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We present minimal conditions for a proper sub-Markovian resolvent family of
kernels, such that it is possible to develop a basic part of the potential theory,
in the frame of the associated excessive structure. We characterize the regular
excessive elements as being those excessive functions for which the associated
pseudo-balayages are balayages, and we construct a fine carrier theory without
using any kind of compactification.
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1. INTRODUCTION

Given a sub-Markovian resolvent family of kernels V on a measurable
space (X, B), we deal with the following two problems:
(1) describe the regular elements of the cone &y of all V-excessive B-measurable
functions in terms of balayage theory on &£y;
(2) establish the link between the existence of fine carrier for the regular el-
ements of & and the property that any balayage operator B on &, may be
represented on X under the form B = R4, where R? is the reduite in & on
the set A.

For this purpose we associate to any element s € £y, s < 00, a pseudo-
balayage Bs on &y, defined by

Bst = sup{u € Ey|u < t,u < as for some o > 0}.

This operator was considered in the frame of standard H-cones in [5] where s
is universally continuous and, in this case, By is a balayage. In our paper we
consider elements s € £y such that B; is a balayage and we show that s has this
property if and only if it is regular, that is /A R(s — s,,) = 0 for any sequence

n
(Sn)n increasing to s. This gives an answer to problem (1).
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In the case when V is a resolvent having the properties from the last
Remark 5 of this paper, then starting from a result in [1] and [2] which asserts
that for any analytic, basic subset M of X there exists a regular excessive
function whose fine carrier is contained in M, we show that the properties from
(2) hold if and only if the balayage By is representable for any regular element
s of Ey.

2. PRELIMINARIES AND FIRST RESULTS

Throughout, V = (V,)a=0 is a proper sub-Markovian resolvent of kernels
on a measurable space (X,B). We denote by S the set of all B-measurable
numerical functions s which are supermedian, i.e. s : X — [0,+o0] and
aVys < sforall > 0. Let S f be the set of all real-valued functions from S.

Let & be the set of all excessive, B-measurable functions, which are finite
V-a.e., that is

E={seS/supaVys =sand Vo(1[s_e]) = 0 for one (hence all) aeR.}.

For any s € S the family (aV,$)aer, is increasing and the function 5 defined
by

5= lim aV,s = lim nV,s = supnVps,
a—w0 n—a n

called the regularized of s (with respect to V) is dominated by s and the set

[s < s] is V-negligible, i.e. Vo(lj<4) = 0 for one (hence all) a € R..
We recall that for any B-measurable function f on X the set

{seS/s> f)
possesses the smallest element denoted by Ry f. If f is of the form s — s1 with
51,82 € S, then

R — = €S/s1+s= < 82,
o(s2 — s1) /\{s /s1+ s 82}382

where we have written uw < v if there exists s € S such that v = u + s, v and
S
v being positive functions on X. The relation < is the so called specific order

induced by S. i

If Ae B and s € S then the element Ry(14 - s) is called the reduite of s
on the set A and it will be denoted by Ré“s. The following properties of the
reduite operation are well known (see e.g. [4]):

If s1,82 € £ then Ry(sy — s1) € € and Ry(s2 — s1) ?sz where < is the

S0

specific order given by £.
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The set (£, X) is a conditionally o-complete lattice, i.e. for any sequence
&

(sn)n © & there exists the greatest lower bound noted by A, s, and we have:
s—l—Asn = A(s—i—sn) for all se&.
n n

If (sp)n € € is specifically dominated in € there exists the smallest upper bound
denoted by Y, s, and we have:

s—i-v:sn:v(s—i—sn) for all se&.

n

Moreover, if the sequence (s, )y is specifically increasing (resp. decreasing) then

we have:
vgn = sup s, (resp. Asn = infsy),
n n
n

n

where sup s,, (resp. infs,) is the pointwise supremum (resp. infimum) of the
n

n
sequence of functions (sy), on X. Particularly, the Riesz decomposition prop-
erty holds in £ and S, i.e. for any s,t1,te belonging to £ (resp. S) with
s < t1+to there exist s1, soin € (resp. S) such that s1 < t1, s2 < t2, s = s1+s9.
In fact, the o-Riesz decomposition property may be immediately shown

o0 o0
s<2t¢:s=251, si <t; forall ieN.
i=1 i=1

Other well known assertions from the vector lattice theory may be restated
in the convex cones £ and S. Among them the following one will be used: for
any $1, 82 in € (resp. S) we have

81A82+81VS2 = S1 + S2.

