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Let (Xn)n≥0 be a �nite Markov chain with state space S and transition matrices
(Pn)n≥1 . (The case when S is countable can be considered similarly.) Let 0 ≤
s < t (s, t ∈ N). Let As, As+1, ..., At ⊆ S, As, As+1, ..., At 6= ∅, S. In [U. P�aun,
P (Xs ∈ As, Xs+1 ∈ As+1, ..., Xt ∈ At) in the Markov chain case: from an upper

bound to a method, Rev. Roumaine Math. Pures Appl. 57 (2012), 145�158] was
shown that

P (Xs ∈ As, Xs+1 ∈ As+1, ..., Xt ∈ At) ≤
_

α (Qs,t) ,

where
_

α (P ) :=
1

2
max

1≤i,j≤m

n∑
k=1

|Pik − Pjk|

for any stochastic m × n matrix P (
_

α = 1 − α, α is the Dobrushin ergodicity
coe�cient) and Qs,t := Qs+1Qs+2...Qt, Qs+1, Qs+2, ..., Qt are matrices which
depend on (As, As+1) and Ps+1, (As+1, As+2) and Ps+2, ..., (At−1, At) and Pt,
respectively. In this article, we investigate some special cases for which the above
inequality is even an equation � among other things, we use some new results on
the monotone Markov chains. This investigation leads, in particular, to equa-
tions for the reliability of certain systems (more generally, for the cumulative
distribution function of certain random variables) and for certain probabilities
on certain random variables from waiting time random variable theory. Based on
these equations, we give several results, such as submultiplicative properties, a
more general property than the lack-of-memory one of random variables with ge-
ometric distribution, and equations for expectation. So, we have a new and fruit-
ful method to obtain basic results for runs, patterns, etc. This method, based
on ergodicity coe�cients, etc., can work, on certain matters, in many cases where
the classical methods from probability theory hardly work or do not work.
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1. SOME BASIC RESULTS

In this section, we give some results from �nite Markov chain theory.
Other results � on the Markov chains as well � are given in Section 2.
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In this article, a vector is a row vector and a stochastic matrix is a row
stochastic matrix.

Set
〈m〉 = {1, 2, ...,m} (m ≥ 1),

Sm,n = {P | P is a stochastic m× n matrix} ,

Nm,n = {P | P is a nonnegative m× n matrix} ,

Sm = Sm,m,

Nm = Nm,m.

The entry (i, j) of a matrix Z will be denoted Zij or, if confusion can
arise, Zi→j .

Consider a �nite Markov chain (Xn)n≥0 with state space S = 〈r〉 and
transition matrices (Pn)n≥1. (We use S = 〈r〉 for simpli�cation; S can be any
�nite set.) We shall also refer to it as the (�nite) Markov chain (Pn)n≥1 (with
state space S = 〈r〉). Set

Pm,n = Pm+1Pm+2...Pn =
(

(Pm,n)ij

)
i,j∈S

, ∀m,n, 0 ≤ m < n.

Let P = (Pij) ∈ Nm,n. Let ∅ 6= U ⊆ 〈m〉 and ∅ 6= V ⊆ 〈n〉. Set

PU = (Pij)i∈U,j∈〈n〉 , P
V = (Pij)i∈〈m〉,j∈V , P

V
U = (Pij)i∈U,j∈V

(PU , P
V , and P VU are matrices; e.g., if

P =

 1 2 3
4 5 6
7 8 9

 ,

then, e.g.,

P{2} =
(

4 5 6
)
, P {3} =

 3
6
9

 , and P
{2}
{1,2} =

(
2
5

)
).

Set

α (P ) = min
1≤i,j≤m

n∑
k=1

min (Pik, Pjk) ,

_

α (P ) =
1

2
max

1≤i,j≤m

n∑
k=1

|Pik − Pjk| .
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If P ∈ Sm,n, then α (P ) is called the Dobrushin ergodicity coe�cient of P (see,
e.g., [3] or [8, p. 56]). Set

µ (P ) = max
j∈〈n〉

min
i∈〈m〉

Pij ,

_

µ (P ) = 1− µ (P ) .

If P ∈ Sm,n, then µ (P ) is called the Markov ergodicity coe�cient of P (see,
e.g., [8, p. 56]).

Theorem 1.1. (i)
_

α (P ) = 1− α (P ) , ∀P ∈ Sm,n.
(ii) ‖νP − ξP‖1 ≤ ‖ν − ξ‖1

_

α (P ) , ∀ν, ξ, ν and ξ are probability distribu-

tions on 〈m〉 ,∀P ∈ Sm,n.
(iii)

_

α (PQ) ≤
_

α (P )
_

α (Q) ,∀P ∈ Sm,n,∀Q ∈ Sn,p.

Proof. (i) See, e.g., [8, p. 57] or [9, p. 144].

(ii) See, e.g., [3] or [9, p. 147].

(iii) See, e.g., [3], or [8, pp. 58�59], or [9, p. 145]. �

Let (Xn)n≥0 be a Markov chain with state space S = 〈r〉. (The case
when S is countable can be considered similarly.) Let 0 ≤ s < t (s, t ∈ N).
Let As, As+1, ..., At ⊆ S, As, As+1, ..., At 6= ∅, S. Consider the �ctive states
s, s+ 1, ..., t ( s, s+ 1, ..., t /∈ S). Set

Qu =
(

(Qu)ij

)
i∈Au−1∪{u−1},j∈Au∪{u}

,

(Qu)ij =



(Pu)ij if i ∈ Au−1, j ∈ Au,
1−

∑
k∈Au

(Pu)ik if i ∈ Au−1, j = u,

0 if i = u− 1, j ∈ Au,
1 if i = u− 1, j = u,

∀u ∈ {s+ 1, s+ 2, ..., t} , ∀i ∈ Au−1 ∪
{
u− 1

}
, ∀j ∈ Au ∪{u}; we consider that(

s, s+ 1
)
,
(
s+ 1, s+ 2

)
, ...,

(
t− 1, t

)
are the last entries of Qs+1, Qs+2, ... , Qt,

respectively.

When |S −Au| = 1, where u ∈ {s, s+ 1, ..., t} , supposing that S −Au =
{iu} , we can work, if we want, with the state iu of the chain instead of the
�ctive state u, see, e.g., Theorems 1.4 and 1.5 and their proofs, see, e.g., also
the proofs of Theorems 4.10 and 4.15.

Theorem 1.2 ([16]). Under the above conditions we have

P (Xs ∈ As, Xs+1 ∈ As+1, ..., Xt ∈ At) ≤
_

α (Qs,t)

(Qs,t := Qs+1Qs+2...Qt).
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Proof. See [16]. (The proof is based on Theorem 1.1(ii) and other re-
sults; obviously, this proof depends on the fact that � our choice �

(
s, s+ 1

)
,(

s+ 1, s+ 2
)
, ...,

(
t− 1, t

)
are the last entries of Qs+1, Qs+2, ..., Qt, respec-

tively.) �

De�nition 1.3. Let (Pn)n≥1 be a Markov chain with state space S = 〈r〉 .
A state i ∈ S is called absorbing if (Pn)ii = 1, ∀n ≥ 1.

