degree of h, is defined as

dy(h) = min{¢k,w) : k € supp(h)},

where (,) stands for the usual scalar product. In particular, if x,...,z,
denote a system of coordinates in K" and xlfl ...zF" is a monomial in O,,, then
alw(a:]f1 co.xkny = wiky + - + wyk,. By convention, we set dy,(0) = +oo. If
heOpand h =3, apx® is the Taylor expansion of h at the origin, then we
define the principal part of h with respect to w as the polynomial given by the
sum of those terms azz* such that (k,w) = dy,(h). We denote this polynomial

by pw(h).

Definition 2.9. We say that a function h € O,, is weighted homogeneous of
degree d with respect to w (or of type (w;d)) if (k,w) = d, for all k € supp(h).
The function h is said to be semi-weighted homogeneous of degree d with respect
to w when p,,(h) has an isolated singularity at the origin.

It is well-known, see [1], that if A is a semi-weighted homogeneous function,
then h has an isolated singularity at the origin and that h and p,,(h) have the
same Milnor number given by:

u(h) = (d—wi)(d—wa)...(d—wy)

w1.wW. ... Wn

Let g = (g1,---,9n) : (K",0) = (K", 0) be an analytic map germ, and
let us denote the map (pw(g1),.-.,Pw(gn)) by Puw(g). The map g is said to be
semi-weighted homogeneous with respect to w when (p,(g)) 1(0) = {0}.
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Remark 2.10. It is not difficult to see that a family of weighted homo-
geneous functions with isolated singularity has a p-uniform radius with p =
S lwi? In fact, if {f;} is a weighted homogeneous family of type
(w1,...,wp;d), the “Euler formula” gives: >, w;x; 2Lt ax = d.f;. And now if
f has a kink at p = (x,t) then there exists A € R* such that d, flp) = )\dzp( )
i.e. % = Az;. Since p € f71(0) the Euler formula gives A > ; w;|z;]? = 0
which implies p € {0} x RP so it is not in the smooth part. Thus, p(f;) = +o0.

It has also p-uniform radius, for p a weighted homogeneous control func-
tion with respect to the system of weights, for example:

i 2d
puw(T1,. .., xn) = 2 || i .
i=1

It is no worth to mention the following paper [5], for reference concerning,
singular metric in weighted homogeneous setting.

PROPOSITION 2.11. Suppose f; : (R™,0) — (R¥,0), t € RP is a continuous
family of weighted homogeneous polynomial germs with no coalescing. Then
there is a continuous family of homeomorphism germs hy : (R™,0) — (R™,0) so
that fo = fiohs all t € RP.

Proof. In this case p(f;) = 400, we can apply Theorem 2.4. []

PROPOSITION 2.12. Let f;: (R™,0)— (RF,0), t € RP be a continuous family
and p : (K™ 0) — R weighted homogeneous of degree d with respect to w.
If dimg (f) < o, t € RP, then {f;71(0)}serw is topologically trivial.

Proof. In this case the Fukuda’s ideal is weighted homogeneous with the
same weights, then dimg J(? oy < © , for all ¢, implies that for any neighborhood
Uof0in R", Un{fs = J,(fr) = 0} = {0} for all ¢. i.e {f;} has p-uniform
radius. [

In the semi-weighted homogeneous case, M. Oka show that the family of
complexe polynomials f;(z,y, 2) = 2> +ty02+ (x+y+2)y" + (z+y+2)'° is semi-
weighted homogeneous in C® with constant Milnor number but do not have a
p-uniform radius with respect to the standard distance function p(x,y,z) =
|:1:|2 + |y|2 + |z|2. Writing it this way fi(z,y,2) = 2° + ty%2 + 2y” + 2% + {(y +

2y + S L (D)2 (y + 2)F}. We see that f; is semi-weighted homogeneous
of type (1, 2 3;15) and with constant Milnor number pu(f;) = 364.

See [16, page 207|, for the proof of the fact that this family has non

uniform radius with respect to p(z,y, 2) = |z|> + |y|* + |2]%.

Remark 2.13. This family is topologically trivial, since F(z,y,z,t) =
Go H(x,y,z,t) where H is the automorphism H(z,y,2,t) = (r +y + 2,9, 2, 1)
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and G(z,y, 2,t) = gi(x,y,2) = 2° +ty%2 + 2y + 2! is the Briancon-Speder ex-
ample (see |2]), which is weighted homogeneous of type (1,2, 3; 15) with isolated
singularity.

But we do have

THEOREM 2.14. Suppose f; : (R",0) — (R¥,0), t € R is a continuous
family of semi-weighted homogeneous tame germs with no coalescing. Then
there is a continuous family of homeomorphism germs hy : (R™,0) — (R™,0) so
that fo = f, o hy all t € RP.

