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We fill a gap in the literature on the Lie theoretic investigations on general topo-
logical groups by providing the proof of the generalization of Faa di Bruno’s
formula to general topological groups. We then apply that formula for estab-
lishing the differentiability properties of the multiplication mapping in a pre-Lie

group.
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1. INTRODUCTION

There is a recent interest in differential calculus on topological groups,
developed after the pattern of Lie groups; see for instance [8], where this calculus
was used for Fréchet-Lie supergroups. This article fills a gap in the literature
devoted to that circle of ideas, namely we give the proof of the generalization
of Faa di Bruno’s formula to general topological groups and we then study the
differentiability properties of the multiplication mapping in a pre-Lie group.
Our main results are stated below, in the second part of this introduction, after
some necessary preliminaries. Then the proof of the main result is given in
Section 2.

Preliminaries. We use differential calculus on topological groups as de-
veloped in the book |2]; see also |1, 3] and [4]. Unless otherwise mentioned, G
is any topological group. (Every topological group is assumed Hausdorff in the
present paper.) Denoting by C(-,-) the spaces of continuous maps, one defines

AG) :={y €C(R,G) [ (Vt,s €R) ~(t+s) =~()v(s)}-

This set is endowed with the topology of uniform convergence on compact
subsets of R. The adjoint action of the topological group G is the mapping

(1.1)  Adg: Gx AG) = AG), (g,7) = Ada(g)y :==g7()g ",
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which is continuous [6, Prop. 2.28] and homogeneous in the sense that Adg(g)(r-
v) =r-(Adg(g)y) for all r € R, g € G, and v € A(G), where one defines
(Vr,t € R)(Vy € MG))  (r-7)(t) := ().
For r = —1 and v € A(G) we denote —y := (—1) - v € A(G).
Let an arbitrary open subset V' C G and )Y be any real locally convex
space. If ¢: V. — Y, v € A(G), and g € V, then we denote

(12 (Dyp)(g) = i 21D = 219)

if the limit in the right-hand side exists. One defines C!(V,)) as the set of all
functions ¢ € C(V, ) for which the function

Dp: V x MG) =Y, (Dp)(g;7) = (Dy¢)(9)
is well defined and continuous. One also denotes Dy =: D'¢.

Now let n > 2 and assume the space C"~1(V,)) and the mapping D"~
have been defined. Then C™(V,)) is defined as the set of all ¢ € C"~1(V,))
for which the function

D": V x A(G) x -+ x A(G) = Y,

(7155 7) 7 (D (D g - (Dogp) <)) (9)

is well defined and continuous.
Moreover C*(V,Y) := () C™(V,Y) and C5°(V,Y) is the set of all ¢ €
n>1
C>°(V,Y) having compact support. If ) = C, then we write simply C"(G) :=
C™"(V,C) etc., for n =1,2,...,00.
It will be convenient to use the notations
Dyp =Dy, (Dy,_, -+ (Dyp) -+ ): G =Y
whenever v := (y1,...,7,) € A(G) x --- x A(G) and ¢ € C"(G, ).
We use the notation
77 R = G5 () = 2y ().
A pre-Lie group is any topological group G satisfying the conditions:
(1) The topological space A(G) has the structure of a locally convex Lie

algebra over R, whose scalar multiplication, vector addition and bracket
satisfy the following conditions for all ¢, s € R and 71,72 € A(G):

(t-7)(s) = mlts);
(1.3) (i +72)() = lim (3 (t/n)y2(t/n))";
1, 72) (87 = nli_{]go(%(t/n)Vz(t/n)Vl(—f/n)W(—t/n))n2a

where the convergence is assumed to be uniform on the compact
subsets of R.
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(2) For every nontrivial v € A(G) there exists a function ¢ of class C* on
some neighborhood of 1 € G such that (Di‘(p)(l) # 0.

Every locally compact group (in particular, every finite-dimensional Lie
group) is a pre-Lie group (|2, pp. 41-41]).

