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1. THE REGULAR SPECTRAL PSEUDO-INVERSES C(p)

Let F be an algebraic �eld with involution λ : a → a For any matrix
C ∈ Fnn, let

(1) C = T

[
U 0
0 J

]
T−1, detU 6= 0, Jk = 0

be the Jordan-decomposition. Further let

(2) Cd = T

[
U−1 0

0 0

]
T−1

be the Drazin-Inverse and

(3) C(p) = T

[
U−1 0

0 E

]
T−1

the regular spectral Pseudo-Inverse introduced in [4�8]. This nomenclature is
justi�ed, because of the following relations

C(p) = C−1 for detC 6= 0;

C(p) = E for Ck = 0;

0(p) = E;

(SCS−1)(p) = SC(p)S−1;
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C1 0
0 C2

](p)
=

[
C

(p)
1 0

0 C
(p)
2

]
.

Also, the following relations apply:

CC(p) = T

[
E 0
0 J

]
T−1 = C(p)C,

and therefore

[CC(p)](p) = E = [C(p)C](p).

In the formulas above 0 describes a �tting square or rectangular zero matrix.

Theorem 1. For any matrix C ∈ Fnn we have

[C(p)CC(p)](p)C(p) = E.

Proof. This relation applies to the Jordan-Form (1).

In addition, the following relations hold true:

C(p) = E + Cd − CCd;

Cd = Ck[C(p)]k+1;

[C(p)]∗ = [C∗](p);

(CT )(p) = [C(p)]T .

Because C(p) is regular, it can be used to de�ne enciphering-maps.

In order to get C(p) numerically, we express C with its complete factors:

C = G1G2...Gk∆−1Hk...H2H1.

From this we got in [5]

C(p) = E +G1G2...Gk(∆−k−1 −∆−k)Hk...H2H1,

and in [2]

Cd = G1G2...Gk∆−kHk...H2H1. �

2. ENCIPHERING-MAPS WITH PSEUDO-INVERSES

We consider the enciphering-map

(4) Y = (XΣX∗)(p)X (X,Y ) ∈ Fmn

which is recursive (or also involutive), if the relation

(5) X = (Y ΣY ∗)(p)Y



3 Enciphering-maps with pseudo-inverses and pseudo-tabulations 15

is satis�ed identically. Introducing (4) in (5), it follows

(6) X =
{

(XΣX∗)(p)(XΣX∗)
[
(XΣX∗)(p)

]∗}(p)
(XΣX∗)(p)X.

If X has a maximal rank at m < n, it follows

(7) E =
{

(XΣX∗)(p)(XΣX∗)[(XΣX∗)(p)]∗
}(p)

(XΣX∗)(p)

for all X ∈ Fmn. A matrix Σ ful�lling (7) was called a λG-matrix in [8].

The following STATEMENTS were shown to hold true:

a) A λ-symmetrical matrix Σ is also λG.

b) A regular λG-matrix is also λ-symmetrical for F 6= GF (3).

c) For n = 2 a λG-matrix is always λ-symmetrical.

Theorem 2. If Σ is a λG-matrix, so is Σ1 = SΣS∗ for any S ∈ Fkn.

Proof. We have, with X1 = XS{
(XΣ1X

∗)(p)XΣ1X
∗[(XΣ1X

∗)(p)]∗
}(p)

(XΣ1X
∗)(p) ={

[(XS)Σ(XS)∗](p)[(XS)Σ(XS)∗]
[
[(XS)Σ(XS)∗](p)

]∗}(p)
[(XS)Σ(XS)∗](p) ={

(X1ΣX
∗
1 )(p)X1ΣX

∗
1 [(X1ΣX

∗
1 )(p)]∗

}(p)
(X1ΣX

∗
1 )(p) = E �

The following theorem was already formulated in [8], but not proven com-
pletely. This will be done here.

Theorem 3. For F 6= GF (3) a λG-matrix Σ is always λ-symmetrical:

Σ∗ = Σ.

