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For a smooth, closed n-manifold M , we de�ne an upper semi-continuous integer-
valued complexity function on H1(M ;R) using Morse theory. This measures
how far an integral class is from being a �ber of a �bration. The fact complexity
minimisers are open generalises Tischler's result on the openness of classes dual
to �brations. We then use this to de�ne a complexity function on 1-dimensional
cohomology of a �nitely presented group, which is constant on open rays from the
origin and vanishes precisely on the geometric invariant due to Bieri, Neumann
and Strebel.
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1. INTRODUCTION

This work has its origin in a desire to exhibit extra structure in the non-
�bred faces of the unit norm ball of the Thurston norm on �rst homology of a
3-manifold (see [14]). However, our constructions are more general. To keep the
discussion brief, we restrict ourselves to closed manifolds and �nitely presented
groups in this note. Throughout this paper we regard 0 as a natural number
in N and manifolds are smooth.

Suppose M is a connected oriented closed n-manifold. The Morse com-

plexity function

m̃ : H1(M ;R) −→ Nn+1

is a vector, where the kth component counts the number of critical points of
Morse index k of a minimal closed Morse 1-form representing the cohomol-
ogy class, with the minimum taken over all representatives using lexicographic
order. Since m̃ is constant on rays, it gives a function on the sphere

m : S(M) = (H1(M ; IR) \ {0}) / IR+ −→ Nn+1.

Then m(ψ) = ~0 if and only if ψ is represented by a non-singular closed
1-form. It follows from work of Tischler [15] (see Fried [5, Theorem 1]) that
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the set of cohomology classes of non-singular closed 1-forms is an open cone
in H1(M ; IR) \ {0}, which is non-empty if and only if there is an integral class
represented by a codimension-1 manifold that is a �ber of a �bration of M
over S1.

Theorem 1. Suppose M is a closed orientable n-manifold. For each ~m ∈
Nn+1 there is an open subset U ⊂ S(M) such that m(ψ) ≤ ~m if and only if

ψ ∈ U .

Corollary 2. Suppose M is a closed orientable n-manifold, and S ⊂M
is a 2-sided connected non-separating codimension-1 submanifold, and X is the

compact n-manifold obtained by deleting an open tubular neighbourhood of S.
Then ∂X = S−tS+ and X is the union of S−× [0, 1] and some handles. Given

a primitive class φ ∈ H1(M ;Z), let h(φ) be the minimum number of handles

for such S dual to φ. For each k ≥ 0 there is an open subset U ⊂ S(M), such
that h(φ) ≤ k if and only if [φ] ∈ U .

In Section 3, we de�ne an analogous complexity function, called the trop-
ical rank, for a �nitely presented group G by considering all manifolds with
fundamental group isomorphic to G. We then re-interpret this function using
HNN decompositions of G and relate it to the geometric invariant Σ(G) due to
Bieri, Neumann and Strebel. To state the properties of this function, let S(G)
be the set of equivalence classes of non-trivial homomorphisms ϕ : G → IR,
where two such homomorphisms are equivalent if they are positive scalar mul-
tiples of each other. If ϕ(G) is discrete, then rank[ϕ] is roughly the minimum
number of generators that must be added to the amalgamating subgroup A to
obtain B in an HNN extension G ∼= B∗A corresponding to ϕ.

Theorem 3. Let G be a �nitely presented group. The tropical rank

rank : S(G)→ N

is upper semi-continuous and has image bounded above by the minimal number

n of generators of G. Moreover, for rational classes [ϕ] ∈ SQ(G) we have

(1) rank[ϕ] ≤ n− 1,

(2) rank[ϕ] = 0 if and only if [ϕ] ∈ Σ(G), and

(3) rank[ϕ] = 0 and rank[−ϕ] = 0 if and only if kerϕ is �nitely generated.

Most of the results in this paper are known. However we have collected
those results that seem most relevant to low dimensional topology and geometric
group theory with a view to providing a concise source. Our focus is on handles

in manifolds and generators for groups rather than Novikov homology, and
is more in the spirit of the Thurston norm and BNS invariant. We end this
introduction by discussing open questions about the special case of 3-manifolds.
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Suppose M is a closed, orientable 3-manifold. There is a natural iden-
ti�cation S(M) = S(π1(M)). The �rst Morse rank on S(M) gives an upper
bound on the tropical rank on S(π1(M)), and we do not know if this is always
an equality. Thurston [14] de�ned a semi-norm on H1(M ; IR). Each primitive
class c ∈ H1(M ; ZZ) can be represented by an embedded, orientable surface
F ⊂ M. If F is connected, de�ne χ−(F ) = max{0,−χ(F )}, and otherwise
χ−(F ) =

∑
χ−(Fi), where the sum ranges over its connected components.