Proof. Let (w;d) be the type of f;, then f; has a py-uniform radius, with
d

puwl(Z1, .. Tn) = Dy |xi|277i. In fact py(fi) = +oo therefore the statement
follows from Theorem 2.4. []

3. VANISHING FOLDS, MILNOR NUMBER
AND WHITNEY CONDITION

Following D. O’shea [17], we say that a point p € f1(0) is a p-kink of
f~1(0) if p is non singular point of f and if p is a critical point of p restricted
to the manifold of smooth points of f~1(0).

Remark 3.1. For k = 1, an easy computation shows that a nonsingular
p e f10) is a p-kink if and only if df (p) = Ad.p(p) for some X in K — {0}.
We suppose that for every ¢t € KP, f;(0) = 0 and 0 is an isolated critical
point of f;. Let v : [0,¢] — K" x [0, 1] be a real analytic path vy(s) = (z(s),t(s))
such that:
1) 7(0) = (0,0)
2) |z(s)| > 0 and [t(s)| > 0 for all 0 < s < ¢, and
3) f(z(s),t(s)) =0forall 0 <s <e.

Remark 3.2. Tt is easy (remark 2.10) to see that a weighted homogeneous
functions with isolated singularity cannot have a p-kink, with p = > | |z;|%

Definition 3.3. The path v will be called a p-vanishing fold of f (centered
at 0 ) if z(s) is a p-kink of ftzsl) (0) for every s € (0, €].

Remark 3.4. It is easy to see that: {f;} has a p-uniform radius if and only
if it has no p-vanishing fold in U(ey) = {x € K" : p(x) < ¢} for some ¢ > 0.

For a family of function germs with isolated singularities

F: (K" x K?, {0} x KP) > (K, 0),
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we associate the canonical stratification of K™ x KP given by the partition
Sr = {K" x KN\F~1(0), F~*(0)\{0} x KP, {0} x KP}

We shall denote by 7 the projection on the second factor, V. = F~1(0),
Y={0} xKP , X =V —-Y and X; = {z € K" |F(z,t) = 0}.

Since X; has an isolated singularity at (0,t), the critical set of the restric-
tion of m to V is Y.

Then X is a smooth manifold and for each point (z,t) € X, we have

n oF oF
TnyX = {(u,v) € C x@|2u, xt +Z%t (z,t) = 0} = (RAF)*

oF O0F OF
ﬁ,...,axn,ﬁ), dxF

Here we use the followmg notation: dF = (
(Farr- - &) and [do FI* = X301 [ )1

oxr1’

ox;
The property that the canonical stratification associated to a family of

germs with isolated singularities be (a) ( resp. (b)) regular (see [22]), can be
made more practically by using the following form:

Definition 3.5. We say that F' is Whitney regular at 0 if its canonical
stratification Sy is Whitney regular and this is equivalent to: the following
conditions are satisfied

gf(ﬂﬂ t) =0 f hl1<7<L
[deF (z, )] oreE IS ISP

condition (a):

(x, t)—)O
(z,t)eX

condition (b'):

_ py 1%35 (z,1)
lim = 0.
@0-0 \ || |deF(x,t)]]

(z,t)eX

Remark 3.6. (1) It is known that condition a+ b is equivalent to Whit-
ney condition (b) see [14, 19, 21].

(2) A Whitney regular family of map germs is topologically trivial, so that
the topological type is constant in such a family.

Definition 3.7. We say that F' is p-constant deformation if p(F(.,t)) =
u(F(.,0)) for any ¢.

Remark 3.8. In general p-uniform radius for some “control function” p for
a family of germs is weaker than Whitney regularity. For example, take the
Briancon-Speder family F(x,y, z,t) = 2° + ty%2z + y"z + 2'%; it is a family of
weighted homogeneous polynomials of type (1,2, 3;15) and of constant Milnor
number u(f;) = 364. The family {f;} is p-constant but for a generic hyperplane
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H in R3, of equation z = ax + by with a,b € R — {0}, g; = fi|g is a family of
semi weighted homogeneous polynomials with u(g;) = 26 < u(go) = 28. Since
the Milnor number jumps, this family must have a p-vanishing fold (see 3.12).

Let F' be an analytic function from K" x KP to K, in a neighborhood of 0

F: K" xKP,0 - K0
(z,t) = F(z,t)

with F(0,t) = 0. We denote by 7 the projection on the second factor, V =
F~40),Y = {0} xK? and X; = {xr € K" : F(z,t) = 0}. We suppose X; has an
isolated singularity at (0,¢) i.e. the critical set of the restriction of 7 to V is
Y. Then X =V —Y is an analytic manifold of dimension n, and for each point
(z,t) € X we have

n oF oF L
Ty X = {(u,v) e K" x KP: Zu (@) —i—Zvjatxt) 0} = (KdF)
where dF = (aw1 ..,%,%’;) d.F = (am1 ..,a‘%).

