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On a �nite network X, ∆ denotes the Laplace operator and for any real-valued
function q(x) onX, the operator ∆qu(x) = ∆u(x)−q(x)u(x) represents a pertur-
bation of ∆. Assuming that the conductance in X is not necessarily symmetric
(non-reversible case) and that the function q(x) is arbitrary (so that it is not
anymore necessary the matrix associated to −∆q to be positive semi-de�nite),
some results are proved using matrix methods which help solving the Poisson
problem of �nding a solution u(x) to the equation ∆qu(x) = f(x) on X for a
given real-valued function f(x). Consequently, Dirichlet-Poisson and Neumann-
Poisson equations on proper subsets of X are solved.
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1. INTRODUCTION

Function theory on �nite networks has a nice model in electrical networks.
As an endomorphism of the family of real-valued functions on the �nite network
X, the Laplacian operator ∆ plays a pivotal role in the development of the
theory. In this model, when the operator ∆ is identi�ed with a matrix, the
latter is a symmetric irreducible matrix with nonnegative o�-diagonal entries.
For a real-valued function q(x) on X, the operator ∆q de�ned by ∆qu(x) =
∆u(x)− q(x)u(x) is known as a perturbation of the Laplace operator ∆.When
the matrix representing −∆q is positive de�nite or sometimes even positive
semi-de�nite, the Poisson equation and discrete boundary-value problems like
the Dirichlet problem, the Neumann problem and the Robin problem have been
shown to have solutions, see Bendito et al. [3, 4, 7]; actually in [7] the symmetric
case in a path has been studied even when the quadratic form associated to
−∆q is not positive semi-de�nite.

It is relevant to remark here, from another perspective when the con-
ductance in the network is symmetric, the local and global properties of the
Laplacian eigenvectors and the study of nodal domains (Biyiko�glu et al. [6])
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and certain spectral properties of −∆q like those of the second smallest eigen-
value of −∆q referred to as its algebraic connectivity and of the corresponding
eigenvectors (Bapat et al. [3]) are of algebraic interest related to the function-
theoretic content of this paper.

There is another model for function theory on �nite networks, namely
Markov chains in the �nite state space X. In this model the transition proba-
bilities {p(x, y)} are generally not symmetric. However in this case usually an
assumption (reversibility condition) that there exists a function φ(x) > 0 on X
such that φ(x)p(x, y) = φ(y)p(y, x) for any two states x, y in X is introduced,
which leads to a situation in X as in �nite electrical networks with symmetric
conductance.

In this note, without assuming the symmetry or the reversibility of the
transition function on a �nite network, we �nd matrix methods based on the
Perron-Frobenius theorem to solve the Poisson equation ∆qu(x) = f(x) and
then the ∆q-Dirichlet problem. In this general set-up the equation ∆qu(x) = 0
includes the discrete analogues of Laplace, Schr�odinger and Helmholtz equa-
tions.

2. PERRON-FROBENIUS REPRESENTATION
FOR FUNCTIONS ON A FINITE NETWORK

2.1. Perron-Frobenius theorem

Let us recall certain remarkable features of the Perron-Frobenius theorem
(see Gantmacher [5]) which asserts the properties of the leading eigenvalue and
of the associated eigenvectors for positive (or nonnegative) square matrices.
Note that a matrix A = (aij) is called a positive matrix if all its entries are
positive ( aij > 0, for every i, j) and is called a nonnegative matrix if all its
entries are nonnegative (aij ≥ 0 for every i, j).

Let A = (aij) be an n× n positive matrix, that is aij > 0 for all entries.
Then some of the important points of the Perron theorem are:

i) If ρ = ρ(A) is the spectral radius of A, then ρ is positive and is a simple
root of the characteristic polynomial of A whose associated eigenspace is
of dimension 1.

ii) If λ is any other eigenvalue of A, then |λ| < ρ.

iii) There exists a positive n × 1 right eigenvector u of A with associated
eigenvalue ρ, that is there exists u such that Au = ρu. and ui > 0 for
every i.

iv) There exists a positive 1× n left eigenvector vt such that vtA = ρvt.

v) All other eigenvectors of A contain at least one entry that is nonpositive.
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Frobenius extended the above results to the case when A = (aij) is a
nonnegative matrix. To suit our purpose here, a part of this extension can be
stated thus: Associate a directed graph G with the matrix A such that G has
exactly n vertices and there is an edge from vertex i to vertex j if and only if
aij > 0. Then the nonnegative matrix A is said to be irreducible if the graph
G is strongly connected, that is given any two vertices i, j there exist directed
paths from i to j and from j to i. Conversely to each strongly connected directed
graph without self-loops, we associate a nonnegative irreducible matrix whose
diagonal elements are 0. Let now A be an irreducible nonnegative square matrix
with spectral radius ρ. Then Amay have other eigenvalues whose absolute value
is ρ. However, the other properties excluding ii) mentioned above for positive
matrices are valid when A is only nonnegative but irreducible.