Then the semi-norm of c is the in�mum of χ−(F ) taken over all surfaces F
representing c. Thurston showed that the unit ball of this semi-norm is a �nite
sided polytope, and that the complexity zero classes correspond to the interiors
of top-dimensional faces of this polytope, called the �bered faces. In particular,
the set of cohomology classes of non-singular integral classes has image that is
dense in an open polyhedral subset of S(M). Apart from this, we do not know
how the �rst Morse rank and the tropical rank are related to the polyhedral
structure of the Thurston norm ball.

2. MANIFOLDS

Let M be a closed n-manifold. We show that elements of H1(M ;R)
are represented by Morse 1-forms. This is used to de�ne a complexity taking
values in Nn+1 (using lexicograhic order) for a �rst cohomology class. Nearby
cohomology classes are represented by nearby Morse 1-forms with the same

singularities. This implies the set of classes with complexity less than some
value is open. We then relate this complexity to handle decompositions of M
and the Novikov numbers of M. The notation and terminology in this section
follows Farber [4], and most of the results are surely known to the experts.

2.1. The Morse complexity

Let M be a closed, n-manifold. A smooth function f : M −→ R is Morse

if at every critical point of f the Hessian d2 f is non-singular. This Hessian is
a quadratic form

−(x21 + · · ·+ x2i ) + (x2i+1 + · · ·+ x2n)

of index i. A Morse function gives a handle decomposition of M with i-handles
corresponding to critical points of index i.

Let ω be a closed 1-form on M. For every open ball U ⊂ M, there is
a smooth function fU : U → IR satisfying ω|U = d fU and fU is determined
uniquely by ω up to a constant. In local coordinates, we have:

ωx =
∑

ai(x) dxi
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and hence ai(x) = ∂f
∂xi

(x). It follows that the zeros of ω in U are precisely
the critical points of fU . A zero of ω is called non-degenerate if the critical
point of the corresponding function is a Morse singularity, and the index of the
singularity is termed the Morse index of the zero of ω. The form ω is termed
Morse if all of its zeros are non-degenerate.

For a Morse 1-form ω denote by mi = mi(ω) the number of zeros of
Morse index i. This is �nite sinceM is compact. This gives a complexity vector

m̃(ω) = (m0, · · · ,mn). We use lexicographic ordering on these vectors so c < d
if there is i ≥ 0 with ci < di and cj = dj for all j < i.

By Theorem 10 every element ξ ∈ H1(M ; IR) is represented by a Morse
1-form ω and we de�ne m̃(ξ) to be the minimum of m̃(ω) over such ω. Note
that m̃(ξ) = m̃(rξ) for r > 0, however in general m̃(ξ) 6= m̃(−ξ), so m̃ descends
to a well-de�ned function on the sphere,

m : S(M) = (H1(M ; IR) \ {0})/IR+ −→ Nn+1,

called the Morse complexity function. Note that S(M) ∼= Sk−1, where k =
rankH1(M ; IR).

In the case ξ = 0 a minimising Morse 1-form is ω = d f for some Morse
function f on M . Then m̃(0) gives the least number of handles in a decompo-
sition of M using lexicographic ordering. In particular m̃(0) = (1, 0, · · · , 0, 1)
if and only if M is di�eomorphic to a sphere. The existence of exotic 7-spheres
implies that m̃(0) is not an invariant of homotopy type.

Instead of minimising the whole complexity vector, one may also be in-
terested in minimising any one of its component functions. For ξ ∈ H1(M ; IR),
the i-th Morse rank is

m-ranki(ξ) = min
[ω]=ξ

mi(ω).

We again have m-ranki(ξ) = m-ranki(rξ) for r > 0, however in general
m-ranki(ξ) 6= m-ranki(−ξ). We therefore view m-ranki as an integer-valued
function on the sphere S(M), and note that in general, the i-th Morse rank is
not the ith component of the Morse complexity function.

Proposition 4. The i-th Morse rank

m-ranki : S(M)→ N

is upper semi-continuous for each i ∈ {0, 1, . . . , n}. That is, for each x ∈ S(M),
there is an open neighbourhood N(x) with respect to the usual topology of Sk−1

such that m-ranki(y) ≤ m-ranki(x) for all y ∈ N(x).

Since S(M) is compact, it follows that the range of m-ranki : S(M)→ N
is �nite. Since the function is upper semi-continuous, we have the following
immediate consequence:
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Corollary 5. The set Σi of all points of minimal i-th Morse rank is

open in S(M). Moreover, rational points are dense in Σi.

Remark 6. For all rational points, we have m-rank0[ξ] = 0 = m-rankn[ξ]
since they can be represented by circle valued Morse functions. However, Corol-
lary 5 does not imply that

m-rank0 ≡ 0 ≡ m-rankn .

Are there examples, where the functions m-rank0 and m-rankn are not
trivial?