Let G be the set of analytic map germs from K" x KP, 0 to K" x KP,( of
the following type: ®(y,7) = (V(y,7), (7)) = (2,t), where ¥ for small 7 is a

germ of automorphisms of (K™, 0) (i.e. det (%—‘5) + 0 and ¥(0,7) =0 ).

We suppose given F': K" xKP, 0 — K, 0 an analytic deformation of f = fj
such that F(0,t) = 25(0,¢) = ... = 2£(0,1) = 0,

X = FYHOM\{0} xKP, X;=f,1(0) and Y = {0} x KP.

The following theorem shows that Whitney regularity is equivalent to the
stability of the p-uniform radius property with respect to families of linear
change of variable in z.

THEOREM 3.9. Let F be a pu-constant deformation. The following condi-
tions are equivalent
(i) F is Whitney regular
(ii) For any ® € G, F o ® has no p-vanishing fold with respect to the square
of the distance function.

Proof. (i) = (ii)
Since having a vanishing fold ~(s) = (z(s),t(s)), implies that

701(5):15 (v(s)) 1; theref if a def ti is Whit lar then it
TG IGOT = oore ) COTmaTon B Ry Kenar et

has no vanishing folds We have then only to show that if F' is Whitney then
sois Fo® forall ®eg.

By definition F o ®(y,7) = F(¥(y,T), \(7)); this suggests doing it in the
following two steps: Firstly, for A = Idge, ®1(y,7) = (¥(y,7),7), is then an
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analytic diffeomorphism of K"*? and since Whitney’s conditions are invariant
by diffeomorphism, if F' is Whitney regular, so is F o ®;, where ®1(y,7) =
(W(y,7), 7).

Secondly, if F is Whitney regular, then so is F' o ®y, where ®o(y,7) =
(y, A(7)) and A : KP,0 — KP, 0.

In fact, the condition (b') is trivially satisfied by F o ® since it does not
make use of the partial derivative relative to the parameter 7.

To check the (a) condition, we compute

OF o @ N
5, WAM) = X FE ) G M),

0Fod °
lim LI B I Tt W)
om0 \JdoF o @y, )] )~ oo &0ty \ JdeF o @a(y, 1)) )

(z,y)eX-Y (z,y)eX-Y m=1

Therefore F o ® satisfies condition (a). Then it follows from these facts
that for any ® € G, F o ® is Whitney regular, so that it has no vanishing folds.

(i) = (i)

Firstly, since F' is a p-constant deformation in a neighborhood of 0, it
satisfies the (a) regularity condition (in fact we have more, u-constant implies
“good stratification” in the sense of Thom.

Let us suppose that (b) fails, which in turn implies that (b') fails, since
(a) holds.

Let A(z,7) = e i (o) where (z,7) € X — Y. Then there exists a
Izlgrad. F(z,m)]

real analytic curve v : [0,¢] — X ~v(s) = (z(s),t(s)) and dp > 0 such that:
1) 7(0) = (0,0),
2) f(z2(s),7(s)) =0 for all 0 < s < ¢ and
3) limyo A(z(s), 7(s)) = 1 + 0.
Let us denote by v the valuation of Ok o associated to .
We will use the following notations:

R R (AN (A}

1<i<n ox 1<isn

In these conditions, if we denote v(z) = p and v(%) = ¢, We can suppose
(change the order of variables if necessary) that v(z1) = p.
Since A o y(s) has a non zero limit when s tends to 0, we may conclude

that v(< 2z, 2 (2,7) >) = v(2) + v(L (2, 7)) =p +¢.
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Let us denote y(s) = (p1(8), - - -, pn(s), A(s)), % oy(s) = (q1(8)s - -+, qn(s))
and v(< z, gf; > oy(s)) = u(s).
We now define @ : (K" x K, 0) — (K" x K,0) by:

(I)(yly <y Yns 3) = (\I/(va)a )‘(S))

where W(y,s) = (y1 — B h,y2 + pr —Bh . yn + Z—Tl‘yl — Erph) and h =
q2Y2 + q3Y3 + ... + Gn¥n.
We may first check that ® € G :
1) @ is analytic.
We use for this the valuation along ~.

