BALAYAGE AND FINE CARRIER FOR EXCESSIVE FUNCTIONS

HABIB BENFRIHA and ILEANA BUCUR

Communicated by Lucian Beznea

We present minimal conditions for a proper sub-Markovian resolvent family of kernels, such that it is possible to develop a basic part of the potential theory, in the frame of the associated excessive structure. We characterize the regular excessive elements as being those excessive functions for which the associated pseudo-balayages are balayages, and we construct a fine carrier theory without using any kind of compactification.

AMS 2010 Subject Classification: 31D05, 31C40.

Key words: sub-Markovian resolvent, pseudo-balayage, balayage, fine carrier, basic set, regular element.

1. INTRODUCTION

Given a sub-Markovian resolvent family of kernels \mathcal{V} on a measurable space (X, \mathcal{B}) , we deal with the following two problems:

(1) describe the regular elements of the cone $\mathcal{E}_{\mathcal{V}}$ of all \mathcal{V} -excessive \mathcal{B} -measurable functions in terms of balayage theory on $\mathcal{E}_{\mathcal{V}}$;

(2) establish the link between the existence of fine carrier for the regular elements of $\mathcal{E}_{\mathcal{V}}$ and the property that any balayage operator B on $\mathcal{E}_{\mathcal{V}}$ may be represented on X under the form $B = R^A$, where R^A is the reduite in $\mathcal{E}_{\mathcal{V}}$ on the set A.

For this purpose we associate to any element $s \in \mathcal{E}_{\mathcal{V}}$, $s < \infty$, a pseudobalayage B_s on $\mathcal{E}_{\mathcal{V}}$, defined by

 $B_s t = \sup\{u \in \mathcal{E}_{\mathcal{V}} | u \leq t, u \leq \alpha s \text{ for some } \alpha > 0\}.$

This operator was considered in the frame of standard *H*-cones in [5] where *s* is universally continuous and, in this case, B_s is a balayage. In our paper we consider elements $s \in \mathcal{E}_{\mathcal{V}}$ such that B_s is a balayage and we show that *s* has this property if and only if it is regular, that is $\bigwedge_n R(s - s_n) = 0$ for any sequence $(s_n)_n$ increasing to *s*. This gives an answer to problem (1).

REV. ROUMAINE MATH. PURES APPL. 61 (2016), 1, 39-53

In the case when \mathcal{V} is a resolvent having the properties from the last Remark 5 of this paper, then starting from a result in [1] and [2] which asserts that for any analytic, basic subset M of X there exists a regular excessive function whose fine carrier is contained in M, we show that the properties from (2) hold if and only if the balayage B_s is representable for any regular element s of $\mathcal{E}_{\mathcal{V}}$.

2. PRELIMINARIES AND FIRST RESULTS

Throughout, $\mathcal{V} = (V_{\alpha})_{\alpha>0}$ is a proper sub-Markovian resolvent of kernels on a measurable space (X, \mathcal{B}) . We denote by S the set of all \mathcal{B} -measurable numerical functions s which are supermedian, *i.e.* $s : X \longrightarrow [0, +\infty]$ and $\alpha V_{\alpha} s \leq s$ for all $\alpha > 0$. Let S^f be the set of all real-valued functions from S.

Let \mathcal{E} be the set of all excessive, \mathcal{B} -measurable functions, which are finite \mathcal{V} -a.e., that is

$$\mathcal{E} = \{ s \in S / \sup_{\alpha} \alpha V_{\alpha} s = s \text{ and } V_{\alpha}(1_{[s=\infty]}) = 0 \text{ for one (hence all) } \alpha \in \mathbb{R}_+ \}.$$

For any $s \in S$ the family $(\alpha V_{\alpha} s)_{\alpha \in \mathbb{R}_+}$ is increasing and the function \hat{s} defined by

$$\hat{s} = \lim_{\alpha \to \infty} \alpha V_{\alpha} s = \lim_{n \to \infty} n V_n s = \sup_n n V_n s,$$

called the regularized of s (with respect to \mathcal{V}) is dominated by s and the set $[\hat{s} < s]$ is \mathcal{V} -negligible, *i.e.* $V_{\alpha}(1_{[\hat{s} < s]}) = 0$ for one (hence all) $\alpha \in \mathbb{R}_+$.

We recall that for any \mathcal{B} -measurable function f on X the set

$$\{s \in S/s \ge f\}$$

possesses the smallest element denoted by R_0f . If f is of the form $s_2 - s_1$ with $s_1, s_2 \in S$, then

$$R_0(s_2 - s_1) := \bigwedge \{ s \in S/s_1 + s \ge s_2 \} \underset{S}{\leqslant} s_2,$$

where we have written $u \leq v$ if there exists $s \in S$ such that v = u + s, u and v being positive functions on X. The relation $\leq S$ is the so called *specific order* induced by S.

If $A \in \mathcal{B}$ and $s \in S$ then the element $R_0(1_A \cdot s)$ is called the reduite of son the set A and it will be denoted by $R_0^A s$. The following properties of the reduite operation are well known (see e.g. [4]):

If $s_1, s_2 \in \mathcal{E}$ then $R_0(s_2 - s_1) \in \mathcal{E}$ and $R_0(s_2 - s_1) \underset{\mathcal{E}}{\leqslant} s_2$ where $\underset{\mathcal{E}}{\leqslant}$ is the specific order given by \mathcal{E} .

