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On a finite network X, A denotes the Laplace operator and for any real-valued
function ¢(z) on X, the operator Aqu(z) = Au(x)—q(z)u(z) represents a pertur-
bation of A. Assuming that the conductance in X is not necessarily symmetric
(non-reversible case) and that the function ¢(z) is arbitrary (so that it is not
anymore necessary the matrix associated to —A4 to be positive semi-definite),
some results are proved using matrix methods which help solving the Poisson
problem of finding a solution u(x) to the equation Agu(z) = f(z) on X for a
given real-valued function f(x). Consequently, Dirichlet-Poisson and Neumann-
Poisson equations on proper subsets of X are solved.
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1. INTRODUCTION

Function theory on finite networks has a nice model in electrical networks.
As an endomorphism of the family of real-valued functions on the finite network
X, the Laplacian operator A plays a pivotal role in the development of the
theory. In this model, when the operator A is identified with a matrix, the
latter is a symmetric irreducible matrix with nonnegative off-diagonal entries.
For a real-valued function ¢(z) on X, the operator A, defined by Aju(x) =
Au(z) — g(x)u(z) is known as a perturbation of the Laplace operator A. When
the matrix representing —A, is positive definite or sometimes even positive
semi-definite; the Poisson equation and discrete boundary-value problems like
the Dirichlet problem, the Neumann problem and the Robin problem have been
shown to have solutions, see Bendito et al. [3, 4, 7]; actually in |7] the symmetric
case in a path has been studied even when the quadratic form associated to
—A, is not positive semi-definite.

It is relevant to remark here, from another perspective when the con-
ductance in the network is symmetric, the local and global properties of the
Laplacian eigenvectors and the study of nodal domains (Biyikoglu et al. [6])
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and certain spectral properties of —A, like those of the second smallest eigen-
value of —A, referred to as its algebraic connectivity and of the corresponding
eigenvectors (Bapat et al. [3]) are of algebraic interest related to the function-
theoretic content of this paper.

There is another model for function theory on finite networks, namely
Markov chains in the finite state space X. In this model the transition proba-
bilities {p(z,y)} are generally not symmetric. However in this case usually an
assumption (reversibility condition) that there exists a function ¢(z) > 0 on X
such that ¢(x)p(x,y) = ¢(y)p(y, x) for any two states x, y in X is introduced,
which leads to a situation in X as in finite electrical networks with symmetric
conductance.

In this note, without assuming the symmetry or the reversibility of the
transition function on a finite network, we find matrix methods based on the
Perron-Frobenius theorem to solve the Poisson equation Agu(z) = f(x) and
then the Ag-Dirichlet problem. In this general set-up the equation Aju(x) =0
includes the discrete analogues of Laplace, Schrédinger and Helmholtz equa-
tions.

2. PERRON-FROBENIUS REPRESENTATION
FOR FUNCTIONS ON A FINITE NETWORK

2.1. Perron-Frobenius theorem

Let us recall certain remarkable features of the Perron-Frobenius theorem
(see Gantmacher [5]) which asserts the properties of the leading eigenvalue and
of the associated eigenvectors for positive (or nonnegative) square matrices.
Note that a matrix A = (aj;) is called a positive matrix if all its entries are
positive ( a;; > 0, for every ¢, j) and is called a nonnegative matrix if all its
entries are nonnegative (a;; > 0 for every 1, j).

Let A = (a;j) be an n x n positive matrix, that is a;; > 0 for all entries.
Then some of the important points of the Perron theorem are:

i) If p = p(A) is the spectral radius of A, then p is positive and is a simple

root of the characteristic polynomial of A whose associated eigenspace is

of dimension 1.

ii) If X\ is any other eigenvalue of A, then |A| < p.

iii) There exists a positive n x 1 right eigenvector u of A with associated
eigenvalue p, that is there exists uw such that Au = pu. and u; > 0 for
every 1.

iv) There exists a positive 1 x n left eigenvector v* such that v!A = pvt.

v) All other eigenvectors of A contain at least one entry that is nonpositive.
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Frobenius extended the above results to the case when A = (a;;) is a
nonnegative matrix. To suit our purpose here, a part of this extension can be
stated thus: Associate a directed graph G with the matrix A such that G has
exactly n vertices and there is an edge from vertex i to vertex j if and only if
a;; > 0. Then the nonnegative matrix A is said to be irreducible if the graph
G is strongly connected, that is given any two vertices ¢, j there exist directed
paths from i to j and from j to i. Conversely to each strongly connected directed
graph without self-loops, we associate a nonnegative irreducible matrix whose
diagonal elements are 0. Let now A be an irreducible nonnegative square matrix
with spectral radius p. Then A may have other eigenvalues whose absolute value
is p. However, the other properties excluding ii) mentioned above for positive
matrices are valid when A is only nonnegative but irreducible.