2.2. Perron-Frobenius representation of functions

Let X denote a set of a �nite number of points called vertices. Let t :
X × X → R+ be a function where t(x, x) = 0 for every x ∈ X; t(x, y) and
t(y, x) do not have to be the same; and t(x, y) is referred to as a transition
function on X. If t(x, y) = t(y, x) for all pairs of vertices x, y in X, then
we call {t(x, y)} a set of conductance in X and in this case, for the sake of
clarity write c(x, y) instead of t(x, y). Say that a vertex y is a neighbour of
x, denoted by y ∼ x, if and only if t(x, y) > 0. Thus {X, t} de�nes a �nite
directed graph. For any real-valued function u(x) on X, de�ne the Laplacian
∆u(x) =

∑
y∼x

t(x, y)[u(y) − u(x)], x ∈ X. When the transition function t is

actually a conductance, L = −∆ is commonly referred to as the combinatorial
Laplacian.

If we represent X as X = {x1, x2, . . . , xn}, then any function u(x) on X
can also be considered as a (column) vector and in that case ∆ is represented
as a matrix {tij} where tij = t(xi, xj) if i 6= j and tii = −

∑
j 6=i

tij . For any

real-valued function q(x) on X, the operator ∆q de�ned as ∆qu(x) = ∆u(x)−
q(x)u(x) is referred to as a perturbation of the Laplacian ∆. Note that ∆q can
be identi�ed with the matrix {mij} where mij = tij if i 6= j and mii = tii − qi,
qi = q(xi). In the case of symmetric conductance, the symbol Lq is used in the
place of −∆q.

Suppose x, y are two vertices in {X, t} such that there exists a sequence

{x = a0, a1, . . . , ak = y}, ai+1 ∼ ai for 0 ≤ i ≤ k−1, so that
k−1∏
i=0

t(ai, ai+1) > 0.

Then y is said to be connected to x by a directed path. If any two vertices in
X are connected by a directed path, {X, t} is said to be strongly connected.
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From now on, when we refer to {X, t} as a �nite network in this paper, we shall
assume that it is strongly connected.

A real-valued function s(x) on {X, t} is said to be ∆-subharmonic on X
if ∆u(x) ≥ 0 at every vertex x ∈ X; analogously u is ∆-harmonic if ∆u(x) = 0
and ∆-superharmonic if ∆u(x) ≤ 0.

Lemma 2.1. Any ∆-subharmonic, -harmonic, -superharmonic function on

a �nite network {X, t} is constant.

Proof. Let us consider only the case where u is a ∆-subharmonic function
on X, the other two remarks are proved analogously. The network X is a
�nite set, thus max

x∈X
u(x) = u(z) for some vertex z ∈ X. Let u(z) = M. Since

X is strongly connected, for any x ∈ X, there exists a directed path {z =
a1, a2, . . . , aj = x} from z to x. Now ∆u(z) ≥ 0 means

∑
y∼z

t(y, z)[u(y)−u(z)] ≥

0. Since u(y) − u(z) ≤ 0, we deduce that u(y) − u(z) = 0 for any y ∼ z.
In particular u(a2) = M. Proceeding step by step, we show that u(a3) =
M, . . . , u(aj) = M. Thus u(x) = M for all x ∈ X. �

Suppose {X, t} is a �nite network and ξ(x) > 0 is a function on X. Then

{X, t̂(x, y) = ξ(y)t(x, y)} and
{
X, t(x, y) =

ξ(y)

ξ(x)
t(x, y)

}
are also networks with

their transition indices di�erent from those of the initial network. We denote by
∆̂ and ∆̃ the Laplacians associated with these two new networks respectively,
so that

∆̂u(x) =
∑
y∼x

t(x, y)ξ(y)[u(y)− u(x)]

and

∆̃u(x) =
∑
y∼x

t(x, y)
ξ(y)

ξ(x)
[u(y)− u(x)].

Theorem 2.2. Any real-valued function q(x) on a �nite network X is of

the form q(x) =
∆ξ(x)

ξ(x)
+ c, where c is a constant, ξ(x) > 0 and

∑
x∈X

ξ(x) = 1.

In this representation ξ(x) and c are uniquely determined.

Proof. Let X have n vertices, tij ≥ 0 represent the transition index from
the vertex i to the vertex j. Then for any i, tii = −

∑
j 6=i

tij < 0. For λ > 0

large, let A = (aij) be the non-negative irreducible matrix where aij = tij if
i 6= j and aii = λ − q(xi) + tii > 0. Then by Perron-Frobenius theorem, there
is an eigenvalue µ > 0 which is simple and a right eigenvector v associated
to µ chosen such that all its entries positive. That is, Av = µv which can
be written as ∆v − qv + λv = µv where ∆ is the classical Laplacian matrix.
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Hence q(x) =
∆v(x)

v(x)
+ (λ − µ). Take ξ(x) =

v(x)∑
x
v(x)

and c = λ − µ to get

the representation q(x) =
∆ξ(x)

ξ(x)
+ c. Suppose q(x) =

∆η(x)

η(x)
+ c1 is another

such representation, with
∑
x∈X

η(x) = 1. If c ≥ c1, then
∆η(x)

η(x)
≥ ∆ξ(x)

ξ(x)
so that

η(x), ξ(x) are proportional by the ensuing lemma, consequently η(x) = ξ(x) for
every x ∈ X. Then c = c1 and hence the uniqueness of the representation. �

De�nition 2.3. For a real-valued function q(x) on X, we shall refer to the

unique representation q(x) =
∆ξ(x)

ξ(x)
+ c as its Perron-Frobenius representation

on X.

