HITTING PROBABILITIES FOR RANDOM CONVEX BODIES AND LATTICES OF RECTANGLES WITH TRIANGULAR OBSTACLES

UWE BÄSEL and MARIUS STOKA

Communicated by Marius Iosifescu

In this paper, we calculate the probability that a small convex body hits a plane lattice that is a regular tiling with a finite number of in general different rectangles, each containing four triangular obstacles.

AMS 2010 Subject Classification: 60D05, 52A22.

Key words: convex sets, hitting probabilities, Laplace type problem, lattice of rectangles, obstacles, tiling.

1. INTRODUCTION

Let \mathcal{R}_i , $i \in \{1, 2, ..., n\}$, be the rectangle

$$\mathcal{R}_i = \{(x_i, y_i) \in \mathbb{R}^2 \mid 0 \le x_i \le a_i, 0 \le y_i \le b_i \}$$

with area $A_i = a_i b_i > 0$ (see Fig. 1). In every corner of \mathcal{R}_i there is an obstacle $\mathcal{H}_{i,k}$ that is an isosceles right triangle with legs of length $h_i < \min(a_i, b_i)/2$. One easily finds that

$$\mathcal{H}_{i,1} := \left\{ (x_i, y_i) \in \mathbb{R}^2 \mid a_i - h_i \le x_i \le a_i, \ 0 \le y_i \le x_i - a_i + h_i \right\},$$

$$\mathcal{H}_{i,2} := \left\{ (x_i, y_i) \in \mathbb{R}^2 \mid a_i - h_i \le x_i \le a_i, \ a_i + b_i - h_i - x_i \le y_i \le b_i \right\},$$

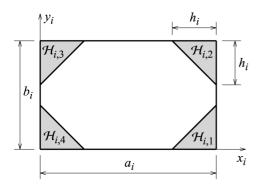
$$\mathcal{H}_{i,3} := \left\{ (x_i, y_i) \in \mathbb{R}^2 \mid x_i \ge 0, \ x_i + b_i - h_i \le y_i \le b_i \right\},$$

$$\mathcal{H}_{i,4} := \left\{ (x_i, y_i) \in \mathbb{R}^2 \mid x_i \ge 0, \ 0 \le y_i \le h_i - x_i \right\}.$$

We say that $\mathcal{K} = \bigcup_{i=1}^n \mathcal{R}_i$ is a *conglomerate* of $\mathcal{R}_1, \dots, \mathcal{R}_n$ if:

- $\mathcal{R}_i \cap \mathcal{R}_j$, $i \neq j$, is either the empty set or a set of measure zero (point or line segment).
- $-\mathcal{K}$ is simply connected.
- There exists at least one regular plane tiling with K.

REV. ROUMAINE MATH. PURES APPL. 61 (2016), 1, 29–38



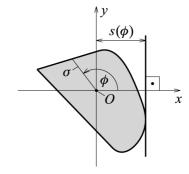


Fig. 1 – Rectangle \mathcal{R}_i with obstacles.

Fig. 2 – Convex body C.

Note that \mathcal{K} is a convex or non convex polygon with area $A = \sum_{i=1}^{n} A_i$. In the following, a regular tiling with \mathcal{K} is called *lattice* \mathcal{R} of rectangles (in short: *lattice* \mathcal{R}). We denote by $\partial \mathcal{R}_i$ the boundary of \mathcal{R}_i , and put

$$\mathcal{H}_{i} := \bigcup_{k=1}^{4} \mathcal{H}_{i,k}, \quad \mathcal{H} := \bigcup_{i=1}^{n} \mathcal{H}_{i}, \quad \widetilde{\mathcal{R}} := \bigcup_{i=1}^{n} \partial \mathcal{R}_{i},$$
$$\mathcal{S}_{i} := \partial \mathcal{R}_{i} \cup \mathcal{H}_{i}, \quad \mathcal{S} := \widetilde{\mathcal{R}} \cup \mathcal{H} = \bigcup_{i=1}^{n} \mathcal{S}_{i}.$$