2.2. Perron-Frobenius representation of functions

Let X denote a set of a finite number of points called vertices. Let ¢ :
X x X — RT be a function where t(x,z) = 0 for every z € X; t(z,y) and
t(y,z) do not have to be the same; and t(z,y) is referred to as a transition
function on X. If t(z,y) = t(y,x) for all pairs of vertices z, y in X, then
we call {t(z,y)} a set of conductance in X and in this case, for the sake of
clarity write c¢(z,y) instead of ¢(z,y). Say that a vertex y is a neighbour of
x, denoted by y ~ =z, if and only if ¢(z,y) > 0. Thus {X,t} defines a finite
directed graph. For any real-valued function u(x) on X, define the Laplacian
Au(z) = > t(z,y)u(y) — u(x)], = € X. When the transition function ¢ is

~T
actually a Zéonductance, L = —A is commonly referred to as the combinatorial
Laplacian.

If we represent X as X = {x1,x9,...,x,}, then any function u(x) on X
can also be considered as a (column) vector and in that case A is represented
as a matrix {t;;} where t;; = t(x;,2;) if @ # j and t;; = — > t;;. For any

J#
real-valued function g(z) on X, the operator A, defined as Aju(z) = Au(z) —
q(z)u(z) is referred to as a perturbation of the Laplacian A. Note that A, can
be identified with the matrix {m;;} where m;; = t;; if i # j and my; = ti; — ¢,
¢i = q(x;). In the case of symmetric conductance, the symbol £, is used in the
place of —A,.
Suppose z, y are two vertices in {X, ¢} such that there exists a sequence

E—1

{z =ap,a1,...,ar =y}, aj+1 ~a; for 0 <i < k—1,so that [] t(a;,a;+1) > 0.
i=0

Then y is said to be connected to x by a directed path. If any two vertices in

X are connected by a directed path, {X,¢} is said to be strongly connected.
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From now on, when we refer to {X, ¢} as a finite network in this paper, we shall
assume that it is strongly connected.

A real-valued function s(z) on {X,t} is said to be A-subharmonic on X
if Au(xz) > 0 at every vertex x € X; analogously u is A-harmonic if Au(z) =0
and A-superharmonic if Au(z) <0.

LEMMA 2.1. Any A-subharmonic, -harmonic, -superharmonic function on
a finite network {X,t} is constant.

Proof. Let us consider only the case where u is a A-subharmonic function

on X, the other two remarks are proved analogously. The network X is a

finite set, thus max u(z) = u(z) for some vertex z € X. Let u(z) = M. Since
[AS

X is strongly connected, for any x € X, there exists a directed path {z =

ai,az,...,a; =} from z to z. Now Au(z) > 0means ) t(y, 2)[u(y) —u(z)] >
yr~z

0. Since u(y) — u(z) < 0, we deduce that u(y) — u(z) = 0 for any y ~ z.

In particular u(ag) = M. Proceeding step by step, we show that wu(az) =

M,.. ,u(a;) = M. Thus u(x) = M forall z € X. O

Suppose {X,t} is a finite network and £{(z) > 0 is a function on X. Then

{X,t(z,y) = £(y)t(x,y)} and {X, t(z,y) = ggygt(x, y)} are also networks with
x

their transition indices different from those of the initial network. We denote by

A and A the Laplacians associated with these two new networks respectively,

so that

Au(z) =Y Ha,y)EW)luly) — u(@)]

Yy~x
and £w)
X Y

Au(w) = Ha,y) 7 [uly) — u(=)].

= &(x)

THEOREM 2.2. Any real-valued function q(x) on a finite network X is of

the form q(x) = Ac(@) + ¢, where ¢ is a constant, £(x) > 0 and > &(z) = 1.

f((L‘) rzeX

In this representation &(x) and c are uniquely determined.