Example 7 (The torus). Consider the torus T k = V/Zk, where V = Rk.
A linear map L ∈ V ∗ gives an exact 1-form dL on Rk, which is preserved by
translations, and therefore is the pullback of a closed 1-form ωL on T k. Since
there are no singularities, m-rank1 vanishes identically.

Example 8. There are manifolds M with the property that m-rank1 :
S(M) → N does not vanish identically but is zero on a dense set; for instance
3-manifolds with each face of the Thurston norm ball a �bred face, such as (zero-
framed surgery on) the complements of the Whitehead link or the Borromean
rings (see [14]).

Example 9 (Surfaces). Let F be a surface of genus g ≥ 1, and ξ ∈
H1(F,ZZ) be a non-trivial primitive element. Then ξ is dual to a circle valued
Morse function F → S1 with no critical points of indices 0 or 2. Since critical
points of index 1 can only be cancelled against those of index 0 or 2, the Euler
characteristic of F implies m(ξ) = (0, 2g − 2, 0) and m-rank1(ξ) = 2g − 2.

2.2. Proofs of Theorem 1 and Proposition 4

Endow M with a Riemannian metric. We let

B(x; r) = {y ∈M | d(x, y) < r}.

If B(x; r) is called an open ball, then it is understood that r is chosen
such that B(x; r) is di�eomorphic to intBn ⊂ IRn. This condition holds for r
su�ciently small. At each x ∈M, we have a well-de�ned real number,

|| ω ||x =
√
〈ωx, ωx〉x,

arising from the inner product at x. We have || ω ||x = 0 if and only if x is
a zero of ω. The norm of ω is ||ω|| = sup ||ω||x. A closed 1-form ω de�nes a
de-Rham cohomology class [ω] ∈ H1(M ;R).

It is well known that the set of Morse functions is dense in the set of
smooth functions. Lalonde, McDu� and Polterovich [8, Lemma 5.1] show that
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the harmonic representative of a non-trivial class in H1(M,R) is a Morse 1-
form for a generic Riemannian metric. We give an elementary proof of the
density of Morse forms in every cohomology class. Another proof is in [12,
Ch. 2 Theorem 1.25].

Theorem 10. If M is a closed Riemannian manifold, then the set of

Morse 1-forms in each cohomology class is dense.

Proof. We must show that given ε > 0 and a closed 1-form ω, there is a
Morse 1-form, η, such that [η] = [ω] ∈ H1(M ;R) and ||ω − η|| < ε.

Suppose ψ is a closed 1-form on M and U ⊂ M is an open set such that
ψ|U is Morse, and ψ|U has �nitely many zeros which are all in U . Suppose
B := B(x; r) ⊂M is an open ball contained in larger open balls 2B := B(x; 2r)
and 3B = B(x; 3r). Given δ > 0 we show below that there is a 1-form ψ1 onM
such that ψ = ψ1 outside 3B and ||ψ1−ψ|| < δ and ψi| cl(U ∪B) is Morse with
�nitely many singularities, which are all in U ∪ B. Since ψ1 and ψ are equal
outside the contractible set 3B it follows they represent the same cohomology
class.

Assuming this, there is a �nite cover of M by balls Bi := B(xi; r) ⊂ M
with 1 ≤ i ≤ m, each contained in balls B(xi; 2r) ⊂ B(xi; 3r). We start with
ψ0 = ω and U0 = ∅ and δ = ε/m and inductively apply the above to produce
a 1-form ψk which is Morse on Uk = ∪ki=1Bi. Then η = ψm is as required.

It remains to prove the claim. Since ψ has �nitely many zeros in U,
there is an open set V with V ⊂ U and V contains all the zeros of ψ|U . Set
µ = inf ||ψ||x where the in�mum is over x in the compact set U \V . Then µ > 0.

The closed sets C = cl(B \ U) and D = cl(M \ 2B) ∪ cl(V ) are disjoint.
Thus, there is a smooth function λ : M −→ [0, 1] with λ(C) = 1 and λ(D) = 0.
Let K = 1 + ||dλ||.

Since ψ is closed and 3B is a ball, integrating ψ along paths starting at
the base point gives a smooth function g : 3B −→ R with d g = ψ on 3B.
Since Morse functions are dense in C∞(int(Bn)), there is a Morse function
h : 3B −→ R with sup |g − h| < µ/3K and ||d(g − h)|| < µ/3.

The function f : 3B −→ R given by f = g+λ · (h− g) equals h on C and
g on 3B ∩ (V ∪ (3B \ 2B)) ⊂ D. Thus, f is Morse on 3B ∩ (C ∪ V ). We have

d f = d g + (h− g) dλ+ λ d(h− g)

There are no critical points of f in 3B∩ (U \V ) since on this set ||d f || >
µ/3 because ||d g|| ≥ µ and ||dλ|| ≤ K so ||(h − g) dλ|| < µ/3 and ||λd(h −
g)|| ≤ ||d(h− g)|| < µ/3.