The set $(\mathcal{E}, \leq_{\mathcal{E}})$ is a conditionally σ -complete lattice, *i.e.* for any sequence $(s_n)_n \subset \mathcal{E}$ there exists the greatest lower bound noted by $\bigwedge_n s_n$ and we have:

$$s + \bigwedge_n s_n = \bigwedge_n (s + s_n)$$
 for all $s \in \mathcal{E}$.

If $(s_n)_n \in \mathcal{E}$ is specifically dominated in \mathcal{E} there exists the smallest upper bound denoted by $\bigvee_n s_n$ and we have:

$$s + \bigvee_n s_n = \bigvee_n (s + s_n) \text{ for all } s \in \mathcal{E}.$$

Moreover, if the sequence $(s_n)_n$ is specifically increasing (resp. decreasing) then we have:

$$\bigvee_{n} s_{n} = \sup_{n} s_{n} \text{ (resp. } \bigwedge_{n} s_{n} = \inf_{n} s_{n} \text{)},$$

where $\sup_{n} s_n$ (resp. $\inf_{n} s_n$) is the pointwise supremum (resp. infimum) of the sequence of functions $(s_n)_n$ on X. Particularly, the *Riesz decomposition property* holds in \mathcal{E} and S, *i.e.* for any s, t_1, t_2 belonging to \mathcal{E} (resp. S) with $s \leq t_1+t_2$ there exist s_1, s_2 in \mathcal{E} (resp. S) such that $s_1 \leq t_1, s_2 \leq t_2, s = s_1+s_2$. In fact, the σ -*Riesz decomposition property* may be immediately shown

$$s \preccurlyeq \sum_{i=1}^{\infty} t_i \Rightarrow s = \sum_{i=1}^{\infty} s_i, \ s_i \preccurlyeq t_i \quad \text{for all } i \in \mathbb{N}.$$

Other well known assertions from the vector lattice theory may be restated in the convex cones \mathcal{E} and S. Among them the following one will be used: for any s_1, s_2 in \mathcal{E} (resp. S) we have

$$s_1 \bigwedge s_2 + s_1 \bigvee s_2 = s_1 + s_2.$$

The Riesz decomposition property with respect to the pointwise order relation holds in S (respectively \mathcal{E}), *i.e.* for any s, t_1, t_2 in S (resp. \mathcal{E}) with $s \leq t_1+t_2$ there exist s_1, s_2 in S (resp. \mathcal{E}) such that $s = s_1+s_2, s_1 \leq t_1, s_2 \leq t_2$.

The following decomposition property is inspired by a similar one used by G. Mokobodzki in the study of subordinate resolvents (cf. [4] and [8]).

LEMMA 2.1. For any $s \in S^f$, and any $A \in \mathcal{B}$ there exist s_A and s'_A such that

$$s = s_A + s'_A$$
 and $R_0^A s_A = s_A$, $R_0^{X \setminus A} s'_A = s'_A$

Proof. We define inductively two sequences $(s'_n)_n$ and $(s''_n)_n$ in S as follows:

$$s_1'' = R_0(s - R^A s), \quad s_1' = s - R_0(s - R^A s)$$
$$s_{n+1}'' = R(_0s_n' - R^A s_n'), \quad s_{n+1}' = s_n' - R_0(s_n' - R^A s_n').$$

41

Obviously, we have $s'_n = s'_{n+1} + s''_{n+1}$ and one can show that $s'_{n+1} = R^A s'_n \leq s'_n$ and $s''_{n+1} = R^{X \setminus A} s''_{n+1}$. So, the sequence $(s'_n)_n$ is specifically decreasing in Sand the sequence $(\sum_{i=1}^n s''_i)_n$ is specifically increasing in S and we have

$$s = s'_n + \sum_{i=1}^n s''_i$$
 for all $n \in \mathbb{N}^*$.

Therefore, $s = s_A + s'_A$ where we have denoted

$$s_A = \inf_n s'_n = \bigwedge_S s'_n, \ s'_A = \sum_{i=1}^\infty s''_i := \sup_n \sum_{i=1}^n s''_i = \bigvee_n \sum_{i=1}^n s''_i.$$

From the preceding considerations we deduce

$$\begin{aligned} R_0^A(\bigwedge_n s'_n) &= \bigwedge_n R_0^A s'_n = \bigwedge_n s'_n, \ R_0^A s_A = s_A. \\ R_0^{X \setminus A}(\sum_{i=1}^\infty s''_i) &= \sum_{i=1}^\infty R_0^{X \setminus A} s''_i = \sum_{i=1}^\infty s''_i, \ R_0^{X \setminus A} s'_A = s'_A. \end{aligned}$$

LEMMA 2.2 (A Choquet type lemma). Let $(s_n)_n$ be a sequence in S and for any $n \in \mathbb{N}$ let $(s_{n,m})_{n,m}$ be a sequence in S which is specifically increasing to s_n .

a. We have

$$\bigvee_{S} \{ s_n/n \in \mathbb{N} \} = \bigvee_{S} \{ t_n/n \in \mathbb{N} \},$$

where

$$t_n =: \bigvee_{i,j \leqslant n} s_{i,j}.$$

b. If $s_n < \infty$, $n \in \mathbb{N}$, and for any sequence $\sigma = (m_n)_{n \in \mathbb{N}}$ in \mathbb{N} we denote

$$s_{\sigma} = \bigwedge_{S} \{ s_{n,m_n} / n \in \mathbb{N} \},$$

then we have

$$\bigwedge_{S} \{ s_n/n \in \mathbb{N} \} = \sup\{ s_\sigma/\sigma \in \mathbb{N}^{\mathbb{N}} \},\$$

where sup stands for the pointwise supremum and $\mathbb{N}^{\mathbb{N}}$ for the set of all sequences of natural numbers.