Below we give an important special case � Theorem 1.4 when r ≥ 2 � of
Theorem 1.2.

Theorem 1.4 ([16]). Let (Xn)n≥0be a Markov chain with state space S =
〈r〉 and transition matrices (Pn)n≥1. Suppose that r is an absorbing state. Then

P (Xn < r) ≤
_

α (P0,n) , ∀n ≥ 1

(this inequality also holds for n = 0 if we set P0,0 = Ir).

Proof. See [16]. �

For applications of Theorem 1.4 to reliability theory, see [16] and, here,
Section 3. Section 4 contains applications of this result to waiting time random
variable theory.

Another important special case of Theorem 1.2 is the next result when
r ≥ 2.

Theorem 1.5 ([17]). Let (Xn)n≥0be a Markov chain with state space S =
〈r〉 and transition matrices (Pn)n≥1. Suppose that r is an absorbing state. Then

P (X0 < r,X1 < r, ...,Xn−1 < r,Xn = r) ≤
_

α (P0,n−1Qn) , ∀n ≥ 1

(P0,0 := Ir; Qn := I1 if r = 1,∀n ≥ 1).

Proof. See [17] (we can work with the state r instead of the �ctive states
_

0, 1, ..., n− 1 � we only need the �ctive state n (for r = 2, we can work, if we
want, with the state 1 of the chain instead of the �ctive state

_

n); in this case,

(i.e., when we work with the state r instead of the �ctive states
_

0, 1, ..., n− 1),
Ql = Pl, ∀l ∈ 〈n− 1〉). �

For applications of Theorem 1.5 to waiting time random variable theory,
see [17] and, here, Section 4.

Set
Par (E) = {∆ | ∆ is a partition of E } ,

where E is a nonempty set. We shall agree that the partitions do not contain
the empty set.

Set
({i})i∈{s1,s2,...,st} = ({s1} , {s2} , ..., {st}) ;
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({i})i∈{s1,s2,...,st} ∈ Par ({s1, s2, ..., st}) .

E.g., ({i})i∈〈10〉 = ({1} , {2} , ..., {10}) ∈Par(〈10〉).
Below we give part of Theorem 1.8 from [15] and this in the stochastic

case only, see also [16, Theorem 2.1] or [17, Theorem 1.6].

Theorem 1.6. Let P1 ∈ Sm1,m2 , P2 ∈ Sm2,m3 , ..., Pn ∈ Smn,mn+1 . Let
∆1 = (〈m1〉) , ∆2 ∈ Par(〈m2〉) , ..., ∆n ∈ Par(〈mn〉) , ∆n+1 = ({i})i∈〈mn+1〉 .
Consider the matrices Ll = ((Ll)VW )V ∈∆l,W∈∆l+1

, l ∈ 〈n〉 ((Ll)VW is the entry

(V,W ) of matrix Ll), where

(Ll)VW := min
i∈V

∑
j∈W

(Pl)ij , ∀l ∈ 〈n〉 ,∀V ∈ ∆l,∀W ∈ ∆l+1.

Then
α (P1P2...Pn) ≥

∑
K∈∆n+1

(L1L2...Ln)〈m1〉K .

(Since L1L2...Ln is an 1 × |〈mn+1〉| matrix, it can be thought of as a row

vector, but above we used and below we shall use, if necessary, the matrix

notation for its entries instead of the vector one. Above the matrix notation

(L1L2...Ln)〈m1〉K was used instead of the vector one (L1L2...Ln)K because, in

this article, the notation AU , where A ∈ Np,q and ∅ 6= U ⊆ 〈p〉 , means some-

thing di�erent.)

Proof. See [15]. �

Set
Rijm,n = {P | P ∈ Sm,n and Pij = 1} ,

Rijm = Rijm,m,

Rim = Riim
(see [14] for Rijm,n and Rim).

Theorem 1.7 ([14]). Let P ∈ Rijm,n. Then

α (P ) = µ (P ) = µ
(
P {j}

)
(µ
(
P {j}

)
= min

k∈〈m〉
Pkj).

Proof. See [14]. �

Theorem 1.7 is important because it gives an easier way to compute α (P )
and (see Theorem 1.1(i))

_

α (P ) when P ∈ Rijm,n. On the other hand, this result
can be used to obtain properties of random variables, see the next sections.
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2. MONOTONE MARKOV CHAINS

In this section, we give some results on the monotone Markov chains (see,
e.g., also [2] and [10�11]).

De�nition 2.1 (see, e.g., [10, p. 164]). Let x, y ∈ Rn be two (row) stochas-
tic vectors. We say that y is larger stochastically than x or that y dominates x
if

n∑
k=l

xk ≤
n∑
k=l

yk, ∀l ∈ 〈n〉 .

Set x << y when y is larger stochastically than x.

De�nition 2.2 (see, e.g., [10, p. 165] for square matrices). Let P ∈ Sm,n.
We say that P is a (stochastically) monotone matrix if

P{1} << P{2} << ... << P{m}

(P{1}, P{2}, ..., P{m} are the �rst, the second, ..., themth row of P, respectively).

Remark 2.3. By permutation of rows and columns, some nonmonotone
matrices can be transformed in monotone ones. E.g.,

P =


9
10 0 1

10

0 1
2

1
2

1
3

1
3

1
3


is not a monotone matrix. Setting

U =

 0 1 0
0 0 1
1 0 0


(U is a permutation matrix), the matrix

Q := UPU ′ =


1
2

1
2 0

1
3

1
3

1
3

0 1
10

9
10


is a monotone matrix, where U ′ is the transpose of U. (See also [2, the example
from p. 309].)

Set
Mm,n = {P | P is a monotone m× n matrix}

and
Mm =Mm,m

(see, e.g., [10, p. 165] forMm).
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Theorem 2.4. Let P ∈Mm,n and Q ∈Mn,p. Then PQ ∈Mm,p.

Proof. For the special case m = n = p, see, e.g., [10, p. 166] or [11].
Now, we consider the general case. We construct the stochastic matrices

A =

(
P 0m×(m+p−1) 0m×1

0(n+p)×n 0(n+p)×(m+p−1) e′ (n+ p)

)
∈ Sm+n+p

and

B =

(
Q 0n×(m+n−1) 0n×1

0(m+p)×p 0(m+p)×(m+n−1) e′ (m+ p)

)
∈ Sm+n+p,

where 0s×t is the zero s × t matrix, ∀s, t ≥ 1, and e′ (t) is the transpose of
e (t) := (1, 1, ..., 1) ∈ Rt,∀t ≥ 1. Obviously, A and B are monotone matrices.
It follows from the above special case that AB is monotone. Since

AB =

(
PQ 0m×(m+n−1) 0m×1

0(n+p)×p 0(n+p)×(m+n−1) e′ (n+ p)

)
(AB ∈ Sm+n+p) and

(AB){1} << (AB){2} << ... << (AB){m} ,

we have
(PQ){1} << (PQ){2} << ... << (PQ){m} .

