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1. INTRODUCTION

Even at the present time, one of the important problem in the quasiva-
rieties theory area is the problem of existing the �nite base of the real quasi-
identities in a given algebra. It is well known that having no �nite base, the
quasiidentities of noncommutative nilpotent �nite group [1], of a nonassociative
or associative �nite nilpotent ring with the no null produces [2,3] a noncommu-
tative or nonassociative �nite nilpotent Moufang loop [4, 5]. At this moment,
it is necessary to investigate the �nite base existence of the quasiidentities of a
�nite �xed number of variables of a �nite algebra. In the present paper, this
problem is solved for the �nite algebraic system of �nite signature.

2. MAIN RESULT

Let A be a �nite algebraic system of �nite signature σ = σP ∪ σP made
of set σF of functional symbols and set σP of predicational symbols which do
not intersect, σP ∩ σP = ∅. To each f ∈ σF , r ∈ σP a nonnegative number
ν(f), ν(r), called arities of these symbols is attributed. At the same time, we
mention that although the arities of functional symbols can be zero, the variety
of predicational symbols is supposed to be greater than zero. We'll note with
QId(A) (respectively, Id(A)) the set of all the quasiidentities (respectively, the
identities) of σ signature of the countable set variables X0 = {x1, x2, . . . } real
in the system A. It is said that the quasiidentities (respectively, the identities)
of algebraic system A have �nite base if there exists a �nite subset Σ ⊆ QId(A)
(respectively, Σ ⊆ Id(A)); this means Σ � Φ for any Φ ∈ QId(A) (respectively,
Φ ∈ Id(A)), i.e. the set Σ of formulate involves formula ϕ.
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Theorem 2.1. For any �nite algebraic system A of �nite signature σ and

for any n natural number the sets QIdn(A) and Idn(A) have �nite bases.

Proof. Let be s = |A|n. Out of all elements a1 = (a11, . . . , a1n), . . . , as =
(as1, . . . , asn) of set As we make the matrix [aij ]s×n. The lines of this matrix
are all the elements a1, . . . , as of set An, but the columns are elements h1 =
(a11, . . . , as1), . . . , hn = (a1n, . . . , asn) of set As. Both sets An and As are
base sets Cartesian powers An and As of system A. The subsystem of algebraic
system As generated by elements h1, . . . , hn ∈ As is noted with H.

Let (σ(Xn), σ) be the algebraic system of terms of signature σ. The base
set σ(Xn) of this system is made up from all terms of signature σ of set Xn

variables, but the operations and the predicates are de�ned like this:

fσ(Xn)(t1, . . . , tν(f)) = f(t1, . . . , tν(f))

for any functional symbol f ∈ σF ;

r =

{
∅, if r 6=≈;
{(t, t) | t − term}, if r =≈,

where ≈ is binary predicational special symbol attributed to predicate =.

Let ϕ be the homomorphism from algebraic system (σ(Xn), σ) on alge-
braic system H de�ned by the following equalities

ϕ(xi) = hi, i = 1, . . . , n.

Let's note with θ the congruence (see [6]) on algebraic system (σ(Xn), σ)
equal nucleus kerϕ, with F� set σ(Xn)/θ and with F � factor-system
(σ(Xn)/θ, σ). Further on we demonstrate the following two lemmas.

Lemma 2.1. Congruence θ has the following components

θ(r) = {(t1, . . . , tm) ∈ σ(Xn) | A � r(t1, . . . , tm)}, r ∈ σP , ν(r) = m.

Proof. Indeed, if r ∈ σP , ν(r) = m, and

(t1(x1, . . . , xn), . . . , tm(x1, . . . , xn)) ∈ θ(r),

then in algebraic system H takes place the following

rH(tH1 (h1, . . . , hn), . . . , tHm(h1, . . . , hn)).

Moving onto components, we have in system A the following relations

rA(tA1 (ai1, . . . , ain), . . . , tAm(ai1, . . . , ain)), i = 1, . . . , s.

In this way, in algebraic system A the identity r(t1(x1, . . . , xn), . . . ,
tm(x1, . . . , xn)) is true. Reciprocally, if A � r(t1(x1, . . . , xn), . . . , tm(x1,
. . . , xn)), then As � r(t1(x1, . . . , xn), . . . , tm(x1, . . . , xn)). From now on,
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since H is a subsystem of algebraic system As we have H � r(t1(x1, . . . , xn),
. . . , tm(x1, . . . , xn)). Then it takes place rH(tH1 (h1, . . . , hn), . . . , tHm(h1,
. . . , hm)) and, because

tHi (h1, . . . , hn) = hHi (ϕ(x1), . . . , ϕ(xn)) = ϕ
(
hi(x1, . . . , xn)

)
, i = 1, . . . , m,

it results
rH(ϕ(t1(x1, . . . , xn), . . . , ϕ(tm(x1, . . . , xm)) .