Proof. a) Obviously we have

$$s_n = \bigvee_S \{s_{n,m}/m \in \mathbb{N}\} \leqslant \bigvee_S \{t_k/k \in \mathbb{N}\} \leqslant \bigvee_S \{s_k/k \in \mathbb{N}\}$$

and therefore

$$\bigvee_{S} \{ s_n/n \in \mathbb{N} \} = \bigvee_{S} \{ t_n/n \in \mathbb{N} \}.$$

b) Let $x \in X$ and let ε be a real number, $\varepsilon > 0$. Since the sequence $(s_{n,m})_m$ is specifically increasing (in S) to the element s_n of S we have

$$s_n(x) = \sup_m s_{n,m}(x) = \lim_{m \to \infty} s_{n,m}(x)$$

and therefore we may consider $m_n \in \mathbb{N}$ such that

$$s_n(x) \leqslant s_{n,m_n}(x) + \frac{\varepsilon}{2^n}$$
 or $t_n(x) < \frac{\varepsilon}{2^n}$,

where $t_n \in S$ is such that $s_n = s_{n,m_n} + t_n$.

If we put $s_0 = \bigwedge_S \{s_n/n \in \mathbb{N}\}$, from the preceding consideration we have

$$s_{0} \leq s_{n,m_{n}} + s_{0} \bigwedge (\sum_{i=1}^{n} t_{i}) \quad \text{for all } n \in \mathbb{N},$$
$$s_{0} \leq s_{n,m_{n}} + \bigvee_{S} \{s_{0} \bigwedge (\sum_{i=1}^{k} t_{i})/k \in \mathbb{N}\},$$
$$s_{0} \leq \bigwedge_{S} \{s_{n,m_{n}}/n \in \mathbb{N}\} + \bigvee_{S} \{s_{0} \bigwedge (\sum_{i=1}^{k} t_{i})/k \in \mathbb{N}\}.$$

On the other hand at the point $x \in X$ the following inequality holds

$$\bigvee_{S} \{s_0 \bigwedge (\sum_{i=1}^{k} t_i) / k \in \mathbb{N}\}(x) = \lim_{k \to \infty} (s_0 \bigwedge (\sum_{i=1}^{k} t_i))(x) \leq$$
$$\leq \lim_{k \to \infty} \sum_{i=1}^{k} t_i(x) \leq \varepsilon$$

and therefore

 $s_0(x) \leq s_\sigma(x) + \varepsilon$ where $\sigma = (m_n)_{n \in \mathbb{N}}$.

The number ε being arbitrary we have

$$s_0(x) = \sup_{\sigma \in \mathbb{N}^N} s_\sigma(x)$$
 for all $x \in X$.

LEMMA 2.3. Let $(s_n)_n$ be a sequence in \mathcal{E} and for any $n \in \mathbb{N}$ let $(s_{n,m})_m$ be a sequence in \mathcal{E} which is \mathcal{E} -specifically increasing to s_n .

a. If the sequence $(s_n)_n$ has a specific majorant in $\mathcal E$ then

$$\bigvee_{\mathcal{E}} s_n = \bigvee_{\mathcal{E}} t_n$$

where

$$t_n =: \bigvee_{\mathcal{E}} \{s_{i,j}/i, j \leq n\}.$$

b. If $s_n < \infty$, $n \in \mathbb{N}$, and for any sequence $\sigma = (m_n)_{n \in \mathbb{N}}$ in \mathbb{N} we set $s_{\sigma} = \bigwedge_{s} \{ s_{n,m_n} / n \in \mathbb{N} \},$

then we have

$$\bigwedge_{\mathcal{E}} \{ s_n/n \in \mathbb{N} \} = \sup \{ s_\sigma/\sigma \in \mathbb{N}^{\mathbb{N}} \},\$$

where sup stands for the pointwise supremum and $\mathbb{N}^{\mathbb{N}}$ for the set of all sequences of natural numbers.

Proof. We apply LEMMA 2 and use the following properties of the specific order:

$$\bigvee_{\mathcal{E}} s_n = \bigvee_{S} s_n , \quad \bigvee_{\mathcal{E}} t_n = \bigvee_{S} t_n , \quad \bigwedge_{\mathcal{E}} \{s_{n,m_n}/n \in \mathbb{N}\} = \bigwedge_{S} \{s_{n,m_n}/n \in \mathbb{N}\}. \quad \Box$$

3. PSEUDO-BALAYAGES ASSOCIATED WITH SUPERMEDIAN FUNCTIONS

A map $B: S \longrightarrow S$ is called *pseudo-balayage* on S if it is increasing (with respect to the pointwise order relation), additive, contractive $(Bs \leq s)$ and idempotent $(B^2s = B(Bs) = Bs)$ for all $s \in S$.