Therefore, PQ is monotone. �

Theorem 2.5. Let P ∈ Rmnm,n
⋂
Mm,n. Then

α (P ) = µ (P ) = µ
(
P {n}

)
= P1n.

Proof. By Theorem 1.7,

α (P ) = µ (P ) = µ
(
P {n}

)
.

We prove that

µ
(
P {n}

)
= P1n.

We have
µ
(
P {n}

)
= min

1≤k≤m
Pkn.

On the other hand, since P ∈Mm,n, we have

P1n ≤ P2n ≤ P3n ≤ ... ≤ Pmn = 1.

Consequently,

µ
(
P {n}

)
= P1n. �
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De�nition 2.6 (see, e.g., [10, p. 168] for the homogeneous case and con-
stant state space). Let (Pn)n≥1 be a (�nite) Markov chain with state space
S = 〈r〉 or, more generally, with time varying (�nite) state space, i.e., instead
of S we have a sequence of state spaces S0 = 〈r0〉 , S1 = 〈r1〉 , ... (r0, r1, ... ≥ 1),
see, e.g., [8, p. 215]. We say that the chain is monotone if Pn is a monotone
matrix, ∀n ≥ 1.

Remark 2.7 (See Remark 2.3 again). When we construct a Markov chain,
an auspicious labeling of states could lead to a monotone one.

Theorem 2.8. Let (Xn)n≥0 be a monotone Markov chain with state space

S = 〈r〉 or, more generally, with state spaces S0 = 〈r0〉 , S1 = 〈r1〉 , ... and

transition matrices (Pn)n≥1 . Suppose that the initial (probability) distribution

is p0 = (1, 0, ...., 0) and r is an absorbing state or, more generally, (P1)r0r1 = 1,
(P2)r1r2 = 1, ... (in this case, we call (rn)n≥0 the absorbing sequence). Then

P (Xn = r) = α (P0,n) = µ (P0,n) = µ
(

(P0,n){r}
)

= (P0,n)1r , ∀n ≥ 1,

or, more generally,

P (Xn = rn) = α (P0,n) = µ (P0,n) = µ
(

(P0,n){rn}
)

= (P0,n)1rn
, ∀n ≥ 1,

and, therefore,

P (Xn < r) =
_

α (P0,n) =
_

µ (P0,n) =
_

µ
(

(P0,n){r}
)

= 1− (P0,n)1r , ∀n ≥ 1,

or, more generally,

P (Xn < rn) =
_

α (P0,n) =
_

µ (P0,n) =
_

µ
(

(P0,n){rn}
)

= 1− (P0,n)1rn
, ∀n ≥ 1.

Proof. It follows from Theorems 1.1(i), 2.4, and 2.5 and the fact that

P (Xn = r) = (p0P0,n)r = (P0,n)1r ,∀n ≥ 1,

or, more generally,

P (Xn = rn) = (p0P0,n)rn = (P0,n)1rn
, ∀n ≥ 1. �

Theorem 2.8 gives one way in which the inequality from Theorem 1.4
becomes an equation. Another way will be given in Section 4.

3. APPLICATIONS TO RELIABILITY THEORY

In this section, we give equations and a submultiplicative property for the
reliability of certain systems with independent components. More generally,
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these results refer to the cumulative distribution function of certain random
variables � it is easy to see which are those random variables.

Set
〈〈m〉〉 = {0, 1, ...,m} (m ≥ 0)

and
supp ν = {i | i ∈W and νi > 0}

(the support of ν), where W is a �nite nonempty set and ν = (νi)i∈W is a
probability distribution on W .

Recall that the entry (i, j) of a matrix Z is denoted Zij or, if confusion
can arise, Zi→j .

De�nition 3.1 ([16]). A Markov chain with state space S = 〈〈k〉〉 , where
k ≥ 1 (k ∈ N), initial (probability) distribution ψ0 with supp ψ0 ⊆ 〈〈k − 1〉〉 ,
and transition matrices

Pn =

0

1

...

k − wn
...

k − 1

k



pn ... qn

pn ... qn
. . .

. . .

pn · · · qn
. . .

...
pn qn

1


, n ≥ 1,

(the columns are labeled similarly, i.e., 0, 1, ..., k from left to right) with
(Pn)i→i+wn

= qn,∀n ≥ 1, ∀i ∈ S, i + wn ≤ k, and (Pn)ik = qn,∀n ≥ 1,∀i ∈
S − {k} , i+wn > k, where wn is a natural number, 1 ≤ wn ≤ k,∀n ≥ 1 (obvi-
ously, (Pn)ii = pn,∀n ≥ 1,∀i ∈ 〈〈k − 1〉〉 , and (Pn)kk = 1,∀n ≥ 1 (i.e., k is an
absorbing state)), is called weighted k-out-of-∞: F. A weighted k-out-of-∞: F
Markov chain with wn = 1, ∀n ≥ 1, is called k-out-of-∞: F. A 1-out-of-∞: F
Markov chain (k = 1) is called series. We call wn the weight of Pn, ∀n ≥ 1.

Consider a weighted v-component system (v ≥ 1), i.e., a system with v
components, the component n having a weight, say, wn,∀n ∈ 〈v〉 . We only
work with independent components. Suppose that wn ≥ 1 and wn ∈ N. The
component n fails with probability, say, qn,∀n ∈ 〈v〉 . A weighted k-out-of-v:
F system is a weighted v-component system which fails if and only if the to-
tal weight of failed components is at least k (see, e.g., [12] and [13, p. 279]).
Following the Markov chain method (see [4]; see, e.g., also [1, pp. 13�14],
[6�7], [12�13], and [16�17]), this system determines v stochastic matrices, say,
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P1, P2, ..., Pv (we associate a stochastic matrix with each component of the
system ), where Pn is identical with Pn from De�nition 3.1, ∀n ∈ 〈v〉 (since
Pn, n ∈ 〈v〉 , from De�nition 3.1 are stochastic matrices, we have, there and
here, pn = 1 − qn,∀n ∈ 〈v〉). To work with Markov chains, since the matrices
P1, P2, ..., Pv do not determine a Markov chain (not even when an initial distri-
bution is given), we consider a weighted k-out-of-∞: F Markov chain, (Xn)n≥0 ,
having the �rst v matrices even these ones (�∞� from weighted k-out-of-∞: F
was suggested by the fact that any chain has an in�nite number of transition
matrices (obviously, it is possible as some of them or even all be identical)).
Further, using this weighted k-out-of-∞: F Markov chain framework and the
fact that the reliability of a v-component system, Rv, is the probability that
this works, it follows that the reliability of above weighted k-out-of-v: F system,
Rv = Rv (k, q1, q2, ..., qv, w1, w2, ..., wv) , is equal to P (Xv < k) , i.e.,

Rv = P (Xv < k) .