The Riesz decomposition property with respect to the pointwise order
relation holds in S (respectively &), i.e. for any s,t1,t9 in S (resp. &) with
s < t1+to there exist sq, soin S (resp. &) such that s = s1+s2, $1 < t1, s2 < to.

The following decomposition property is inspired by a similar one used by
G. Mokobodzki in the study of subordinate resolvents (cf. [4] and [8]).

LuEMMA 2.1. For any s € ST, and any A € B there exist s4 and 'y such
that

X\A
s=s4+s4 and Rf;lsA:sA, RO\ s’y =§4.

Proof. We define inductively two sequences (s, ), and (s]),, in S as follows:
s! = Ro(s — R%s), s} =s— Ro(s — R"s)

sno1 = Ros, — Rs)), sl =5, — Ro(s), — Rs],).
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Obviously, we have s/, = s/, ., +s" ., and one can show that s/, ,; = R4s!, < s/
and s/, = R¥\As" . So, the sequence (s,), is specifically decreasing in S

n
and the sequence (Y. s?),, is specifically increasing in S and we have
i=1

n
s=s%+28f for all n e N*.
i=1
Therefore, s = s4 + s’y where we have denoted

n

e @] n
=ity = Ay fy= w3 =Y S
=1 n 1

S i=1

From the preceding considerations we deduce

A ! A 1 A
O(Asn) = AROSH = Asna ROSA = SA.
n n n

MS

RY s ZRX\A ”:Z R = O
z=1 =1
LEMMA 2.2 (A Choquet type lemma). Let (s,)n be a sequence in S and
for any n € N let (spm)nm be a sequence in S which is specifically increasing
to sp,.
a. We have
Y {sn/n € N} = Y {tn/n € N},
S S
where
tn =: v Si,j-
1,J<n
b. If s, < o0, n € N, and for any sequence o0 = (Mp)nen n N we
denote

Sg = A{snmn/n e N},
S
then we have

A{sn/n e N} = sup{sy,/o € N},
S

where sup stands for the pointwise supremum and NN for the set of all sequences
of natural numbers.

Proof. a) Obviously we have

n =Y {snm/m e N} <Y {te/k € N} <Y {sx/k € N}
S S S
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and therefore

Y {sn/n € N} =Y {tn/n € N},
S S
b) Let z € X and let € be a real number, ¢ > 0. Since the sequence
(Sn,m)m 1s specifically increasing (in S) to the element s, of S we have
sp(x) = sup spm(z) = lm sy, (2)
m m—>0
and therefore we may consider m,, € N such that

€
$n(x) < Spym, (@) + on Of tn(z) <
where ¢, € S is such that s, = s, + tn.
If we put sp = A{sn/n € N}, from the preceding consideration we have
S

€
on’

< Snm, + S0 A(Zn: t;) forall neN,

< Spmn +V{80A 2 )/k € N},
A{snmn/neN}—i—V{soA Z )/k € N}.

On the other hand at the point x € X the following inequality holds
V{SQAZ )/k € N}(x hm AZt
S i=1

< lim ) ti(x) <e
k—»oOZ 1

and therefore
So(ff) < sg(:x) + ¢ where o= (mn)neN-

The number ¢ being arbitrary we have

so(x) = sup sp(x) forall zeX. [J

oeNN

LEMMA 2.3. Let (sp)n be a sequence in € and for any n € N let (Spm)m
be a sequence in € which is E-specifically increasing to s,.
a. If the sequence (sn)n has a specific magorant in € then

Yo=Y
& &
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where

tn =: V{Sz‘,j/l}j < n}.
&
b. If s, < 0, n €N, and for any sequence o = (My)nen 0 N we set

Sg = A{snmn/n e N},
&

then we have

A{sn/n e N} = sup{sy, /o € NV},
&

where sup stands for the pointwise supremum and NN for the set of all sequences
of natural numbers.