It is possible to cover the whole plane gaplessly with congruent rectangles $\overline{\mathcal{K}}$ so that every $\overline{\mathcal{K}} \cap \mathcal{R}$ (with inside line segments and obstacles) is a congruent copy of any other. Let \bar{a} and \bar{b} the side lengths of $\overline{\mathcal{K}}$. We define a Cartesian \bar{x}, \bar{y} -coordinate system for $\overline{\mathcal{K}}$ such that

$$\overline{\mathcal{K}} = \left\{ (\bar{x}, \bar{y}) \in \mathbb{R}^2 \,|\, 0 \le \bar{x} \le \bar{a}, 0 \le \bar{y} \le \bar{b} \right\}.$$

A planar convex body \mathcal{C} is randomly thrown onto \mathcal{R} . We are asking for the probability that $\mathcal{C} \cap \mathcal{S} \neq \emptyset$. In this case, we say that \mathcal{C} hits \mathcal{S} . Let \mathcal{C} be provided with a fixed reference point O inside \mathcal{C} and a fixed oriented line segment σ starting in O (see Fig. 2).

The random throw of \mathcal{C} onto \mathcal{R} is defined as follows: The coordinates \bar{x} , \bar{y} of the reference point O are random variables uniformly distributed in $[0, \bar{a}]$, $[0, \bar{b}]$, respectively; the angle ϕ between the \bar{x} -axis and the line segment σ is a random variable uniformly distributed in $[0, 2\pi]$. All three random variables are stochastically independent.

Let u denote the perimeter of C, A_C the area of C, and

$$s: \mathbb{R} \to \mathbb{R}, \quad \phi \mapsto s(\phi)$$

the support function of C with reference to the point O. We use s in the following sense (see Fig. 2): C rotates about the origin of a Cartesian x, y-coordinate

system with rotation angle ϕ between the x-axis and segment σ , whereby O coincides with the origin. The support line, touching \mathcal{C} , is perpendicular to the x-axis. Now, the support function s is the distance between the origin and the support line. In [6, pp. 2-3], the support function, say \tilde{s} , is defined for fixed \mathcal{C} and moving support line. Clearly, the relation between these two definitions is given by $s(\phi) = \tilde{s}(-\phi)$ if the fixed body \mathcal{C} is in the position with $\phi = 0$, and O coinciding with the origin. The width of \mathcal{C} in the direction ϕ is given by

$$w: \mathbb{R} \to \mathbb{R}$$
, $\phi \mapsto w(\phi) = s(\phi) + s(\phi + \pi)$.

In the following, we assume C to be *small* with respect to S. The criterion of the smallness of C (see Corollary 1) will be obtained later on.

Since Laplace calculated the hitting probability for a line segment (needle) and a lattice of rectangles (see [5, pp. 17–19]), problems of this kind are often called *Laplace type problems*. For recent results on Laplace type problems we refer to [1] and [2]. Results for triangular lattices with triangular obstacles are to be found in [3].

2. HITTING PROBABILITIES

2.1. One rectangle

In this subsection we consider only one rectangle \mathcal{R}_i , and assume that the coordinates x_i , y_i of O are random variables uniformly distributed in $[0, a_i]$, $[0, b_i]$, respectively. We calculate the probability of the event $\mathcal{C} \cap \mathcal{S}_i \neq \emptyset$ (" \mathcal{C} hits \mathcal{S}_i "). Obviously,

$$P(\mathcal{C} \cap \mathcal{S}_i \neq \emptyset) = P(\mathcal{C} \cap \partial \mathcal{R}_i \neq \emptyset) + P((\mathcal{C} \cap \mathcal{H}_i \neq \emptyset) \wedge (\mathcal{C} \cap \partial \mathcal{R}_i = \emptyset))$$
$$= P(\mathcal{C} \cap \partial \mathcal{R}_i \neq \emptyset) + \sum_{k=1}^4 P((\mathcal{C} \cap \mathcal{H}_{i,k} \neq \emptyset) \wedge (\mathcal{C} \cap \partial \mathcal{R}_i = \emptyset)).$$