The following Lemma 2.4 has a proof in [5, Lemma 2.1] in the symmetric
conductance case:

Lemma 2.4. Let η(x), ξ(x) be two positive functions on X such that
∆η(x)

η(x)
≥ ∆ξ(x)

ξ(x)
. Then η(x), ξ(x) must be proportional. Consequently, there

is no pair of positive functions η(x), ξ(x) on X such that
∆η(x)

η(x)
>

∆ξ(x)

ξ(x)
for

every x ∈ X.

Proof. By hypothesis, ξ(x)∆η(x)−η(x)∆ξ(x) ≥ 0 onX. That is,
∑
y∼x

t(x, y)

ξ(x)η(y)− η(x)ξ(y)] ≥ 0. Hence, ξ(x)
∑
y∼x

t(x, y)ξ(y)

[
η(y)

ξ(y)
− η(x)

ξ(x)

]
≥ 0, which

shows that ∆̂

[
η(x)

ξ(x)

]
≥ 0 where ∆̂ is the Laplacian associated to the �nite

network {X, t(x, y)ξ(y)}. Hence η(x)

ξ(x)
is a ∆̂- subharmonic function on X, so

that
η(x)

ξ(x)
should be a constant (Lemma 2.1). This means

∆η(x)

η(x)
=

∆ξ(x)

ξ(x)
for

every x ∈ X, and hence the stated consequence. �

Note 1. Suppose c(q) denotes the constant c in the unique representation

of q(x) =
∆ξ(x)

ξ(x)
+ c. Note that by Lemma 2.4, it follows that if q1 ≥ q2, then

c(q1) ≥ c(q2); if q1 ≥ q2 and c(q1) = c(q2), then q1 = q2.

As a consequence of Theorem 2.2, we have the following proposition using
a Doob (Liouville) transform.
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Proposition 2.5. Let q(x) =
∆ξ(x)

ξ(x)
+c on X. Then the operator ∆qu(x)

= ∆u(x)−q(x)u(x) can be represented as ∆qu(x)=ξ(x)

{
∆̃

[
u(x)

ξ(x)

]
−c
[
u(x)

ξ(x)

]}
where ∆̃ is the Laplacian associated to the �nite network

{
X, t(x, y)

ξ(y)

ξ(x)

}
.

Proof.

∆qu(x) =∆u(x)−
[

∆ξ(x)

ξ(x)
+ c

]
u(x)

=
1

ξ(x)

∑
y∼x

t(x, y)[ξ(x)u(y)− u(x)ξ(y)]− cu(x)

=
∑
y∼x

t(x, y)ξ(y)

[
u(y)

ξ(y)
− u(x)

ξ(x)

]
− cu(x)

=ξ(x)

{∑
y∼x

t(x, y)
ξ(y)

ξ(x)

[
u(y)

ξ(y)
− u(x)

ξ(x)

]
− c

[
u(x)

ξ(x)

]}

=ξ(x)

{
∆̃

[
u(x)

ξ(x)

]
− c

[
u(x)

ξ(x)

]}
. �

2.3. Classi�cation of perturbed Laplace operators

Let ∆qu(x) = ∆u(x)− q(x)u(x). Since q(x) =
∆ξ(x)

ξ(x)
+ c, we have three

di�erent possibilities when we consider the equation ∆qu(x) = 0 on X, de-
pending on c = 0, c < 0, c > 0. They resemble a generalised discrete version of
the three fundamental di�erential equations on the real line R, namely y′′ = 0,
y′′ + y = 0, y′′ − y = 0.

In the symmetric case where t(x, y) = t(y, x), it is proved in [4, p. 782],
that for a real-valued function q(x) on X, −∆q is positive semide�nite if and

only if there exists a positive function σ(x) on X such that q(x) ≥ ∆σ(x)

σ(x)
;

moreover −∆q is a singular matrix if and only if q =
∆σ

σ
. Related to this result

in the general case we are considering in this paper, we have the following two
lemmas.

Lemma 2.6. Let q(x) be a real-valued function on X. Take the representa-

tion q(x) =
∆ξ(x)

ξ(x)
+ c. Then for a positive function σ(x) on X, q(x) ≥ ∆σ(x)

σ(x)
if and only if c ≥ 0.
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Proof. Suppose q(x) ≥ ∆σ(x)

σ(x)
. That is

∆ξ(x)

ξ(x)
+ c ≥ ∆σ(x)

σ(x)
. If c < 0,

then
∆ξ(x)

ξ(x)
>

∆σ(x)

σ(x)
, not possible (Lemma 2.4). Hence c ≥ 0; the converse is

obvious. �

Lemma 2.7. Let q(x) be a real-valued function on X, with the representa-

tion q(x) =
∆ξ(x)

ξ(x)
+ c. Then the following are equivalent.

i) c > 0.

ii) There exists a positive function η(x) such that q(x) >
∆η(x)

η(x)
for every x

in X.

iii) There exists a positive function σ(x) in X such that q(x) ≥ ∆σ(x)

σ(x)
and

at some vertex y, q(y) >
∆σ(y)

σ(y)
.