From where it follows
(t1(x1, . . . , xn), . . . , (tm(x1, . . . , xm)) ∈ θ(r). �

Lemma 2.2. F is a free algebraic system of quasivarieties Q(A).

Proof. Firstly, we observe that algebraic system F , according to the the-
orem about homomorphisms, is isomorphic with algebraic system H. But H
is a subsystem of Cartesian power As of algebraic system A. Since according
to Mal'tsev's theorem (see [7], p. 271), the quasivariety is closed related to
the Cartesian product and taking the subsystems we obtain that F belongs to
quasivarieties generated by algebraic system A.

We consider X = {x1/θ, . . . , xn/θ}. If A isn't a system with only one
element, then the elements h1, . . . , hn ∈ H taken by two are di�erent. That's
why set X with elements from F contains the same number of elements as
set X. But if A is a system with one element, then h1 = . . . = hn and
x1/θ = . . . = xn/θ; that's why X contains one element, and in this case, we
consider n = 1 and X = {x1/θ}.

Let C be an algebraic system from quasivariety Q(A). ψ0 : X → C a
certain application of set X in base set C of algebraic system C. For every el-
ement w ∈ F, w = tF (x1/θ, . . . , xn/θ) we consider ψ(w) = tC(ψ0(x1/θ), . . . ,
ψ0(xn)). The image ψ(w) doesn't depend on term t which represents ele-
ment w. Indeed, if p(x1, . . . , xn) is a certain term from σ(X), for which w =
pF (x1/θ, . . . , xn/θ), then (t, p) ∈ θ(≈). From here, according to Lemma 2.1
A � t = p. From this, it results C � t = p, so tC(ψ0(x1/θ), . . . , ψ0(xn)) =
pC(ψ0(x1/θ), . . . , ψ0(xn)).

In this way, we de�ned application ψ : F → C, which is evidently an
extension of application ψ0. It remains to show that ψ is homomorphism.
Indeed, let r ∈ σP , ν(r) = m be a certain predicate r ∈ σP and tF1 (x1/θ,
. . . , xn/θ), . . . , t

F
m(x1/θ, . . . , xn/θ) elements from F so that

F � rF (tF1 (x1/θ, . . . , xn/θ), . . . , t
F
m(x1/θ, . . . , xn/θ)).

But

rF (tF1 (x1/θ, . . . , xn/θ), . . . , t
F
m(x1/θ, . . . , xn/θ))

= rF (tF1 (x1, . . . , xn)/θ, . . . , tFm(x1, . . . , xn)/θ),
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from where (t1(x1, . . . , xn), . . . , tm(x1, . . . , xn)) ∈ θ(r) and, according to
Lemma 2.1, A � r(t1, . . . , tm). But then C � r(t1(x1, . . . , xn), . . . , tm(x1,
. . . , xn)) and in particular,

C � rC(tC1 (ψ0(x1), . . . , ψ0(xn)), . . . , tm(ψ0(x1), . . . , ψ0(xn))

= rC(ψ(tF1 (x1, . . . , xn)), . . . , ψ(tFm(x1, . . . , xn)). �

Remark 2.1. If A is a single element system, then the rank of the algebraic
system F equals one; if not, the rank is a natural number n ≥ 1.

Continuation of the proof of Theorem 2.1. So, according to Lemma 2.2,
F is a free algebraic system of quasivariety Q(A). According to the homomor-
phism theorem, system F is isomorphic with system H so it is �nite. Con-
sequently, algebraic system (σ(Xn), σ) has a �nite number adjacent classes
adequate to congruence θ. We settle in each of these adjacent classes represen-
tatives q1, . . . , qk. We note with Σ1 the set made up by the following identities:

r(xi1 , . . . , xim) if (xi1 , . . . , xim) ∈ θ(r), where r ∈ σP , ν(r) = m,
1 ≤ i1 ≤ . . . ≤ im ≤ n;

r(qj1 , . . . , qjm) if (qj1 , . . . , qjm) ∈ θ(r), where r ∈ σP , ν(r) = m,
1 ≤ j1 ≤ . . . ≤ jm ≤ k.

With Σ2 we denote the set made up by all the quasiidentities by the form

&l
i=1ri(qi1 , . . . , qimi )⇒ r(qj1 , . . . , qjm),

where r1, . . . , rp, r ∈ σP is not repeated, m1 = ν(r1), . . . , mp = ν(rp), m =
ν(r); but the quasiidentity satis�es the condition: if for a certain ai ∈ AI in A

takes place the relations

rAk (qk1(ai1, . . . , ain), . . . , qkmi (ai1, . . . , ain)), k = 1, . . . , l,

then the following relation takes place

rA(qj1(ai1, . . . , ain), . . . , qjm(ai1, . . . , ain)).

Because σ = σF ∪ σP the signature is �nite and the number of representatives
q1, . . . , qk is �nite, sets Σ1 and Σ2 are �nite. It is clear Idn(A) � Σ1 and
QIdn(A) � Σ1 ∪Σ2, that's why it remains to show Σ1 � Idn(A) and Σ1 ∪Σ2 �
QIdn(A).