A pseudo-balayage B is called *balayage* if it is σ -continuous in order from below, *i.e.* the sequence $(Bs_n)_n$ increases to Bs whenever the sequence $(s_n)_n$ increases to s.

A typical example of balayage on S is the map:

$$s \mapsto R_0^A s$$
,

where $A \in \mathcal{B}$.

In the sequel, for any element $s \in S^f$ we associate a pseudo-balayage B_s such that $B_s s = s$. The procedure is inspired from a similar one developed in the frame of *standard H-cones*.

PROPOSITION 3.1. Let $s \in S$ be a finite element. Then for any $t \in S$ the set

$$D_t := \{ u \in S | u \leq t \text{ and } u \leq \alpha s \text{ for some } \alpha > 0 \}$$

has an upper bound in S with respect to the pointwise order relation and the map

$$t \mapsto \sup D_t := B_s t$$

is a pseudo-balayage with $B_s(s) = s$. Moreover if B is a pseudo-balayage with B(s) = s we have $B_s \leq B$ i.e. $B_s t \leq Bt$ for all $t \in S$.

Proof. We consider the subset D_t^0 of D_t given by

$$D_t^0 = \{ ns - R_0(ns - t)/n \in \mathbb{N}^* \}.$$

The set D_t^0 is countable and co-final in D_t *i.e.* for any $u \in D_t$ there exists $n \in \mathbb{N}$ such that

$$u \leqslant ns - R_0(ns - t).$$

Indeed, let $\alpha \in \mathbb{R}_+$ such that $u \leq \alpha s$ and $u \leq t$. We have $u \leq ns$ for $n \in \mathbb{N}, n \geq \alpha$ and we remark that

$$u = ns - R_0(ns - u).$$

On the other hand we notice that the sequence $(ns - R_0(ns - t))_n$ is increasing. Hence, the supremum of the set D_t^0 belongs to S and we have

$$B_s t = \sup D_t = \sup D_t^0 \leqslant t.$$

If t = s, obviously $s \in D_s$ and therefore $B_s s = s$.

The fact that the map B_s is increasing follows from the definition of B_s because if $t_1 \leq t_2$ then $D_{t_1} \subset D_{t_2}$.

Using the definition of the sets D_{t_1}, D_{t_2} and $D_{t_1+t_2}$ for $t_1, t_2 \in S$ we deduce, using Riesz decomposition property (with respect to the pointwise order relation) that

$$D_{t_1} + D_{t_2} = D_{t_1 + t_2}.$$

So, we have

$$B_s(t_1 + t_2) = \sup D_{t_1 + t_2} = \sup D_{t_1} + \sup D_{t_2} = B_s(t_1) + B_s(t_2)$$

For any $t \in S$ and any $u \in D_t$, we have $u \leq B_s t$, and by the definition of $D_{B_s t}$ we have $u \in D_{B_s t}$. Hence

 $u \leq B_s(B_s t), \quad B_s(t) \leq B_s(B_s(t)), \quad B_s(t) = B_s^2 t.$

If B is a pseudo-balayage on S such that Bs = s, then for any $u \in S$, $u \leq \alpha s$ for some $\alpha > 0$ we have

$$B(\alpha s) = \alpha Bs = \alpha s,$$

$$B(u) + B(\alpha s - u) = B(\alpha s) = \alpha s = u + (\alpha s - u),$$

$$Bu \leq u, \quad B(\alpha s - u) \leq \alpha s - u$$

and therefore Bu = u, $B(\alpha s - u) = \alpha s - u$.

Let now $t \in S$ and $u \in D_t$. From the preceding consideration we deduce

$$Bu = u$$
 for all $u \in D_t$, $B_s t = \sup_{u \in D_t} u = \sup_{u \in D_t} Bu \leq Bt$. \Box

Remark. For the convex cone \mathcal{E} we have similar definition of the pseudobalayage or balayage operator $B : \mathcal{E} \to \mathcal{E}$. PROPOSITION 3.2. PROPOSITION 2. For any element $s \in \mathcal{E}^f$, the restriction to \mathcal{E} of the map B_s is a pseudo-balayage on \mathcal{E} .

Proof. We remark that for any t in S which is finite \mathcal{V} -a.e. we have $B_s t \in \mathcal{E}$. Indeed, we have $D_t \subset \mathcal{E}$ and therefore the supremum of the increasing and dominated sequence $(ns - R(ns - t))_n$ is an element of \mathcal{E} . \Box

4. FINE CARRIER FOR EXCESSIVE FUNCTIONS

In the sequel, we shall denote by \mathcal{E}^0 the set of all finite excessive functions s on X such that for any specific minorant $u \in \mathcal{E}$ $(u \leq s)$ the associated pseudo-balayage B_u is a balayage on \mathcal{E} .

As in the introduction, for any subset A of X and any element $t \in \mathcal{E}$ we denote

$$R^{A}t := \inf\{t' \in \mathcal{E}/t' \ge t \text{ on } A\}.$$

We denote also by \mathcal{E}^0 the set of all elements $s \in \mathcal{E}^f$ for which the pseudobalayage B_u on \mathcal{E} (see Proposition 2) is a balayage for all $u \in \mathcal{E}$, $u \ll s$.

