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1. INTRODUCTION

We look at deformations of germs of isolated singularities from Kn to Kk

(n ¥ k) (K � R or C) and the relation with their natural strati�cation in some
tame category (algebraic, analytic, semi-algebraic, subanalytic, polynomially
bounded o-minimal structure (see [18, 20]). The word tame in what follows
will refer to one of these categories.

We say that two map germs f : pRn, 0q Ñ pRk, 0q and g : pRn, 0q Ñ pRk, 0q
are topologically right equivalent if there exists a germ of homeomorphism
h : pRn, 0q Ñ pRn, 0q such that g � h � f . Then the topological type of a germ
represents its right equivalence class.

A family of map germs is the germ at t0u � Rp of some continuous map
F : pRn�Rp, t0u�Rpq Ñ pRk, 0q.We will usually denote a family of map germs
by ft :� pRn, 0q Ñ pRk, 0q t P Rp where ftpxq � F pt, xq. (Notice that a family
of map germs is more than just a germ ft :� pRn, 0q Ñ pRk, 0q for each t P Rp.)
A family of map germs F : pRn � Rp, t0u � Rp Ñ pRk, 0q is said to have no
coalescing of critical points if there is a neighborhood U of t0u�Rp in Rn�Rp
and a representative F 1 of F so that F 1 restricted to U X ttu � pRn � t0uq is a
submersion for each t P Rp. Otherwise the family is said to coalesce.

Example 1.1. Consider the family ft : pR, 0q Ñ pR, 0q, t P R, ftpxq �
x3 � 3tx2.

The points where ft fails to be a submersion are x � 0 and x � 2t. Hence,
ft coalesces since any neighborhood of t0u �R in R�R contains points of the
line x � 2t with x �� 0.
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Notice that f0 � x3 is topologically right equivalent to the identity but if
t �� 0 then ft has either a maximum or a minimum at 0 so ft could not possibly
be topologically right equivalent to the identity.

Fig. 1. Coalascing of critical points from t   0 to t ¡ 0.

Example 1.2. Let ft : KÑ K, t P K, ftpxq � x2px4 � t2q.

tftu has no coalescing if K � R but coalesces if K � C.

Fig. 2. No coalascing in R, coalesces in C.

Example 1.3. Let ft : R2 Ñ R, t P R, ftpx, yq � y2 � t2x2 � x3.

The points where ft fails to be a submersion are y � x � 0 and y �
3x�2t2 � 0. Hence, tftu coalesces since any neighborhood of t0u�R in R2�R
contains points of the curve x � �2

3 t
2 with t �� 0.



3 Uniform radius and equisingularity 521

Example 1.4 (T. Kuo [10]). Let ft :RÑ R, tPR, ftpxq�x2t2�2x7t�2x12.

The points where tftu fails to be a submersion are on the points of the
curves t � 4x5 and t � 3x5. Hence, tftu coalesces.

Notice that, along each level curve x2t2 � 2x7t � 2x12 � c, c �� 0, the
values of t reach a local minimum on t � 4x5 and a local maximum on t � 3x5.
tftu is not topologically trivial along the t-axis.

Suppose however that ft : pRn, 0q Ñ pRk, 0q, t P Rp is a family of map
germs with no coalescing of critical points. Can the topological types of the ft
change? In the complex case there is almost a complete result. From the non-
splitting of vanishing cycle (see [7, 11, 12]), no coalescing for family of complex
analytic germs is equivalent to the constancy of Milnor's number [15]; L�e and
Ramanujam and combined with H.King have shown that if ft : pCn, 0q Ñ pC, 0q
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is a family of germs of analytic functions with no coalescing and n �� 3 then
the topological type of each ft is the same. (The case n � 3 is unknown).

The corresponding real result is true for n ¤ 3, (see [3, 8]), but it is far
from true in large dimensions. In particular H. King gave an example for each
n ¡ 5 of a family of polynomial germs ft : pRn, 0q Ñ pR, 0q, t P R, with no
coalescing of critical points so that for each t �� 0, ft is not topologically right
equivalent to f0. Thus, in the real case it is possible to have no coalescing
and changing topological type, even for polynomials. However, this is a rather
subtle phenomenon when it does occur.