Let be given a certain identity r(t1, . . . , tν(r)) from set Idn(A). We deduce
through induction, upon the total number of functional symbols from formula
r(t1, . . . , tν(r)), that Σ1 � r(t1, . . . , tν(r)). If this number equals zero, then the
statement is true, because t1 = xi1 , . . . , tν(r) = xiν(r) , where 1 ≤ i1 ≤ . . . ≤
iν(r) ≤ n, the identity has r(xi1 , . . . , xν(r)) form and belongs to set Σ1. We
suppose now that the statement is true for the identities that contain a less
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number of functional symbols as the given identity r(t1, . . . , tν(r)), where we
suppose to have a number of functional symbols greater than 1. Then for a
certain i ∈ {1, . . . , ν(r)} and a certain functional symbol f ∈ σF we have
ti = f(tii, . . . , tiν(f)). We take terms

ti1 ≡ qi1(θ), . . . , tiν(f) ≡ qiν(f)(θ) and f(qi1, . . . , qiν(f)) ≡ qj(θ).

Then, according to the hypothesis of induction,

Σ1 � ti1 = qi1, . . . , Σ1 � tiν(f) = qiν(f),

from where
Σ1 � f(ti1, . . . , tiν(f)) = f(qi1, . . . , qiν(f))

and
Σ1 � ti = qj .

From here
A � ti = qj ,

which together with
A � r(t1, . . . , tν(r)),

implies
A � r(t1, . . . , ti−1, qj , ti+1, . . . , tν(r)).

But r(t1, . . . , ti−1, qj , ti+1, . . . , tν(r)) contains less functional symbols as
r(t1, . . . , tν(r)), so according to the hypothesis

Σ1 � r(t1, . . . , ti−1, qj , ti+1, . . . , tν(r)).

Therefore,
Σ1 � ti = qj

and
Σ1 � r(t1, . . . , ti−1, qj , ti+1, . . . , tν(r)),

from where we obtain
Σ1 � (t1, . . . , tν(r)).

Finally, let

Φ = (&l
i=1ri(ti1 , . . . , tiν(ri)

)⇒ r(tj1 , . . . , tjν(r)))

be an arbitrary quasiidentity from set QIdn(A). We take terms

qi1 , . . . , qiν(ri) ( i = 1, . . . , I), qj1 , . . . , qjν(r)
so as

ti1 ≡ qi1(θ), . . . , tiν(ri) ≡ qiν(ri)(θ) (i = 1, . . . , l),

tj1 ≡ qj1(θ), . . . , tjν(r) ≡ qjν(r)(θ),

then we substitute the respective terms from formula Φ with these terms. If
the left side of the quasiidentity contains an expression which coincides with
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the right side expression, then this quasiidentity is obvious and it is equivalent
with the identity x1 = x1 contained in Σ1. But if the left side of the obtained
quasiidentity contains repeated expressions, then, except one, we exclude the
others from the formula. As a result we obtain the quasiidentity

Φ′ = (&l′
i=1ri(qi1 , . . . , qiν(ri))⇒ r( qj1 , . . . , qjν(r))).

Now we easily realize that Φ′ ∈ Σ2. Consequently, Σ1 ∪ Σ2 � Φ. The theorem
is proved. �

By Theorem 2.1 easily follows

Corollary 2.1. Any algebraic system of �nite signature, which contains

functional symbols only of arities at most one, has �nite base of identities.

Indeed, if σ is a �nite signature, which contains only functional symbols
of arities one then every term of this signature contains at most a variable.
Therefore any identity r(t1, ...., tν(r)) contains no more than ν(r) variables.
Because signature σ is �nite we obtain that the number of variables contained
in the identities of signature σ is bounded. Then, according to the theorem,
any �nite algebraic system of signatures σ has �nite base of identities.

From Corollary 2.2, we obtain the following result of G. Birkho� [8]:

Corollary 2.2. A �nite algebra �nished with a �nite number of unary

operations are based �nite of identities.

Remark 2.2. In [11], V.K. Kartashov showed that the statement analogous
to Corollary 2.1 is true only if �nite algebra has one unary operation, and
in [10], V.A. Gorbunov proved that any algebra of �nite signature with two basic
elements is �nite based of quasiidentities and also built an algebra with three
elements and two unary operations which is not �nite based of quasiidentities.

Remark 2.3. The algebraic systems of signature σ with a single element
are also called σ-points. In [9] is mentioned that σ-points are successful models
for the quasiidentity investigation, because here the terms have a single variable
and the situation becomes more transparent. It is clear that in any σ-point the
identity x1 ≈ x2 is true. But then, the set of all the true quasiidentities in any
σ-point is equivalent with a set of quasiidentities with a single variable. From
here, according to the theorem, we obtain the following: the algebraic system

of �nite signature with a single element has �nite base of quasiidentities.
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