Proof. Let X have n vertices, t;; > 0 represent the transition index from

the vertex i to the vertex j. Then for any i, t;; = — > t;; < 0. For A > 0
J#i

large, let A = (aij) be the non-negative irreducible matrix where a;; = t;; if
i # 7 and a;; = A — q(z;) + ti; > 0. Then by Perron-Frobenius theorem, there
is an eigenvalue p > 0 which is simple and a right eigenvector v associated
to p chosen such that all its entries positive. That is, Av = pv which can
be written as Av — qu + Av = puv where A is the classical Laplacian matrix.
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Hence ¢(z) = + (A — p). Take &(z) = v(z) and ¢ = XA — p to get

N 2 v(@)

= 7A§($) C u ose Xr) — An(x)
= g T Swpposeal®) = = o

A A
such representation, with > n(z) = 1. If ¢ > ¢;, then n(z) élw)
rzeX 77('1") f(l’)
n(x), £(x) are proportional by the ensuing lemma, consequently n(z) = £(z) for

every © € X. Then ¢ = ¢; and hence the uniqueness of the representation. [

the representation ¢(z) + ¢1 is another

so that

>

Definition 2.3. For a real-valued function ¢(z) on X, we shall refer to the

Ag(z)

unique representation ¢(z) = w + ¢ as its Perron-Frobenius representation
x
on X.

The following Lemma 2.4 has a proof in [5, Lemma 2.1] in the symmetric
conductance case:

LEMMA 2.4. Let n(z), £(x) be two positive functions on X such that
An(a) _ Ag(a)

n(x) — &x)

. Then n(x),&(x) must be proportional. Consequently, there
A A
ne) _ A)

is no pair of positive functions n(x),&(x) on X such that for
n(z) §(x)
every x € X.
Proof. By hypothesis, {(z)An(z)—n(x)A&(x) > 0on X. Thatis, > t(z,y)
y~x
X .
() ~ 1)) 2 0. Hence, €) T tla)) |2 — 28] > 0, wich
i~ §ly)  &(x)
shows that A LEQU; > 0 where A is the Laplacian associated to the finite
x
network {X,¢(z,y)¢(y)}. Hence ngg is a A- subharmonic function on X, so
T
A A
that M should be a constant (Lemma 2.1). This means n(z) = 36 for
§(x) n(@) &)

every z € X, and hence the stated consequence. [

Note 1. Suppose c(q) denotes the constant ¢ in the unique representation
A
of q(x) = g(a):) + c¢. Note that by Lemma 2.4, it follows that if ¢; > ¢2, then
x

c(q1) =2 c(q2): if g1 > g2 and ¢(q1) = c(q2), then ¢1 = ¢o.

As a consequence of Theorem 2.2, we have the following proposition using
a Doob (Liouville) transform.
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PROPOSITION 2.5. Let q(z) = A(ng;)%—c on X. Then the operator Aju(x)
= Au(x)—q(z)u(zx) can be represented as Aqu(x)=E(x) {5 [zgg] —c [zgg] }
where A is the Laplacian associated to the finite network {X, t(z,y)gg%

Proof.

A — |28 ]

Agulo) (o) - | 4 ute)
7 2 HalE)uty) — ul)e(w)] - culo)
ZZt(x,y)f(y) [Zgj; - ZE:;))} — cu(z)
. oS fuly) u(@)]  Tu(z)
= ){;ﬂ Ve i i Lm”

e {5[1] o[}
{3 |g5] <[
2.3. Classification of perturbed Laplace operators

Let Aqu(z) = Au(z) — g(x)u(x). Since ¢(z) = Ad(@) + ¢, we have three

§(x)

different possibilities when we consider the equation Aju(z) = 0 on X, de-
pending on ¢ = 0,¢ < 0,¢ > 0. They resemble a generalised discrete version of
the three fundamental differential equations on the real line R, namely y” = 0,
y//+y:07 y//_yzo.

In the symmetric case where t(z,y) = t(y,x), it is proved in [4, p. 782],
that for a real-valued function ¢(z) on X, —A, is positive semidefinite if and
Ao ()

o(x)

A
moreover —A, is a singular matrix if and only if ¢ = 29 Related to this result

only if there exists a positive function o(x) on X such that ¢(z) >

o
in the general case we are considering in this paper, we have the following two
lemmas.

LEMMA 2.6. Let q(x) be a real-valued function on X. Take the representa-
A&(x) Ao (x)

' &(x) o(x)
of and only of ¢ > 0.

tion q(z) = + c. Then for a positive function o(z) on X, q(z) >
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Ao (z) . Al(x) Ao ()
o) . That is £(r) +c > ()

, not possible (Lemma 2.4). Hence ¢ > 0; the converse is

Proof. Suppose q(x) >
Aé(z)  Ao(x)
@) o)

obvious. O

I e <0,

then

LEMMA 2.7. Let q(z) be a real-valued function on X, with the representa-

A
tion q(x) = gf(:;;) + c. Then the following are equivalent.
x
i) ¢>0.
, ‘ . , An(z)
ii) There exists a positive function n(x) such that q(z) > (@) for every x
n(x
n X.
: . . : Ao (z)
iii) There exists a positive function o(x) in X such that q(x) > @) and
o(x
A
at some vertex y, q(y) > U(y).
o(y)