We will see below that if G is a pre-Lie group, then the multiplication
mapping 7: G x G — G, (z,y) — xy, is smooth (cf. [2, Th. 1.3.2.2 and
subsect. 1.1.2| or alternatively [5, Th. and Sect. 1]), where differentiability
of maps between open sets of topological groups is understood in the following
sense:

Let G1, G be two pre-Lie groups with some open sets X1 C G1 and X5 C
Gy, and f : X1 — Go be any continuous function. We say that f is of class C*
if there exist the maps Df : X; x A(G1) = A(Gs), £ =1,..., k, such that for
every locally convex space ) and every function ¢ € C*(X3,Y),0 < £ < k we
have po f € CYX1 N f~1(X5),Y) and for every v = (71,...,7v) € A*(Gy) the
following chain rule holds,

l
(14)  Digofmn) =Y S DPUIIO . pPYTI@g(r()),
k=1 (A1,...,Ag)
The second summation in the above formula is performed after all partitions
{1,2,...,¢} = AjU...UA into nonempty subsets with min A; > ... > min Ag.
For any fixed k € {1,...,¢}, and every j = 1,...,k, we have denoted A; =
{il, ... i, } ©{1,2,..., ¢}, with i < ... < if,, and moreover
A](ry) :(’Y,LJI; s 7774%) €A™ (Gl) and
J
DAV f(z) :=D™ f(x; A (7)) € MGa).

Note that m; = |A;| for j = 1,...,k, hence 1 < my,...,my < ¢ with m; +
.-« +my = £. We also note that the uniqueness of the above maps D' f follows

by using the condition (1) in the definition of a pre-Lie group along with the
chain rule.

Main results. The main result of this paper is the following formula:

THEOREM 1.1. Let G be any topological group and Y be any locally convex
space. Define m: GxG — G, w(x,y) = xy. For every f € C*(G,Y), and k > 1
one has

DF(fom)((z,y); (M1, M2)s - -, (Aer, Ae2))

k
:Z Z Dkf(gjy’ )\1127"'a)\iz27)\?g+117~.-7)\:;'/161)

£=0 11 <<y
’L‘g+1<"'<ik
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where the above sum is performed according to the condition

fivne i} U it i) = {1 ).
Moreover, it follows that if f € C*(G,Y), then fomr € C®(G x G,)).

We mention that the formula from Theorem 1.1 is the corrected version
of a formula that was indicated without any proof on [2, page 46|, and is in
fact a generalization of the Faa di Bruno formula to topological groups (see [7]
for more details on that formula in the classical setting on R").

COROLLARY 1.2. If the topological group G is abelian and Y is any locally
convex space, then the following assertions hold:
(1) The map 7: G x G — G, w(x,y) = wxy, is a morphism of topological
groups.
(2) For every f € C*(G,Y), and k > 1 one has

DX(for) (=, y); (M1, A12)s -+« Ak, Aw2)) = D (2 M1+ Mz, -y A H )

where the sums \j1 + Ajo € A(G), for j =1,...,k, are understood in the
sense of the equality (1.3).

Proof. Using Theorem 1.1, we obtain

k(foﬂ)(( Y); (A11, A12), - - (A1, Ak2))

_Z Z Dkf(g;y,)\llg,... )\“,2,)\”+11,...,)\§/k1)

(=0 j1<-- <ty
Tpy1<---<ig

k
:Z Z Dkf(xya )\i127-"7)\ig27)\ig+117"'>)\’ik1)

11<~~'<’ig'
Gpy1<---<ig

= D¥f(xy; M1+ M2y, Ak + M) O

COROLLARY 1.3. If the topological group G is a pre-Lie group, then the
map 7: G x G — G, w(z,y) = xy, is of class C*°.
Proof. We put
Dr((z,y); (o, B)) = + 3
and
Dir((z,y); (a1, 1), -, (@, 8)) = [ [af, Bjl, ... Bal.

For every open set X C G, every locally convex space ), and every function
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0 e CHX,Y),if j <kand 2,y € G with 2y € X C G, then

D (pom)((z,y); (a1, B1)s - - -, (), B5))

I
MQ.

Z Dj¢($y§ﬁi17-~-75m Zl+1,...,Oéy_)

1 11 <<ty
T <<y

J
=Y 3 D™D DR DPgp(ay)
{=1 1< <ip
Tpyp1<-+ <’LJ

~
I

and we thus obtain the chain rule (1.4). This shows that the map = is of class
C* and, since k is arbitrary, it follows that 7 is of class C>®°. O

2. PROOF OF THEOREM 1.1

The proof of Theorem 1.1 is based on two lemmas that will be first proved
and in whose statements we assume the setting of the theorem.