Consequently, to give inequalities and equations for Rv, we can work in the
weighted k-out-of-∞: F Markov chain framework, see also [16].

Consider a weighted k-out-of-v: F system (recall that its components are
independent). We associate this system with a weighted k-out-of-∞: F Markov
chain, (Xn)n≥0 , as above. (Obviously, this association is not unique, but this
fact does not count.) If ψ0 = (1, 0, ..., 0) is the initial distribution of chain (this
is the usual case), then, by Theorem 2.8, since (Xn)n≥0 is monotone, we have
other equations for the reliability Rv of this system in the next result.

Theorem 3.2. Under the above conditions we have

Rv =
_

α (P0,v) =
_

µ (P0,v) =
_

µ
(

(P0,v)
{k}
)

= 1− (P0,v)0k .

Proof. See above. �

Remark 3.3. The equation Rv =
_

α (P0,v) from Theorem 3.2 is important
for two reasons. First, using Theorems 1.1, 1.4, and 1.6 only, we obtain (see
also [16])

Rv ≤
_

α (P0,v) ≤ Cv
for any upper bound Cv of

_

α (P0,v) we �nd by Theorems 1.1 and 1.6 � conse-
quently, we have

Rv <
_

α (P0,v) ≤ Cv
(this is the worst possible case because if it holds, then the best upper bound
Cv of Rv we could obtain is equal to

_

α (P0,v)) or

Rv =
_

α (P0,v) ≤ Cv
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(this is the best possible case because if it holds, then the best upper bound
Cv of Rv we could obtain is even equal to Rv). By Theorem 3.2 the latter
case holds here. Second, this equation can be used to obtain other properties
of the reliability for weighted k-out-of-v: F systems, k, v ≥ 1. E.g., if we
consider v = v1+v2, v1, v2 ≥ 1, and the subsystems weighted k-out-of-v1: F and
weighted k-out-of-v2: F of weighted k-out-of-v: F system with the reliabilities
Rv1 and Rv2 , respectively, and, moreover, suppose that the components of the
�rst subsystem are the �rst v1 components of weighted k-out-of-v: F system and
the associate chains of subsystems have both the initial distribution (1, 0, ..., 0),
then

Rv ≤ Rv1Rv2 ,

i.e., the reliability for weighted k-out-of-v: F systems, k is �xed, v ≥ 1 � here,
thought of as a function v 7−→ Rv (v ≥ 1) � is submultiplicative. (This property
is important because, e.g., if we know Rv1 and Rv2 or upper bounds of theirs,
then we can obtain upper bounds for Rv.) Indeed, by Theorem 1.1(iii), we have

Rv =
_

α (P0,v) =
_

α (P0,v1+v2) =
_

α (P0,v1Pv1,v1+v2) ≤

≤
_

α (P0,v1)
_

α (Pv1,v1+v2) = Rv1Rv2 .

(Note that we are in a happy situation here because we can give another proof
of the inequality Rv ≤ Rv1Rv2 as follows. We associate component n of the
weighted k-out-of-v: F system with the random variable Yn with

Yn =

{
0 if the component n works,

1 if the component n does not work,

∀n ∈ 〈v〉 . Consequently, P (Yn = 0) = pn and P (Yn = 1) = qn, ∀n ∈ 〈v〉, and
Y1, Y2, ..., Yv are independent because the components of system are indepen-
dent. Set

X = w1Y1 + w2Y2 + ...+ wvYv,

Y = w1Y1 + w2Y2 + ...+ wv1Yv1 ,

Z = wv1+1Yv1+1 + wv1+2Yv1+2 + ...+ wvYv.

By the way, X,Y, Z are random variables with binomial distribution when
w1 = w2 = ... = wv = 1. Since Y1, Y2, ..., Yv are independent, it follows that Y
and Z are independent. Finally,

Rv = P (X < k) = P (Y + Z < k) ≤

≤ P ({Y < k} ∩ {Z < k}) = P (Y < k)P (Z < k) = Rv1Rv2 . )
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Other examples of monotone Markov chains from reliability theory are the
weighted consecutive-k-out-of-∞: F Markov chains (these contain the
consecutive-k-out-of-∞: F Markov chains) and, more generally, the weighted
m-consecutive-k-out-of-∞: F Markov chains (these contain the m-consecutive-
k-out-of-∞: F Markov chains), see [14] for the de�nitions of these chains, see
also [16]. The weighted consecutive-k-out-of-v: F systems (see, e.g., [12] for
their de�nition) are associated with the weighted consecutive-k-out-of-∞: F
Markov chains while the weighted m-consecutive-k-out-of-v: F systems (see,
e.g., [12] for their de�nition) are associated with the weighted m-consecutive-
k-out-of-∞: F Markov chains. These associations are similar to that one be-
tween the weighted k-out-of-v: F systems and weighted k-out-of-∞: F Markov
chains (see De�nition 3.1 and after it again). For each v-component system,
which is weighted consecutive-k-out-of-v: F or, more generally, weighted m-
consecutive-k-out-of-v: F, the above equations and inequalities on its reliability
(see Theorem 3.2 and Remark 3.3 again) hold as well � do these hold for any
v-component system with independent components? or for a large class of v-
component systems with independent components? (see also Section 4, Results
based on induction)

4. APPLICATIONS TO WAITING TIME RANDOM

VARIABLE THEORY

In this section, we give equations for P (X = n) and P (X > n) of certain
waiting time random variables. Using these equations, we obtain, in particular,
properties of the waiting time random variables, such as a more general property
than the lack-of-memory one of random variables with geometric distribution.
In this section, the trials are only independent � they are or not identically
distributed.

A. Results for P (X > n) .

A.1. Results based on monotone chains. We give two examples. For these
examples, A.1.1 and A.1.2, we consider that the possible outcomes for each
trial are s (�success�) and f (�failure�). Set

pn = the probability that s occur in the nth trial

and

qn = the probability that f occur in the nth trial, ∀n ≥ 1

(pn, qn ≥ 0, pn + qn = 1,∀n ≥ 1).

A.1.1. X = the waiting time of kth occurrence of s (k ≥ 1; see, e.g.,
[1, p. 103]; see also [5, pp. 164�167]; X is a random variable with negative
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binomial distribution of order k when trials � we work with independent trials
only � are identically distributed).

