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We present minimal conditions for a proper sub-Markovian resolvent family of
kernels, such that it is possible to develop a basic part of the potential theory,
in the frame of the associated excessive structure. We characterize the regular
excessive elements as being those excessive functions for which the associated
pseudo-balayages are balayages, and we construct a �ne carrier theory without
using any kind of compacti�cation.
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1. INTRODUCTION

Given a sub-Markovian resolvent family of kernels V on a measurable
space pX,Bq, we deal with the following two problems:
p1q describe the regular elements of the cone EV of all V-excessive B-measurable
functions in terms of balayage theory on EV ;
p2q establish the link between the existence of �ne carrier for the regular el-
ements of EV and the property that any balayage operator B on EV may be
represented on X under the form B � RA, where RA is the reduite in EV on
the set A.

For this purpose we associate to any element s P EV , s   8, a pseudo-
balayage Bs on EV , de�ned by

Bst � suptu P EV |u ¤ t, u ¤ αs for some α ¡ 0u.

This operator was considered in the frame of standard H-cones in [5] where s
is universally continuous and, in this case, Bs is a balayage. In our paper we
consider elements s P EV such that Bs is a balayage and we show that s has this
property if and only if it is regular, that is

�
n
Rps � snq � 0 for any sequence

psnqn increasing to s. This gives an answer to problem p1q.

REV. ROUMAINE MATH. PURES APPL. 61 (2016), 1, 39�53



40 Habib Benfriha and Ileana Bucur 2

In the case when V is a resolvent having the properties from the last
Remark 5 of this paper, then starting from a result in [1] and [2] which asserts
that for any analytic, basic subset M of X there exists a regular excessive
function whose �ne carrier is contained inM , we show that the properties from
p2q hold if and only if the balayage Bs is representable for any regular element
s of EV .

2. PRELIMINARIES AND FIRST RESULTS

Throughout, V � pVαqα¡0 is a proper sub-Markovian resolvent of kernels
on a measurable space pX,Bq. We denote by S the set of all B-measurable
numerical functions s which are supermedian, i.e. s : X ÝÑ r0,�8s and
αVαs ¤ s for all α ¡ 0. Let Sf be the set of all real-valued functions from S.

Let E be the set of all excessive, B-measurable functions, which are �nite
V-a.e., that is

E � ts P S{ sup
α
αVαs � s and Vαp1rs�8sq � 0 for one (hence all) α P R�u.

For any s P S the family pαVαsqαP R� is increasing and the function ps de�ned
by ps � lim

αÑ8
αVαs � lim

nÑ8
nVns � sup

n
nVns,

called the regularized of s (with respect to V) is dominated by s and the set
rps   ss is V-negligible, i.e. Vαp1rps ssq � 0 for one (hence all) α P R�.

We recall that for any B-measurable function f on X the set

ts P S{s ¥ fu

possesses the smallest element denoted by R0f . If f is of the form s2� s1 with
s1, s2 P S, then

R0ps2 � s1q :�
©

ts P S{s1 � s ¥ s2u¤
S
s2,

where we have written u¤
S
v if there exists s P S such that v � u � s, u and

v being positive functions on X. The relation ¤
S
is the so called speci�c order

induced by S.

If A P B and s P S then the element R0p1A � sq is called the reduite of s
on the set A and it will be denoted by RA0 s. The following properties of the
reduite operation are well known (see e.g. [4]):

If s1, s2 P E then R0ps2 � s1q P E and R0ps2 � s1q¤
E
s2 where ¤

E
is the

speci�c order given by E .
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The set pE ,¤
E
q is a conditionally σ-complete lattice, i.e. for any sequence

psnqn � E there exists the greatest lower bound noted by
�
n sn and we have:

s�
«
n

sn �
«
n

ps� snq for all s P E .

If psnqn P E is speci�cally dominated in E there exists the smallest upper bound
denoted by

�
n sn and we have:

s�
¬
n

sn �
¬
n

ps� snq for all s P E .

Moreover, if the sequence psnqn is speci�cally increasing (resp. decreasing) then
we have: ¬

n

sn � sup
n
sn presp.

«
n

sn � inf
n
snq,

where sup
n
sn (resp. inf

n
sn) is the pointwise supremum (resp. in�mum) of the

sequence of functions psnqn on X. Particularly, the Riesz decomposition prop-

erty holds in E and S, i.e. for any s, t1, t2 belonging to E (resp. S) with
s ¤ t1�t2 there exist s1, s2 in E (resp. S) such that s1 ¤ t1, s2 ¤ t2, s � s1�s2.
In fact, the σ-Riesz decomposition property may be immediately shown

s ¤
8̧

i�1

ti ñ s �
8̧

i�1

si, si ¤ ti for all i P N.