Theorem 1.5 (H. King [8]). Let ft : pRn, 0q Ñ pRk, 0q, t P Rp be a family

of map germs with no coalescing of critical points and suppose there is a family

of homeomorphism germs gt : pRn, 0q Ñ pRk, 0q t P Rp so that the germ at

0 of each set gt � f
�1
t p0q is the germ of f�1

0 p0q. Then there is a family of

homeomorphism germs ht : pRn, 0q Ñ pRk, 0q t P Rp and a neighborhood V of 0
in Rp so that the germ at 0 of ft � ht is the germ of f0 for each t P V.

Theorem 1.6 (L�e-Ramanujam [13], H. King [8]). Suppose ft : pCn, 0q Ñ
pC, 0q, t P R is a continuous family of complex analytic germs with no coalescing

and n �� 3. Then there is a continuous family of germs of homeomorphisms

ht : pCn, 0q Ñ pCn, 0q so that f0 � ft � ht, for all t P Cp.

2. UNIFORM RADIUS

Let ρ : pRn, 0q Ñ pR�, 0q be a smooth and tame function (eg. a positive
polynomial function) such that ρ�1p0q � t0u.

An important example is given by the square of the distance function
ρpxq � |x1|

2 � . . .� |xn|
2.

We can see, by using the curve selection lemma, that such control function
is submersive in a neighborhood of 0.

De�nition 2.1. Let ρ : pKn, 0q Ñ R� be a germ of a tame submersion such
that ρ�1p0q � t0u.

For a smooth tame map germ f : pKn, 0q Ñ pKk, 0q with an isolated
critical point at 0, de�ne ρpfq, the ρ-radius of f, to be the smallest critical value
of the �control function� ρpxq restricted to the smooth manifold f�1p0q � t0u.
If there are no critical values then ρpfq � 8.

Remark 2.2. If k � 1, ρpfq � inf
xPC

ρpxq where C � tx P f�1p0q � t0u | dxf

� λdxρ̄u.
Here we use the following notation: df � p BfBx1 , . . . ,

Bf
Bxn

, BfBt q, dxf �

p BfBx1 , . . . ,
Bf
Bxn

q and }dxf}
2 �

°n
i�1 }

Bf
Bxi

}2.



5 Uniform radius and equisingularity 523

De�nition 2.3. We say that a family of tame map germs at t0u � Kp of
some continuous map tftu : pKn � Kp, t0u � Kpq Ñ pKk, 0q, has a ρ-uniform
radius if there is a δ ¡ 0 so that ρpftq ¡ δ for all t P Kp.

The notion of uniform radius, used in this paper is a generalization of
the �uniform Milnor radius�, where ρ, is the squared distance function. See for
example [9], where the uniform Milnor radius takes an important role in the
proof of the blow-Nash triviality for a family of Nash set germs.

Theorem 2.4. Suppose ft : pKn, 0q Ñ pKk, 0q, t P Rp is a smooth family

of tame map germs with no coalescing and has a ρ-uniform radius. Then there

is a continuous family of homeomorphism germs ht : pKn, 0q Ñ pKn, 0q so that

f0 � ft � ht, for all t P Rp i.e. the family is topologically trivial.

Proof. Let us set for r ¡ 0, Sprq :� tx P Kn : ρpxq � ru and Uprq � tx P
Kn : ρpxq   ru.

Let F : pKn�Rp, t0u�Rpq Ñ pKk, 0q, be a representative of tftu, F px, tq �
ftpxq and G � pF, ρq.

By the assumption on tftu, there exists r0 such that for 0   r ¤ r0, p0, rq
is a regular value of the restriction of G to pUprq � t0uq � Rp then for each
0   r ¤ r0, Sprq is a smooth manifold di�eomorphic to the n� 1 unit sphere,
G�1p0, rq � F�1p0q X pSprq � Rpq is a smooth manifold and the restriction of
the projection on the second factor, π : G�1p0, rq Ñ Rp has no critical points.

Let ΣpF, rq :� the set of singular points of the restriction of F to Sprq�Rp.
Let dprq be a continuous function on s0, r0s such that

0   dprq   the distance of ΣpF, rq to F�1p0q X pSprq � Rpq.

Such function exists because for any 0   r ¤ r0,

ΣpF, rq X F�1p0q X pSprq � Rpq � H.

Let

U1 �

"
px, tq : 0   ρpxq   r0, distppx, tq,ΣpF, ρpxqqq  

dpρpxqq

2

*
,

U2 �

"
px, tq : 0   ρpxq   r0, distppx, tq,ΣpF, ρpxqqq ¡

dpρpxqq

2

*
.