Putting this together, f is Morse on the subset of 3B contained in C ∪
V ∪ (U \ V ) = C ∪ U = B ∪ U .
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Observe that ψ and d f are equal on 3B \ 2B. Thus, we may de�ne ψ1 to
be ψ on M \ 2B and d f on 3B. Then ψ1 is Morse on 3B ∩ (B ∪ U) because
ψ1 = d f there. It is Morse on U \2B because it is ψ there. Hence, ψ1 is Morse
on U ∪B as required. �

The next result implies that nearby homology classes are represented by
nearby 1-forms.

Lemma 11. If M is a closed Riemannian manifold and ε > 0, there is a

neighbourhood U ⊂ H1(M ;R) of 0 with the property that for every φ ∈ U, there
is a closed 1-form η with [η] = φ and ||η|| < ε.

Proof. We �rst prove the result for the k-torus T k = V/Zk, where V = Rk.
As noted in Example 7, a linear map L ∈ V ∗ gives an exact 1-form dL on Rk,
which is preserved by translations, and therefore is the pullback of a closed
1-form ωL on T k. The map V ∗ −→ Ω1(T k) given by L 7→ ωL is continuous and
V ∗ −→ H1(T k;R) given by L 7→ [ωL] is an isomorphism.

For the general case let k = β1(M). There is a map f : M −→ T k, which
induces an isomorphism f∗ : H1(T k;R) −→ H1(M ;R). Then f∗(ωL) is a closed
1-form on M, which varies continuously with L and this gives an isomorphism
V ∗ −→ H1(M ;R). �

Next is a local stability result: nearby cohomology classes are represented
by Morse 1-forms with the same zeros.

Lemma 12. Given a closed Morse 1-form ω and δ > 0, there is a neigh-

bourhood U ⊂ H1(M ;R) of 0 with the property that if α ∈ U, then there exists

a Morse 1-form η with [η] = α + [ω] and ||ω − η|| < δ and there is an open

set A ⊂ M, which contains all the zeros of η and of ω and ω|A = η|A. In

particular m̃(η) = m̃(ω).

Proof. Let ω be a Morse 1-form. Then ω has a �nite number of zeros,
say z1, ..., zm. For each zi choose a radius ri > 0 such that Bi = B(zi; ri),
2Bi = B(zi; 2ri) and 3Bi = B(zi; 3ri) are open balls. We may do this so the
balls 3Bi are pairwise disjoint. De�ne A =

⋃
Bi and 3A = ∪3Bi and set

δ = inf{||ω||x : x ∈M \A}.

Then δ > 0 because M \ A is compact. Choose a smooth function λi :
M −→ [0, 1] with λi(Bi) = 1 and λi(M \ 2Bi) = 0. Choose ε > 0 smaller than
δ/3 and (1/3)(1 + ||dλi||)−1 for every i.

Let U ⊂ H1(M ;R) be the neighbourhood of 0 given by Lemma 11. Given
α ∈ U there is a closed 1-form φ representing α with ||φ|| < ε. By Theorem 10
we may assume φ is Morse.
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Since ||φ|| < δ all the zeros of η = ω + φ are contained in A. Below we
construct a Morse 1-form η′ which equals η in M \ 3A so [η′] = [η] = α + [ω].
Moreover η′ = ω on A completing the proof.

To construct η′ we modify η in B = Bi ⊂ 3Bi = 3B as follows. There are
smooth functions f, g : 3B −→ R with ω = d f and φ = d g on 3B. Set

h = f + λi(g − f)

Then h = g on B and h = f on 3B \ 2B. A calculation as in the proof of
Theorem 10 shows h is Morse and with one singular point at zi. De�ne η′ to
be η in M \ 2B and dh in 3B. On the overlap 3B \ 2B these are both η, and
η = ω on B. Since the balls 3Bi are pairwise disjoint these modi�cations can
be done independently. �

Proofs of Theorem 1 and Proposition 4. The statements follow directly
from the local stability result (Lemma 12) together with the following two
facts. First, the topology on S(M) induced by the norm agrees with the usual
topology. Second, for each class ξ ∈ H1(M ; IR), one may choose a representative
ω1 with the property that m̃(ω1) = m(ξ), and a representative ω2 with the
property that m-ranki(ω2) = m-ranki(ξ). �

2.3. The i-th handle rank of a rational class

There is a topological description of the Morse complexity and the Morse
ranks for rational classes. Suppose (N, ∂−N, ∂+N) is a cobordism. Thus, N is a
compact connected n-dimensional manifold with ∂N = ∂−Nt∂+N . SupposeH
is a handle decomposition of N given by attaching a �nite number of handles
to a collar ∂N− × [0, 1] of ∂−N . Such a handle decomposition determines a
vector

ĥ(N, ∂−N,H) = (h0, h1, · · · , hn) ∈ Nn+1,

where hi is the number of handles of index i. The handle complexity of N rel
∂−N is the vector

h̃(N, ∂−N) = min
H

ĥ(N, ∂−N,H),

where the minimum is taken with respect to lexicographical ordering over all
such handle decompositions. Thus, h̃(N, ∂−N) = 0 if and only if N is di�eo-
morphic to ∂N− × [0, 1].