If j # 1, then for yj+%y1_ “1h . we have by hypothesis v( y1) = v(p1)+
vlan) =olpn) > 0 and o(%h) - o(p) +v() —v(u) > (p+4)— (p+q) = 0.
If j =1 for y1 — 2Lh, we have v(2Lh) = v(p1) + v(h) —v(u) = (p+ q) —
(p+q) =0

2) W(0,5) =0

3) The jacobian of ¥ is invertible in a neighborhood of 0.
For this we compute the determinant of this jacobian and show it equals 1.
Let ®1(y,7) = y1 — plh and ®;(y,7) = y; + %yl — %h for 2 <j < n.
Then a& =1and Vj>2 ’N)l = —Bly;.

* Dy;
Vi =204 G =%,
09, i g 0®;, _ pi
Vi = 2, g = 1— Pig; and Gy = z—l.
_%QQ _%Qi —%qn
p2 _ b2 : .
1 1 w 42
ov j '
(3.1)  det <6y(y’7)> = : 1- 2y
%11 _%QQ _%Qi 1—%(]”

If we denote by C; the jth row, and apply the transformation C; = C; +
POy for j=1,---,m
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We see that
1 0 ... ... ... 0
|
P1
. 0 .0 :
(3.2) det <8y(y’ s)> = : 1 =1
: 0
Pn
o o ... ... 0 1

We can now conclude that ® € G.
Moreover, by construction we have ®(pi(s),0...,0,s) = ~v(s).
The computation gives us for ¢ > 2

OF o ® ~ aF <1>j
oy P1(s).0

J=1

63/Z

_ _Q1(S)Qiz(j:9)p1(5) o) (1_ ( ) 3 4;(8)qi(s)p;(s) pg( s)

Jj*1

JF
- —QiQES) pr(8)a1(s) + pi(s)ai(s) + Y pi(s)ai(s) |+ ails)
e
iti
gi(s)

=T gi(s) = 0.

Ifi=1,1=q(s +qu

—. Then, we obtain that aFO(D = (p1(s),
pi(s pl

5, 0,5) = A(pi(s),0,. 0) with )\ ‘p1|2 i.e. Fo® has a vanishing fold. [

Remark 3.10. 1) This theorem is to be compared with the results (see
[14, 19, 21]), on the characterization of the Whitney condition (b) by
tubular neighborhood.

2) In this theorem we can replace G by the set G; = {® = (¥, ) : K"xK,0 —

K" x K, 0 such that U(.,s) € GI(K™)} the proof is essentially the same.

3) The theorem and its proof continue to hold if we replace, the squared

distance function by a squared distance function with respect to any affine
metric in C™.
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Ezxample 3.11. From the theorem, Whitney faults are detected by vanish-
ing folds. So to find a vanishing fold, it suffices to find an arc along which the
Whitney regularity fails.

Let F(z,y,2,t) = 2° +ty%2 + y"2 + 2'5, Briancon and Speder in [2] shows
that the Whitney condition fails at 0 along an arc y(s)

x(s) = 45° + O(s%)
y(s) = s°

2(s) = 88

t(s) = —5s%.

From the construction (in the proof ), the family of automorphisms ® :
(C3 x C,0) — (C3 x C,0) is of this type ®(X,Y, Z,s) = (¥(X,Y, Z, 5),t(s))
where U(X,Y,Z,s) = (X — BLhY + ]I;—TX —Bh 7+ ;;—?X — Bh) and h =
@Y + q3Z. After the computations, we obtain ¥(X,Y,Z,s) = (X — %(Y +
$37) +...,2Y —2X + s2Z) + ..., Z), the dots is for higher terms. Finally
Fod®(X,Y,Z, s), has a vanishing fold along the curve v(s) = (q1, ¢2, q3,t(s)) =
(% o0v(s),t(s)). Now the construction of the analytic family of automorphisms
in the above theorem shows that with respect to p = |X|? + |Y|? + |Z|?, the
family {f;}, has a p-vanishing fold i.e. it does not have a p-uniform radius.

It is worth to mention that, in the complex analytic case, we have a
generalization of a theorem of O’Shea [17]; which relates the jump of Milnor
numbers to the existence of vanishing folds.

THEOREM 3.12. Let F' : (C" x C,{0} x C) — (C,0) be a family of holo-
morphic function germs with isolated singularities and Xy = {f7(0)} the cor-
responding family of hypersurfaces. Let puy = p be the Milnor number of f; at
the origin and suppose that py = p is constant for 0 <t < 1 and p < po-

Then, the family {f; *(0)} admits a p-vanishing fold centered at O or it
has an analytic critical arc.

The path + is called a critical arc of f (centered at 0) if z(s) is a singular
point of ftzsl) (0) for every s € (0, €].

The proof will appear in a forthcoming paper.
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