Then tU1, U2u is an open covering of pUpr0q � t0uq � Rp. Since F has no
coalescing of critical points, we may suppose that the restriction of pF, πq to
pUpr0q � t0uq �Rp is a submersion on Kk �Rp. Let ξi1, 1 ¤ i ¤ p, be a smooth
lift by pF, πq of the vector �eld B

Bti
.

Since U2 is disjoint from the singular points of G, ΣpGq, and ρ does not
depend on the parameter t, then the restriction of pG, πq to
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pUpr0q � t0uq �Rp �ΣpGq is a submersion, and hence on U2. Let ξ
i
2,1 ¤ i ¤ p,

be a smooth lift by pG, πq of the vector �eld B
Bti
.

Now, let tϕ1, ϕ2u be a partition of unity associated to the covering tU1, U2u.
We de�ne, for 1 ¤ i ¤ p, the vector �eld ξi on pUpr0q � t0uq � Rp, by

ξi � ϕ1ξ
i
1 � ϕ2ξ

i
2.

By construction ξi is smooth tangent to the level surface of F , and con-
trolled by ρ.We extend, for 1 ¤ i ¤ p, ξi to Upr0q�Rp, by ξip0, tq � B

Bti
. By con-

struction, ξi is controlled and locally integrable, then integrable (see [6]). For
px, tq P Upr0q �Rp, let φipx,tqpsq be the integral curve of ξ

i satisfying the initial

condition φipx,tqptq � px, tq. For small 0   r̃   r0, we de�ne a homeomorphism

hi : Ur̃�Rp Ñ U by hipx, tq � φipx,0qptq. Let hpx, tq � h1ph2p. . . phppx, tq, tqq . . .q.

Then h is a homeomorphism and we have F � hpx, tq � f0pxq. l

Remark 2.5. We may suppose in theorem 2.4, that the family is only
continuous with respect to the parameter, by applying theorem 1 of H. King [8].

2.1. Su�cient conditions for uniform radius and no coalescing

De�nition 2.6. Let f : pKn, 0q Ñ pKk, 0q pn ¥ kq be a smooth tame
map germ. Let ρ : pKn, 0q Ñ R� be a germ of a tame submersion such that
ρ�1p0q � t0u.

We denote by Jρpfq the Fukuda's ideal associated to pf, ρq i.e. the jaco-
bian ideal of the map germ pf, ρq generated by f1, . . . , fp and pk� 1q � pk� 1q
minors of the jacobian matrix

Dpf, ρq

Dpx1, . . . , xnq
�

�
�����

Bf1
Bx1

. . . Bf1
Bxn

... . . .
...

Bfn
Bx1

. . . Bfn
Bxn

Bρ
Bx1

. . . Bρ
Bxn

�
����
.

Theorem 2.7 (T. Fukuda [4]). Suppose ft : pRn, 0q Ñ pR, 0q, t P Rp is

a continuous family of analytic function germs and let ρ : pKn, 0q Ñ R� be a

germ of an analytic submersion in a punctured neighborhood of 0 P Rn and such

that ρ�1p0q � t0u.
Suppose that:#

µpftq � µpf0q   8, t P Rp and

dimR
On

Jρpftq
� dimR

On
Jρpf0q

  8 t P Rp

Then the family ft : pRn, 0q Ñ pR, 0q, t P Rp is with no coalescing and a

ρ-uniform radius, therefore it is topologically trivial.
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Proof. The condition µpftq � µpf0q   8, t P Rp implies that tftu is
with no coalescing and dimR

On
Jρpftq

� dimR
On

Jρpf0q
  8, t P Rp, implies that

tftu has ρ-uniform radius. l

Theorem 2.8 (T. Fukuda [4]). Suppose ft : pRn, 0q Ñ pRk, 0q, t P Rp
(n ¡ k) is a continuous family of analytic map germs and let ρ : pKn, 0q Ñ R�

be a germ of an analytic submersion such that ρ�1p0q � t0u. Suppose that:

dimR
On

Jρpftq
� dimR

On

Jρpf0q
  8 t P Rp

Then the family of zero sets tf�1
t p0qutPRp is topologically trivial.