Other well known assertions from the vector lattice theory may be restated
in the convex cones E and S. Among them the following one will be used: for
any s1, s2 in E (resp. S) we have

s1
«

s2 � s1
¬

s2 � s1 � s2.

The Riesz decomposition property with respect to the pointwise order
relation holds in S (respectively E), i.e. for any s, t1, t2 in S (resp. E) with
s ¤ t1�t2 there exist s1, s2 in S (resp. E) such that s � s1�s2, s1 ¤ t1, s2 ¤ t2.

The following decomposition property is inspired by a similar one used by
G. Mokobodzki in the study of subordinate resolvents (cf. [4] and [8]).

Lemma 2.1. For any s P Sf , and any A P B there exist sA and s1A such

that

s � sA � s1A and RA0 sA � sA, R
XzA
0 s1A � s1A.

Proof. We de�ne inductively two sequences ps1nqn and ps
2
nqn in S as follows:

s21 � R0ps�RAsq, s11 � s�R0ps�RAsq

s2n�1 � Rp0s
1
n �RAs1nq, s1n�1 � s1n �R0ps

1
n �RAs1nq.
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Obviously, we have s1n � s1n�1�s
2
n�1 and one can show that s1n�1 � RAs1n ¤ s1n

and s2n�1 � RXzAs2n�1. So, the sequence ps1nqn is speci�cally decreasing in S

and the sequence p
n°
i�1

s2i qn is speci�cally increasing in S and we have

s � s1n �
ņ

i�1

s2i for all n P N�.

Therefore, s � sA � s1A where we have denoted

sA � inf
n
s1n �

«
S

s1n, s
1
A �

8̧

i�1

s2i :� sup
n

ņ

i�1

s2i �
¬
n

ņ

i�1

s2i .

From the preceding considerations we deduce

RA0 p
«
n

s1nq �
«
n

RA0 s
1
n �
«
n

s1n, R
A
0 sA � sA.

R
XzA
0 p

8̧

i�1

s2i q �
8̧

i�1

R
XzA
0 s2i �

8̧

i�1

s2i , R
XzA
0 s1A � s1A. l

Lemma 2.2 (A Choquet type lemma). Let psnqn be a sequence in S and

for any n P N let psn,mqn,m be a sequence in S which is speci�cally increasing

to sn.

a. We have ¬
S

tsn{n P Nu �
¬
S

ttn{n P Nu,

where

tn �:
¬
i,j¤n

si,j .

b. If sn   8, n P N, and for any sequence σ � pmnqnPN in N we

denote

sσ �
«
S

tsn,mn{n P Nu,

then we have «
S

tsn{n P Nu � suptsσ{σ P NNu,

where sup stands for the pointwise supremum and NN for the set of all sequences

of natural numbers.

Proof. a) Obviously we have

sn �
¬
S

tsn,m{m P Nu ¤
¬
S

ttk{k P Nu ¤
¬
S

tsk{k P Nu
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and therefore ¬
S

tsn{n P Nu �
¬
S

ttn{n P Nu.

b) Let x P X and let ε be a real number, ε ¡ 0. Since the sequence
psn,mqm is speci�cally increasing (in S) to the element sn of S we have

snpxq � sup
m
sn,mpxq � lim

mÑ8
sn,mpxq

and therefore we may consider mn P N such that

snpxq ¤ sn,mnpxq �
ε

2n
or tnpxq  

ε

2n
,

where tn P S is such that sn � sn,mn � tn.

If we put s0 �
�
S

tsn{n P Nu, from the preceding consideration we have

s0 ¤ sn,mn � s0
«

p
ņ

i�1

tiq for all n P N,

s0 ¤ sn,mn �
¬
S

ts0
«

p
ķ

i�1

tiq{k P Nu,

s0 ¤
«
S

tsn,mn{n P Nu �
¬
S

ts0
«

p
ķ

i�1

tiq{k P Nu.

On the other hand at the point x P X the following inequality holds

¬
S

ts0
«

p
ķ

i�1

tiq{k P Nupxq � lim
kÑ8

ps0
«

p
ķ

i�1

tiqqpxq ¤

¤ lim
kÑ8

ķ

i�1

tipxq ¤ ε

and therefore

s0pxq ¤ sσpxq � ε where σ � pmnqnPN.