Similarly, the ith handle rank of N rel ∂−N is

(2.1) h-ranki(N, ∂−N) = min
H

hi.

A primitive element β ∈ Hn−1(M ;Z) is represented by a compact, con-
nected, 2-sided submanifold V ⊂ M with tubular neighbourhood ν(V ). An
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orientation of M determines a transverse orientation to V and hence a cobor-
dism (N = M \ ν(V ), V−, V+). The minimum of h̃(N,V−) over such V is the
handle complexity h(β) of β, and the minimum of h-ranki(N,V−) is the ith han-

dle rank h-ranki(β) of β. In general h(−β) 6= h(β) so the choice of orientation
on M is necessary.

Finally, if ξ ∈ H1(M ; ZZ) is primitive, denote the Poincar�e dual to ξ by
DM (ξ) ∈ Hn−1(M ;Z). Then de�ne

h(ξ) = h(DM (ξ)) and h-ranki(ξ) = h-ranki(DM (ξ))

to be the handle complexity and ith handle rank of ξ respectively.

Lemma 13. Suppose M is a smooth closed oriented manifold. For each

primitive class ξ ∈ H1(M ; ZZ), we have h(ξ) = m(ξ) and h-ranki(ξ) = m-ranki(ξ).

Proof. This follows from the well-known correspondence between Morse
functions onM and cobordisms associated to regular level sets (see [10, 11]). �

Remark 14. The group rank, which is de�ned below, gives a lower bound
on the �rst handle rank, and hence on the �rst Morse rank (see Remark 20).

2.4. Lower bounds from Novikov numbers

For every �rst cohomology class ξ ∈ H1(M ; IR) and every k ∈ N, there is
a Novikov Betti number bk(ξ) and a Novikov torsion number qk(ξ) (see [4], �1.5
for three equivalent de�nitions). For ξ = 0, bk(ξ) is the usual k

th Betti number
of M and qk(ξ) is the minimal number of generators of the torsion subgroup of
Hk(M ; ZZ). For general ξ, the ring ZZ is replaced with a local system of modules
over a fancier ring. The Novikov inequalities (see [4], �2.3) state that

(2.2) mk(ω) ≥ bk(ξ) + qk(ξ) + qk−1(ξ),

if [ω] = ξ. Moreover, bk(ξ) = bk(rξ) for every 0 6= r ∈ IR and qk(ξ) = qk(rξ) for
every r > 0. It follows that for [ξ] ∈ S(M), we have

(2.3) m-rankk[ξ] ≥ bk(ξ) + qk(ξ) + qk−1(ξ).

Moreover, b0(ξ) = 0 = q0(ξ), so the relationship is particularly nice when
k = 1:

(2.4) m-rank1[ξ] ≥ b1(ξ) + q1(ξ).

We call a function f : S(M)→ N polyhedral if each superlevel set f−1[k,∞)
is a spherical polytope. Farber ([4], �1.6) gives a nice description of the geome-
try of the Novikov inequalities and, in particular, a polyhedrality result. Since
the Morse rank has this polyhedral lower bound, this triggers the following
question:
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Question 15. Is the Morse rank a polyhedral function?

Example 16 (3-manifolds with arbitrarily large Morse rank). Farber ([4],
�3.4.2) gives a family of closed 3-manifolds Xn, which are obtained as the con-
nected sum of S2 × S1 and the 0-surgery on the connected sum of n trefoil
knots, and satisfy H1(Xn; ZZ) ∼= ZZ2. Moreover, the generator ξ supported by
the S2 × S1 summand has the property that every Morse closed 1-form repre-
senting it has at least n zeros of index 1. This is established using inequalities
arising from a ring, which is more elaborate than the Novikov ring (see [4],
Theorem 3.6).

3. GROUPS

Let G be a �nitely presented group, and S(G) be the set of equivalence
classes of non-trivial homomorphisms ϕ : G → IR, where two such homomor-
phisms are equivalent if they are positive scalar multiples of each other. Then
S(G) ∼= Sn−1, where G/G′ ∼= ZZn⊕torsion. De�ne the tropical rank of the class
[ϕ] ∈ S(G) by

rank[ϕ] = min
M
{m-rank1[ξ]},

where the minimum is taken over all smooth closed manifoldsM with π1(M) =
G, and where ξ is the image of ϕ under the canonical identi�cation

Hom(π1(M), IR) ∼= H1(M ; IR).