Proof. In fact, the conditon dimR
On

Jρpftq
� dimR

On
Jρpf0q

  8 for t P Rp,
implies that there exists a neighborhood U of 0 in Rn such that U X tft �
Jρpftq � 0u � t0u for all t, i.e. tftu has ρ-uniform radius. l

Let us �x a vector w � pw1, . . . , wnq P Nn � t0u. We will usually refer to
w as the vector of weights. Let h P On, h � 0, the degree of h with respect to

w, or w-degree of h, is de�ned as

dwphq � mintxk,wy : k P suppphqu,

where x , y stands for the usual scalar product. In particular, if x1, . . . , xn
denote a system of coordinates in Kn and xk11 . . . xknn is a monomial in On, then
dwpx

k1
1 . . . xknn q � w1k1 � � � � � wnkn. By convention, we set dwp0q � �8. If

h P On and h �
°
k akx

k is the Taylor expansion of h at the origin, then we
de�ne the principal part of h with respect to w as the polynomial given by the
sum of those terms akx

k such that xk,wy � dwphq. We denote this polynomial
by pwphq.

De�nition 2.9. We say that a function h P On is weighted homogeneous of

degree d with respect to w (or of type pw; dq) if xk,wy � d, for all k P suppphq.
The function h is said to be semi-weighted homogeneous of degree d with respect

to w when pwphq has an isolated singularity at the origin.

It is well-known, see [1], that if h is a semi-weighted homogeneous function,
then h has an isolated singularity at the origin and that h and pwphq have the
same Milnor number given by:

µphq �
pd� w1qpd� w2q . . . pd� wnq

w1.w2. . . . wn

Let g � pg1, . . . , gnq : pKn, 0q Ñ pKn, 0q be an analytic map germ, and
let us denote the map ppwpg1q, . . . , pwpgnqq by pwpgq. The map g is said to be
semi-weighted homogeneous with respect to w when ppwpgqq

�1p0q � t0u.
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Remark 2.10. It is not di�cult to see that a family of weighted homo-
geneous functions with isolated singularity has a ρ-uniform radius with ρ �°n
i�1 |xi|

2. In fact, if tftu is a weighted homogeneous family of type

pw1, . . . , wn; dq, the �Euler formula� gives:
°n
i�1wixi

Bft
Bxi

� d.ft. And now if
f has a kink at p � px, tq then there exists λ P R� such that dxfppq � λdxρppq
i.e. Bft

Bxi
� λxi. Since p P f�1p0q the Euler formula gives λ

°n
i�1wi|xi|

2 � 0
which implies p P t0u � Rp so it is not in the smooth part. Thus, ρpftq � �8.

It has also ρ-uniform radius, for ρ a weighted homogeneous control func-
tion with respect to the system of weights, for example:

ρwpx1, . . . , xnq �
ņ

i�1

|xi|
2d
wi .

It is no worth to mention the following paper [5], for reference concerning,
singular metric in weighted homogeneous setting.

Proposition 2.11. Suppose ft : pRn, 0q Ñ pRk, 0q, t P Rp is a continuous

family of weighted homogeneous polynomial germs with no coalescing. Then

there is a continuous family of homeomorphism germs ht : pRn, 0q Ñ pRn, 0q so
that f0 � ft � ht all t P Rp.

Proof. In this case ρpftq � �8, we can apply Theorem 2.4. l

Proposition 2.12. Let ft :pRn, 0qÑpRk, 0q, t P Rp be a continuous family

and ρ : pKn, 0q Ñ R� weighted homogeneous of degree d with respect to w.

If dimR
On

Jρpftq
  8, t P Rp, then tf�1

t p0qutPRp is topologically trivial.

Proof. In this case the Fukuda's ideal is weighted homogeneous with the
same weights, then dimR

On
Jρpftq

  8 , for all t, implies that for any neighborhood

U of 0 in Rn, U X tft � Jρpftq � 0u � t0u for all t. i.e tftu has ρ-uniform
radius. l

In the semi-weighted homogeneous case, M. Oka show that the family of
complexe polynomials ftpx, y, zq � z5�ty6z�px�y�zqy7�px�y�zq15 is semi-
weighted homogeneous in C3 with constant Milnor number but do not have a
ρ-uniform radius with respect to the standard distance function ρpx, y, zq �
|x|2 � |y|2 � |z|2. Writing it this way ftpx, y, zq � z5 � ty6z� xy7 � x15 � tpy�
zqy7 �

°15
k�1

�
n
k

�
x15�kpy � zqku. We see that ft is semi-weighted homogeneous

of type p1, 2, 3; 15q and with constant Milnor number µpftq � 364.