Proof. We apply LEMMA 2 and use the following properties of the specific
order:

Y=Y Yto=Yt, Alsnm./neN = Afspm,/mneN}p. O
& S E S E S

3. PSEUDO-BALAYAGES ASSOCIATED
WITH SUPERMEDIAN FUNCTIONS

A map B: S — S is called pseudo-balayage on S if it is increasing (with
respect to the pointwise order relation), additive, contractive (Bs < s) and
idempotent (B?s = B(Bs) = Bs) for all s€ S.

A pseudo-balayage B is called balayage if it is o-continuous in order from
below, i.e. the sequence (Bs,), increases to Bs whenever the sequence (sy,)p
increases to s.

A typical example of balayage on S is the map:

s Rg‘s,
where A € B.
In the sequel, for any element s € S we associate a pseudo-balayage B

such that Bss = s. The procedure is inspired from a similar one developed in
the frame of standard H-cones.

PROPOSITION 3.1. Let s € S be a finite element. Then for any t € S the
! Dy :={ue S/u < tandu < as for some a > 0}
has an upper bound in S with respect to the pointwise order relation and the
map
t — sup D; := Bt
is a pseudo-balayage with Bs(s) = s. Moreover if B is a pseudo-balayage with
B(s) = s we have Bs < B i.e. Bst < Bt for all t€ S.
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Proof. We consider the subset DY of D; given by
DY = {ns — Ro(ns —t)/n € N*}.

The set D? is countable and co-final in Dy i.e. for any u € Dy there exists
n € N such that
u < ns— Ro(ns —t).

Indeed, let o € Ry such that u < as and u < t. We have u < ns for
n €N, n > a and we remark that
u=mns — Ro(ns —u).
On the other hand we notice that the sequence (ns — Ro(ns — t)), is
increasing. Hence, the supremum of the set DY belongs to S and we have
Bgst = sup D; = sup D? <t

If t = s, obviously s € D and therefore Bss = s.

The fact that the map Bj is increasing follows from the definition of By
because if t1 < tg then Dy, < Dy,.

Using the definition of the sets D, Dy, and Dy 44, for t1,t2 € S we
deduce, using Riesz decomposition property (with respect to the pointwise order
relation) that

Dy, + Dy, = Dy, 44,

So, we have

Bs(t1 + ta) = sup Dy, +4, = sup Dy, +sup Dy, = Bs(t1) + Bs(t2).

For any t € S and any u € Dy, we have u < Bgt, and by the definition of
Dp,+ we have u € Dp 4. Hence

u < By(Bst), B(t) < Bo(Bs(t)), Bs(t) = Bit.
If B is a pseudo-balayage on S such that Bs = s, then for any u € .S, u <
as for some a > 0 we have
B(as) = aBs = as,
B(u) + B(as —u) = B(as) = as = u + (as — u),
Bu<u, B(as—u)<as—u
and therefore Bu = u, B{as —u) = as — u.

Let now t € S and u € D;. From the preceding consideration we deduce

Bu=wu forallue D;, Bst=supu=sup Bu<Bt. [

ueDy ueDy

Remark. For the convex cone £ we have similar definition of the pseudo-
balayage or balayage operator B : £ — £.
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PROPOSITION 3.2. PROPOSITION 2. For any element s € £, the restric-
tion to £ of the map B is a pseudo-balayage on &.

Proof. We remark that for any ¢ in S which is finite V-a.e. we have
Bt € €. Indeed, we have Dy < £ and therefore the supremum of the increasing
and dominated sequence (ns — R(ns —t)), is an element of £. [

4. FINE CARRIER FOR EXCESSIVE FUNCTIONS

In the sequel, we shall denote by £9 the set of all finite excessive functions
s on X such that for any specific minorant v € £ (u < s) the associated
pseudo-balayage B, is a balayage on £.