Proof. Enough to check iii) = i). Now if iii) holds, then by Lemma 2.6,

¢ >0.1If ¢ =0, then by Lemma 2.4, {(x) and o(x) are proportional so that
Ag(z) _ Ao(z)

q(z) = = for all z in X. This is a contradiction, since by
§(x) o(x)
assumption q(y) > a(y)'
o(y)
Remark 2.1. In line with Lemma 2.6, we remark the following:
A
1) Let ¢(x) = é(g;) + ¢ be the canonical representation of a real-valued
x
. : : An(z)
function ¢(z). Then ¢ < 0 if and only if ¢(z) < @) for some column
n(x

vector n(x) with all its entries positive.
2) In particular, if ¢(z) < 0, then ¢ < 0. Similarly if ¢(z) > 0, then ¢ > 0.

3) The representation ¢(z) = Aﬁig) + ¢ can be expanded as ¢(z) =
> t(x,y)@ —t(z)+c where t(z) = > t(z,y). Hence, [t(x)+q(x)]—
y~T £(z) Y~z

¢ > 0. Consequently, ¢ < min,ex[t(z) + ¢(x)] so that if t(a) + g(a) < 0
for some a € X, then ¢ < 0.

Ag(z)

§(x)

that ¢(x) > 0. For example, take a positive nonconstant function £(x) on

A
X such that > &(z) = 1. Then §§(a)c) takes both negative and positive
zeX Z

4) Even if ¢ > 0 in the representation ¢(x) = + ¢, it does not mean
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A
values since £(x) is not constant. That is, if @ = mingex é(:;) and
x
_ A¢(z)
b = maxzcx w, then o < 0 and 8 > 0. Choose a constant ¢ such
x
. o _ Af(z)
that 0 < ¢ < —a. With these choices if ¢(z) = ) + ¢, then ¢(x) takes
x

both negative and positive values, while ¢ > 0. Consequently even when
¢ > 0, the matrix —A, need not be even weakly diagonal dominant.

PROPOSITION 2.8. Let q(x) be a real-valued function on X with represen-

tation q(x) = Agf(m)) +c. Write —Agu(z) = q(z)u(xz) — Au(x). Then,
x
i) ¢ =0 if and only if for some n(zx) >0, —Ayn(z) = 0;
ii) ¢ > 0 if and only if for some n(x) > 0, —Agn(x) > 0;
ili) ¢ < 0 if and only if for some n(x) >0, —Ayn(x) < 0.

Proof. i) If ¢ =0, then —A &(x) = 0. Conversely, suppose —Ayn(z) =

0 for some n(z) > 0. That is [Agi(s) +c] n(x) — An(x) = 0. Hence,
Aiss) - An?ZS) = —c. In this case, whatever be the value of ¢, {(z), n(x)

are proportional by Lemma 2.4. Consequently ¢ = 0.
ii) If ¢ > 0, then —A {(x) = c&(x) > 0. Conversely, suppose —Agn(z) > 0
Af(z)  An(x)
§x) ()

by Lemma 2.4, {(z),n(x) are proportional; hence 0 > —¢, a contradiction.
Thus ¢ > 0 is the only possibility given that —Agn(z) > 0.

iii) Proved as in ii). O

for some n(x) > 0. Then, > —c. In this case if ¢ < 0 then

LEMMA 2.9. Let A = a+ i3 be an eigenvalue of the Laplacian A (which
maybe non-symmetric) on a finite network {X,t(x,y)}. Then o <O0.

Proof. Suppose o > 0. Then for each row j in A which is of the form (¢;;)

where —t;; = > tjg,
k#j
[t = Al = —tj5 +a>—tj; =t
k#j

Hence the strictly diagonally dominant matrix A — Al is non-singular
(Minkowski), a contradiction with the fact that A is an eigenvalue of A. Con-
sequently, if A = «a + i is an eigenvalue of A, then « < 0. 0O

Remark 2.2. This lemma can also be seen as a consequence of the Ger-
schgorin Theorem.
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THEOREM 2.10. Let q(x) be a real-valued function on X. Let its unique
A
representation be q(x) = éf(a)c) + ¢ which can be written as Ag&(x) = Aé(x) —
x
q(x)§(x) = —ct(x).
i) Thus, for the matriz —A,, the uniquely determined constant c is an
etgenvalue.
ii) The eigenspace associated with c is of dimension one.
iii) The column vector £(x) is the only eigenvector associated to ¢ with all

its entries positive and Y &(x) = 1.
zeX

iv) If B is any eigenvalue of —A,, then Ref3 > c.