Generally, the function $R^A t$ is not \mathcal{B} -measurable but if it is then this function belongs to S and the function

$$x \mapsto \sup \alpha V_{\alpha}(R^{A}t)(x)$$

is denoted by $B^A t$. Obviously, $B^A t \in \mathcal{E}$.

Definition 4.1. The set A is called *subbasic* if the function $B^A s$ is defined for all $s \in \mathcal{E}$ and we have $B^A s = s$ on A.

A subbasic set M is called *a basic set* if we have

$$M = \{ x \in X / B^M s(x) = s(x) \text{ for all } s \in \mathcal{E} \}.$$

Remark 4.1. Arguing as in [4], Proposition 1.7.1, one can show that a subset M of X is subbasic if and only if the function $R^A s$ belongs to \mathcal{E} and therefore $R^A t = B^A s$ for all $s \in \mathcal{E}$.

Remark 4.2. If M is subbasic then the map on \mathcal{E}

$$s \mapsto B^M s$$

is a balayage on \mathcal{E} .

Remark 4.3. If M is a subbasic set and
$$b(M)$$
 is given by

$$b(M) = \{x \in X/B^M s(x) = s(x) \text{ for all } s \in \mathcal{E}\}$$

then $B^{b(M)}s = s$ for all $s \in \mathcal{E}$ and $b(M) \in \mathcal{B}$.

The last assertion follows immediately from the fact that

$$b(M) = [B^M V f_0 = V f_0],$$

where f_0 is a \mathcal{B} -measurable, $0 < f_0 < 1$ and $V f_0 < \infty$.

On the space X, we consider the fine topology i.e., the coarsest topology τ on X making continuous all functions of the vector lattice $\mathcal{E}_b - \mathcal{E}_b$ of bounded functions on X. We suppose here that \mathcal{E} is min-stable and $1 \in \mathcal{E}$.

Recall that all elements $s \in \mathcal{E}$ are continuous with respect to τ and any point $x_o \in X$ has a base of neighbourhoods of the form $x_0 \in [s - t > 0]$ with $s, t \in \mathcal{E}, t \leq s \leq 1$. Obviously, the elements of this base belong to \mathcal{B} .

Definition 4.2. DEFINITION. We say that a balayage B on \mathcal{E} is representable if there exists a basic set in X denoted by b(B) such that

$$Bs = B^{b(B)}s$$

for all $s \in \mathcal{E}$.

The space X is called *nearly saturated* if all balayages on \mathcal{E} are representable. By Theorem 5.3.8 from [5] one can see that this definition agrees with that from [3] and [4].

From now on, we suppose that X is nearly saturated and the convex cone \mathcal{E} is min-stable and contains the positive constant functions.

Definition 4.3. For any element $s \in \mathcal{E}^0$ we associate the subset $b(B_s)$ the base of the balayage B_s . We shall denote it by carr s and we shall call it the fine carrier of s (with respect to \mathcal{E}).

From Remark 4.3 we deduce that the set $carr \ s$ is finely closed and we have

$$carr \ s = \emptyset \Leftrightarrow s = 0.$$

PROPOSITION 4.1. The following assertions hold.

- 1. \mathcal{E}^0 is a solid convex sub-cone of \mathcal{E} with respect to the specific order.
- 2. $carr(s_1 + s_2) = carr s_1 \cup carr s_2$ for all $s_1, s_2 \in \mathcal{E}^0$.
- 3. If $(s_n)_n$ is a sequence in \mathcal{E}^0 then the function $\sum_{n=1}^{\infty} s_n$ belongs to \mathcal{E}^0

provided that the sum is finite, and the set $carr(\sum_{n=1}^{\infty} s_n)$ is the closure (with respect to τ) of the set $\bigcup_{n=1}^{\infty} carr s_n$.

Proof. 1. and 2. First, we remark that if M_1, M_2 are basic sets then so is $M_1 \cup M_2$ and for any element $t \in \mathcal{E}$ we have

$$B^{M_1 \cup M_2} t = B^{M_1} t \lor B^{M_2} t.$$

Hence, if we take $M_1 = carr s_1$, $M_2 = carr s_2$ then

$$s_1 + s_2 = B^{M_1} s_1 + B^{M_2} s_2 \leqslant B^{M_1 \cup M_2} s_1 + B^{M_1 \cup M_2} s_2 = B^{M_1 \cup M_2} (s_1 + s_2) \leqslant s_1 + s_2,$$

$$B^{M_1 \cup M_2}(s_1 + s_2) = s_1 + s_2$$

and therefore for any $u \in \mathcal{E}$, $u \ll \alpha(s_1 + s_2)$ we have

 $B^{M_1 \cup M_2} u = u.$

Hence for any $t \in \mathcal{E}$ and any $u \in \mathcal{E}$, $u \leq t$, $u \leq \alpha(s_1 + s_2)$ for some $\alpha > 0$ we have

$$u = B^{M_1 \cup M_2} u \leq B^{M_1 \cup M_2} t, \quad B_{s_1 + s_2} t \leq B^{M_1 \cup M_2} t.$$