For abbreviation we denote the event $(\mathcal{C} \cap \mathcal{H}_{i,k} \neq \emptyset) \wedge (\mathcal{C} \cap \partial \mathcal{R}_i = \emptyset)$ by $H_{i,k}$. It is clear that $P(H_{i,1}) = P(H_{i,2}) = P(H_{i,3}) = P(H_{i,4})$. We already know [1, Theorem 1] that

$$P(\mathcal{C} \cap \partial \mathcal{R}_i \neq \emptyset) = \frac{u}{\pi a_i} + \frac{u}{\pi b_i} - \frac{1}{\pi a_i b_i} I\left(\frac{\pi}{2}\right) = \frac{1}{\pi A_i} \left[(a_i + b_i)u - I\left(\frac{\pi}{2}\right) \right]$$

with

(1)
$$I(x) := \int_0^{\pi} w(\phi)w(\phi + x) d\phi$$

if

$$\max_{\phi \in [0,\pi)} w(\phi) \le \min(a_i, b_i).$$

Using the law of total probability in the integral form (see [4, p. 282]), we have the Stieltjes integral

$$P(H_{i,k}) = \int_{-\infty}^{\infty} P(H_{i,k} \mid \phi) \, \mathrm{d}F(\phi)$$

for the probability of the event $H_{i,k}$, where F is the distribution function of the angle ϕ between the x_i -axis and the line segment σ ,

$$F(\phi) = \begin{cases} 0, & -\infty < \phi < 0, \\ \phi/(2\pi), & 0 \le \phi < 2\pi, \\ 1, & 2\pi \le \phi < \infty, \end{cases}$$

and $P(H_{i,k} | \phi)$ is the conditional probability of $H_{i,k}$ for fixed value of ϕ .

We calculate $P(H_{i,k})$ with the help of Fig. 3. For fixed angle ϕ , the event $H_{i,1}$ occurs if

$$O \in \mathcal{H}_{i,1}^*(\phi) := \left\{ (x_i, y_i) \in \mathbb{R}^2 \mid a_i - s(\phi) - \delta_i(\phi) \le x_i < a_i - s(\phi), \\ s\left(\phi + \frac{\pi}{2}\right) < y_i \le x_i - a_i + h_i + \sqrt{2} s\left(\phi + \frac{\pi}{4}\right) \right\}.$$

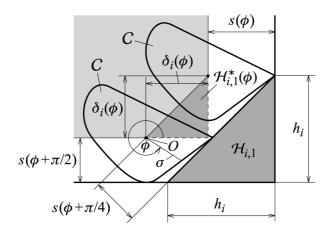


Fig. 3 – Set $\mathcal{H}_{i,1}^*(\phi)$.

 $(\mathcal{H}_{i,1}^*(\phi))$ is an isosceles right triangle with legs of length $\delta_i(\phi)$.) We assume that $\delta_i(\phi) \geq 0$ for every $\phi \in [0, 2\pi)$. The area of $\mathcal{H}_{i,1}^*(\phi)$ is equal to $\delta_i^2(\phi)/2$, hence

$$P(H_{i,1} \mid \phi) = \frac{\delta_i^2(\phi)}{2A_i}.$$

Therefore

$$P(H_{i,1}) = \frac{1}{2\pi} \int_0^{2\pi} P(H_{i,1} | \phi) d\phi = \frac{1}{4\pi A_i} \int_0^{2\pi} \delta_i^2(\phi) d\phi$$

and

$$P(\mathcal{C} \cap \mathcal{S}_i \neq \emptyset) = P(\mathcal{C} \cap \partial \mathcal{R}_i \neq \emptyset) + 4P(H_{i,1})$$
$$= \frac{1}{\pi A_i} \left[(a_i + b_i)u - I\left(\frac{\pi}{2}\right) \right] + 4\frac{1}{4\pi A_i} \int_0^{2\pi} \delta_i^2(\phi) \, d\phi,$$

hence

(2)
$$P(\mathcal{C} \cap \mathcal{S}_i \neq \emptyset) = \frac{1}{\pi A_i} \left[(a_i + b_i)u - I\left(\frac{\pi}{2}\right) + \int_0^{2\pi} \delta_i^2(\phi) \,d\phi \right].$$