See [16, page 207], for the proof of the fact that this family has non
uniform radius with respect to ρpx, y, zq � |x|2 � |y|2 � |z|2.

Remark 2.13. This family is topologically trivial, since F px, y, z, tq �
G �Hpx, y, z, tq where H is the automorphism Hpx, y, z, tq � px� y� z, y, z, tq
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and Gpx, y, z, tq � gtpx, y, zq � z5� ty6z�xy7�x15 is the Brian�con-Speder ex-
ample (see [2]), which is weighted homogeneous of type p1, 2, 3; 15q with isolated
singularity.

But we do have

Theorem 2.14. Suppose ft : pRn, 0q Ñ pRk, 0q, t P Rp is a continuous

family of semi-weighted homogeneous tame germs with no coalescing. Then

there is a continuous family of homeomorphism germs ht : pRn, 0q Ñ pRn, 0q so
that f0 � ft � ht all t P Rp.

Proof. Let pw; dq be the type of ft, then ft has a ρw-uniform radius, with

ρwpx1, . . . , xnq �
°n
i�1 |xi|

2 d
wi . In fact ρwpftq � �8 therefore the statement

follows from Theorem 2.4. l

3. VANISHING FOLDS, MILNOR NUMBER

AND WHITNEY CONDITION

Following D. O'shea [17], we say that a point p P f�1p0q is a ρ-kink of
f�1p0q if p is non singular point of f and if p is a critical point of ρ restricted
to the manifold of smooth points of f�1p0q.

Remark 3.1. For k � 1, an easy computation shows that a nonsingular
p P f�1p0q is a ρ-kink if and only if dfppq � λdxρ̄ppq for some λ in K� t0u.

We suppose that for every t P Kp, ftp0q � 0 and 0 is an isolated critical
point of ft. Let γ : r0, εs Ñ Kn�r0, 1s be a real analytic path γpsq � pxpsq, tpsqq
such that:

1) γp0q � p0, 0q

2) |xpsq| ¡ 0 and |tpsq| ¡ 0 for all 0   s   ε, and

3) fpxpsq, tpsqq � 0 for all 0 ¤ s ¤ ε.

Remark 3.2. It is easy (remark 2.10) to see that a weighted homogeneous
functions with isolated singularity cannot have a ρ-kink, with ρ �

°n
i�1 |xi|

2.

De�nition 3.3. The path γ will be called a ρ-vanishing fold of f (centered
at 0 ) if xpsq is a ρ-kink of f�1

tpsqp0q for every s P p0, εs.

Remark 3.4. It is easy to see that: tftu has a ρ-uniform radius if and only
if it has no ρ-vanishing fold in Upε0q � tx P Kn : ρpxq   ε0u for some ε0 ¡ 0.

For a family of function germs with isolated singularities

F : pKn �Kp, t0u �Kpq Ñ pK, 0q,
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we associate the canonical strati�cation of Kn �Kp given by the partition

SF � tKn �KpzF�1p0q, F�1p0qzt0u �Kp, t0u �Kpu

We shall denote by π the projection on the second factor, V � F�1p0q,
Y � t0u �Kp , X � V � Y and Xt � tx P Kn |F px, tq � 0u.

Since Xt has an isolated singularity at p0, tq, the critical set of the restric-
tion of π to V is Y.

Then X is a smooth manifold, and for each point px, tq P X, we have

Tpx,tqX � tpu, vq P Cn � C|
ņ

i�1

ui
BF

Bxi
px, tq �

p̧

j�1

vj
BF

Btj
px, tq � 0u � pRdF qK .

Here we use the following notation: dF � p BFBx1 , . . . ,
BF
Bxn

, BFBt q, dxF �

p BFBx1 , . . . ,
BF
Bxn

q and }dxF }
2 �

°n
i�1 }

BF
Bxi

}2.
The property that the canonical strati�cation associated to a family of

germs with isolated singularities be (a) ( resp. (b)) regular (see [22]), can be
made more practically by using the following form:

De�nition 3.5. We say that F is Whitney regular at 0 if its canonical
strati�cation Sf is Whitney regular and this is equivalent to: the following
conditions are satis�ed

condition paq:

lim
px,tqÑ0
px,tqPX

�
BF
Btj
px, tq

}dxF px, tq}

�
� 0 for each 1 ¤ j ¤ p.

condition pb1q:

lim
px,tqÑ0
px,tqPX

�°n
i�1 xi

BF
Bxi

px, tq

}x}}dxF px, tq}

�
� 0.