The tropical rank is a well-de�ned function S(G) → N, since rξ is the
image of rϕ for r > 0 and since m-rank1 is integer valued. The de�nition
involves taking the minimum, and so Proposition 4 directly implies:

Proposition 17. The tropical rank is upper semi-continuous and has

bounded image.

The word tropical alludes to the fact that this rank gives information on
the complement of the Bieri-Neumann-Strebel invariant [1]�this complement
was characterised by Brown [3] using group theoretic valuations, and hence can
be viewed as a tropical set.

The above proposition gives the �rst part of Theorem 3. The remain-
ing parts concern rational classes and follow from the equality of Morse rank
and handle rank (Lemma 13) together with the equality of handle rank and
a group rank de�ned using HNN extensions (Lemma 19), fundamental facts
from [1] (summarised in Lemma 18) and an application of Magnus rewriting
(Lemma 22).
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3.1. The Bieri-Neumann-Strebel invariant and HNN extensions

We now de�ne the Bieri-Neumann-Strebel invariant Σ(G). Choose a �nite
generating set for G and denote G the corresponding Cayley graph, with the
convention that G acts from the left on this graph. Given the non-trivial
homomorphism ϕ : G→ IR, de�ne a G-equivariant map ϕ̃ : G → IR by sending
vertices to their images under ϕ and extending linearly over edges. Denote
Gϕ the maximal subgraph of G contained in ϕ̃−1(−∞, 0]. It turns out that
the connectedness of Gϕ is independent of the representative of [ϕ] and the
generating set for G. De�ne Σ(G) ⊆ S(G) to be the set of precisely those [ϕ]
for which Gϕ is connected.1 It is shown in [1] that Σ(G) is an open subset of
S(G).

If the non-trivial homomorphism ϕ : G → IR has discrete (and hence
cyclic) image, then it is a positive scalar multiple of a unique epimorphism
G � ZZ, and it is termed a discrete homomorphism. The point [ϕ] ∈ S(G) is
called rational. The set

SQ(G) = {[ϕ] ∈ S(G) | ϕ is discrete}

of rational points is dense in S(G).

Suppose G is a �nitely presented group with epimorphism ϕ : G � ZZ.
An associated HNN-extension of (G,ϕ) is (B,A, t, α), where:

(3.1) G = 〈 t, B | A = t−1α(A)t 〉,

and A ⊆ B ⊆ kerϕ, both A and B are �nitely generated, α : A → B is a
monomorphism, and t ∈ G with ϕ(t) = 1. (A proof of this fact can be found in
[2]; we give an independent proof in �3.3.) In this case, (G,ϕ) is said to split

over A. If A = B, then the HNN-extension is called ascending in [1] (see the
discussion in �4.1 of [6]). The following two facts are established in [1]:

(1) [ϕ] ∈ Σ(G) if and only if ϕ corresponds to an ascending HNN extension;

(2) kerϕ is �nitely generated if and only if [ϕ] ∈ Σ(G) and [−ϕ] ∈ Σ(G).

In [6], the complexity of [ϕ] is de�ned as the minimal rank of the group
A, where the minimum is taken over all HNN-extensions of G of the form (3.1),
and this gives a measure analogous to the Thurston norm [14]. We will show
that the tropical rank de�nes a complementary complexity, namely the minimal

di�erence between A and B. This will be established through two alternative
viewpoints�using HNN extensions and handle decompositions.

1The de�nition of the BNS invariant involves various conventions and choices of sign, and
one often encounters a de�nition using the preimage of [0,∞) instead of (−∞, 0]. The above
de�nition matches [1, 6].
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3.2. The group-rank

Suppose G is a �nitely presented group with epimorphism ϕ : G � ZZ.
For an associated HNN extension (3.1), de�ne g-rank(B,A) to be the minimal
number of elements one needs to add to A in order to generate B, i.e.

g-rank(B,A) = min
B=〈b1,...bn,A〉

n.

Then de�ne

(3.2) g-rank(ϕ) = min( g-rank(B,A) ),

where the minimum is taken over all HNN-extensions of G of the form (3.1).
The above stated facts from [1] concerning the Bieri-Neumann-Strebel

invariant give the following characterisation of classes with trivial group rank:

Lemma 18. We have:

(1) g-rank(ϕ) = 0 if and only if [ϕ] ∈ Σ(G), and

(2) g-rank(ϕ) = 0 and g-rank(−ϕ) = 0 if and only if kerϕ is �nitely gener-

ated.

3.3. The handle-rank

De�ne

(3.3) h-rank(ϕ) = min
M
{h-rank1(ξ)},

where the minimum is taken over all closed n-manifolds M with π1(M) = G,
and where ξ is the image of ϕ under the canonical identi�cation Hom(π1(M),ZZ)
∼= H1(M ; ZZ).