Now, we determine the function δ_i . The line containing the hypotenuse of $\mathcal{H}_{i,1}^*(\phi)$ intersects the line $y_i = s(\phi + \pi/2)$ in the point whose x_i -coordinate is

$$s\left(\phi + \frac{\pi}{2}\right) + a_i - h_i - \sqrt{2} s\left(\phi + \frac{\pi}{4}\right).$$

Hence

$$\delta_i(\phi) = a_i - s(\phi) - \left[s\left(\phi + \frac{\pi}{2}\right) + a_i - h_i - \sqrt{2} s\left(\phi + \frac{\pi}{4}\right) \right]$$
$$= h_i - \left[s(\phi) - \sqrt{2} s\left(\phi + \frac{\pi}{4}\right) + s\left(\phi + \frac{\pi}{2}\right) \right].$$

From the above-mentioned assumption $\delta_i(\phi) \geq 0$, it follows that

$$\sqrt{2} \max_{\phi \in [0,2\pi)} \left[s(\phi) - \sqrt{2} s\left(\phi + \frac{\pi}{4}\right) + s\left(\phi + \frac{\pi}{2}\right) \right] \le \sqrt{2} h_i,$$

where $\sqrt{2} h_i$ is the length of the hypotenuse of $\mathcal{H}_{i,k}$. This gives rise to the definition that \mathcal{C} is small with respect to \mathcal{S}_i if

(3)
$$\sqrt{2} \max_{\phi \in [0,2\pi)} \left[s(\phi) - \sqrt{2} s\left(\phi + \frac{\pi}{4}\right) + s\left(\phi + \frac{\pi}{2}\right) \right]$$

$$\leq \min(\sqrt{2} h_i, a_i - 2h_i, b_i - 2h_i).$$

We have

$$\delta_{i}^{2}(\phi) = s^{2}(\phi) + 2s^{2}\left(\phi + \frac{\pi}{4}\right) + s^{2}\left(\phi + \frac{\pi}{2}\right) - 2\sqrt{2}\,s(\phi)\,s\left(\phi + \frac{\pi}{4}\right) + 2s(\phi)\,s\left(\phi + \frac{\pi}{2}\right) - 2\sqrt{2}\,s\left(\phi + \frac{\pi}{4}\right)\,s\left(\phi + \frac{\pi}{2}\right) - 2h_{i}\left[s(\phi) - \sqrt{2}\,s\left(\phi + \frac{\pi}{4}\right) + s\left(\phi + \frac{\pi}{2}\right)\right] + h_{i}^{2}.$$

Using the the relations

$$\int_{0}^{2\pi} s^{2} \left(\phi + \frac{\pi}{4}\right) d\phi = \int_{0}^{2\pi} s^{2} \left(\phi + \frac{\pi}{2}\right) d\phi = \int_{0}^{2\pi} s^{2}(\phi) d\phi,$$
$$\int_{0}^{2\pi} s \left(\phi + \frac{\pi}{4}\right) s \left(\phi + \frac{\pi}{2}\right) d\phi = \int_{0}^{2\pi} s(\phi) s \left(\phi + \frac{\pi}{4}\right) d\phi,$$

$$\int_0^{2\pi} s\left(\phi + \frac{\pi}{4}\right) d\phi = \int_0^{2\pi} s\left(\phi + \frac{\pi}{2}\right) d\phi = \int_0^{2\pi} s(\phi) d\phi,$$