As in the introduction, for any subset A of X and any element t € £ we

denote
RAt .= inf{t' € £/t' >t on A}.
We denote also by £9 the set of all elements s € £/ for which the pseudo-
balayage B, on & (see Proposition 2) is a balayage for all u € £, u < s.
Generally, the function R4t is not B-measurable but if it is then this
function belongs to S and the function

z — sup aVu (R)(z)
is denoted by BAt. Obviously, B4t € €.

Definition 4.1. The set A is called subbasic if the function B4s is defined
for all s € £ and we have B4s = s on A.
A subbasic set M is called a basic set if we have

M = {z e X/BMs(z) = s(x) for all se&}.
Remark 4.1. Arguing as in [4], Proposition 1.7.1, one can show that a

subset M of X is subbasic if and only if the function R%s belongs to £ and
therefore R4t = BAs for all se &.

Remark 4.2. If M is subbasic then the map on &
s+— BMs
is a balayage on &.
Remark 4.3. If M is a subbasic set and b(M) is given by
b(M) = {z e X/BMs(x) = s(z) for all se &}

then B®™)s = s for all s € £ and b(M) € B.
The last assertion follows immediately from the fact that

b(M) = [BMV fo =V fo,
where fjy is a B-measurable, 0 < fo < 1 and V fy < o0.
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On the space X, we consider the fine topology i.e., the coarsest topology
7 on X making continuous all functions of the vector lattice & — &, of bounded
functions on X. We suppose here that £ is min-stable and 1 € £.

Recall that all elements s € £ are continuous with respect to 7 and any
point z, € X has a base of neighbourhoods of the form xg € [s — ¢ > 0] with
s,t e &, t < s< 1. Obviously, the elements of this base belong to B.

Definition 4.2. DEFINITION. We say that a balayage B on & is repre-
sentable if there exists a basic set in X denoted by b(B) such that

Bs = BYB)g

for all se &.

The space X is called nearly saturated if all balayages on &£ are repre-
sentable. By Theorem 5.3.8 from [5] one can see that this definition agrees
with that from |3| and [4].

From now on, we suppose that X is nearly saturated and the convexr cone
& is min-stable and contains the positive constant functions.

Definition 4.3. For any element s € £ we associate the subset b(Bs) the
base of the balayage Bs. We shall denote it by carr s and we shall call it the
fine carrier of s (with respect to &).

From Remark 4.3 we deduce that the set carr s is finely closed and we
have
carr s = < s=0.

PROPOSITION 4.1. The following assertions hold.
1. €9 is a solid convex sub-cone of & with respect to the specific order.
2. carr(sy + s9) = carr sy U carr s5 for all sq,s9 € EC.

0
3. If (sp)n is a sequence in EO then the function Y. s, belongs to E°

n=1

Q0
provided that the sum is finite, and the set carr( ). sy) is the closure (with

n=1

0
respect to T) of the set |J carr sp.
n=1

Proof. 1. and 2. First, we remark that if My, M are basic sets then so is
My U My and for any element ¢t € £ we have

BMioMzy — phiy, pMoy
Hence, if we take My = carr s1, My = carr so then

M M: My M: M7 w M: My u M-
s1+s2=B"1s1+B" 25y < BV 25 4 BY1Y M2 g5y — BYIYM2 (g1 459) < 51452,
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BMIUJV]2(S1 + 82) = 81+ S2

and therefore for any u € £, u < a(s1 + s2) we have

BMioMay — o,

Hence for any t € £ and any u € &, u < ¢, u < sy + s2) for some a > 0
we have
u = BMwMzy < pMivMey g < MMy

We also have BM1wMzy < By, +s, because By, < By, s, fori = 1,2. Hence
the map on &

t— le+32t _ BM1uM2t

is a balayage on £. The preceding considerations show that s; + s € €9 for all
51,82 € £9 and

carr(sy + s2) = b(Bs,+s,) = b(Bs;) U b(Bs,) = carr s1 U carr sa.