Proof. Enough to check iii) ⇒ i). Now if iii) holds, then by Lemma 2.6,
c ≥ 0. If c = 0, then by Lemma 2.4, ξ(x) and σ(x) are proportional so that

q(x) =
∆ξ(x)

ξ(x)
=

∆σ(x)

σ(x)
for all x in X. This is a contradiction, since by

assumption q(y) >
∆σ(y)

σ(y)
. �

Remark 2.1. In line with Lemma 2.6, we remark the following:

1) Let q(x) =
∆ξ(x)

ξ(x)
+ c be the canonical representation of a real-valued

function q(x). Then c ≤ 0 if and only if q(x) ≤ ∆η(x)

η(x)
for some column

vector η(x) with all its entries positive.

2) In particular, if q(x) ≤ 0, then c ≤ 0. Similarly if q(x) ≥ 0, then c ≥ 0.

3) The representation q(x) =
∆ξ(x)

ξ(x)
+ c can be expanded as q(x) =[∑

y∼x
t(x, y)

ξ(y)

ξ(x)

]
−t(x)+c where t(x) =

∑
y∼x

t(x, y). Hence, [t(x)+q(x)]−

c > 0. Consequently, c < minx∈X [t(x) + q(x)] so that if t(a) + q(a) ≤ 0
for some a ∈ X, then c < 0.

4) Even if c > 0 in the representation q(x) =
∆ξ(x)

ξ(x)
+ c, it does not mean

that q(x) ≥ 0. For example, take a positive nonconstant function ξ(x) on

X such that
∑
x∈X

ξ(x) = 1. Then
∆ξ(x)

ξ(x)
takes both negative and positive
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values since ξ(x) is not constant. That is, if α = minx∈X
∆ξ(x)

ξ(x)
and

β = maxx∈X
∆ξ(x)

ξ(x)
, then α < 0 and β > 0. Choose a constant c such

that 0 < c < −α.With these choices if q(x) =
∆ξ(x)

ξ(x)
+ c, then q(x) takes

both negative and positive values, while c > 0. Consequently even when
c > 0, the matrix −∆q need not be even weakly diagonal dominant.

Proposition 2.8. Let q(x) be a real-valued function on X with represen-

tation q(x) =
∆ξ(x)

ξ(x)
+ c. Write −∆qu(x) = q(x)u(x)−∆u(x). Then,

i) c = 0 if and only if for some η(x) > 0, −∆qη(x) = 0;

ii) c > 0 if and only if for some η(x) > 0, −∆qη(x) > 0;

iii) c < 0 if and only if for some η(x) > 0, −∆qη(x) < 0.

Proof. i) If c = 0, then −∆qξ(x) = 0. Conversely, suppose −∆qη(x) =

0 for some η(x) > 0. That is

[
∆ξ(x)

ξ(x)
+ c

]
η(x) − ∆η(x) = 0. Hence,

∆ξ(x)

ξ(x)
− ∆η(x)

η(x)
= −c. In this case, whatever be the value of c, ξ(x), η(x)

are proportional by Lemma 2.4. Consequently c = 0.

ii) If c > 0, then −∆qξ(x) = cξ(x) > 0. Conversely, suppose −∆qη(x) > 0

for some η(x) > 0. Then,
∆ξ(x)

ξ(x)
−∆η(x)

η(x)
> −c. In this case if c ≤ 0 then

by Lemma 2.4, ξ(x), η(x) are proportional; hence 0 > −c, a contradiction.
Thus c > 0 is the only possibility given that −∆qη(x) > 0.

iii) Proved as in ii). �

Lemma 2.9. Let λ = α + iβ be an eigenvalue of the Laplacian ∆ (which

maybe non-symmetric) on a �nite network {X, t(x, y)}. Then α ≤ 0.

Proof. Suppose α > 0. Then for each row j in ∆ which is of the form (tij)
where −tjj =

∑
k 6=j

tjk,

|tjj − λ| ≥ −tjj + α > −tjj =
∑
k 6=j

tjk.

Hence the strictly diagonally dominant matrix ∆ − λI is non-singular
(Minkowski), a contradiction with the fact that λ is an eigenvalue of ∆. Con-
sequently, if λ = α+ iβ is an eigenvalue of ∆, then α ≤ 0. �

Remark 2.2. This lemma can also be seen as a consequence of the Ger-
schgorin Theorem.
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Theorem 2.10. Let q(x) be a real-valued function on X. Let its unique

representation be q(x) =
∆ξ(x)

ξ(x)
+ c which can be written as ∆qξ(x) = ∆ξ(x)−

q(x)ξ(x) = −cξ(x).

i) Thus, for the matrix −∆q, the uniquely determined constant c is an

eigenvalue.

ii) The eigenspace associated with c is of dimension one.

iii) The column vector ξ(x) is the only eigenvector associated to c with all

its entries positive and
∑
x∈X

ξ(x) = 1.

iv) If β is any eigenvalue of −∆q, then Reβ ≥ c.

Proof. ii) To prove the eigenspace associated with c is of dimension 1,

suppose ∆qη(x) = −cη(x) for some column vector η(x). Since c =
−∆qξ(x)

ξ(x)
,

we have ∆qη(x) =

[
∆qξ(x)

ξ(x)

]
η(x), which when simpli�ed as earlier, can be

written as ∑
y∼x

t(x, y)ξ(x)ξ(y)

[
η(x)

ξ(x)
− η(y)

ξ(y)

]
= 0.