The number ε being arbitrary we have

s0pxq � sup
σPNN

sσpxq for all x P X. l

Lemma 2.3. Let psnqn be a sequence in E and for any n P N let psn,mqm
be a sequence in E which is E-speci�cally increasing to sn.

a. If the sequence psnqn has a speci�c majorant in E then¬
E
sn �

¬
E
tn
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where
tn �:

¬
E
tsi,j{i, j ¤ nu.

b. If sn   8, n P N, and for any sequence σ � pmnqnPN in N we set

sσ �
«
E
tsn,mn{n P Nu,

then we have «
E
tsn{n P Nu � suptsσ{σ P NNu,

where sup stands for the pointwise supremum and NN for the set of all sequences

of natural numbers.

Proof. We apply Lemma 2 and use the following properties of the speci�c
order:¬

E
sn �

¬
S

sn ,
¬
E
tn �

¬
S

tn ,
«
E
tsn,mn{n P Nu �

«
S

tsn,mn{n P Nu. l

3. PSEUDO-BALAYAGES ASSOCIATED
WITH SUPERMEDIAN FUNCTIONS

A map B : S ÝÑ S is called pseudo-balayage on S if it is increasing (with
respect to the pointwise order relation), additive, contractive (Bs ¤ s) and
idempotent (B2s � BpBsq � Bs) for all s P S.

A pseudo-balayage B is called balayage if it is σ-continuous in order from
below, i.e. the sequence pBsnqn increases to Bs whenever the sequence psnqn
increases to s.

A typical example of balayage on S is the map:

s ÞÑ RA0 s,

where A P B.
In the sequel, for any element s P Sf we associate a pseudo-balayage Bs

such that Bss � s. The procedure is inspired from a similar one developed in
the frame of standard H-cones.

Proposition 3.1. Let s P S be a �nite element. Then for any t P S the

set
Dt :� tu P S{u ¤ t and u ¤ αs for some α ¡ 0u

has an upper bound in S with respect to the pointwise order relation and the

map
t ÞÑ supDt :� Bst

is a pseudo-balayage with Bspsq � s. Moreover if B is a pseudo-balayage with

Bpsq � s we have Bs ¤ B i.e. Bst ¤ Bt for all t P S.
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Proof. We consider the subset D0
t of Dt given by

D0
t � tns�R0pns� tq{n P N�u.

The set D0
t is countable and co-�nal in Dt i.e. for any u P Dt there exists

n P N such that
u ¤ ns�R0pns� tq.

Indeed, let α P R� such that u ¤ αs and u ¤ t. We have u ¤ ns for
n P N, n ¥ α and we remark that

u � ns�R0pns� uq.

On the other hand we notice that the sequence pns � R0pns � tqqn is
increasing. Hence, the supremum of the set D0

t belongs to S and we have

Bst � supDt � supD0
t ¤ t.

If t � s, obviously s P Ds and therefore Bss � s.
The fact that the map Bs is increasing follows from the de�nition of Bs

because if t1 ¤ t2 then Dt1 � Dt2 .
Using the de�nition of the sets Dt1 , Dt2 and Dt1�t2 for t1, t2 P S we

deduce, using Riesz decomposition property (with respect to the pointwise order
relation) that

Dt1 �Dt2 � Dt1�t2 .
So, we have

Bspt1 � t2q � supDt1�t2 � supDt1 � supDt2 � Bspt1q �Bspt2q.

For any t P S and any u P Dt, we have u ¤ Bst, and by the de�nition of
DBst we have u P DBst. Hence

u ¤ BspBstq, Bsptq ¤ BspBsptqq, Bsptq � B2
s t.

If B is a pseudo-balayage on S such that Bs � s, then for any u P S, u ¤
αs for some α ¡ 0 we have

Bpαsq � αBs � αs,

Bpuq �Bpαs� uq � Bpαsq � αs � u� pαs� uq,

Bu ¤ u, Bpαs� uq ¤ αs� u

and therefore Bu � u, Bpαs� uq � αs� u.
Let now t P S and u P Dt. From the preceding consideration we deduce

Bu � u for all u P Dt, Bst � sup
uPDt

u � sup
uPDt

Bu ¤ Bt. l

Remark. For the convex cone E we have similar de�nition of the pseudo-
balayage or balayage operator B : E Ñ E .
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Proposition 3.2. Proposition 2. For any element s P Ef , the restric-

tion to E of the map Bs is a pseudo-balayage on E.
Proof. We remark that for any t in S which is �nite V-a.e. we have

Bst P E . Indeed, we have Dt � E and therefore the supremum of the increasing
and dominated sequence pns�Rpns� tqqn is an element of E . l

4. FINE CARRIER FOR EXCESSIVE FUNCTIONS

In the sequel, we shall denote by E0 the set of all �nite excessive functions
s on X such that for any speci�c minorant u P E (u ¤ s) the associated
pseudo-balayage Bu is a balayage on E .