The last assertion follows by the fact that a countable union of basic sets
is a subbasic set. [

A map p: &€ — Ry is called o-H-integral if it is additive, increasing,
o-continuous in order from below, and for each s € £ there exists a sequence
(Sn)n in &, increasing to s such that u(s,) < oo for all n € N. We would like to
mark that the space of all o- H-integrals is in one to one correspondence with
the space of all o-finite excessive measures on (X, B), via the energy functional
associated with V; see [4], Theorem 1.4.6.

PROPOSITION 4.2. The following assertions hold for u e £°.
a) If s = wu on carr u then s = u on X.
b) The set carr u is fine closed and B-measurable subset of X.
¢) If F is a fine closed subset of X such that s = u on X whenever
se& ands>=u on F, then carr u C F.
d) carr v = {x € X/p o-H-integral, p < €, on &, p(u) = u(z) =
= €a}.
Proof. a) We have
uw=Byu=B"" < B“"%s<sif se&, s=uoncarr u.
Assertion b) follows from the fact that
carr u=b(B,) = {vr € X/Bys(z) = s(z) forall se&} =
={z e X/B,V f(z) =Vf(z)}

where f is B-measurable, 0 < f < 1, and V f < o0.
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¢) Using the hypothesis, we have

uZRFUZU, RFuzu, RF(au)zau forall aeR,.

Since RY's < s we deduce that
Rfv=v foral ve&, v<u,
and therefore, for any v € £, v < s,v < au for some a > 0 we have
Rfs > RFv =w.

The element v being arbitrary we get B,s < RF's for any s € £.

Let now xg € carr u\F and let s1,s2 € £, s1 < sg be such that

s1 < 89, s1(xo) < s2(xp), s1 = sy on F.
From the preceding considerations, we get the contradictory relations
RFs; = RFsy on X,

0 < SQ(CE()) . 81(1'0) — pearr us2(x0) _ Bearru

s1(zo),

S; = RFSZ' = Busi 1= 1, 2, Si(w‘o) = RFSZ'(.%(]) = Busi(xg) = Si(wo), 1= 1,2.

Hence carr u\F = &.

d) Let xp € X such that if x4 is a o-H-integral on £ with p < 5, on €
and p(u) = u(xg) then p = g4, on &.

If xg ¢ carr u then using b) we may consider two functions

s1,80 € &, 51 < sgon X, s1(xg) < sa(xp) and s1 = sg on carr u.
We take as o- H-integral p on € the map
s > Bys(zo) = p(s).

Clearly we have u(s) < s(xg) for all s € £ and p(u) = u(xg) and therefore,
using the hypothesis u(s) = s(xp) for all s € £.
The last assertion gives us

Bysi1 = Bysp on X, Bys; = u(s;) = si(xg), i = 1,2,

s1(x0) = s2(z0).
This contradicts the choice of s; and ss.

Let now z, € carr u and let p be a o-H-integral such that p < ez, on &,
p(u) = u(zg). We get the relation

w(v) = v(xg) for allv e &, v < au for some a € R,
Hence taking se £, ve &, v < au for some aw € Ry and v < s, we have
u(s) = p(v) = v(wo).
The element v being arbitrary we have

11(s) = Bys(xo) = s(x0), pt = €z, on E.
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Definition 4.4. An element s € £ is called regular if for any increasing
sequence (S,,), with sup s, = s we have

/\R(s —sp) =0.

Note that the potentials are regular elements.
The following result is well known in standard H-cones (see [4, 5]).

PROPOSITION 4.3. If s is a regular element of £ then the associated pseudo-
balayage B is a balayage.

Proof. Let (sp)n be a sequence in £ increasing to s and for any n € N let
uy, € £ be such that
R(s — sp) +u, = s.

The sequence (R(s—sy)), is decreasing and the sequence (uy, ), is increas-
ing with respect to the pointwise order relation. Therefore, we have

u:=supuy, € &, and inf R(s — s,) € S.

But since
u+inf R(s —sp) = s
n

we deduce that inf R(s — sy,) € £. Hence, using the regularity of s we have
n

1nfRs—sn /\Rs—sn =0, u=s.

With the above notations we have
Up < Sp < 8, Uy = Bsuy, < Bgsy, for all neN.