that result from the 2π -periodicity of s, and

$$u = \int_0^{2\pi} s(\phi) \, \mathrm{d}\phi$$

(see [6, p. 3]), it follows that

$$\begin{split} \int_0^{2\pi} \delta_i^2(\phi) \, \mathrm{d}\phi &= 4 \int_0^{2\pi} s^2(\phi) \, \mathrm{d}\phi - 4\sqrt{2} \int_0^{2\pi} s(\phi) \, s\Big(\phi + \frac{\pi}{4}\Big) \, \mathrm{d}\phi \\ &+ 2 \int_0^{2\pi} s(\phi) \, s\Big(\phi + \frac{\pi}{2}\Big) \, \mathrm{d}\phi - 2 \left(2 - \sqrt{2}\right) h_i \int_0^{2\pi} s(\phi) \, \mathrm{d}\phi \\ &+ h_i^2 \int_0^{2\pi} \mathrm{d}\phi \\ &= 4J(0) - 4\sqrt{2}J\Big(\frac{\pi}{4}\Big) + 2J\Big(\frac{\pi}{2}\Big) - 2\left(2 - \sqrt{2}\right) h_i u + 2\pi h_i^2 \end{split}$$

with

(4)
$$J(x) := \int_0^{2\pi} s(\phi) \, s(\phi + x) \, d\phi.$$

With (2), we have proved the following theorem.

THEOREM 1. If O is chosen uniformly at random from \mathcal{R}_i , and C is small with respect to \mathcal{S}_i according to (3), then, with (1) and (4),

(5)
$$P(\mathcal{C} \cap \mathcal{S}_i \neq \emptyset) = \frac{1}{\pi A_i} \left[(a_i + b_i)u - I\left(\frac{\pi}{2}\right) + 4J(0) - 4\sqrt{2}J\left(\frac{\pi}{4}\right) + 2J\left(\frac{\pi}{2}\right) - 2\left(2 - \sqrt{2}\right)h_iu + 2\pi h_i^2 \right].$$

Remark 1. For all convex bodies \mathcal{C} where O may be chosen such that $w(\phi) = 2s(\phi)$ for every $\phi \in [0, 2\pi)$, we have I(x) = 2J(x), and therefore

$$P(\mathcal{C} \cap \mathcal{S}_i \neq \emptyset) = \frac{1}{\pi A_i} \left[(a_i + b_i)u + 2I(0) - 2\sqrt{2} I\left(\frac{\pi}{4}\right) - 2\left(2 - \sqrt{2}\right) h_i u + 2\pi h_i^2 \right].$$

2.2. Lattice \mathcal{R}

Now we consider the random throw of \mathcal{C} onto a lattice \mathcal{R} that is a regular tiling with a conglomerate $\mathcal{K} = \bigcup_{i=1}^n \mathcal{R}_i$ of rectangles $\mathcal{R}_1, \ldots, \mathcal{R}_n$ as defined in Section 1, and calculate the probability of the event $\mathcal{C} \cap \mathcal{S} \neq \emptyset$ (" \mathcal{C} hits \mathcal{S} "). Using the law of total probability, we have

$$P(\mathcal{C} \cap \mathcal{S} \neq \emptyset) = \sum_{i=1}^{n} P(\mathcal{C} \cap \mathcal{S} \neq \emptyset \mid O \in \mathcal{R}_i) P(O \in \mathcal{R}_i).$$

Clearly,

$$P(\mathcal{C} \cap \mathcal{S} \neq \emptyset \mid O \in \mathcal{R}_i) = P(\mathcal{C} \cap \mathcal{S}_i \neq \emptyset \mid O \in \mathcal{R}_i), \quad i \in \{1, \dots, n\}.$$