As in the introduction, for any subset A of X and any element t P E we
denote

RAt :� inftt1 P E{t1 ¥ t on Au.

We denote also by E0 the set of all elements s P Ef for which the pseudo-
balayage Bu on E (see Proposition 2) is a balayage for all u P E , u Î s.

Generally, the function RAt is not B-measurable but if it is then this
function belongs to S and the function

x ÞÑ supαVαpR
Atqpxq

is denoted by BAt. Obviously, BAt P E .
De�nition 4.1. The set A is called subbasic if the function BAs is de�ned

for all s P E and we have BAs � s on A.
A subbasic set M is called a basic set if we have

M � tx P X{BMspxq � spxq for all s P Eu.
Remark 4.1. Arguing as in [4], Proposition 1.7.1, one can show that a

subset M of X is subbasic if and only if the function RAs belongs to E and
therefore RAt � BAs for all s P E .

Remark 4.2. If M is subbasic then the map on E
s ÞÑ BMs

is a balayage on E .
Remark 4.3. If M is a subbasic set and bpMq is given by

bpMq � tx P X{BMspxq � spxq for all s P Eu
then BbpMqs � s for all s P E and bpMq P B.

The last assertion follows immediately from the fact that

bpMq � rBMV f0 � V f0s,

where f0 is a B-measurable, 0   f0   1 and V f0   8.
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On the space X, we consider the �ne topology i.e., the coarsest topology
τ on X making continuous all functions of the vector lattice Eb�Eb of bounded
functions on X. We suppose here that E is min-stable and 1 P E .

Recall that all elements s P E are continuous with respect to τ and any
point xo P X has a base of neighbourhoods of the form x0 P rs � t ¡ 0s with
s, t P E , t ¤ s ¤ 1. Obviously, the elements of this base belong to B.

De�nition 4.2. Definition. We say that a balayage B on E is repre-

sentable if there exists a basic set in X denoted by bpBq such that

Bs � BbpBqs

for all s P E .
The space X is called nearly saturated if all balayages on E are repre-

sentable. By Theorem 5.3.8 from [5] one can see that this de�nition agrees
with that from [3] and [4].

From now on, we suppose that X is nearly saturated and the convex cone

E is min-stable and contains the positive constant functions.

De�nition 4.3. For any element s P E0 we associate the subset bpBsq the
base of the balayage Bs. We shall denote it by carr s and we shall call it the
�ne carrier of s (with respect to E).

From Remark 4.3 we deduce that the set carr s is �nely closed and we
have

carr s � Hô s � 0.

Proposition 4.1. The following assertions hold.

1. E0 is a solid convex sub-cone of E with respect to the speci�c order.

2. carrps1 � s2q � carr s1 Y carr s2 for all s1, s2 P E0.

3. If psnqn is a sequence in E0 then the function
8°
n�1

sn belongs to E0

provided that the sum is �nite, and the set carrp
8°
n�1

snq is the closure (with

respect to τ) of the set
8�
n�1

carr sn.

Proof. 1. and 2. First, we remark that if M1,M2 are basic sets then so is
M1 YM2 and for any element t P E we have

BM1YM2t � BM1t_BM2t.

Hence, if we take M1 � carr s1, M2 � carr s2 then

s1�s2�B
M1s1�B

M2s2 ¤ BM1YM2s1�B
M1YM2s2 � BM1YM2ps1�s2q ¤ s1�s2,
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BM1YM2ps1 � s2q � s1 � s2

and therefore for any u P E , u Î αps1 � s2q we have

BM1YM2u � u.

Hence for any t P E and any u P E , u ¤ t, u ¤ αps1 � s2q for some α ¡ 0
we have

u � BM1YM2u ¤ BM1YM2t, Bs1�s2t ¤ BM1YM2t.

We also have BM1YM2t ¤ Bs1�s2 because Bsi ¤ Bs1�s2 for i � 1, 2. Hence
the map on E

t ÞÑ Bs1�s2t � BM1YM2t

is a balayage on E . The preceding considerations show that s1 � s2 P E0 for all
s1, s2 P E0 and

carrps1 � s2q � bpBs1�s2q � bpBs1q Y bpBs2q � carr s1 Y carr s2.