Following the Markov chain method (recall [4]; recall, e.g., also [1,
pp. 13−14], [6�7], [12�13], and [16�17]) we associate a stochastic matrix with
each trial; the Markov chain corresponding toX above is, say, (Xn)n≥0 with the
state space S = 〈〈k〉〉 (k ≥ 1), initial (probability) distribution ψ0 = (1, 0, ..., 0) ,
where P (X0 = 0) = 1 (we can take, in particular, X0 = 0), and transition ma-
trices

Pn =

0

1

2
...

k − 1

k



qn pn

qn pn

qn pn
. . .

. . .

qn pn

1


, n ≥ 1

(the columns are labeled similarly, i.e., 0, 1, 2, ..., k− 1, k from left to right). It
follows that

P (X > n) = P (Xn < k) ,∀n ≥ 0.

Below we give other equations for P (X > n) .

Theorem 4.1. Under the above conditions we have

P (X > n) =
_

α (P0,n) =
_

µ (P0,n) =
_

µ
(

(P0,n){k}
)

= 1− (P0,n)0k ,∀n ≥ 0.

Proof. It follows from Theorem 2.8 because (Xn)n≥0 above is a monotone
chain. (We can give another proof based on induction instead of monotone
chains, see A.2). �

Remark 4.2. We have reasons similar to those from Remark 3.3 on the
importance of equation P (X > n) =

_

α (P0,n) ,∀n ≥ 0, from Theorem 4.1. (See
also the results below.)

Theorem 4.3 (See also Theorem 2.5(ii) in [17]). Keeping the conditions

from Theorem 4.1 we have

E (X) =

∞∑
n=0

_

α (P0,n)

(E (X) = the expectation of X; P0,0 := Ik+1).

Proof. By a well-known result and Theorem 4.1,

E (X) =
∞∑
n=1

nP (X = n) =
∞∑
n=0

P (X > n) =
∞∑
n=0

_

α (P0,n) . �
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The equation from Theorem 4.3 is a bridge between waiting time ran-
dom variable theory and Markov chain theory. Both �elds can bene�t by this
connection. E.g., if E (X) < ∞, then

_

α (P0,n) → 0 as n → ∞, i.e., cf., e.g.,
[14], the chain (Pn)n≥1 is strongly ergodic at time 0 (consequently, we need
results on the strongly ergodic Markov chains at time 0). Further, the strong
ergodicity at time 0 of chain could help to obtain results on the behaviour of
X. Suppose now, e.g., that the chain (Pn)n≥1 is not strongly ergodic at time 0.
By the above result, E (X) =∞.

Remark 4.4. The inequality from Theorem 1.1(iii) is even an equation
when m = n = p = 2 (see, e.g., [8, pp. 58�59] � this follows by direct compu-
tation).

Let m ≥ 0. Let Y (m) be another waiting time random variable de�ned
as follows. The �rst trial of Y (m) and (m+ 1)th trial of X are identically
distributed, the second trial of Y (m) and (m+ 2)th trial ofX are also identically
distributed, etc. We associate Y (m) with the Markov chain (Zn)n≥m with the
state space S = 〈〈k〉〉, initial distribution ψ0 = (1, 0, ..., 0) , where P (Zm = 0) =
1, and transition matrices Vn = Pn, ∀n > m, where Pn, n ≥ 1, are the transition
matrices of chain (Xn)n≥0 associated with X.

Theorem 4.5. Under the above conditions we have

P (X > m+ n) ≤ P (X > m)P
(
Y (m) > n

)
, ∀m,n ≥ 0,

and if, moreover, k = 1, we have

P (X > m+ n) = P (X > m)P
(
Y (m) > n

)
, ∀m,n ≥ 0.

In particular, if trials are identically distributed, we have

P (X > m+ n) ≤ P (X > m)P (X > n) , ∀m,n ≥ 0,

and if, moreover, k = 1 (i.e., X is a random variable with geometric distribution),
we have

P (X > m+ n) = P (X > m)P (X > n) , ∀m,n ≥ 0.

Proof. By Theorems 1.1(iii) and 4.1,

P (X > m+ n) =
_

α (P0,m+n) ≤
_

α (P0,m)
_

α (Pm,m+n) =

= P (X > m)P
(
Y (m) > n

)
,∀m,n ≥ 0

(we set P0,0 = Ik+1). The second inequality follows from the �rst one because
P
(
Y (m) > n

)
= P (X > n) ,∀m,n ≥ 0, when trials are identically distributed.

The equations in the special case k = 1 follow from Theorem 4.1 and Re-
mark 4.4. �
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Set
bxc = max {k | k ∈ Z and k ≤ x} ,

where x ∈ R.

Theorem 4.6. Keeping the conditions before Theorem 4.5, with only the

di�erence that the trials are considered identically distributed, we have

P (X > n1 + n2 + ...+ nu) ≤
≤ P (X > n1)P (X > n2) ...P (X > nu) , ∀u ≥ 1, ∀n1, n2, ..., nu ≥ 0,

P (X > ht) ≤ P (X > t)h ,∀h, t ≥ 0,
and

P (X > n) ≤
(

1− pk
)bnk c

, ∀n ≥ 0,

where p := p1 = p2 = ... (recall that X = the waiting time of kth occurrence of

s).

Proof. The �rst inequality follows by Theorem 4.5 and induction. The
second one follows by the �rst. Now, we prove the third inequality.

P (X > n) ≤ P
(
X >

⌊n
k

⌋
k
)
≤ (P (X > k))b

n
k c =

= (1− P (X = k))b
n
k c =

(
1− pk

)bnk c
,∀n ≥ 0. �

The third inequality from Theorem 4.6 is interesting because it gives an
upper bound for P (X > n) ,∀n ≥ 0, and information on the speed of conver-
gence of P (X > n) to 0 as n→∞.

Let (Ω,K, P ) be a probability space. Let A,B ∈ K. Set

P (A |B ) =

{
P (A∩B)
P (B) if P (B) > 0,

0 if P (B) = 0

(P (· |·) is the conditional probability).

Theorem 4.7. Keeping the conditions before Theorem 4.5 we have

P (X > m+ n | X > m) ≤ P
(
Y (m) > n

)
, ∀m,n ≥ 0,

and if, moreover, k = 1, we have

P (X > m+ n | X > m) = P
(
Y (m) > n

)
, ∀m,n ≥ 0

(this is a generalization of the lack-of-memory property of random variables

with geometric distribution � we call it the lack-of-memory property of X in the

independent case). In particular, if trials are identically distributed, we have

P (X > m+ n | X > m) ≤ P (X > n) ,∀m,n ≥ 0,
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and if, moreover, k = 1 (i.e., X is a random variable with geometric distribution),
we have

P (X > m+ n | X > m) = P (X > n) ,∀m,n ≥ 0
(this property is known as the lack-of-memory property of X).