Proof. ii) To prove the eigenspace associated with ¢ is of dimension 1,

—Ay ()

suppose Ayn(x) = —cn(z) for some column vector n(zx). Since ¢ = ————,

i §(x)
g(f()l')] n(x), which when simplified as earlier, can be
x

we have Agn(z) = [

written as

>t y)E@)Ey) [Zég N Zg;] B

n(z)
£(x)

value c is of dimension 1.

This implies that

is constant. The eigenspace associated with the eigen-

iii) Suppose a column vector o(x) with all its components positive is an
eigenvector associated with some eigenvalue a of —A,. That is —Ayo(z) =
ao(z) which can be displayed as —Ao(x) + ¢(z)o(x) = ao(z). Hence g(z) =
Ao (x)

o(x)

and o(x) is proportional to &(x).

+ a so that by the uniqueness of representation of ¢(x), we have oo = ¢

iv) Let 8 be an eigenvalue of —A, that is for some nonzero vector ¢(x),
—Ayp(x) = Bp(x). Then, since —A&(z) = c&(z),

~Ag(a) =co(z) + (8~ o(a)
= 7—Aq§(x) z —c)o(x
= | 758 o) + (3 - ot

which can be written as

¢(2)AL(z) — £(x)Ad(x) = (B — c)p(x)¢().



84 V. Anandam and M. Damlakhi 10

That is, ) t(xz,9)[€(y)¢(x) —&(x)o(y)] = (B = c)¢(z)¢(x)

Yy~
et [0 6T e
y;ct(w,y)ﬁ( () [f(x) | = (B e
) [o@) o) _ («)
2 M@0y s [ 1
I G (z
S|&] = -2 M
where A is the Laplacian operator associated with the network { t(x }

Hence (c— ) is an eigenvalue of A, so that by Lemma 2.9, Re(c— ) < 0 That
is, Ref >c. O

Ezample 2.3. For any € X, let q(z) = > [t(y,x) — t(z,y)]. Then

Yyr~x
there exists a unique positive function &(x) on X such that > &(z) = 1
zeX
: _ Ad(x)
and the column matrix ¢(z) = ) and for any =z € X, > [t(x,y)¢(y) —
x g

t(y, z)¢(z)] = 0.
Let z1,x2,...,z, be the set of vertices of X. By Theorem 2.2, ¢(x) =

A

§§$> + ¢ so that, —Ay&(z) = q(z)é(z) — Af(x) = c&(x), where —A, is the
n x n matrix having the j' column with (—=A,);; = —t(z;,z;) if i # j and
(—Aq)jj = >_ t(x;, x;). Since the sum of each column in —A is 0, there exists a

i#]
column vector n(z) with all positive entries such that —A,n(x) = 0. Hence n(x)
is proportional to {(x) and consequently ¢ = 0. That is —Ay&(z) = 0, which
can be written in the form ) [t(x;, x)€ (k) — t(zk, xj)E(x;)] = 0 for any j or
=y
reverting to the usual notation, we have > [t(z,y)&(y) —t(y, x)&(z)] = 0O for all
Yy~
x (a useful result in the context of tournament matrices and a one-parameter
system of bets, Moon and Pullman [6, p. 391]).

3. PERTURBATION IN THE DISCRETE LAPLACE EQUATION

As noted earlier, let us represent an arbitrary real-valued function g(x) on

X as q(z) = Agi)) c. Let Aqu(z) = Au(z) — q(z)u(z) = &(x) {~ [

7Y

—
8

N
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—c [f()] } . A function on X is treated as a column vector. Write as usual
T

the matrix A = (a;;) > 0 if a;; > 0, and A > 0 if a;; > 0, for all pairs 1, j.
We say that a real-valued function u(x) on X is said to be A -harmonic if and
only if u(zx) is an eigenvector associated to 0, that is Agu = 0; u(z) is said to
be Ay-superharmonic if Aju < 0.

PROPOSITION 3.1. If n(x) is a non-negative function such that Agn <0
in X, then n(x) >0 for all z orn =0.

Proof. Suppose n(z) = 0 for some z in X. Then

0=q(2)n(z) > An(z) = > _t(z,9)nly) —n(2)] = >tz y)nly) > 0.