Proof. We consider in Theorem 2

k j

S = S(2, n) =
[ 0 ... 0 0 ... 1 0 ... 0 ] k

0 ... 1 0 ... 0 0 ... 0 j

Then we obtain:

SΣS∗ =

[
σkk σkj
σjk σjj

]
,

which is λG according to Theorem 2. According to Preposition 3 in [8] this
matrix is λ-symmetrical:

σkk = σkk, σkj = σjk, σjj = σjj

for all (k, j). This proofs Theorem 3. �
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3. CIPHERING OF A PSEUDO-TABLE

WITH COMBINATORIAL KEYS

Consider two combinatorial keys

α = (1 ≤ α1 < α2 < ... < αr ≤ m),

β = (1 ≤ β1 < β2 < ... < βs ≤ n).

To these keys we associate, respectively, two diagonal matrices

α1 α2 αr

D(α) = diag( 0 ... 1 0 ... 1 0 ... 1 0 ... 0 ),

β1 β2 βr
D(β) = diag( 0 ... 1 0 ... 1 0 ... 1 0 ... 0 ).

With them we de�ne the pseudo-table

A

(
α
β

)
= D(α) ·A ·D(β).

The non-zero part of A

(
α
β

)
is the intersection of rows (α1, α2, ...αr) and

columns (β1, β2, ...βs) of the matrix A.

Now, suppose the key matrices

D(α) · ΣL ·D(α) and D(β) · ΣR ·D(β)

are computed from the parametric matrix repository key (shortly, SMPD)

{ΣL(n, n), A(m,n),ΣR(m,m)}.

If we apply a left ciphering to the pseudo-table D(α) · A · D(β), this will be
replaced by

K ·D(α) ·A ·D(β),

where

K = {D(α) ·A ·D(β) · ΣL ·D(β) · [D(α) ·A ·D(β)]∗}(p)

= {D(α) ·A ·D(β) · ΣL ·D(β) ·A∗ ·D(α)}(p).

Theorem 4. The encoding matrix of a pseudo-table has the form

Ã

(
α
β

)
= A−D(α) ·A ·D(β) +K ·D(α) ·A ·D(β)

= A+ (K − E) ·D(α) ·A ·D(β).

Decoding can be done with the same formula.
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4. FOUR-TABULATIONS

Let us examine pseudo-tabulations which are of practical interest. They
must satisfy three criteria:

1. They have to cover the matrix A(m,n)

2. They have to exhibit a cardinal number which is big enough.

3. Coding and decoding have to be done with the same formula.

The �rst criteria is already met by four-tabulations, described by the
pattern

B(r,s) C(r,n-s)

F(m-r,s) G(m-r,n-s)

Ciphering leads to

K1 ·B(r, s) K2 · C(r, n− s)
K3 · F (m− r, s) K4 ·G(m− r, n− s)

where

K1 = (B · Σ(r, r) ·B∗)(p),

K2 = (C · Σ(r, r) · C∗)(p),

K3 = (F · Σ(n− r, n− r) · F ∗)(p),

K4 = (G · Σ(n− r, n− r) ·G∗)(p).

Since Σ(r, r) and Σ(n−r, n−r) are supposed to be λ-symmetrical, coding
and decoding work with the same formula.

5. COMBINED CIPHERINGS

The three criteria, that must ful�ll a uni�ed ciphering strategy, can be
reached in three steps:

I. An input-ciphering, possible through a fore-ciphering.

II. A combinatorial ciphering, mediated through one or more combinatorial
keys.

III. An output-ciphering, possible through a fore-ciphering.

Decoding is done with the same formulas as encoding in opposite direction.
The cardinal number of such an enciphering can be given as

k = m2n22m+nσ.

Here m2n2 come from four-tabulations I and III, whereas 2m+n indicates the
combinatorial keys in step II. The factor σ indicates the cardinal number of
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the key-matrices ΣL and ΣR. If m and n are relatively small, it could be of
interest to apply step II q times with q di�erent combinatorial keys and to
apply Theorem 4 for each key. Then the cardinal number will be

k = m2n22q(m+n)σ.
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