We wish to compare the handle rank with the group rank. Note that the
groups A and B in presentation (3.1) are not necessarily �nitely presentable
(according to the Higman embedding theorem they are recursively presentable).
We work around this issue using �fake HNN-extensions� as follows.

Suppose G is a �nitely presented group and ϕ : G� ZZ. There is a �nite
presentation of G of the form

(3.4) 〈 s, di, cj | rk(d1, . . . , c1, . . .) = 1, scjs
−1 = wj(d1, . . . , c1, . . .) 〉

with ϕ(s) = 1 and ϕ(di) = ϕ(cj) = 0. The existence of this presentation can
be seen either algebraically or topologically.

Algebraically, one can apply Magnus re-writing to any presentation of G
to convert it to the desired form (see [9, �IV.5] and also the proof of Lemma 22).

The topological argument starts by choosing a closed, connected manifold
M with π1(M) = G. Then ϕ : G � ZZ determines a map f : M → S1. Let
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p ∈ S1 be a regular value with connected level set H = f−1(p), and N =
M \ ν(H) be the complement of an open regular neighbourhood of H in M.
Then ∂N = H+ ∪ H− is the disjoint union of two copies of H and there are
two (not necessarily injective) inclusion homomorphisms α± : π1(H)→ π1(N).
Applying the Generalised Van Kampen Theorem [7, Theorem 6.2.11] to M \H
and ν(H) gives a presentation of π1(M) = G of the form

〈 s, π1(N) | sα+(h)s−1 = α−(h) ∀h ∈ π1(H) 〉,
where π1(N) and π1(H) are �nitely presented groups since both N and H
are compact. Since π1(H) is �nitely generated we only need the relations
sα+(h)s−1 = α−(h) for a generating set. This gives a presentation in the form
(3.4) as follows. Denote the generators and relators of π1(N) by di and rk
respectively and for each relation of the form sα+(h)s−1 = α−(h) add one
generator cj and the relations cj = α+(h) and scjs

−1 = α−(h) with α±(h)
expressed as words in the generators of π1(N). This completes the topological
argument that a presentation of the form (3.4) exists.

From (3.4), one obtains an HNN extension as follows. Let A = 〈cj〉 ≤ G
and B = 〈di, cj〉 ≤ G. Then A and B are �nitely generated (but possibly not
�nitely presented) subgroups of G with A ≤ B. Moreover, sAs−1 ≤ B by
construction, so the conjugation map α : a 7→ sas−1 takes A to an isomorphic
subgroup of B. Whence G = 〈s,B | A = s−1α(A)s〉 and we also have

g-rank(B,A) ≤ | {di} |.
Lemma 19. h-rank(ϕ) = g-rank(ϕ)

Proof. Each relative handle decomposition gives rise to a fake HNN-
decomposition of the form (3.4). For any ϕ, there is a manifoldM with relative
handle decomposition (N,H−,H) realising the minimum in (3.3). Using the
above notation with B = im(π1(N)→ π1(M)) and A = im(π1(H−)→ π1(M))
gives:

g-rank(ϕ) ≤ g-rank(B,A) ≤ | {di} | = h-rank1(N,H−) = h-rank(ϕ).

To prove h-rank(ϕ) ≤ g-rank(ϕ), build a 2-complex with fundamental
group G as follows. Let G = 〈t, B | tAt−1 = α(A)〉 be an HNN-extension
realising minimal group rank for ϕ. Choose �nite generating sets {ai} for A and
{ai, bj} for B such that |{bj}| = g-rank(ϕ). Since G is a �nitely presentable
group and generated by {t, ai, bj}, there is a �nite presentation of G with these
generators and of the form

(3.5) G = 〈t, ai, bj | rk(a1, . . . , b1, . . .), tait−1 = wi(a1, . . . , b1, . . .)〉.
Given the �nite presentation, we let C be the free group in {ai} and D

be the group
〈ai, bj | rk(a1, . . . , b1, . . .)〉.
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Build a 2-complex, Y0, with one 0-cell and 1-cells for the elements bi, ai
and α(ai), and 2-cells for the relators in the presentation of D and the extra
relations α(ai)w

−1
i , where wi is a word in the ai and bi equal to the element

α(ai). This 2-complex has fundamental group D.

Then take the sub-complex X ⊂ Y0 formed by the cells for C and cross it
with an interval, giving a 2-complex, X × I. Let Y1 = Y0 ∪X=(X×{0}) (X × I).
Then Y1 still has fundamental group D.

Let Y2 be the 3-complex obtained from Y1 as follows. For each ai, identify
the 1-cell representing ai in X ×{1} ⊂ Y1 with the 1-cell representing α(ai). It
follows that Y2 has fundamental group G.