Y~z Y~z

This means, if n(z) = 0 then n(y) = 0 for all y ~ z. Since X is strongly
connected, we conclude that n(x) = 0 for all x € X. Thus 7 > 0orn =0
on X. O

LEMMA 3.2. Let {X,p(z,y)} be a finite network with transition probabil-
ities p(x,y), that is > p(x,y) = 1 for all x. Let A be its associated (non-
Yy~
symmetric) Laplacian matriz. Then there exists a unique vector v with all its
entries positive such that A'v =0 and > v(x) =1.
reX

Proof. Let A be the row stochastic matrix with 0 in its diagonal and p(z, y)
in its xth row and yth column. Then by the Perron-Frobenius theorem, A has

a left eigenvector v whose entries are all positive, v!A = v', and > v'(x) = 1.
reX

Since A = A — I, we conclude that A'v = 0 with Yoou(z)=1. O
reX

Remark 3.1. Let {X,t(z,y)} be a finite network, with A as its associated
t
(non-symmetric) Laplacian. Let t(x) = ) t(z,y). Write p(z,y) = Eﬁ?’il)
Yy~ Z
Then the Laplacian A associated to {X,p(x,y)} has the property given in
Lemma 3.2. Now if D is the diagonal matrix whose diagonal entries are given
by t(z), then A = DA. Since D is nonsingular, there is a unique vector u > 0
such that Du = v. Consequently, Alu = A'Du=2Av=0If > u(z) = a,

zeX
u(z)
[0

so that Alw =0 and Y w(z)=1.
zeX

then write w(z) =
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3.1. A4-Poisson equation

A
PROPOSITION 3.3. In the unique representation of q(x) as gf(gs)
T
c =0 then

i) the matriz A, is singular and the eigenspace V associated to 0 is
one-dimensional spanned by &(x);
ii) if Aqu(z) is of the same sign, then u € V,
iii) there exists a unique vector ¢(x) with positive entries and > ¢(x) =
1 such that for a given real-valued function f(x) in X, Aqu‘,ﬂ(fn); = f(x)
has a solution u(x) if and only if > ¢(x)f(x) =0.

+c, if

reX
~ [u(x) )
Proof. When ¢ = 0, Aqu(z) = {(z)A EoIE Hence Agju(z) = 0 if and
only if A | —=| =0.
’ L(z)
i) Since A is the Laplacian operator in the finite network {X, t(x, y)ggyi },
x

the matrix A is singular and the eigenspace associated with 0 consists only of
constants, we conclude that A, is singular and the eigenspace V' associated to
0 consists only of constant multiples of ().

u(z)

ii) Suppose Aju(xz) < 0. Then A [ZE;CJ;] < 0 so that £(2)

18 constant

[Lemma 2.1]. Hence u € V.
iii) Aqu(z) = f(z) if and only if £(z)A [z((j‘;] = f(x). Now, given the
function f(z), the;e( e)xists a function u(z) such that A [zg‘” = ‘ééi)) if and
x

only if Y w(x) [} = 0 where Alw(z) = 0 [2, Theorem 3.4]; such a func-
zeX 5(.%')

tion w(x) with all its entries positive exists as shown in the Remark following

w(x)

Lemma 3.2. Set ¢(x) = @) which is a vector with all its entries positive.
T

Then > ¢(x)f(x) = 0 if and only if there exists a function u(x) such that
reX

A M —M at is Aqu(z) = f(z
Al = Hp s Bt = o). O

Remark 3.2. The problem of finding a solution w(z) on X such that
Aqu(z) = f(z) for a given function f(z) is known as the Poisson problem
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for A,. This is a basic problem in finite electrical networks where ¢ = 0 and
the Laplacian is symmetric so that ¢ is taken in this case as the unit vector
[1, pp. 22-23]. Part iii) of the above Proposition 3.3 gives certain precisions
for the vector ¢(x) in the context of annihilators: if A is a matrix, the null
space N(A?!) is the same as [R(A)]* (which is a finite version of the Fredholm
Alternative).

Recall that in Remark 4) following Lemma 2.7, we have mentioned that
even if ¢ > 0 the matrix —A, need not be weakly diagonal dominant.

A(z)
§(x)

PROPOSITION 3.4. In the unique representation of q(z) as

c >0 then

i) Ag is a non-singular matriz;

ii) given any f(z) in X, there exists a unique function u(zx) such that
Aqu(z) = f(x);

iii) given any verter z in X, there exists a unique function G,(x) > 0
(called the Green function with pole at z) such that AyG,(z) = —0,(x)
for x in X;

iv) if p(z) is a real-valued function such that Agp(z) <0 on X, then p(x)
is non-negative and of the form p(x) = > [-Ayp(2)]G.(x).

zeX

Proof. 1) Aqu(xz) = 0 implies thatNA [zég] =c [zgg] . In this case if
u # 0, then ¢ is an eigenvalue of A; but this is not possible since ¢ > 0
(Lemma 2.9). This contradiction shows that if Aju(xz) = 0, then v = 0,
hence the matrix A, is invertible.

ii) Consequently if Aju(z) = f(z), then u(x) = A [f(x)] is uniquely de-
termined.