Remark 3.6. (1) It is known that condition a� b1 is equivalent to Whit-
ney condition (b) see [14, 19, 21].

(2) A Whitney regular family of map germs is topologically trivial, so that
the topological type is constant in such a family.

De�nition 3.7. We say that F is µ-constant deformation if µpF p., tqq �
µpF p., 0qq for any t.

Remark 3.8. In general ρ-uniform radius for some �control function� ρ for
a family of germs is weaker than Whitney regularity. For example, take the
Brian�con-Speder family F px, y, z, tq � z5 � ty6z � y7x � x15; it is a family of
weighted homogeneous polynomials of type p1, 2, 3; 15q and of constant Milnor
number µpftq � 364. The family tftu is µ-constant but for a generic hyperplane
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H in R3, of equation z � ax � by with a, b P R � t0u, gt � ft|H is a family of
semi weighted homogeneous polynomials with µpgtq � 26   µpg0q � 28. Since
the Milnor number jumps, this family must have a ρ-vanishing fold (see 3.12).

Let F be an analytic function from Kn�Kp to K, in a neighborhood of 0

F : Kn �Kp, 0 Ñ K, 0
px, tq ÞÑ F px, tq

with F p0, tq � 0. We denote by π the projection on the second factor, V �
F�1p0q, Y � t0u�Kp and Xt � tx P Kn : F px, tq � 0u. We suppose Xt has an
isolated singularity at p0, tq i.e. the critical set of the restriction of π to V is
Y. Then X � V �Y is an analytic manifold of dimension n, and for each point
px, tq P X we have

Tpx,tqX � tpu, vq P Kn �Kp :
ņ

i�1

ui
BF

Bxi
px, tq �

p̧

j�1

vj
BF

Bt
px, tq � 0u �

�
KdF̄

�K
.

where dF � p BFBx1 , . . . ,
BF
Bxn

, BFBt q, dxF � p BFBx1 , . . . ,
BF
Bxn

q.
Let G be the set of analytic map germs from Kn �Kp, 0 to Kn �Kp, 0 of

the following type: Φpy, τq � pΨpy, τq, λpτqq � px, tq, where Ψ for small τ is a

germ of automorphisms of pKn, 0q (i.e. det
�
BΨ
By

	
�� 0 and Ψp0, τq � 0 ).

We suppose given F : Kn�Kp, 0 Ñ K, 0 an analytic deformation of f � f0

such that F p0, tq � BF
Bx1

p0, tq � . . . � BF
Bxn

p0, tq � 0,

X � F�1p0qzt0u �Kp, Xt � f�1
t p0q and Y � t0u �Kp.

The following theorem shows that Whitney regularity is equivalent to the
stability of the ρ-uniform radius property with respect to families of linear
change of variable in x.

Theorem 3.9. Let F be a µ-constant deformation. The following condi-

tions are equivalent

(i) F is Whitney regular

(ii) For any Φ P G, F � Φ has no ρ-vanishing fold with respect to the square

of the distance function.

Proof. (i) ñ (ii)
Since having a vanishing fold γpsq � pxpsq, tpsqq, implies that

°n
i�1 xipsq

BF
Bxi

pγpsqq

}xpsq}}dxF pγpsqq}
� 1; therefore if a deformation is Whitney regular then it

has no vanishing folds. We have then only to show that if F is Whitney then
so is F � Φ for all Φ P G.

By de�nition F � Φpy, τq � F pΨpy, τq, λpτqq; this suggests doing it in the
following two steps: Firstly, for λ � IdKp , Φ1py, τq � pΨpy, τq, τq, is then an
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analytic di�eomorphism of Kn�p, and since Whitney's conditions are invariant
by di�eomorphism, if F is Whitney regular, so is F � Φ1, where Φ1py, τq �
pΨpy, τq, τq.

Secondly, if F is Whitney regular, then so is F � Φ2, where Φ2py, τq �
py, λpτqq and λ : Kp, 0 Ñ Kp, 0.

In fact, the condition pb1q is trivially satis�ed by F � Φ since it does not
make use of the partial derivative relative to the parameter τ.