The last assertion follows by the fact that a countable union of basic sets
is a subbasic set. l

A map µ : E ÝÑ R� is called σ-H-integral if it is additive, increasing,
σ-continuous in order from below, and for each s P E there exists a sequence
psnqn in E , increasing to s such that µpsnq   8 for all n P N. We would like to
mark that the space of all σ-H-integrals is in one to one correspondence with
the space of all σ-�nite excessive measures on pX,Bq, via the energy functional

associated with V; see [4], Theorem 1.4.6.

Proposition 4.2. The following assertions hold for u P E0.

a) If s ¥ u on carr u then s ¥ u on X.

b) The set carr u is �ne closed and B-measurable subset of X.

c) If F is a �ne closed subset of X such that s ¥ u on X whenever

s P E and s ¥ u on F , then carr u � F .

d) carr u � tx P X{µ σ-H-integral, µ ¤ εx on E , µpuq � upxq ñ
µ � εxu.

Proof. a) We have

u � Buu � Bcarr uu ¤ Bcarr us ¤ s if s P E , s ¥ u on carr u.

Assertion b) follows from the fact that

carr u � bpBuq � tx P X{Buspxq � spxq for all s P Eu �

� tx P X{BuV fpxq � V fpxqu

where f is B-measurable, 0   f   1, and V f   8.
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c) Using the hypothesis, we have

u ¥ RFu ¥ u, RFu � u, RF pαuq � αu for all α P R�.

Since RF s ¤ s we deduce that

RF v � v for all v P E , v ¤ u,

and therefore, for any v P E , v ¤ s, v ¤ αu for some α ¡ 0 we have

RF s ¥ RF v � v.

The element v being arbitrary we get Bus ¤ RF s for any s P E .
Let now x0 P carr uzF and let s1, s2 P E , s1 ¤ s2 be such that

s1 ¤ s2, s1px0q   s2px0q, s1 � s2 on F.

From the preceding considerations, we get the contradictory relations

RF s1 � RF s2 on X,

0   s2px0q � s1px0q � Bcarr us2px0q �Bcarr us1px0q,

si ¥ RF si ¥ Busi i � 1, 2, sipx0q ¥ RF sipx0q ¥ Busipx0q � sipx0q, i � 1, 2.

Hence carr uzF � H.
d) Let x0 P X such that if µ is a σ-H-integral on E with µ ¤ εx0 on E

and µpuq � upx0q then µ � εx0 on E .
If x0 R carr u then using b) we may consider two functions

s1, s2 P E , s1 ¤ s2 on X, s1px0q   s2px0q and s1 � s2 on carr u.

We take as σ-H-integral µ on E the map

s ÞÑ Buspx0q � µpsq.

Clearly we have µpsq ¤ spx0q for all s P E and µpuq � upx0q and therefore,
using the hypothesis µpsq � spx0q for all s P E .

The last assertion gives us

Bus1 � Bus2 on X, Busi � µpsiq � sipx0q, i � 1, 2,

s1px0q � s2px0q.
This contradicts the choice of s1 and s2.

Let now xo P carr u and let µ be a σ-H-integral such that µ ¤ εx0 on E ,
µpuq � upx0q. We get the relation

µpvq � vpx0q for all v P E , v ¤ αu for some α P R�.

Hence taking s P E , v P E , v ¤ αu for some α P R� and v ¤ s, we have

µpsq ¥ µpvq � vpx0q.

The element v being arbitrary we have

µpsq ¥ Buspx0q � spx0q, µ � εx0 on E .
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De�nition 4.4. An element s P Ef is called regular if for any increasing
sequence psnqn with sup sn � s we have©

n

Rps� snq � 0.

Note that the potentials are regular elements.

The following result is well known in standard H-cones (see [4, 5]).

Proposition 4.3. If s is a regular element of E then the associated pseudo-

balayage Bs is a balayage.

Proof. Let psnqn be a sequence in E increasing to s and for any n P N let
un P E be such that

Rps� snq � un � s.

The sequence pRps�snqqn is decreasing and the sequence punqn is increas-
ing with respect to the pointwise order relation. Therefore, we have

u :� sup
n
un P E , and inf

n
Rps� snq P S.

But since

u� inf
n
Rps� snq � s

we deduce that inf
n
Rps� snq P E . Hence, using the regularity of s we have

inf
n
Rps� snq �

©
n

Rps� snq � 0, u � s.