iii) In particular if f(z) = —d.(z), we get the uniquely determined Green
function G, (z) such that A,G.(z) = —d.(x).

iv) Let p(z) be such that Agp(z) < 0for all zin X. Write s(z) =) (—Agp(2))

zeX
G.(z) which is non-negative. If h(x) = s(x) — p(z), then (—Ay)h(zx)

for all  in X; hence h = 0 since A, is invertible. Consequently, p(x)

s(z) = EZX( qu( 2))Gy(x) for all z in X. O

0

Ag(z)
§(x)

PROPOSITION 3.5. In the unique representation of q(x) as +ec, if

¢ <0 then
i) if u>0 and Agu(z) <0, then u = 0;
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ii)

iii)

ii) if u(z) is a non-zero function such that Aju(x) = 0, then u(x) takes
both positive and negative values;

ili) the wector subspace V.= {u : Aqu = 0} consisting of all the Ag-
harmonic functions in X is of dimension d > 0 if and only if ¢ is an
etgenvalue of multiplicity d associated to the Laplacian A.

Proof. i) Suppose u > 0 is such that Aju(z) < 0. Then A [Z((x” <
x

c[zg] < 0foralz e X and A[“( )] < 0 if u(z) > 0. Now

A [ZE;U))} < 0 for all x indicates that [g(z is constant so that A [?Eg}

= 0. Hence there is no vertex z where u(z) > 0, that is u = 0.

Since Aju(xz) = 0, then A [?E }

negative or non-positive values, then A

u(z)

hence [5()} is constant. That means ¢ = 0, a contradiction. Hence if
x
u # 0, then u(x) takes both positive and negative values on X.

} If u(z) takes only non-

] is of the same sign in X,
x)

The vector subspace V' which consists of all the Aj-harmonic functions
is of dimension d > 0 if and only if for some non-zero function u(x),

A [u(:v)} =c [u(:v)} , that is if and only if ¢ is an eigenvalue of multi-
§(x) £(x)

plicity d associated to the Laplacian A, O

COROLLARY 3.6. Let q(x) be a real-valued function on X with the unique

Ag(z)

representation q(x) = ———=+c where ¢ < 0. Let f(x) be a given function on X.

&(x)

i) If ¢ is not an eigenvalue of A, then there ezists a unique solution u(z)
such that Agu(x) = f(z).

ii) If c is an eigenvalue of A and if the subspace V = {v: (A—cl)tv =0} is
of dimension m, then there exist m linearly independent vectors {¢;(z)}
inV, 1 <j<m, such that Aqu = f has a solution u(z) if and only if
Y. ¢j(x)f(z) =0 for each j.

zeX

Proof. i) If ¢ is not an eigenvalue of A, then A, is invertible since

Aqu(z) = £(x) [( cI) < ggg ﬂ . Hence Agu(z) = f(z) has a unique

solution u(z).
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ii) This follows as in the Remark following Proposition 3.3 since N(Al) =
[R(AgH O

3.2. Ag4-Dirichlet-Poisson equation when ¢ > 0

Ag(z)
£(x)

is non-singular when ¢ > 0 and singular when ¢ = 0. However some special
submatrices of A, are non-singular when ¢ > 0. Precisely, we have the following
lemma [1, Theorems 2.2.4 and 2.4.4]:

A¢(x)
§(x)
Forany k,1 <k <n-—1, let Al; be a proper submatriz of A, by selecting the
rows and the columns corresponding to the vertices of a proper subset of X with

k vertices. Then A’q“ s non-singular.

We have already remarked that when ¢(z) =

+ ¢, the matrix A,

LEMMA 3.7. Let q(z) = +c, ¢ > 0, on a network X with n vertices.

THEOREM 3.8 (A,-Dirichlet-Poisson equation). Let F' be a proper subset

A¢(x)
§(x)
functions, f defined on F and g defined on X \ F. Then there exists a unique

function u on X such that Agu = f on F and u=g on X \ F.

of a finite network. Let q(x) = +c¢, ¢ >0. Let f, g be two real-valued

Proof. Let u = (u1,us,...,u,)" and v = (vy,vs,...,v,)" be the column
vectors such that u(z) = g(z) if x € X \ F and v(z) = f(z) if z € F. Now
if we write Aqu = v, then the value of u(x) for z € F can be calculated,
since the submartix of A, determined by the vertices of F' is non-singular as
given by the above lemma. Consequently, we have a function u in X such that
Agu(z) = f(z) if € F and u(x) = g(z) if x € X \ F. The uniqueness of the
solution u(z) follows from the Minimum Principle for A, [1, Corollary 2.2.2
and Lemma 2.4.3]. O