This implies that
η(x)

ξ(x)
is constant. The eigenspace associated with the eigen-

value c is of dimension 1.

iii) Suppose a column vector σ(x) with all its components positive is an
eigenvector associated with some eigenvalue α of −∆q. That is −∆qσ(x) =
ασ(x) which can be displayed as −∆σ(x) + q(x)σ(x) = ασ(x). Hence q(x) =
∆σ(x)

σ(x)
+ α so that by the uniqueness of representation of q(x), we have α = c

and σ(x) is proportional to ξ(x).

iv) Let β be an eigenvalue of −∆q, that is for some nonzero vector φ(x),
−∆qφ(x) = βφ(x). Then, since −∆qξ(x) = cξ(x),

−∆qφ(x) =cφ(x) + (β − c)φ(x)

=

[
−∆qξ(x)

ξ(x)

]
φ(x) + (β − c)φ(x),

which can be written as

φ(x)∆ξ(x)− ξ(x)∆φ(x) = (β − c)φ(x)ξ(x).
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That is,
∑
y∼x

t(x, y)[ξ(y)φ(x)− ξ(x)φ(y)] = (β − c)φ(x)ξ(x)

∑
y∼x

t(x, y)ξ(x)ξ(y)

[
φ(x)

ξ(x)
− φ(y)

ξ(y)

]
= (β − c)φ(x)ξ(x)

∑
y∼x

t(x, y)
ξ(y)

ξ(x)

[
φ(x)

ξ(x)
− φ(y)

ξ(y)

]
= (β − c)

[
φ(x)

ξ(x)

]
−∆̃

[
φ(x)

ξ(x)

]
= −(c− β)

[
φ(x)

ξ(x)

]
where ∆̃ is the Laplacian operator associated with the network

{
X, t(x,y)

ξ(y)

ξ(x)

}
.

Hence (c−β) is an eigenvalue of ∆̃, so that by Lemma 2.9, Re(c−β) ≤ 0. That
is, Reβ ≥ c. �

Example 2.3. For any x ∈ X, let q(x) =
∑
y∼x

[t(y, x) − t(x, y)]. Then

there exists a unique positive function ξ(x) on X such that
∑
x∈X

ξ(x) = 1

and the column matrix q(x) =
∆ξ(x)

ξ(x)
; and for any x ∈ X,

∑
y∼x

[t(x, y)ξ(y) −

t(y, x)ξ(x)] = 0.

Let x1, x2, . . . , xn be the set of vertices of X. By Theorem 2.2, q(x) =
∆ξ(x)

ξ(x)
+ c so that, −∆qξ(x) = q(x)ξ(x) − ∆ξ(x) = cξ(x), where −∆q is the

n × n matrix having the jth column with (−∆q)ij = −t(xi, xj) if i 6= j and
(−∆q)jj =

∑
i 6=j

t(xi, xj). Since the sum of each column in −∆q is 0, there exists a

column vector η(x) with all positive entries such that −∆qη(x) = 0. Hence η(x)
is proportional to ξ(x) and consequently c = 0. That is −∆qξ(x) = 0, which
can be written in the form

∑
k 6=j

[t(xj , xk)ξ(xk)− t(xk, xj)ξ(xj)] = 0 for any j or

reverting to the usual notation, we have
∑
y∼x

[t(x, y)ξ(y)− t(y, x)ξ(x)] = 0 for all

x (a useful result in the context of tournament matrices and a one-parameter
system of bets, Moon and Pullman [6, p. 391]).

3. PERTURBATION IN THE DISCRETE LAPLACE EQUATION

As noted earlier, let us represent an arbitrary real-valued function q(x) on

X as q(x) =
∆ξ(x)

ξ(x)
+ c. Let ∆qu(x) = ∆u(x) − q(x)u(x) = ξ(x)

{
∆̃

[
u(x)

ξ(x)

]
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−c
[
u(x)

ξ(x)

]}
. A function on X is treated as a column vector. Write as usual

the matrix A = (aij) ≥ 0 if aij ≥ 0, and A > 0 if aij > 0, for all pairs i, j.
We say that a real-valued function u(x) on X is said to be ∆q-harmonic if and
only if u(x) is an eigenvector associated to 0, that is ∆qu = 0; u(x) is said to
be ∆q-superharmonic if ∆qu ≤ 0.

Proposition 3.1. If η(x) is a non-negative function such that ∆qη ≤ 0
in X, then η(x) > 0 for all x or η = 0.

Proof. Suppose η(z) = 0 for some z in X. Then

0 = q(z)η(z) ≥ ∆η(z) =
∑
y∼x

t(z, y)[η(y)− η(z)] =
∑
y∼z

t(z, y)η(y) ≥ 0.

This means, if η(z) = 0 then η(y) = 0 for all y ∼ z. Since X is strongly
connected, we conclude that η(x) = 0 for all x ∈ X. Thus η > 0 or η = 0
on X. �

Lemma 3.2. Let {X, p(x, y)} be a �nite network with transition probabil-

ities p(x, y), that is
∑
y∼x

p(x, y) = 1 for all x. Let ∆ be its associated (non-

symmetric) Laplacian matrix. Then there exists a unique vector v with all its

entries positive such that ∆
t
v = 0 and

∑
x∈X

v(x) = 1.