Due to the assumption $O \in \mathcal{R}_i$ in Theorem 1, the conditional probabilities $P(\mathcal{C} \cap \mathcal{S}_i \neq \emptyset \mid O \in \mathcal{R}_i)$ are given by formula (5). Obviously,

$$P(O \in \mathcal{R}_i) = \frac{A_i}{A}, \quad i \in \{1, \dots, n\}.$$

It follows that

$$P(\mathcal{C} \cap \mathcal{S} \neq \emptyset) = P(\mathcal{C} \cap (\widetilde{\mathcal{R}} \cup \mathcal{H}) \neq \emptyset) = P((\mathcal{C} \cap \widetilde{\mathcal{R}} \neq \emptyset) \vee (\mathcal{C} \cap \mathcal{H} \neq \emptyset))$$

$$= \sum_{i=1}^{n} \frac{1}{\pi A_i} \left[(a_i + b_i)u - 2(2 - \sqrt{2})h_iu + 2\pi h_i^2 - I(\frac{\pi}{2}) + 4J(0) - 4\sqrt{2}J(\frac{\pi}{4}) + 2J(\frac{\pi}{2}) \right] \frac{A_i}{A},$$

hence

(6)
$$P(\mathcal{C} \cap \mathcal{S} \neq \emptyset) = \frac{1}{\pi A} \left\{ u \left[\sum_{i=1}^{n} (a_i + b_i) - 2\left(2 - \sqrt{2}\right) \sum_{i=1}^{n} h_i \right] + 2\pi \sum_{i=1}^{n} h_i^2 - n \left[I\left(\frac{\pi}{2}\right) - 4J(0) + 4\sqrt{2}J\left(\frac{\pi}{4}\right) - 2J\left(\frac{\pi}{2}\right) \right] \right\}.$$

Taking into account that every S_i , $i \in \{1, ..., n\}$, has to be considered checking the smallness of C according to inequality (3), we have found the following corollary.

COROLLARY 1. C is randomly thrown onto a lattice R with conglomerate $K = \bigcup_{i=1}^{n} \mathcal{R}_i$. If inequality

$$\sqrt{2} \max_{\phi \in [0, 2\pi)} \left[s(\phi) - \sqrt{2} s\left(\phi + \frac{\pi}{4}\right) + s\left(\phi + \frac{\pi}{2}\right) \right]$$

$$\leq \min_{i \in \{1, \dots, n\}} \left(\sqrt{2} h_i, a_i - 2h_i, b_i - 2h_i \right)$$

holds, then the probability that C hits S is given by (6) with (1) and (4).

Remark 2. If I(x) = 2J(x), then

$$P(\mathcal{C} \cap \mathcal{S} \neq \emptyset) = \frac{1}{\pi A} \left\{ u \left[\sum_{i=1}^{n} (a_i + b_i) - 2\left(2 - \sqrt{2}\right) \sum_{i=1}^{n} h_i \right] + 2\pi \sum_{i=1}^{n} h_i^2 + 2n \left[I(0) - \sqrt{2} I\left(\frac{\pi}{4}\right) \right] \right\}.$$

3. SPECIAL CASES

3.1. \mathcal{C} is a rectangle

Let $\mathcal C$ be a rectangle with side lengths $\widetilde m$ and $\widetilde n$. Clearly, $\mathcal C$ is small with respect to $\mathcal S$ if

$$\max(\widetilde{m}, \, \widetilde{n}) \le \min_{i \in \{1, \dots, n\}} \left(\sqrt{2} \, h_i, \, a_i - 2h_i, \, b_i - 2h_i \right).$$

We already know, see [1], that

$$I(\alpha) = \frac{\left[\left(\pi - 2\alpha\right)\left(\widetilde{m}^2 + \widetilde{n}^2\right) + 4\widetilde{m}\widetilde{n}\right]\cos\alpha + 2\left(\widetilde{m}^2 + \widetilde{n}^2 + 2\alpha\widetilde{m}\widetilde{n}\right)\sin\alpha}{2}\,.$$

For $\alpha = \pi/4$, one finds

$$I\left(\frac{\pi}{4}\right) = \frac{(\pi+4)\left(\widetilde{m}+\widetilde{n}\right)^2}{4\sqrt{2}}.$$

The formula for $I(\alpha)$ is valid for $\alpha = 0$, too, and gives

$$I(0) = \frac{1}{2} \left[\pi \left(\widetilde{m}^2 + \widetilde{n}^2 \right) + 4\widetilde{m}\widetilde{n} \right].$$