With the above notations we have

un ¤ sn ¤ s, un � Bsun ¤ Bssn for all n P N.

Therefore supBssn � s. Obviously, for any α P R� and any sequence psnq in
E increasing to αs we have supBssn � αs.

Now if u P E , u ¤ s and punqn is a sequence in E increasing to u we claim
that

supBsun � u.

Indeed, if we denote v � s� u then the sequence pun � vqn increasing to s and
therefore

sup
n
Bspun � vq � s, sup

n
Bsun � v � s, and sup

n
Bsun � u.

To �nish the proof we consider an arbitrary element t of E and a sequence
ptnqn in E increasing to t. Let u P Dt and recall that

Dt � tu P S{u ¤ t and u ¤ αs for some α ¡ 0u.
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Since u ¤ t then the sequence pinfpu, tnqqn is in E and increases to infpu, tq � u.
But u ¤ αs for some α P R�. By the above considerations we have

sup
n
Bspinfpu, tnqq � Bsu � u.

Hence
sup
n
Bstn ¥ sup

n
Bspinfpu, tnqq � Bsu � u.

But u being arbitrary we get

sup
n
Bstn ¥ Bst, sup

n
Bstn � Bst. l

Theorem 4.1. The element s P Ef is regular if and only if for any u P E,
u ¤ s the pseudo-balayage Bu is a balayage on E i.e. s P E0.

Proof. Let s P E0 and let psnqn be a sequence in E increasing to s. For
ε P R, ε ¡ 0 and n P N, n ¡ 0 we denote by An the subset of X given by

An �

�
s   sn �

�
1�

1

n



ε

�
� tx P X{spxq   snpxq �

�
1�

1

n



εu.

Clearly we have An � An and An is �ne open for every n P N, n ¡ 0. Moreover
8�
n�1

An � X.

Let un � R

�
s� sn �

�
1�

1

n



ε



and vn � s� un. Then

un � RXzAnun �
E RXzAnun since

�
s ¡ sn �

�
1�

1

n



ε

�
� XzAn

and therefore

un�m � RXzAn�mun�m ¤ RXzAnun�m for all n,m P N�,

un�m � RXzAnun�m for all n,m P N�.

Since un � vn � s, and the sequence punqn is decreasing it follows that the
sequence pvnqn is increasing to an element v P E , and if we denote u � infn un,
we have

u P S, u� v � s, pu� pv � ps, pu� v � s, u � pu.
Hence u P E0 and from the preceding consideration, it follows

RXzAnpun�m � vn�mq � RXzAns for all n,m P N�,

un�m �RXzAnpvn�mq � RXzAns for all n,m P N�.

Leting mÑ8 we obtain

u�RXzAnv � RXzAns.
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On the other hand

RXzAnu�RXzAnv � RXzAns

and therefore RXzAnu � u. The set XzAn being �nely closed we deduce

carr u � XzAn for any n P N. But
8�
n�1

XzAn � H and therefore u � 0,

infnR

�
s� sn �

�
1�

1

n



ε



� 0.

The relations

ERps�snq ¤
ER

�
s� sn �

�
1�

1

n



ε



�

�
1�

1

n



ε for all n ¥ 1 and ε ¡ 0

lead to

inf
n

ERps� snq ¤ ε, inf
n

ERps� snq � 0,

that is s is a regular element of E .
Conversely, if s is regular then any element u P E , u ¤ s is also regular

and by Proposition 3 the pseudo-balayage Bu is a balayage, i.e. s P E0. l

Remark 4.4. In their papers concerning the semi-polar sets and regular
excessive functions respectively balayages on excessive measures L. Beznea and
N. Boboc (see [1] and [2]) show that for any basic set M which is analytic
there exists a bounded regular excessive function q such that its �ne carrier is
contained in M .

Remark 4.5. We may prove the following assertion:

Let V � pVαqα¡0 be a resolvent family of kernels on a measurable space
pX,Bq i.e.,

a) V is a proper sub-Markovian resolvent of kernels.

b) The convex cone E of all excessive functions with respect to v is min-
stable and contains the positive constant functions.

c) There exists a distance d on X such that the associated topology τd is
smaller than the �ne topology on X.

d) The Borel structure associated with the distance d coincides with B. In
this case if the space pX,Bq is such that for any regular and bounded excessive
function p with respect to the resolvent V, the balayage associated as above to
p is representable, then all balayages on E are representable.
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