Proof. By Theorem 4.5,

P (X > m+ n | X > m) =
P ({X > m+ n} ∩ {X > m})

P (X > m)
=

=
P (X > m+ n)

P (X > m)
≤
P (X > m)P

(
Y (m) > n

)
P (X > m)

= P
(
Y (m) > n

)
,

∀m,n ≥ 0 with P (X > m) > 0 (the case P (X > m) = 0 is obvious). The
others also follow by Theorem 4.5. �

De�nition 4.8. We say that the upper bound P
(
Y (m) > n

)
of conditional

probability P (X > m+ n | X > m) , ∀m,n ≥ 0, from Theorem 4.7, has the
lack-of-memory property in the independent case. (This de�nition is based on
the fact that P

(
Y (m) > n

)
does not depend on what it happened before the

(m+ 1)th trial.) In particular, if trials are identically distributed, then we say
that the upper bound P (X > n) of P (X > m+ n | X > m) ,∀m,n ≥ 0, has
the lack-of-memory property in the independent and identically distributed case.

A.1.2. X = the waiting time of k consecutive occurrences of s (k ≥ 1; see,
e.g., [6, p. 64]; X is a random variable with geometric distribution of order k
when trials are identically distributed).

Following the Markov chain method, the Markov chain corresponding to
X above is, say, (Xn)n≥0 with the state space S = 〈〈k〉〉 (k ≥ 1), initial
distribution ψ0 = (1, 0, ..., 0) , where P (X0 = 0) = 1 (we can take, in particular,
X0 = 0), and transition matrices

Pn =

0

1

.

.

.

k − 1

k



qn pn

qn pn

. .

. .

. .

qn pn

1


, n ≥ 1.

It follows that
P (X > n) = P (Xn < k) ,∀n ≥ 0.

Since (Xn)n≥0 is a monotone Markov chain, it follows that all the results
from A.1.1 on X from there hold for X above as well.
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A.2. Results based on induction. We give two examples.
A.2.1. X = the waiting time of pattern Θ = ai1ai2 ...aik with ai2 , ai3 , ...

, aik 6= ai1 . Suppose that the possible outcomes for each trial are a1, a2, ..., am
(m ≥ 2) and, obviously, i1, i2, ..., ik ∈ 〈m〉 (k ≥ 1). Consider

q
(n)
l = the probability that al occur in the nth trial, ∀l ∈ 〈m〉 , ∀n ≥ 1

(q
(n)
l ≥ 0,∀l ∈ 〈m〉 , ∀n ≥ 1, and

∑
l∈〈m〉

q
(n)
l = 1,∀n ≥ 1).

Below we use the empty word from formal language theory. This word,
denoted λ, has, as its name suggests, the length (i.e., the number of symbols)
equal to 0.

Following the Markov chain method, we associate X with the Markov
chain (Xn)n≥0 with the state space S =

{
λ, ai1 , ai1ai2 , ..., ai1ai2 ...aik−1

, Θ
}
,

initial distribution ψ0 = (1, 0, ..., 0) , where P (X0 = λ) = 1 (we can take, in
particular, X0 = λ), and transition matrices (these are lower Hessenberg ma-
trices, i.e., matrices with zero entries above the �rst superdiagonal)

Pn =

λ

ai1

ai1ai2
...

ai1ai2 ...aik−1

Θ



w
(n)
i1

q
(n)
i1

w
(n)
i2

q
(n)
i1

q
(n)
i2

w
(n)
i3

q
(n)
i1

q
(n)
i3

...
...

. . .

w
(n)
ik

q
(n)
i1

q
(n)
ik

1


, n ≥ 1

(recall that the columns are labeled similarly, i.e., λ, ai1 , ai1ai2 , ..., ai1ai2 ...aik−1
,

Θ from left to right), where

w
(n)
iu

:=

 1− q(n)
i1

if u = 1,

1− q(n)
i1
− q(n)

iu
if u ∈ {2, 3, ..., k} ,

∀n ≥ 1. It follows that

P (X > n) = P (Xn 6= Θ) , ∀n ≥ 0.

Below we give other equations for P (X > n) (these are similar to those
from Theorem 4.1).

Theorem 4.9. Under the above conditions we have

P (X > n) =
_

α (P0,n) =
_

µ (P0,n) =
_

µ
(

(P0,n){Θ}
)

= 1− (P0,n)λΘ ,∀n ≥ 0

(P0,0 := Ik+1).
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Proof. By Theorem 1.7,

α (P0,n) = µ (P0,n) = µ
(

(P0,n){Θ}
)

= min
k∈S

(P0,n)kΘ ,∀n ≥ 0.

We prove that

min
k∈S

(P0,n)kΘ = (P0,n)λΘ ,∀n ≥ 0.

To see this, �rst, we prove that

min
k∈S

(Ps−t,s)kΘ = (Ps−t,s)λΘ ,∀s ≥ 0, ∀t ∈ 〈〈s〉〉

(Ps,s := Ik+1), by induction on t, ∀s ≥ 0. Let s ≥ 0.

t = 0. Obvious.

t = 1 (for s ≥ 1). Obvious (Ps−1,s = Ps).

t 7−→ t+ 1 (t+ 1 ≤ s). Suppose that

min
k∈S

(Ps−t,s)kΘ = (Ps−t,s)λΘ .

We have

(
Ps−(t+1),s

){Θ}
= Ps−t (Ps−t,s)

{Θ} = Ps−t



(Ps−t,s)λΘ

(Ps−t,s)ai1Θ

(Ps−t,s)ai1ai2Θ

.

.

.
(Ps−t,s)ai1ai2 ...aik−1

Θ

1


=

=



w
(s−t)
i1

(Ps−t,s)λΘ + q
(s−t)
i1

(Ps−t,s)ai1Θ

w
(s−t)
i2

(Ps−t,s)λΘ + q
(s−t)
i1

(Ps−t,s)ai1Θ + q
(s−t)
i2

(Ps−t,s)ai1ai2Θ

w
(s−t)
i3

(Ps−t,s)λΘ + q
(s−t)
i1

(Ps−t,s)ai1Θ + q
(s−t)
i3

(Ps−t,s)ai1ai2ai3Θ

.

.

.

w
(s−t)
ik−1

(Ps−t,s)λΘ + q
(s−t)
i1

(Ps−t,s)ai1Θ + q
(s−t)
ik−1

(Ps−t,s)ai1ai2 ...aik−1
Θ

w
(s−t)
ik

(Ps−t,s)λΘ + q
(s−t)
i1

(Ps−t,s)ai1Θ + q
(s−t)
ik

1


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(
(
Ps−(t+1),s

){Θ}
and (Ps−t,s)

{Θ} are the last columns of Ps−(t+1),s and Ps−t,s,
respectively). Now, it is easy to prove that(

Ps−(t+1),s

)
λΘ
≤
(
Ps−(t+1),s

)
kΘ
, ∀k ∈ S

(
(
Ps−(t+1),s

)
λΘ

= w
(s−t)
i1

(Ps−t,s)λΘ + q
(s−t)
i1

(Ps−t,s)ai1Θ , etc.).