We also have $B^{M_1\cup M_2}t\leqslant B_{s_1+s_2}$ because $B_{s_i}\leqslant B_{s_1+s_2}$ for i=1,2. Hence the map on $\mathcal E$

$$t \mapsto B_{s_1+s_2}t = B^{M_1 \cup M_2}t$$

is a balayage on \mathcal{E} . The preceding considerations show that $s_1 + s_2 \in \mathcal{E}^0$ for all $s_1, s_2 \in \mathcal{E}^0$ and

$$carr(s_1 + s_2) = b(B_{s_1 + s_2}) = b(B_{s_1}) \cup b(B_{s_2}) = carr \ s_1 \cup carr \ s_2$$

The last assertion follows by the fact that a countable union of basic sets is a subbasic set. \Box

A map $\mu : \mathcal{E} \longrightarrow \mathbb{R}_+$ is called σ -*H*-integral if it is additive, increasing, σ -continuous in order from below, and for each $s \in \mathcal{E}$ there exists a sequence $(s_n)_n$ in \mathcal{E} , increasing to s such that $\mu(s_n) < \infty$ for all $n \in \mathbb{N}$. We would like to mark that the space of all σ -*H*-integrals is in one to one correspondence with the space of all σ -finite excessive measures on (X, \mathcal{B}) , via the energy functional associated with \mathcal{V} ; see [4], Theorem 1.4.6.

PROPOSITION 4.2. The following assertions hold for $u \in \mathcal{E}^0$.

a) If $s \ge u$ on carr u then $s \ge u$ on X.

b) The set carr u is fine closed and \mathcal{B} -measurable subset of X.

c) If F is a fine closed subset of X such that $s \ge u$ on X whenever $s \in \mathcal{E}$ and $s \ge u$ on F, then carr $u \subset F$.

d) carr $u = \{x \in X/\mu \ \sigma$ -H-integral, $\mu \leq \varepsilon_x$ on \mathcal{E} , $\mu(u) = u(x) \Rightarrow \mu = \varepsilon_x \}$.

Proof. a) We have

$$u = B_u u = B^{carr \ u} u \leq B^{carr \ u} s \leq s \text{ if } s \in \mathcal{E}, \ s \geq u \text{ on } carr \ u.$$

Assertion b) follows from the fact that

$$carr \ u = b(B_u) = \{x \in X/B_u s(x) = s(x) \text{ for all } s \in \mathcal{E}\} =$$
$$= \{x \in X/B_u V f(x) = V f(x)\}$$

where f is \mathcal{B} -measurable, 0 < f < 1, and $Vf < \infty$.

c) Using the hypothesis, we have

 $u \geqslant R^F u \geqslant u, \; R^F u = u, \; R^F(\alpha u) = \alpha u \quad \text{ for all } \; \alpha \in \mathbb{R}_+.$

Since $R^F s \leq s$ we deduce that

$$R^{F}v = v$$
 for all $v \in \mathcal{E}, v \leq u$,

and therefore, for any $v \in \mathcal{E}$, $v \leq s, v \leq \alpha u$ for some $\alpha > 0$ we have $R^F s \geq R^F v = v.$

The element v being arbitrary we get $B_u s \leq R^F s$ for any $s \in \mathcal{E}$.

Let now $x_0 \in carr \ u \setminus F$ and let $s_1, s_2 \in \mathcal{E}, \ s_1 \leq s_2$ be such that

 $s_1 \leq s_2, \ s_1(x_0) < s_2(x_0), \ s_1 = s_2 \text{ on } F.$

From the preceding considerations, we get the contradictory relations

$$R^{F}s_{1} = R^{F}s_{2} \text{ on } X,$$

$$0 < s_{2}(x_{0}) - s_{1}(x_{0}) = B^{carr \ u}s_{2}(x_{0}) - B^{carr \ u}s_{1}(x_{0}),$$

 $s_i \ge R^F s_i \ge B_u s_i \ i = 1, 2, \ s_i(x_0) \ge R^F s_i(x_0) \ge B_u s_i(x_0) = s_i(x_0), \ i = 1, 2.$ Hence $carr \ u \setminus F = \emptyset$.

d) Let $x_0 \in X$ such that if μ is a σ -*H*-integral on \mathcal{E} with $\mu \leq \varepsilon_{x_0}$ on \mathcal{E} and $\mu(u) = u(x_0)$ then $\mu = \varepsilon_{x_0}$ on \mathcal{E} .

If $x_0 \notin carr \ u$ then using b) we may consider two functions

 $s_1, s_2 \in \mathcal{E}, \ s_1 \leq s_2 \text{ on } X, \ s_1(x_0) < s_2(x_0) \text{ and } s_1 = s_2 \text{ on } carr \ u.$

We take as σ -*H*-integral μ on \mathcal{E} the map

$$s \mapsto B_u s(x_0) = \mu(s).$$

Clearly we have $\mu(s) \leq s(x_0)$ for all $s \in \mathcal{E}$ and $\mu(u) = u(x_0)$ and therefore, using the hypothesis $\mu(s) = s(x_0)$ for all $s \in \mathcal{E}$.

The last assertion gives us

$$B_u s_1 = B_u s_2$$
 on X, $B_u s_i = \mu(s_i) = s_i(x_0), i = 1, 2,$
 $s_1(x_0) = s_2(x_0).$

This contradicts the choice of s_1 and s_2 .