To check the paq condition, we compute

BF � Φ2

Btj
py, λpτqq �

p̧

m�1

Bλm
Btj

pτq
BF

Bλm
py, λpτqq.

Since F satis�es condition paq, we have

lim
py,τqÑ0

px,yqPX�Y

� BF�Φ2
Btj

py, τq

}dxF � Φ2py, τq}

�
� lim

py,τqÑ0
px,yqPX�Y

p̧

m�1

Bλm
Btj

pτq

�
BF�Φ2
Btm

py, τq

}dxF � Φ2py, τq}

�
� 0.

Therefore F � Φ satis�es condition paq. Then it follows from these facts
that for any Φ P G, F �Φ is Whitney regular, so that it has no vanishing folds.

(ii) ñ (i)

Firstly, since F is a µ-constant deformation in a neighborhood of 0, it
satis�es the paq regularity condition (in fact we have more, µ-constant implies
�good strati�cation� in the sense of Thom.

Let us suppose that pbq fails, which in turn implies that pb1q fails, since
paq holds.

Let ∆pz, τq �

°n
i�1 xi

BF
Bxi

pz,τq

}x}}gradxF pz,τq}
where pz, τq P X � Y. Then there exists a

real analytic curve γ : r0, εs Ñ X, γpsq � pxpsq, tpsqq and δ0 ¡ 0 such that:

1) γp0q � p0, 0q,

2) fpzpsq, τpsqq � 0 for all 0 ¤ s ¤ ε, and

3) limsÑ0 ∆pzpsq, τpsqq � l �� 0.

Let us denote by v the valuation of OK,0 associated to γ.

We will use the following notations:

vpzq � inf
1¤i¤n

vpziq for z P Kn, v

�
Bf

Bx



� inf

1¤i¤n
v

�
Bf

Bxi



.

In these conditions, if we denote vpzq � p and vpBfBx q � q, we can suppose
(change the order of variables if necessary) that vpz1q � p.

Since ∆ � γpsq has a non zero limit when s tends to 0, we may conclude

that vp  z, BfBx pz, τq ¡q � vpzq � vpBfBx pz, τqq � p� q.
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Let us denote γpsq � pp1psq, . . . , pnpsq, λpsqq,
Bf
Bx �γpsq � pq1psq, . . . , qnpsqq

and vp  z, BfBx ¡ �γpsqq � upsq.

We now de�ne Φ : pKn �K, 0q Ñ pKn �K, 0q by:

Φpy1, . . . , yn, sq � pΨpy, τq, λpsqq

where Ψpy, sq � py1 �
p1
u h, y2 �

p2
p1
y1 �

p2
u h, . . . , yn �

pn
p1
y1 �

pn
u hq and h �

q2y2 � q3y3 � . . .� qnyn.

We may �rst check that Φ P G :

1) Φ is analytic.

We use for this the valuation along γ.

If j �� 1, then for yj�
pj
p1
y1�

pj
u h , we have by hypothesis vp

pj
p1
y1q ¥ vpp1q�

vpy1q�vpp1q ¥ 0 and vp
pj
u hq � vppjq�vphq�vpuq ¥ pp�qq�pp�qq � 0.

If j � 1 for y1 �
p1
u h, we have vpp1u hq � vpp1q � vphq � vpuq � pp � qq �

pp� qq � 0.

2) Ψp0, sq � 0

3) The jacobian of Ψ is invertible in a neighborhood of 0.

For this we compute the determinant of this jacobian and show it equals 1.

Let Φ1py, τq � y1 �
p1
u h and Φjpy, τq � yj �

pj
p1
y1 �

pj
u h for 2 ¤ j ¤ n.

Then BΦ1
By1

� 1 and @j ¥ 2, BΦ1
Byj

� �p1
u qj .

@i, j ¥ 2, i �� j,
BΦj
Byi

� �
pj
u qi

@i ¥ 2, BΦi
Byi

� 1� pi
u qi and

BΦi
By1

� pi
p1
.

(3.1) det

�
BΨ

By
py, τq



�

�������������������

1 �p1
u q2 . . . �p1

u qi . . . �p1
u qn

p2
p1

1� p2
u q2

...
...

...
. . .

...
... 1� pi

u qi
...

...
...

...
. . .

...
pn
p1

�pn
u q2 . . . �pn

u qi . . . 1� pn
u qn

�������������������
If we denote by Cj the jth row, and apply the transformation Cj � Cj �

piqi
u C1 for j � 1, � � � ,m.
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We see that

(3.2) det

�
BΨ

By
py, sq



�

�������������������

1 0 . . . . . . . . . 0

p2
p1

1
...