Consequently,
min
k∈S

(
Ps−(t+1),s

)
kΘ

=
(
Ps−(t+1),s

)
λΘ
.

Second, from

min
k∈S

(Ps−t,s)kΘ = (Ps−t,s)λΘ , ∀s ≥ 0,∀t ∈ 〈〈s〉〉 ,

for s = t = n, we obtain

min
k∈S

(P0,n)kΘ = (P0,n)λΘ .

To �nish the proof, we use Theorem 1.1(i) and the fact that
_

µ = 1 − µ
and

P (X > n) = P (Xn 6= Θ) = 1− P (Xn = Θ) = 1− (P0,n)λΘ , ∀n ≥ 0

(recall that the initial distribution is ψ0 = (1, 0, ..., 0)). �

Based on Theorem 4.9 all the results from A.1.1 on X from there, except-
ing the third inequality from Theorem 4.6, hold for X above as well � to obtain
the result similar to the third inequality from Theorem 4.6, we must replace pk

with qi1qi2 ...qik , where qis := q
(1)
is

= q
(2)
is

= ..., ∀s ∈ 〈k〉 .
A.2.2. X = the waiting time of pattern Θ = aba (here, the �rst symbol

and the third one of Θ are identical) in an a− b− c sequence of (independent)
trials with

q
(n)
l = the probability that l occur in the nth trial, ∀l ∈ {a, b, c} , ∀n ≥ 1.

Following the Markov chain method, we associate X with the Markov
chain (Xn)n≥0 with the state space S = {λ, a, ab, Θ} , initial distribution
ψ0 = (1, 0, 0, 0) , where P (X0 = λ) = 1, and transition matrices (these are also
lower Hessenberg matrices)

Pn =

λ

a

ab

Θ


1− q(n)

a q
(n)
a 0 0

1− q(n)
a − q(n)

b q
(n)
a q

(n)
b 0

1− q(n)
a 0 0 q

(n)
a

0 0 0 1

 , n ≥ 1.

It follows that
P (X > n) = P (Xn 6= Θ) ,∀n ≥ 0.



176 Udrea P�aun 20

Below we prove that the equations from Theorem 4.9 forX from there hold
for X above as well. To see this, it is su�cient (see the proof of Theorem 4.9)
to prove that

min
k∈S

(Ps−t,s)kΘ = (Ps−t,s)λΘ , ∀s ≥ 0, ∀t ∈ 〈〈s〉〉

(Ps,s := I4). We show this by induction on t, ∀s ≥ 0. Let s ≥ 0.

t = 0. Obvious.

t = 1 (for s ≥ 1). Obvious (Ps−1,s = Ps).

t 7−→ t+ 1 (t+ 1 ≤ s). Suppose that

min
k∈S

(Ps−t,s)kΘ = (Ps−t,s)λΘ .

We have

(
Ps−(t+1),s

){Θ}
= Ps−t (Ps−t,s)

{Θ} = Ps−t


(Ps−t,s)λΘ

(Ps−t,s)aΘ

(Ps−t,s)abΘ
1

 =

=



(
1− q(s−t)

a

)
(Ps−t,s)λΘ + q

(s−t)
a (Ps−t,s)aΘ(

1− q(s−t)
a − q(s−t)

b

)
(Ps−t,s)λΘ + q

(s−t)
a (Ps−t,s)aΘ + q

(s−t)
b (Ps−t,s)abΘ(

1− q(s−t)
a

)
(Ps−t,s)λΘ + q

(s−t)
a

1

 .

It follows that (
Ps−(t+1),s

)
λΘ
≤
(
Ps−(t+1),s

)
kΘ
,∀k ∈ S

(
(
Ps−(t+1),s

)
λΘ

=
(

1− q(s−t)
a

)
(Ps−t,s)λΘ + q(s−t)

a (Ps−t,s)aΘ , etc.).

Therefore,

min
k∈S

(
Ps−(t+1),s

)
kΘ

=
(
Ps−(t+1),s

)
λΘ
.

Based on the above result, all the results from A.1.1 on X from there,
excepting the third inequality from Theorem 4.6, hold for X above as well −
to obtain the result similar to the third inequality from Theorem 4.6, we must

replace pk with qaqbqa, where ql := q
(1)
l = q

(2)
l = ..., ∀l ∈ {a, b, c}, and

⌊
n
k

⌋
with⌊

n
3

⌋
.

B. Results for P (X = n) .

B.1. Results based on monotone chains. We only consider this case (in the
�rst example below, i.e., B.1.1, we can work by induction instead of monotone
matrices to prove Theorem 4.10). We give two examples. For these examples,
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B.1.1 and B.1.2, we consider that the possible outcomes for each trial are s and
f . Set

pn = the probability that s occur in the nth trial
and

qn = the probability that f occur in the nth trial, ∀n ≥ 1.

B.1.1. X = the waiting time of pattern Θ = s (X is a random variable
with geometric distribution when trials are identically distributed).

Following the Markov chain method, we associate X with the Markov
chain (Xn)n≥0 with the state space S = 〈〈1〉〉 (we can also work with the
state space S = {λ,Θ}: λ instead of 0 and Θ instead of 1), initial distribution
ψ0 = (1, 0) , where P (X0 = 0) = 1, and transition matrices

Pn =
0

1

(
qn pn

0 1

)
, n ≥ 1.

It follows that

P (X = n) = P (X0 < 1, X1 < 1, ..., Xn−1 < 1, Xn = 1) ,∀n ≥ 1.

Below we give other equations for P (X = n) .

Theorem 4.10. Under the above conditions we have

P (X = n) =
_

α (P0,n−1Qn) =
_

µ (P0,n−1Qn) =

=
_

µ
(

(P0,n−1Qn){
_

n}
)

= 1− (P0,n−1Qn)0
_

n = (P0,n−1Qn)01 ,∀n ≥ 1

(see Section 1 for the �ctive state
_

n and for the matrix Qn).

Proof. Let n ≥ 1. We have

1
_

n

Qn =
0
1

(
pn qn

0 1

)

(see before Theorem 1.2 again; see Theorem 1.5 and its proof again � we only
used the �ctive state

_

n).
We consider the chain (Um)m≥0 with the state spaces

Sm =

{
〈〈1〉〉 if m 6= n,{

1,
_

n
}

if m = n,

m ≥ 0, initial distribution ψ0 = (1, 0) , and transition matrices

Rm =


Pm if m 6= n, n+ 1,

Qn if m = n,

Cn+1 if m = n+ 1,
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m ≥ 1, where
0 1

Cn+1 :=
1

n

(
1 0

0 1

)
.