Let now $x_o \in carr \ u$ and let μ be a σ -H-integral such that $\mu \leq \varepsilon_{x_0}$ on \mathcal{E} , $\mu(u) = u(x_0)$. We get the relation

 $\mu(v) = v(x_0)$ for all $v \in \mathcal{E}, v \leq \alpha u$ for some $\alpha \in \mathbb{R}_+$.

Hence taking $s \in \mathcal{E}, v \in \mathcal{E}, v \leq \alpha u$ for some $\alpha \in \mathbb{R}_+$ and $v \leq s$, we have

$$\mu(s) \ge \mu(v) = v(x_0).$$

The element v being arbitrary we have

$$\mu(s) \ge B_u s(x_0) = s(x_0), \ \mu = \varepsilon_{x_0} \text{ on } \mathcal{E}.$$

Definition 4.4. An element $s \in \mathcal{E}^f$ is called *regular* if for any increasing sequence $(s_n)_n$ with $\sup s_n = s$ we have

$$\bigwedge_n R(s-s_n) = 0.$$

Note that the potentials are regular elements.

The following result is well known in standard H-cones (see [4, 5]).

PROPOSITION 4.3. If s is a regular element of \mathcal{E} then the associated pseudobalayage B_s is a balayage.

Proof. Let $(s_n)_n$ be a sequence in \mathcal{E} increasing to s and for any $n \in \mathbb{N}$ let $u_n \in \mathcal{E}$ be such that

$$R(s-s_n)+u_n=s.$$

The sequence $(R(s-s_n))_n$ is decreasing and the sequence $(u_n)_n$ is increasing with respect to the pointwise order relation. Therefore, we have

$$u := \sup_{n} u_n \in \mathcal{E}$$
, and $\inf_{n} R(s - s_n) \in S$.

But since

$$u + \inf_n R(s - s_n) = s$$

we deduce that $\inf_{n} R(s - s_n) \in \mathcal{E}$. Hence, using the regularity of s we have

$$\inf_{n} R(s - s_n) = \bigwedge_{n} R(s - s_n) = 0, \ u = s.$$

With the above notations we have

$$u_n \leqslant s_n \leqslant s, \ u_n = B_s u_n \leqslant B_s s_n \text{ for all } n \in \mathbb{N}.$$

Therefore $\sup B_s s_n = s$. Obviously, for any $\alpha \in \mathbb{R}_+$ and any sequence (s_n) in \mathcal{E} increasing to αs we have $\sup B_s s_n = \alpha s$.

Now if $u \in \mathcal{E}$, $u \leq s$ and $(u_n)_n$ is a sequence in \mathcal{E} increasing to u we claim that

$$\sup B_s u_n = u.$$

Indeed, if we denote v = s - u then the sequence $(u_n + v)_n$ increasing to s and therefore

$$\sup_{n} B_s(u_n + v) = s, \ \sup_{n} B_s u_n + v = s, \ \text{and} \ \sup_{n} B_s u_n = u.$$

To finish the proof we consider an arbitrary element t of \mathcal{E} and a sequence $(t_n)_n$ in \mathcal{E} increasing to t. Let $u \in D_t$ and recall that

$$D_t = \{ u \in S / u \leq t \text{ and } u \leq \alpha s \text{ for some } \alpha > 0 \}.$$

Since $u \leq t$ then the sequence $(\inf(u, t_n))_n$ is in \mathcal{E} and increases to $\inf(u, t) = u$. But $u \leq \alpha s$ for some $\alpha \in \mathbb{R}_+$. By the above considerations we have

$$\sup_{n} B_s(\inf(u, t_n)) = B_s u = u.$$

Hence

$$\sup_{n} B_{s}t_{n} \ge \sup_{n} B_{s}(\inf(u, t_{n})) = B_{s}u = u$$

But u being arbitrary we get

$$\sup_{n} B_s t_n \ge B_s t, \ \sup_{n} B_s t_n = B_s t. \quad \square$$

THEOREM 4.1. The element $s \in \mathcal{E}^f$ is regular if and only if for any $u \in \mathcal{E}$, $u \leq s$ the pseudo-balayage B_u is a balayage on \mathcal{E} i.e. $s \in \mathcal{E}^0$.

Proof. Let $s \in \mathcal{E}^0$ and let $(s_n)_n$ be a sequence in \mathcal{E} increasing to s. For $\varepsilon \in \mathbb{R}, \varepsilon > 0$ and $n \in \mathbb{N}, n > 0$ we denote by A_n the subset of X given by

$$A_n = \left[s < s_n + \left(1 - \frac{1}{n}\right)\varepsilon\right] = \left\{x \in X/s(x) < s_n(x) + \left(1 - \frac{1}{n}\right)\varepsilon\right\}.$$

Clearly we have $\overline{A}_n \subset A_n$ and A_n is fine open for every $n \in \mathbb{N}$, n > 0. Moreover $\bigcup_{n=1}^{\infty} A_n = X$.