Proof. Let A be the row stochastic matrix with 0 in its diagonal and p(x, y)
in its xth row and yth column. Then by the Perron-Frobenius theorem, A has
a left eigenvector vt whose entries are all positive, vtA = vt, and

∑
x∈X

vt(x) = 1.

Since ∆ = A− I, we conclude that ∆
t
v = 0 with

∑
x∈X

v(x) = 1. �

Remark 3.1. Let {X, t(x, y)} be a �nite network, with ∆ as its associated

(non-symmetric) Laplacian. Let t(x) =
∑
y∼x

t(x, y). Write p(x, y) =
t(x, y)

t(x)
.

Then the Laplacian ∆ associated to {X, p(x, y)} has the property given in
Lemma 3.2. Now if D is the diagonal matrix whose diagonal entries are given
by t(x), then ∆ = D∆. Since D is nonsingular, there is a unique vector u > 0

such that Du = v. Consequently, ∆tu = ∆
t
Du = ∆

t
v = 0. If

∑
x∈X

u(x) = α,

then write w(x) =
u(x)

α
so that ∆tw = 0 and

∑
x∈X

w(x) = 1.
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3.1. ∆q-Poisson equation

Proposition 3.3. In the unique representation of q(x) as
∆ξ(x)

ξ(x)
+ c, if

c = 0 then

i) the matrix ∆q is singular and the eigenspace V associated to 0 is

one-dimensional spanned by ξ(x);

ii) if ∆qu(x) is of the same sign, then u ∈ V ;

iii) there exists a unique vector φ(x) with positive entries and
∑
x∈X

φ(x) =

1 such that for a given real-valued function f(x) in X, ∆qu(x) = f(x)
has a solution u(x) if and only if

∑
x∈X

φ(x)f(x) = 0.

Proof. When c = 0, ∆qu(x) = ξ(x)∆̃

[
u(x)

ξ(x)

]
. Hence ∆qu(x) = 0 if and

only if ∆̃

[
u(x)

ξ(x)

]
= 0.

i) Since ∆̃ is the Laplacian operator in the �nite network

{
X, t(x, y)

ξ(y)

ξ(x)

}
,

the matrix ∆̃ is singular and the eigenspace associated with 0 consists only of
constants, we conclude that ∆q is singular and the eigenspace V associated to
0 consists only of constant multiples of ξ(x).

ii) Suppose ∆qu(x) ≤ 0. Then ∆̃

[
u(x)

ξ(x)

]
≤ 0 so that

u(x)

ξ(x)
is constant

[Lemma 2.1]. Hence u ∈ V.

iii) ∆qu(x) = f(x) if and only if ξ(x)∆̃

[
u(x)

ξ(x)

]
= f(x). Now, given the

function f(x), there exists a function u(x) such that ∆̃

[
u(x)

ξ(x)

]
=
f(x)

ξ(x)
if and

only if
∑
x∈X

w(x)

[
f(x)

ξ(x)

]
= 0 where ∆̃tw(x) = 0 [2, Theorem 3.4]; such a func-

tion w(x) with all its entries positive exists as shown in the Remark following

Lemma 3.2. Set φ(x) =
w(x)

ξ(x)
which is a vector with all its entries positive.

Then
∑
x∈X

φ(x)f(x) = 0 if and only if there exists a function u(x) such that

∆̃

[
u(x)

ξ(x)

]
=
f(x)

ξ(x)
, that is ∆qu(x) = f(x). �

Remark 3.2. The problem of �nding a solution u(x) on X such that
∆qu(x) = f(x) for a given function f(x) is known as the Poisson problem
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for ∆q. This is a basic problem in �nite electrical networks where q = 0 and
the Laplacian is symmetric so that φ is taken in this case as the unit vector
[1, pp. 22�23]. Part iii) of the above Proposition 3.3 gives certain precisions
for the vector φ(x) in the context of annihilators: if A is a matrix, the null
space N(At) is the same as [R(A)]⊥ (which is a �nite version of the Fredholm
Alternative).

Recall that in Remark 4) following Lemma 2.7, we have mentioned that
even if c > 0 the matrix −∆q need not be weakly diagonal dominant.

Proposition 3.4. In the unique representation of q(x) as
∆(x)

ξ(x)
+ c, if

c > 0 then

i) ∆q is a non-singular matrix;

ii) given any f(x) in X, there exists a unique function u(x) such that

∆qu(x) = f(x);

iii) given any vertex z in X, there exists a unique function Gz(x) > 0
(called the Green function with pole at z) such that ∆qGz(x) = −δz(x)
for x in X;

iv) if p(x) is a real-valued function such that ∆qp(x) ≤ 0 on X, then p(x)
is non-negative and of the form p(x) =

∑
z∈X

[−∆qp(z)]Gz(x).