Therefore, we have

$$I(0) - \sqrt{2} I\left(\frac{\pi}{4}\right) = \frac{1}{4} \left[(\pi - 4) \left(\widetilde{m}^2 + \widetilde{n}^2 \right) - 2\pi \widetilde{m} \widetilde{n} \right]$$
$$= \frac{\pi}{4} \left(\widetilde{m} - \widetilde{n} \right)^2 - \left(\widetilde{m}^2 + \widetilde{n}^2 \right),$$

and

$$P(\mathcal{C} \cap \mathcal{S} \neq \emptyset) = \frac{1}{\pi A} \left\{ 2(\widetilde{m} + \widetilde{n}) \left[\sum_{i=1}^{n} (a_i + b_i) - 2\left(2 - \sqrt{2}\right) \sum_{i=1}^{n} h_i \right] + 2\pi \sum_{i=1}^{n} h_i^2 + n \left[\frac{\pi}{2} \left(\widetilde{m} - \widetilde{n}\right)^2 - 2\left(\widetilde{m}^2 + \widetilde{n}^2\right) \right] \right\}.$$

3.2. A special lattice \mathcal{R}

Now, we consider the special lattice shown in Fig. 4. Four obstacles $\mathcal{H}_{1,1}$, $\mathcal{H}_{1,2}$, $\mathcal{H}_{1,3}$, $\mathcal{H}_{1,4}$ form a square $\widetilde{\mathcal{H}}_1$ with side length $\sqrt{2} h_1$. At first, we calculate the probability that the convex body \mathcal{C} hits \mathcal{H} under the condition

(7)
$$\max_{\phi \in [0,\pi)} w(\phi) \le \min(a_1 - 2h_1, b_1 - 2h_1).$$

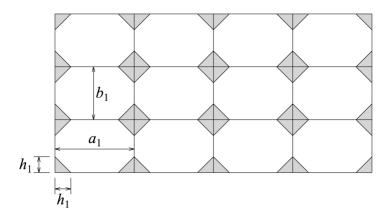


Fig. 4 – Lattice \mathcal{R} consisting of rectangles \mathcal{R}_1 .

Due to this condition, the probability that C hits more than one square $\widetilde{\mathcal{H}}_1$ is equal to zero. Using a formula from [6, p. 140], we easily find

$$P(\mathcal{C} \cap \mathcal{H} \neq \emptyset) = P(\mathcal{C} \cap \widetilde{\mathcal{H}}_1 \neq \emptyset) = \frac{\pi \left(2h_1^2 + A_{\mathcal{C}}\right) + 2\sqrt{2}h_1u}{\pi a_1b_1}.$$

Next, if (7) and

$$\sqrt{2} \max_{\phi \in [0,2\pi)} \left[s(\phi) - \sqrt{2} s\left(\phi + \frac{\pi}{4}\right) + s\left(\phi + \frac{\pi}{2}\right) \right] \le \sqrt{2} h_1$$

hold, we get the probability that \mathcal{C} hits \mathcal{R} and \mathcal{H} at the same time:

$$P(\mathcal{C} \cap \widetilde{\mathcal{R}} \cap \mathcal{H} \neq \emptyset) = P((\mathcal{C} \cap \widetilde{\mathcal{R}} \neq \emptyset) \wedge (\mathcal{C} \cap \mathcal{H} \neq \emptyset))$$

$$= P(\mathcal{C} \cap \widetilde{\mathcal{R}} \neq \emptyset) + P(\mathcal{C} \cap \mathcal{H} \neq \emptyset) - P((\mathcal{C} \cap \widetilde{\mathcal{R}} \neq \emptyset) \vee (\mathcal{C} \cap \mathcal{H} \neq \emptyset))$$

$$= P(\mathcal{C} \cap \widetilde{\mathcal{R}} \neq \emptyset) + P(\mathcal{C} \cap \mathcal{H} \neq \emptyset) - P(\mathcal{C} \cap (\widetilde{\mathcal{R}} \cup \mathcal{H}) \neq \emptyset)$$