LEMMA 2.1. Assume f € CK(G,Y), k > 1, My, A2igs -+, M, € AG),
i1,...50k € {1,2}, m =iy +ia+ ... +ip — k. The equality iy = 2 has m
solutions denoted a1 < ... < an,. The equality iy = 1 has (k —m) solutions
denoted am+1 < ... < ag. Then we have

oAz A (f o )(z,y) = DV f(xy; Aay2, - - A Aa1):

Yy
am?2s A(J,ml_;'_l]ﬂ o agl

Note that in the above statement, m is the number of occurrences of 2 in
the set {i1,..., ik}

Proof of Lemma 2.1. We perform the proof by induction on k > 1. In the
case k = 1 we will prove the following two relations:

M (fom)(x,y) = Df(wy; \Yy) si 0M2(f o)(2,y) = Df(vy; Mi2).
We have

oM2(f o m)(x,y) o m)(x; yAia(t))

= &L:Of(xy/\u(t))
= Df(:cy; >\12)-

dt ‘t_
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On the other hand

M (fom)(z,y) = % _ (fem@An(t);y)

=% tzof(l‘)\n(t)y)

= at tzof(xy)‘zl/l ()

= Df(zy; \Y;)

and the case kK = 1 ends.
For passing from k to k + 1, we calculate

a/\ul)\giQ...Akik)\k+1,ik+l (fom)(z,y) = a)\k+1,ik+1 (8)\1i1)\2i2...>\kik (fom))(z,y).
We have two cases: 7541 =1 or 441 = 2.
e The case ip41 = 1. In this case iy +ia+ ... + i + g1 — (K +1) =

i1 +42+ ...+ — k = m therefore m remains unchanged by passing from & to
k+ 1. We have

a)\u‘l Al At 1ig 4 (f ° 7.‘_) (a:, y)

d . .
— & ’tzoahzl...)\mk (f o 7r)(x/\k+171(t), y)

d k
= EL:OD @110y Aar2s -5 Aam2: Ao 1+ A1)
k+1
= Dkt f(xy%kam--aAamMZme---,AZ,CM%HJ)

and the case i+ = 1 ends.
e The case ix11 = 2. In this case, we have

i1+ig+...+ig+ig1 —(k+1)=i1+ixg+...+ix—k+1=m+1.
We have
oML (f o 1) ()

MMk (f o ) (23 yNer1,2(t))

Dkf(l'y)\k+1,2(t); Aay2s- s A )\y/\k+1,2(t)7 . )\?J)\k+1,2(t)>

am?2> am+11 ’ Nagl

_i‘
~ dtle=o

_d
B @‘tzo
which must be equal with
Dk+1f(xy; )\a12? e Aam27 )\k+1,27 Agm+11, L. ,)\Zkl).
It is enough to prove the above relation for y = 1 € G. For arbitrary
s € R we define g, : RF — Y by

gs(tl, .. ,tk)
=L M2 (A2 (1) A2 (4 e (terom) - Aar2(t)
=f(Aap1(t1) -+ Aapi1 1 Feem)YAR+1,2(8) Aap2 (P 1—m) - - - Aag2(tr))-
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We define h : RFF1 — Y by
h(tt .t tist)
= fAG () - A8 ) Aot 2 (B 1-m) Aam2 (Bt 2—m) - - Aay2(Br1)
= fPap1(t1) - Ay a1 (Fe—m) YA k41,2 (Tt 1-m) Aar2(Bkr2—m) - - - Aag2(ter1))-

We have h € CFL(RFTL Y g, € CK(R¥,)), and the connection between
these functions is

gs(th e ,tk) = h(tl, e 7tk—mas7tk—m+l7- . ,tk).

The requested relation is equivalent to

d kg, ok+1p
— 79(0,0,...,0): (0,0,...,0).
ds 5:08751 .. .8tk 8t1 ...atkatk_H
For ¢ := (t1,...,t;) we sequentially have the relations
dgs oh
t) = e st Sy b1y - e oo
8tk() 6tk+1(1’ sth—m Sy th—m+1 k)
0™Mgs d™h
t) = oo st 8ot s « e oo
8tk_m+1...8tk( ) 0tk_m+2...atk+1( b ok % te—m+1 k)
8m+1gs aerlh
t) = ooy by Sy b1y - - -5 &
T 8tk,m6tk,m+2...8tk+1( Lye- oo thmms 8 th—met1 k)
0" g 9*h
—__(4) = ooy by Sy thmat 1y - - ot
8t1...8tk() 8t1...8tk,m8tk,m+2...8tk+1(1’ > te—m 85 thomet1 k)
g 9*h
—(0,0,...,0) = 0,...,0,s,0,...,0).
8t1...8tk(’ 000 0) at1...8tk,matk,m+2...atk+1(’ 0:5,0,...,0)
It follows that
d kg,
— —(0,...,0
ds szoatl...atk ’ ’ )
d oFh
= — 0 0,s,0,...,0
ds s:Oatl...6tk_m8tk_m+2...atk+1( ’ S »0)
8k+1h
= 0,...,0)
Otp—ms10t1 ... Ot Otk—pto . .. Otpi1
ak—‘rlh
= 0,...,0)