Proof. i) ∆qu(x) = 0 implies that ∆̃

[
u(x)

ξ(x)

]
= c

[
u(x)

ξ(x)

]
. In this case if

u 6= 0, then c is an eigenvalue of ∆̃; but this is not possible since c > 0
(Lemma 2.9). This contradiction shows that if ∆qu(x) = 0, then u = 0,
hence the matrix ∆q is invertible.

ii) Consequently if ∆qu(x) = f(x), then u(x) = ∆−1q [f(x)] is uniquely de-
termined.

iii) In particular if f(x) = −δz(x), we get the uniquely determined Green
function Gz(x) such that ∆qGz(x) = −δz(x).

iv) Let p(x) be such that ∆qp(x) ≤ 0 for all x inX.Write s(x)=
∑
z∈X

(−∆qp(z))

Gz(x) which is non-negative. If h(x) = s(x)− p(x), then (−∆q)h(x) = 0
for all x in X; hence h = 0 since ∆q is invertible. Consequently, p(x) =
s(x) =

∑
z∈X

(−∆qp(z))Gz(x) for all x in X. �

Proposition 3.5. In the unique representation of q(x) as
∆ξ(x)

ξ(x)
+ c, if

c < 0 then

i) if u ≥ 0 and ∆qu(x) ≤ 0, then u = 0;
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ii) if u(x) is a non-zero function such that ∆qu(x) = 0, then u(x) takes

both positive and negative values;

iii) the vector subspace V = {u : ∆qu = 0} consisting of all the ∆q-

harmonic functions in X is of dimension d > 0 if and only if c is an
eigenvalue of multiplicity d associated to the Laplacian ∆̃.

Proof. i) Suppose u ≥ 0 is such that ∆qu(x) ≤ 0. Then ∆̃

[
u(x)

ξ(x)

]
≤

c

[
u(x)

ξ(x)

]
≤ 0 for all x ∈ X and ∆̃

[
u(z)

ξ(z)

]
< 0 if u(z) > 0. Now

∆̃

[
u(x)

ξ(x)

]
≤ 0 for all x indicates that

[
u(x)

ξ(x)

]
is constant so that ∆̃

[
u(x)

ξ(x)

]
= 0. Hence there is no vertex z where u(z) > 0, that is u = 0.

ii) Since ∆qu(x) = 0, then ∆̃

[
u(x)

ξ(x)

]
= c

[
u(x)

ξ(x)

]
. If u(x) takes only non-

negative or non-positive values, then ∆̃

[
u(x)

ξ(x)

]
is of the same sign in X,

hence

[
u(x)

ξ(x)

]
is constant. That means c = 0, a contradiction. Hence if

u 6= 0, then u(x) takes both positive and negative values on X.

iii) The vector subspace V which consists of all the ∆q-harmonic functions
is of dimension d > 0 if and only if for some non-zero function u(x),

∆̃

[
u(x)

ξ(x)

]
= c

[
u(x)

ξ(x)

]
, that is if and only if c is an eigenvalue of multi-

plicity d associated to the Laplacian ∆̃. �

Corollary 3.6. Let q(x) be a real-valued function on X with the unique

representation q(x)=
∆ξ(x)

ξ(x)
+c where c < 0. Let f(x) be a given function on X.

i) If c is not an eigenvalue of ∆̃, then there exists a unique solution u(x)
such that ∆qu(x) = f(x).

ii) If c is an eigenvalue of ∆̃ and if the subspace V = {v : (∆̃−cI)tv = 0} is
of dimensionm, then there existm linearly independent vectors {φj(x)}
in V, 1 ≤ j ≤ m, such that ∆qu = f has a solution u(x) if and only if∑
x∈X

φj(x)f(x) = 0 for each j.

Proof. i) If c is not an eigenvalue of ∆̃, then ∆q is invertible since

∆qu(x) = ξ(x)

[
(∆̃− cI)

(
u(x)

ξ(x)

)]
. Hence ∆qu(x) = f(x) has a unique

solution u(x).
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ii) This follows as in the Remark following Proposition 3.3 since N(∆t
q) =

[R(∆q)]
⊥. �

3.2. ∆q-Dirichlet-Poisson equation when c ≥ 0

We have already remarked that when q(x) =
∆ξ(x)

ξ(x)
+ c, the matrix ∆q

is non-singular when c > 0 and singular when c = 0. However some special
submatrices of ∆q are non-singular when c ≥ 0. Precisely, we have the following
lemma [1, Theorems 2.2.4 and 2.4.4]:

Lemma 3.7. Let q(x) =
∆ξ(x)

ξ(x)
+c, c ≥ 0, on a network X with n vertices.

For any k, 1 ≤ k ≤ n − 1, let ∆k
q be a proper submatrix of ∆q by selecting the

rows and the columns corresponding to the vertices of a proper subset of X with

k vertices. Then ∆k
q is non-singular.

Theorem 3.8 (∆q-Dirichlet-Poisson equation). Let F be a proper subset

of a �nite network. Let q(x) =
∆ξ(x)

ξ(x)
+ c, c ≥ 0. Let f, g be two real-valued

functions, f de�ned on F and g de�ned on X \ F. Then there exists a unique

function u on X such that ∆qu = f on F and u = g on X \ F.

