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Using a special Pseudo-Inverse, a linear cryptographic method is developed by
continuing the paper [8]. Both papers complement each other.
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1. THE REGULAR SPECTRAL PSEUDO-INVERSES C(®)

Let F be an algebraic field with involution A : @ — @ For any matrix
C € Fp, let

U 0

(1) C:T[O ;

] T7Y detU £0, JF=0

be the Jordan-decomposition. Further let

Ut o
d __ -1
o cror [V 0]
be the Drazin-Inverse and
-1

the regular spectral Pseudo-Inverse introduced in [4-8]. This nomenclature is
justified, because of the following relations

CP) =~ for detC # 0;
c®) = F for C* =0;
0P — E;
(Scs—HP) = soP gL

REV. ROUMAINE MATH. PURES APPL. 61 (2016), 1, 13-18



14 Richard Gabriel

a0 1® [P o
0 G o P |
Also, the following relations apply:
E 0
(p) — -1 _ o)
cc T [ 0 J } T cWC,

and therefore
[cc@)®) = g = [c®]®),

In the formulas above 0 describes a fitting square or rectangular zero matrix.
THEOREM 1. For any matriz C € F,, we have
c®oc®elor) = g,

Proof. This relation applies to the Jordan-Form (1).
In addition, the following relations hold true:

cW = E 4t - ccd
0l = CR[oW)E+,
@ = [c*] P,
(TP = [cP1T

Because CP) is regular, it can be used to define enciphering-maps.
In order to get C®) numerically, we express C' with its complete factors:

C = GlGQ...GkAilHk...HQHl.
From this we got in [5]
C(p) =F+ G1G2...Gk(A_k_1 — A_k)Hk...HQHl,

and in [2]
c? = GlGQ...GkAika...HQHl. ]

2. ENCIPHERING-MAPS WITH PSEUDO-INVERSES

We consider the enciphering-map
(4) Y = (XEXHPX (X,Y) € Fp
which is recursive (or also involutive), if the relation

(5) X = (vyy*)Py
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is satisfied identically. Introducing (4) in (5), it follows
Y (p)
(6) X = {(XEX*)(p) (XEX*) [(XEX*)@)} } Y (xsxH)® X,

If X has a maximal rank at m < n, it follows

(»)

(7) E= {(XEX*)(p) (XEX*)[(XEX*)(I’)]*} (X2Xx*)®)

for all X € Fp,,. A matrix ¥ fulfilling (7) was called a AG-matrix in [§].
The following STATEMENTS were shown to hold true:
a) A A-symmetrical matrix X is also AG.
b) A regular A\G-matrix is also A\-symmetrical for F' # GF(3).
¢) For n = 2 a A\G-matrix is always A-symmetrical.

THEOREM 2. If ¥ is a AG-matriz, so is X1 = SXS* for any S € Fi,.
Proof. We have, with X; = XS

{(lex*)(mlex*[(Xng*)(m]*}(p) (X5, X)) —

{lxs)mxs) )@ (xs)sees) [(es)meesy 1] 1 es)sees) ) =

(p)

{xzxnP X eXi (G ex) W)} sX) P = B D

The following theorem was already formulated in [8], but not proven com-
pletely. This will be done here.

THEOREM 3. For F' # GF(3) a A\G-matriz ¥ is always A-symmetrical:
=13

Proof. We consider in Theorem 2

k J
0 .. 00 10 .. 0, k
s=s@m=[, 7 1 00 . O}j

Then we obtain:
SRGF — { Okk Okj } ’
Tjk  0jj
which is AG according to Theorem 2. According to Preposition 3 in [8] this
matrix is A-symmetrical:

Okk = Okk, Okj = Ojk, Ojj = Ojj

for all (k,j). This proofs Theorem 3. [
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3. CIPHERING OF A PSEUDO-TABLE
WITH COMBINATORIAL KEYS

Consider two combinatorial keys

a=(1<a<a <..<a <m),

B=(1<p1<Pa<...<Bs <)

To these keys we associate, respectively, two diagonal matrices

(65} a9 (7%
D(a)=diag( O ... 1 0 .. 1 0 .. 1 0 .. 0 ),

B1 B2 By
DB)=diag( 0 ... 1 0 .. 1 0 .. 1 0 .. 0).

With them we define the pseudo-table

A< g>:D(a)-A-D(6).

The non-zero part of A is the intersection of rows (a,ag,...a,) and

o

p

columns (1, Ba, ...0s) of the matrix A.
Now, suppose the key matrices

D(a) -1+ D(a) and D(B) - S - D(B)
are computed from the parametric matrix repository key (shortly, SMPD)
{EL(nv n)a A(m7 Tl), ER(m7 m)}

If we apply a left ciphering to the pseudo-table D(«) - A - D(S), this will be
replaced by
K- D(a)-A-D(B),

where
K ={D(a)-A-D(8)-%1-D(8) - [D(a) - A- D()]*}?)
= {D() - A-D(B)-Sr, - D(B) - A* - D(e)} P,

THEOREM 4. The encoding matriz of a pseudo-table has the form

A<ﬁ ) =A-D(a)-A-D(B)+ K -D(a)-A-D(B)

= A+ (K - E)-D(a)-A- D(B).

Decoding can be done with the same formula.
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4. FOUR-TABULATIONS

Let us examine pseudo-tabulations which are of practical interest. They
must satisfy three criteria:
1. They have to cover the matrix A(m,n)
2. They have to exhibit a cardinal number which is big enough.
3. Coding and decoding have to be done with the same formula.
The first criteria is already met by four-tabulations, described by the
pattern

B(r,s) C(r,n-s)
F(m-r,s) | G(m-r,n-s)

Ciphering leads to

K- B(r,s) Ky-C(r,n—s)
Ks-F(m—r,s)| Ky-G(m—r,n—s)

where

QtU
MM

= (B - X(

=(C-X(r,r)-C ) )7

= (F-2(n—r,n—r)-F*)P),
K4—(G S(n—rn—r) G*)P.

Since X(r,r) and X(n—r,n—r) are supposed to be Ad-symmetrical, coding
and decoding work with the same formula.

5. COMBINED CIPHERINGS

The three criteria, that must fulfill a unified ciphering strategy, can be
reached in three steps:

I. An input-ciphering, possible through a fore-ciphering.
IT. A combinatorial ciphering, mediated through one or more combinatorial
keys.
IT1. An output-ciphering, possible through a fore-ciphering.

Decoding is done with the same formulas as encoding in opposite direction.

The cardinal number of such an enciphering can be given as
k= m2n?2m g

Here m?n? come from four-tabulations I and III, whereas 2™+" indicates the
combinatorial keys in step II. The factor o indicates the cardinal number of
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the key-matrices X and Y. If m and n are relatively small, it could be of
interest to apply step II g times with q different combinatorial keys and to
apply Theorem 4 for each key. Then the cardinal number will be
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k = m?n2210mtn) g,
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