Oty ...0t 0tk 41
and this completes the proof by induction. [

LEMMA 2.2. Let G1, Ga topological groups and X an open subset of G1 X Go
and h € C*(X,)), k > 1. Then the partial derivatives of order < k of h are
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continuous from X to Y and we have the relation

th((x7 Y); (A1, A12)5 oy (A1, Ag2)) = Z i1 A2ig ki, h(z,y)

for every (x,y) € X.
Proof. The case k = 1. We must show that
Dh((z,y); (A1, M2)) = O h(z,y) + 02h(z, y).
We have

M) = | WA (0),5) = Dh((2,0); (01, 0))

therefore the function OM1h : X — Y is continuous. On the other hand

M2 h(z,y) h(x,yA11(t)) = Dh((z,y); (0, A12))

= il

therefore the function dM2h : X — Y is continuous as well.
MOFGOVGI‘, (AH,O)(t)(O, /\12)@) = (All(t),)\lg(t)) = (/\11, Alg)(t). From

Dh((x,y); (A1, AM12)) = Dh((z,y); (A11,0)) + Dh((z,y); (0, A12))

we get
Dh((z,y); (M1, \i2)) = 0N h(z, y) + 02 h(z, y)
and the case k = 1 ends.
The case k£ = 2. We must show that

D?h((z,y); (M1, M12), (N2, Aag)) =0M1A20 h(z, ) + 9M1A2 (2, y)
+ (‘3)\12)\21 h(m, y) + 8>\12/\22 h(a:, y>.
We have
P h(a,y) = 9N (9 )z, y)

- A1
SrTIARIOSIONY

dt‘t— Dh(zA21(t), y); (A11,0))

= D*h((z,y); (\1,0), (A21,0)).
Similarly we get

M2 p(z ) = D2h((x,y); (A11,0), (0, A22))
o222 p () = D*h((z,7); (0, A2), (0, A2))
Hri2Aa1 h(z,y) = D2h((x, Y): (0, A12), (A21,0)).

The above relations imply that the 2nd order partial derivatives of h are con-
tinuous.
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We have
D?h((z,y);(A1, A12), (Aa1, A22))
=D?h((x,y); (M1, M2), (A21,0)) + Dh((x, y); (A1, M2), (0, Az2))
=D?h((2,); (M1,0), (A21,0)) + D*h((x, 9); (0, A12), (A21,0))
+ D?h((2,y); (M11,0), (0, A22)) + D?h((2,9); (0, A12), (0, A22))
=N (g ) + M2 (g, y) + 0N (2, y) + 922 R ()

and the case k£ = 2 ends.
The case k > 3. We have

oM iz Mkik by (1 y) = DFR((2,9)i Y1, - - -5 W)

where v; = (X\j1,0) if ¢; = 1, while v; = (0, Aj2) if i; = 2. It follows by the
above relations that the partial derivatives of order k£ of the function h are
continuous.

As in the case k = 2 we have

DFh((2,1);(A11, A1), - - (Ae1,1, Me—1.2), (At Ak2))

=D*h((x,y); (M1, M2)s -+, Me—1.15 Me—1.2), (Ag1,0))

+ DFh((2,9); (M1, M2)s - -+ Mee1.1, Me—1.2), (0, Ago)
=D*n((z,y); M1, M2), - - s Mk1.1,0), (Ag1,0))

+ D*h((2,9); (M1, A12), - - -, (0, Ae—1,2), (A, 0))

+ DRh((z,y); (A1, Mi2)s - oy (Ak—1.1,0), (0, Ak2))

+ D*h((z,9); M1, M2), - -+ (0, M 12), (0, Ar2))
_ 2 aAliIAQiQ.../\Mkh(x,y)

i1 yeeyin=1,2
and this completes the proof. 0O
Proof of Theorem 1.1. Using Lema 2.2, we obtain

DF(f om)((x,y);(A11, M2), - -5 (Akts Akz))
= 3 Re(fem(ay).

i1yt =1,2

B replacing the 2% partial derivatives from the right hand side by their values
provided by Lemma 2.1 we obtain the sum from the requested relation. [
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