Proof. Let u = (u1, u2, . . . , un)t and v = (v1, v2, . . . , vn)t be the column
vectors such that u(x) = g(x) if x ∈ X \ F and v(x) = f(x) if x ∈ F. Now
if we write ∆qu = v, then the value of u(x) for x ∈ F can be calculated,
since the submartix of ∆q determined by the vertices of F is non-singular as
given by the above lemma. Consequently, we have a function u in X such that
∆qu(x) = f(x) if x ∈ F and u(x) = g(x) if x ∈ X \ F. The uniqueness of the
solution u(x) follows from the Minimum Principle for ∆q [1, Corollary 2.2.2
and Lemma 2.4.3]. �

3.3. ∆q-Poisson-Neumann equation

Let A be a proper non-empty strongly connected �nite subset of the net-
work X. A vertex a is said to be in the interior of A, if a and all its neigh-
bours in X are in A. Let �A denote the set of all interior vertices of A; write
∂A = A \ �A. Let ℵ be the restriction of the Laplacian operator ∆ on A, that

is ℵu(x) = ∆u(x) if x ∈ �A, and ℵu(ζ) =
∂u(ζ)

∂n−
=

∑
y∼ζ,y∈A

t(ζ, y)[u(y) − u(ζ)]

if ζ ∈ ∂A. Let f be de�ned on �A, g be de�ned on ∂A and q be de�ned on
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A. Then q(x) has the unique representation q(x) =
ℵξ(x)

ξ(x)
+ c where ξ(x) > 0

and
∑
x∈A

ξ(x) = 1. Write ℵqu(x) = ℵu(x) − q(x)u(x). Then, using the results

of Section 3.1 for the network A with its Laplacian ℵ, we obtain the following
solution to the ∆q-Poisson-Neumann equation for {A,ℵq, f, g}.

i) Let c = 0. Then there exists a function u(z) on A such that ℵqu(x) =

∆u(x)− q(x)u(x) = f(x) when x ∈ �A and ℵqu(ζ) =
∂u(ζ)

∂n−
− q(ζ)u(ζ) =

g(ζ) when ζ ∈ ∂A, if and only if
∑
x∈�A

η(x)f(x) = −
∑
ζ∈∂A

η(ζ)g(ζ) where

η(z) is the unique function on A such that η(z) is positive,
∑
z∈A

η(z) = 1

and ℵtqη(z) = 0. If there is another such solution v(z) on A, then v(z) =
u(z) + λξ(z) for some constant λ.

ii) Let c > 0. Then there exists a unique function u(z) on A such that

∆u(x)− q(x)u(x) = f(x) when x ∈ �A and
∂u(ζ)

∂n−
− q(ζ)u(ζ) = g(ζ) when

ζ ∈ ∂A.
iii) Let c < 0. In this case, we distinguish two cases when 0 is or is not an

eigenvalue of ℵq :

(a) When 0 is not an eigenvalue of ℵq, then the unique solution exists
as in ii).

(b) When 0 is an eigenvalue of ℵq, then the solution exists as in i) if and
only if

∑
x∈�A

η(x)f(x) = −
∑
ζ∈∂A

η(ζ)g(ζ) for every η(z) of a linearly

independent base which generates the null space N(ℵtq).

4. CONCLUDING REMARKS

Let X be a set consisting of n elements called vertices. Let M be the
family of all n × n matrices such that M ∈ M if and only if M has the
following two properties:

(1) All its non-diagonal entries are nonnegative. That is, if t(x, y) is the entry
in M corresponding to the ith row and the jth column, then t(x, y) ≥ 0
if x 6= y.

(2) Let D denote the diagonal matrix whose entries are t(x, x). If we write
M = D +A, then A is irreducible.

Note that X can be made into a directed graph by constructing an
edge from x to y if and only if t(x, y) > 0. Then A can be thought of as a
weighted adjacency matrix on the directed graph X without self-loops. Thus,
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if t(x, x) = 0 for all x in X, then M is the adjacency matrix of X; and if
t(x, x) = −

∑
y∼x

t(x, y), then M is the Laplacian matrix ∆ of X. For a general

M ∈M, the question of �nding the existence and the uniqueness of the solution
of Mu(x) = f(x) where f(x) is a given real-valued function (column vector)
on X is known as the Poisson problem for M. Similarly the Dirichlet-Poisson
problem and the Poisson-Neumann problem for M are posed.

To solve the above problems, note that the matrix M ∈ M can be rep-
resented as Mu(x) = ∆u(x) − q(x)u(x) = ∆qu(x) where −q(x) = t(x) +∑
y∼x

t(x, y) for x ∈ X. Thus actuallyM is a perturbed Laplacian matrix accord-

ing to the usage in the above text. In this form the spectral properties of M
are studied conveniently using the Perron-Frobenius results, as shown above.

Using the unique representation q(x) =
∆ξ(x)

ξ(x)
+ c, we see that Mu(x) =

ξ(x)

{
∆̃

[
u(x)

ξ(x)

]
− c

[
u(x)

ξ(x)

]}
where ∆̃ is the Laplacian operator associated

with the network

{
X, t(x, y)

ξ(y)

ξ(x)

}
. Consequently, η(x) is an eigenvector asso-

ciated to an eigenvalue λ for M if and only if
η(x)

ξ(x)
is an eigenvector associated

to the eigenvalue λ+ c for ∆̃. Thus the spectral properties of M can be related
to the spectral properties of ∆̃. For example, c is the smallest eigenvalue of
−M in the sense that if α is any eigenvalue of −M, then c < Reα. Note that
the graph structure of X is the same whether we consider the matrix M or the
Laplacian ∆̃, in the sense that for any two vertices x, y in X, if M = D + A,
then A determines a directed path from x to y if and only if ∆̃ determines a
directed path from x to y in the graph X.
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