Therefore sup Bss, = s. Obviously, for any « € R, and any sequence (s,) in
£ increasing to as we have sup Bgs, = as.
Now if u € £, u < s and (uy),, is a sequence in & increasing to u we claim
that
sup Bsu, = u.

Indeed, if we denote v = s — u then the sequence (u, + v), increasing to s and
therefore

sup Bs(u, +v) = s, sup Bsu, +v = s, and sup Bsu,, = u.
n n n
To finish the proof we consider an arbitrary element ¢ of £ and a sequence
(tn)n in € increasing to t. Let u € Dy and recall that

Dy = {ue S/u<tandu < as for some a > 0}.
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Since u < t then the sequence (inf(u, t,)), is in € and increases to inf(u, t) = u.
But u < as for some a € R,. By the above considerations we have

sup Bs(inf(u, t,)) = Bsu = u.
n

Hence
sup Bgt,, = sup Bg(inf(u,t,)) = Bsu = u.

But u being arbitrary we get
sup Bty = Bst, sup Bsty, = Bst. [
n n

THEOREM 4.1. The element s € £ is reqular if and only if for any u € &,
u <X s the pseudo-balayage B, is a balayage on € i.e. se€ E°.

Proof. Let s € €2 and let (s,), be a sequence in & increasing to s. For
ceR,e>0and neN, n>0 we denote by A, the subset of X given by

A, = {3 < sn+ (1_711) g} _ {ze X/s(z) < sn(z) + <1— i) ).

Clearly we have A,, ¢ A, and A,, is fine open for every n € N, n > 0. Moreover
o8]

A, =X.
=1

n

1
Letuan(s—sn—<l—>€> and v, = S — uy,. Then
n

1
Up = RX\A”un = RX\A”un since {s > S, + (1 — ) 5} c X\A,
n

and therefore
Ungpm = RXAntmq < RXMng o for all n,m e N¥,

Unym = RV, 0 for all n,m e N*,

Since u, + v, = s, and the sequence (uy), is decreasing it follows that the
sequence (v, )y is increasing to an element v € £, and if we denote u = inf,, u,,
we have
ueS, ut+tv=s Uu+0=5 Uu+v=s, u=1u.

Hence u € £Y and from the preceding consideration, it follows

RX\An (Untm + Vntm) = RX\Mng  for all n,m e N*,

Uptm + RX\An (Vnt+m) = RX\Mng  for all n,m € N*,
Leting m — o0 we obtain

u+ RX\Any = RX¥Mng,
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On the other hand
RX\ny 4 pX\An g, = pX0\ng

and therefore RX\ny, = u. The set X\A4,, being finely closed we deduce
o0

carr w € X\A, for any n € N. But (] X\A4,, = & and therefore u = 0,
n=1

infnR<s—sn— (1—1)6> = 0.
n

The relations

1 1
SR(s—sn)égR(s—sn— <1—>5)+(1—)5 forall n>1ande >0

n n

lead to
infR(s — s,) <e, inf®R(s—s,) =0,

that is s is a regular element of £.
Conversely, if s is regular then any element v € £, u < s is also regular
and by Proposition 3 the pseudo-balayage B, is a balayage, i.e. s€ &Y. []

Remark 4.4. In their papers concerning the semi-polar sets and regular
excessive functions respectively balayages on excessive measures L. Beznea and
N. Boboc (see [1] and [2]) show that for any basic set M which is analytic
there exists a bounded regular excessive function ¢ such that its fine carrier is
contained in M.

Remark 4.5. We may prove the following assertion:

Let V = (Vi )a=0 be a resolvent family of kernels on a measurable space
(X,B) i.e.,

a) V is a proper sub-Markovian resolvent of kernels.

b) The convex cone & of all excessive functions with respect to v is min-
stable and contains the positive constant functions.

¢) There exists a distance d on X such that the associated topology 74 is
smaller than the fine topology on X.

d) The Borel structure associated with the distance d coincides with B. In
this case if the space (X, B) is such that for any regular and bounded excessive
function p with respect to the resolvent V), the balayage associated as above to
p is representable, then all balayages on £ are representable.
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