$$= P(\mathcal{C} \cap \widetilde{\mathcal{R}} \neq \emptyset) + P(\mathcal{C} \cap \mathcal{H} \neq \emptyset) - P(\mathcal{C} \cap \mathcal{S} \neq \emptyset)$$

$$= \frac{1}{\pi a_1 b_1} \left\{ (a_1 + b_1)u - I(\frac{\pi}{2}) + 2\pi h_1^2 + \pi A_{\mathcal{C}} + 2\sqrt{2}h_1u - \left[(a_1 + b_1)u - I(\frac{\pi}{2}) + 4J(0) - 4\sqrt{2}J(\frac{\pi}{4}) + 2J(\frac{\pi}{2}) - 4h_1u + 2\sqrt{2}h_1u + 2\pi h_1^2 \right] \right\}$$

$$= \frac{1}{\pi a_1 b_1} \left[\pi A_{\mathcal{C}} + 4h_1u - 4J(0) + 4\sqrt{2}J(\frac{\pi}{4}) - 2J(\frac{\pi}{2}) \right].$$

If \mathcal{C} is a rectangle whose side lengths \widetilde{m} and \widetilde{n} satisfy the inequalities

$$\max(\widetilde{n}, \widetilde{n}) \leq \sqrt{2} h_1$$
 and $\sqrt{\widetilde{m}^2 + \widetilde{n}^2} \leq \min(a_1 - 2h_1, b_1 - 2h_1)$,

then, with

$$\begin{split} 2J(x) &= I(x) \,, \quad I(0) = 2\widetilde{m}\widetilde{n} + \frac{\pi}{2}\left(\widetilde{m}^2 + \widetilde{n}^2\right), \quad I\left(\frac{\pi}{2}\right) = \widetilde{m}^2 + \widetilde{n}^2 + \pi\widetilde{m}\widetilde{n} \,, \\ 2\sqrt{2}\,I\!\left(\frac{\pi}{4}\right) - I\!\left(\frac{\pi}{2}\right) &= 4\widetilde{m}\widetilde{n} + \frac{1}{2}\left(\pi + 2\right)\left(\widetilde{m}^2 + \widetilde{n}^2\right), \end{split}$$

one finds

$$P(\mathcal{C} \cap \widetilde{\mathcal{R}} \cap \mathcal{H} \neq \emptyset) = \frac{2\pi \widetilde{m} \widetilde{n} + 16h_1(\widetilde{m} + \widetilde{n}) - (\pi - 2)\left(\widetilde{m}^2 + \widetilde{n}^2\right)}{2\pi a_1 b_1}.$$

REFERENCES

- [1] U. Bäsel and A. Duma, Intersection probabilities for random convex bodies and a lattice of parallelograms. Annales de l'I.S.U.P. 58 (2014), 1-2, 77-89.
- [2] A. Duma and M. Stoka, Geometric probabilities for quadratic lattices with quadratic obstacles. Annales de l'I.S.U.P. 48 (2004), 1-2, 19-24.
- [3] A. Duma and M. Stoka, Geometric probabilities for triangular lattices with triangular obstacles. Annales de l'I.S.U.P. 49 (2005), 2-3, 57-72.
- [4] B.W. Gnedenko, Lehrbuch der Wahrscheinlichkeitstheorie. Verlag Harri Deutsch, Thun und Frankfurt am Main, 1997.
- [5] A.M. Mathai, An Introduction to Geometrical Probability. Gordon and Breach, Australia, 1999.
- [6] L.A. Santaló, Integral Geometry and Geometric Probability. Addison-Wesley, London, 1976.

Received 12 September 2014

HTWK Leipzig, Fakultät Maschinenbau und Energietechnik, PF 301166, 04251 Leipzig, Germany uwe.baesel@htwk-leipzig.de

Accademia delle Scienze di Torino, Via Maria Vittoria 3, 10123 Torino, Italy