Embed Y2 in IR5 and embed IR5 in IR6 in the standard way, taking IR5 3
x 7→ (x, 0) ∈ IR6. Let Y3 be the boundary of a regular neighbourhood of the
embedding. This is a 5-manifold and it has a product region, identi�ed with
W × (0, 1) for suitable W, corresponding to the subcomplex X× (0, 1). Identify
W = W × {12} ⊂ Y3.

We claim that there is a handle decomposition of Y3 \W relative toW− ⊂
∂(Y3 \W ), W− ∼= W, with exactly one 1-handle for each bi. To show this, remove
the interior of each 1-handle corresponding to each bi, and denote the result Z.
Then

π1(W−)→ π1(Z)→ π1(Z,W−)→ π0 = 0,

whence π1(W−) ∼= π1(Z) and it follows from [13, Lemma 6.15] (and the remark
after that lemma), that no additional 1-handles are needed. Moreover, W− is
connected as a consequence of the chosen embedding of Y2 into IR6, and it is
non-separating due to the presentation of the fundamental group. Hence, we
have shown that h-rank(ϕ) ≤ g-rank(ϕ). �

Remark 20. If Γ = π1(M) and ϕ corresponds to ξ, then g-rank(ϕ) ≤
h-rank1(ξ), giving another lower bound for Morse rank.

Example 21. Example 7 implies that the tropical rank for the group ZZ2 =
π1(T ) vanishes identically. For rational classes, this is easy to verify using HNN
extensions, since any epimorphism ZZ2 → ZZ is equivalent to the epimorphism
ϕ : 〈a, b | a−1ba = b〉 → ZZ with ϕ(a) = 1 and ϕ(b) = 0, whence rank[ϕ] = 0.

3.4. Consequences for the tropical rank

Recall that if ϕ : G→ IR is discrete, then ϕ(G) is in�nite cyclic, and hence
there is a unique r ∈ IR+ such that rϕ : G � ZZ. It follows from Lemmata 13
and 19 that:

rank[ϕ] = h-rank(rϕ) = g-rank(rϕ).
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Lemma 22. If G has a presentation with n generators, then rank[ϕ] ≤ n
for each [ϕ] ∈ S(G), and rank[ϕ] ≤ n− 1 for each rational class [ϕ] ∈ SQ(G).

Proof. We �rst address the general case. As in the proof of Lemma 19, we
can construct a closed manifoldM with a handle decomposition having exactly
n 1-handles in its handle decomposition. We can de�ne a Morse 1-form on M
dual to this handle decomposition (see [10, 11]). This has exactly n critical
points of index 1. The local stability result Lemma 12 implies that this is a
universal bound on the number of critical points of index 1 of every Morse
1-form on M.

Next suppose that [ϕ] ∈ SQ(G). Given the presentation G = 〈 gi | rj 〉
with n generators we apply Magnus rewriting as follows. If ϕ(gi0) = ±1 for
the generator gi0 of G, then choose s = g±1i0 and di = gis

∓ϕ(gi) for all i 6= i0.
We have ϕ(s) = 1 and ϕ(di) = 0 for each di. Now rewrite the relators using
this new generating set {s, di}. If s appears in the relator rk, then (up to cyclic
permutation) there is a substring in rk of the form s−1ws, where w is a word in
the di. We introduce a new generator cj , the relation scjs

−1 = w and replace
the substring s−1ws by cj in rk. Note that ϕ(cj) = 0. Iterating this procedure
results in the desired presentation, and the number of generators di is bounded
above by n− 1.

Hence, assume ϕ(gi) 6= ±1 for all generators of G. Since ϕ is an epimor-
phism, there are two generators gi0 and gi1 such that their respective images
are coprime. So there are p, q ∈ ZZ such that ϕ maps s = gpi0g

q
i1

to one. In-

troduce this new generator, and replace each gi by bi = gis
−ϕ(gi). This gives

a new generating set {s, bi} with n + 1 elements. Rewrite all relators in these
generators and add the relator s−1(bi0s

ϕ(gi0))p(bi1s
ϕ(gi1))q. The latter lets us

choose either cj0 = bi0 or cj1 = bi1 , and we put di = bi for all remaining indices.
With this we procede as above, again obtaining a generating set {s, cj , di} with
at most n− 1 generators di. �

Question 23. Is the tropical rank a polyhedral function?

Remark 24. The de�nition of tropical rank took into account only the 1-
handles (generators) since in general, the groups arising in an HNN extension
are �nitely generated but not necessarily �nitely presented. For groups with
the property that every �nitely generated subgroup is �nitely presented, one
can also take into account the 2-handles (relators), giving a �ner N2-valued
complexity, for which one can de�ne analogous N2-valued group and handle
ranks, which agree with it on rational classes.
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