Let
$$u_n = R\left(s - s_n - \left(1 - \frac{1}{n}\right)\varepsilon\right)$$
 and $v_n = s - u_n$. Then
 $u_n = R^{X \setminus A_n} u_n = \varepsilon R^{X \setminus A_n} u_n$ since $\left[s > s_n + \left(1 - \frac{1}{n}\right)\varepsilon\right] \subset X \setminus A_n$

and therefore

$$u_{n+m} = R^{X \setminus A_{n+m}} u_{n+m} \leqslant R^{X \setminus A_n} u_{n+m} \quad \text{for all } n, m \in \mathbb{N}^*,$$
$$u_{n+m} = R^{X \setminus A_n} u_{n+m} \quad \text{for all } n, m \in \mathbb{N}^*.$$

Since $u_n + v_n = s$, and the sequence $(u_n)_n$ is decreasing it follows that the sequence $(v_n)_n$ is increasing to an element $v \in \mathcal{E}$, and if we denote $u = \inf_n u_n$, we have

$$u \in S, \ u + v = s, \ \hat{u} + \hat{v} = \hat{s}, \ \hat{u} + v = s, \ u = \hat{u}.$$

Hence $u \in \mathcal{E}^0$ and from the preceding consideration, it follows

$$\begin{aligned} R^{X \setminus A_n}(u_{n+m} + v_{n+m}) &= R^{X \setminus A_n} s \quad \text{for all} \ n, m \in \mathbb{N}^*, \\ u_{n+m} + R^{X \setminus A_n}(v_{n+m}) &= R^{X \setminus A_n} s \quad \text{for all} \ n, m \in \mathbb{N}^*. \end{aligned}$$

Leting $m \to \infty$ we obtain

$$u + R^{X \setminus A_n} v = R^{X \setminus A_n} s.$$

On the other hand

$$R^{X \setminus A_n} u + R^{X \setminus A_n} v = R^{X \setminus A_n} s$$

and therefore $R^{X\setminus A_n}u = u$. The set $X\setminus A_n$ being finely closed we deduce $\operatorname{carr} u \subset X\setminus A_n$ for any $n \in \mathbb{N}$. But $\bigcap_{n=1}^{\infty} X\setminus A_n = \emptyset$ and therefore u = 0, $\inf_n R\left(s - s_n - \left(1 - \frac{1}{n}\right)\varepsilon\right) = 0$. The relations

$${}^{\mathcal{E}}R(s-s_n) \leq {}^{\mathcal{E}}R\left(s-s_n-\left(1-\frac{1}{n}\right)\varepsilon\right)+\left(1-\frac{1}{n}\right)\varepsilon \quad \text{for all } n \ge 1 \text{ and } \varepsilon > 0$$

lead to

$$\inf_{n} {}^{\mathcal{E}}R(s-s_{n}) \leq \varepsilon, \quad \inf_{n} {}^{\mathcal{E}}R(s-s_{n}) = 0,$$

that is s is a regular element of \mathcal{E} .

Conversely, if s is regular then any element $u \in \mathcal{E}$, $u \leq s$ is also regular and by Proposition 3 the pseudo-balayage B_u is a balayage, *i.e.* $s \in \mathcal{E}^0$. \Box

Remark 4.4. In their papers concerning the semi-polar sets and regular excessive functions respectively balayages on excessive measures L. Beznea and N. Boboc (see [1] and [2]) show that for any basic set M which is analytic there exists a bounded regular excessive function q such that its fine carrier is contained in M.

Remark 4.5. We may prove the following assertion:

Let $\mathcal{V} = (V_{\alpha})_{\alpha>0}$ be a resolvent family of kernels on a measurable space (X, \mathcal{B}) *i.e.*,

a) \mathcal{V} is a proper sub-Markovian resolvent of kernels.

b) The convex cone \mathcal{E} of all excessive functions with respect to v is minstable and contains the positive constant functions.

c) There exists a distance d on X such that the associated topology τ_d is smaller than the fine topology on X.

d) The Borel structure associated with the distance d coincides with \mathcal{B} . In this case if the space (X, \mathcal{B}) is such that for any regular and bounded excessive function p with respect to the resolvent \mathcal{V} , the balayage associated as above to p is representable, then all balayages on \mathcal{E} are representable.

REFERENCES

 L. Beznea and N. Boboc, Once more about the semi-polar sets and regular excessive functions. In: Potential theory, ICPT 94, Walter de Gruyter, 1996, pp. 255-294.

- [2] L. Beznea and N. Boboc, Balayages on excessive measures, their representation the quasi-Lindelöf property. Potential Analysis 7 (1997), 805–825.
- [3] L. Beznea and N. Boboc, Excessive kernels and Revuz measures. Probab. Th. Rel. Fields 117 (2000), 267–288.
- [4] L. Beznea and N. Boboc, Potential Theory and Right Processes. Springer Series, Mathematics and Its Applications 572, Kluwer, Dordrecht, 2004.
- [5] N. Boboc, Gh. Bucur and A. Cornea, Order and Convexity in Potential Theory: H-cones, Lecture Notes in Math, Springer, Berlin, 1981.
- [6] A. Cornea and G. Licea, Order and Potential resolvent families of kernels. Lecture Notes in Math. 494, Springer Verlag, 1975.
- [7] P.A. Meyer, Probability and potentials. Ginn (Blaisdell), Boston, 1966.
- [8] G. Mokobodzki, Operateurs de subordination des résolvantes. Manuscript, 1983.

Received 13 October 2014

Simion Stoilow Institut of Mathematics of the Romanian Academy, Bucharest, Romania benfrihahabib@yahoo.fr

> Technical University of the Civil Engineering, Bucharest, Romania bucurileana@yahoo.com