...
... 0

. . . 0
...

... 1
...

...
...

...
. . . 0

pn
p1

0 . . . . . . 0 1

�������������������

� 1

We can now conclude that Φ P G.
Moreover, by construction we have Φpp1psq, 0 . . . , 0, sq � γpsq.
The computation gives us for i ¥ 2

BF � Φ

Byi
pp1psq, 0 . . . , 0, sq �

ņ

j�1

BF

Bxi
pγpsqq

BΦj

Byi
pp1psq, 0 . . . , 0, sq

�
ņ

j�1

qjpsq
BΦj

Byi
pp1psq, 0 . . . , 0, sq

� �
q1psqqipsqp1psq

u
� qipsq

�
1�

pipsqqipsq

u



�
¸
j ��1
j ��i

qjpsqqipsqpjpsq

u

� �
qipsq

u

�
��p1psqq1psq � pipsqqipsq �

¸
j ��1
j ��i

pjpsqqjpsq

�
�
� qipsq

� �
qipsq

u
.u� qipsq � 0.

If i � 1, I � q1psq�
ņ

j�2

qjpsq
pipsq

p1psq
�

u

p1
. Then, we obtain that BF�Φ

Byi
pp1psq,

0 . . . , 0, sq � λpp1psq, 0, . . . , 0q with λ �
u

|p1|2
i.e. F �Φ has a vanishing fold. l

Remark 3.10. 1) This theorem is to be compared with the results (see
[14, 19, 21]), on the characterization of the Whitney condition (b) by
tubular neighborhood.

2) In this theorem we can replace G by the set Gl � tΦ � pΨ, λq : Kn�K, 0 Ñ
Kn �K, 0 such that Ψp., sq P GlpKnqu the proof is essentially the same.

3) The theorem and its proof continue to hold if we replace, the squared
distance function by a squared distance function with respect to any a�ne
metric in Cn.
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Example 3.11. From the theorem, Whitney faults are detected by vanish-
ing folds. So to �nd a vanishing fold, it su�ces to �nd an arc along which the
Whitney regularity fails.

Let F px, y, z, tq � z5� ty6z�y7x�x15, Brian�con and Speder in [2] shows
that the Whitney condition fails at 0 along an arc γpsq$''&

''%
xpsq � 4s5 �Ops6q
ypsq � s5

zpsq � s8

tpsq � �5s2.

From the construction (in the proof ), the family of automorphisms Φ :
pC3 � C, 0q Ñ pC3 � C, 0q is of this type ΦpX,Y, Z, sq � pΨpX,Y, Z, sq, tpsqq
where ΨpX,Y, Z, sq � pX � p1

u h, Y � p2
p1
X � p2

u h, Z � p3
p1
X � p3

u hq and h �

q2Y � q3Z. After the computations, we obtain ΨpX,Y, Z, sq � pX � 1
2pY �

s3Zq � . . . , 2Y � 2X � s2Zq � . . . , Zq, the dots is for higher terms. Finally
F �ΦpX,Y, Z, sq, has a vanishing fold along the curve γpsq � pq1, q2, q3, tpsqq �

pBfBx � γpsq, tpsqq. Now the construction of the analytic family of automorphisms
in the above theorem shows that with respect to ρ � |X|2 � |Y |2 � |Z|2, the
family tftu, has a ρ-vanishing fold i.e. it does not have a ρ-uniform radius.

It is worth to mention that, in the complex analytic case, we have a
generalization of a theorem of O'Shea [17]; which relates the jump of Milnor
numbers to the existence of vanishing folds.

Theorem 3.12. Let F : pCn � C, t0u � Cq Ñ pC, 0q be a family of holo-

morphic function germs with isolated singularities and Xt � tf�1
t p0qu the cor-

responding family of hypersurfaces. Let µt � µ be the Milnor number of ft at
the origin and suppose that µt � µ is constant for 0   t ¤ 1 and µ   µ0.

Then, the family tf�1
t p0qu admits a ρ-vanishing fold centered at 0 or it

has an analytic critical arc.

The path γ is called a critical arc of f (centered at 0) if xpsq is a singular
point of f�1

tpsqp0q for every s P p0, εs.
The proof will appear in a forthcoming paper.
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