3.3. A4-Poisson-Neumann equation

Let A be a proper non-empty strongly connected finite subset of the net-
work X. A vertex a is said to be in the interior of A, if a and all its neigh-
bours in X are in A. Let A denote the set of all interior vertices of A; write
0A = A\ A. Let R be the restriction of the Laplacian operator A on A, that

is Nu(z) = Au(x) if z € A, and Ru(¢) = 8;7§E) = NQZEAt(C,y)[u(y) —u(Q)]

if ¢ € A. Let f be defined on A, ¢ be defined on dA and ¢ be defined on
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N
A. Then ¢(x) has the unique representation ¢(z) = ;((a;) + ¢ where &(z) > 0
x
and ) &(x) = 1. Write Rju(z) = Nu(z) — g(x)u(x). Then, using the results

z€A
of Section 3.1 for the network A with its Laplacian X, we obtain the following

solution to the A -Poisson-Neumann equation for {4, Ny, f, g}.
i) Let ¢ = 0. Then there exists a function u(z) on A such that Rju(x) =

_ 9u(@)

Au(z) — q(z)u(r) = f(z) when z € A and Ru(¢) = e q(Qu(¢) =

g(¢) when ¢ € 9A, if and only if > n(x)f(z) = — >, n({)g(¢) where
oy céda

n(z) is the unique function on A such that n(z) is positive, > n(z) =1

z€A
and Nln(z) = 0. If there is another such solution v(z) on A, then v(z) =

u(z) + A¢(z) for some constant A.
ii) Let ¢ > 0. Then there exists a unique function wu(z) on A such that

Au(z) — q(z)u(x) = f(x) when x € 4 and aaUn(O —q(Q)u(¢) = g(¢) when
¢ € 0A.

iii) Let ¢ < 0. In this case, we distinguish two cases when 0 is or is not an
eigenvalue of N, :

(a) When 0 is not an eigenvalue of X,, then the unique solution exists
as in ii).
(b) When 0 is an eigenvalue of X, then the solution exists as in i) if and
only if > n(x)f(z) = — >, n(¢)g(C) for every n(z) of a linearly
i CEDA

zeA
independent base which generates the null space N(X!).

4. CONCLUDING REMARKS

Let X be a set consisting of n elements called vertices. Let M be the
family of all n x n matrices such that M € M if and only if M has the
following two properties:

(1) Allits non-diagonal entries are nonnegative. That is, if ¢(x, y) is the entry

in M corresponding to the i*® row and the j* column, then t(x,3) > 0

if x #y.

(2) Let D denote the diagonal matrix whose entries are t(x,x). If we write

M = D + A, then A is irreducible.

Note that X can be made into a directed graph by constructing an
edge from z to y if and only if ¢(z,y) > 0. Then A can be thought of as a
weighted adjacency matrix on the directed graph X without self-loops. Thus,
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if t(z,x) = 0 for all  in X, then M is the adjacency matrix of X; and if
t(x,x) = — > t(z,y), then M is the Laplacian matrix A of X. For a general
Yy~

M € M, the question of finding the existence and the uniqueness of the solution
of Mu(x) = f(x) where f(z) is a given real-valued function (column vector)
on X is known as the Poisson problem for M. Similarly the Dirichlet-Poisson
problem and the Poisson-Neumann problem for M are posed.

To solve the above problems, note that the matrix M € M can be rep-
resented as Mu(z) = Au(z) — q(z)u(r) = Agju(x) where —g(z) = t(z) +
> t(x,y) for x € X. Thus actually M is a perturbed Laplacian matrix accord-
~T
?ng to the usage in the above text. In this form the spectral properties of M

are studied conveniently using the Perron-Frobenius results, as shown above.

Ag(z)

Using the unique representation ¢(z) =

+ ¢, we see that Mu(x) =

(z) {ﬁ [Z‘Eg] —c [z‘ég] }f(\;f?ere A is the Laplacian operator associated

with the network { X, ¢(x, y)m . Consequently, n(z) is an eigenvector asso-
x

ciated to an eigenvalue A for M if and only if ng;

x

to the eigenvalue \ + ¢ for A. Thus the spectral properties of M can be related
to the spectral properties of A. For example, ¢ is the smallest eigenvalue of
—M in the sense that if « is any eigenvalue of —M, then ¢ < Rea. Note that
the graph structure of X is the same whether we consider the matrix M or the
Laplacian &, in the sense that for any two vertices xz,y in X, if M = D 4+ A,
then A determines a directed path from z to y if and only if A determines a
directed path from x to y in the graph X.

is an eigenvector associated
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