Since the chain (Um)m≥0 is monotone and

P (X = n) = P (X0 < 1, X1 < 1, ..., Xn−1 < 1, Xn = 1) =

= P (U0 < 1, U1 < 1, ..., Un−1 < 1, Un = 1) = P (Un = 1) =

= 1− P
(
Un =

_

n
)
,

the equations from Theorem 4.10 follow by Theorem 2.8. �

Remark 4.11. We have reasons similar to those from Remark 3.3 on the im-
portance of equation P (X = n) =

_

α (P0,n−1Qn) ,∀n ≥ 1, from Theorem 4.10.

Theorem 4.12 (See also Theorem 2.5(i) in [17]). Keeping the conditions

from Theorem 4.10 we have

E (X) =
∞∑
n=1

n
_

α (P0,n−1Qn)

(P0,0 := I2).

Proof. By Theorem 4.10,

E (X) =
∞∑
n=1

nP (X = n) =
∞∑
n=1

n
_

α (P0,n−1Qn) . �

The equation from Theorem 4.12 is another bridge (see Theorem 4.3 and
the paragraph after its proof again) between waiting time random variable
theory and Markov chain theory. Both �elds also can bene�t by this con-
nection. E.g., if E (X) < ∞, then n

_

α (P0,n−1Qn) → 0 as n → ∞ (equiva-
lently, n

_

α (P0,n−1Qn) 9 0 as n → ∞ implies E (X) = ∞). Hence, on Markov
chain theory, we need results on Markov chains (Pn)n≥1 with the property

n
_

α (P0,n−1Qn)→ 0 as n→∞ (or, equivalently, n
_

α (P0,n−1Qn) 9 0 as n→∞).

Let m ≥ 0. Let Y (m) be another waiting time random variable which is
similar to that from A.1.1, i.e., the �rst trial of Y (m) and (m+ 1)th trial of X
are identically distributed, the second trial of Y (m) and (m+ 2)th trial of X
are also identically distributed, etc. We associate Y (m) with the Markov chain
(Zn)n≥m with the state space S = 〈〈1〉〉, initial distribution ψ0 = (1, 0) , where
P (Zm = 0) = 1, and transition matrices Vn = Pn, ∀n > m, where Pn, n ≥ 1,
are the transition matrices of chain (Xn)n≥0 associated with X.
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Theorem 4.13. Under the above conditions we have

P (X = m+ n) = P (X > m)P
(
Y (m) = n

)
, ∀m ≥ 0,∀n ≥ 1.

In particular, if trials are identically distributed, we have

P (X = m+ n) = P (X > m)P (X = n) , ∀m ≥ 0,∀n ≥ 1.

Proof. By Remark 4.4, Theorem 4.10, and A.1.2,

P (X = m+ n) =
_

α (P0,m+n−1Qm+n) =
_

α (P0,m)
_

α (Pm,m+n−1Qm+n) =

= P (X > m)P
(
Y (m) = n

)
,∀m ≥ 0, ∀n ≥ 1.

If the trials are identically distributed, we have P
(
Y (m) = n

)
= P (X = n) ,

∀m ≥ 0, ∀n ≥ 1. �

Remark 4.14. (a) Theorem 4.13 gives one way to compute P (X > m)
easily when m > 0 (for m = 0, P (X > 0) = 1); indeed, for given m,n ≥ 1,

P (X > m) =
P (X = m+ n)

P
(
Y (m) = n

) =
q1q2...qm+n−1pm+n

qm+1qm+2...qm+n−1pm+n
= q1q2...qm

and, in particular, if p1 = p2 = ... := p and q1 = q2 = ... := q, i.e., if the trials
are identically distributed,

P (X > m) =
P (X = m+ n)

P (X = n)
=
qm+n−1p

qn−1p
= qm.

Further, since

P (X > m) = P (X = m+ 1) + P (X = m+ 2) + P (X = m+ 3) + ... =

= q1q2...qmpm+1 + q1q2...qm+1pm+2 + q1q2...qm+2pm+3 + ... =

= q1q2...qm (pm+1 + qm+1pm+2 + qm+1qm+2pm+3 + ...) ,
we have

pm+1 + qm+1pm+2 + qm+1qm+2pm+3 + ... = 1

(an equation which is useful � it is a generalization of p+ qp+ q2p+ ... = 1 or,
equivalently, of 1 + q + q2 + ... = 1

1−q , where p, q ≥ 0, q 6= 1, p + q = 1, and
gives one way to obtain examples, as much as one likes, of convergent series)
and, since

P (X > m) = 1− P (X ≤ m) =

= 1− (P (X = 1) + P (X = 2) + P (X = 3) + ...+ P (X = m)) =

= 1− (p1 + q1p2 + q1q2p3 + ...+ q1q2...qm−1pm) ,
we have

p1 + q1p2 + q1q2p3 + ...+ q1q2...qm−1pm = 1− q1q2...qm



180 Udrea P�aun 24

(an equation which could be useful � it is a generalization of p+ qp+ q2p+ ...+
qm−1p = 1− qm, where p, q ≥ 0, p+ q = 1).

(b) By Theorem 4.13,

P (X = m+ n | X > m) = P
(
Y (m) = n

)
,∀m ≥ 0,∀n ≥ 1,

and, in particular, if trials are identically distributed,

P (X = m+ n | X > m) = P (X = n) ,∀m ≥ 0,∀n ≥ 1

(these are also lack-of-memory properties, see, for comparison, Theorem 4.7
and De�nition 4.8).

B.1.2. X = the waiting time of pattern Θ = ss (X is a random variable
with geometric distribution of order 2 when the trials are identically distributed
(see, e.g., [1, p. 11])).

Following the Markov chain method, we associate X with the Markov
chain (Xn)n≥0 with the state space S = 〈〈2〉〉 (we also can work with the state
space S = {λ, s,Θ}: λ instead of 0, s instead of 1, and Θ instead of 2), initial
distribution ψ0 = (1, 0, 0) , where P (X0 = 0) = 1, and transition matrices

Pn =

0

1

2

 qn pn 0

0 qn pn

0 0 1

 , n ≥ 1.

It follows that

P (X = n) = P (X0 < 2, X1 < 2, ..., Xn−1 < 2, Xn = 2) , ∀n ≥ 1.

Below we give other equations for P (X = n) .

Theorem 4.15. Under the above conditions we have, if pn ≥ qn (pn ≥
qn ⇐⇒ pn ≥ 1

2), ∀n ≥ 1,

P (X = n) =
_

α (P0,n−1Qn) =
_

µ (P0,n−1Qn) =

=
_

µ
(

(P0,n−1Qn){
_

n}
)

= 1− (P0,n−1Qn)0
_

n = (P0,n−1Qn)02 ,∀n ≥ 2

(P (X = 0) = P (X = 1) = 0).

Proof. Let n ≥ 2.We have (see before Theorem 1.2 again; see Theorem 1.5
and its proof again � we only need the �ctive state

_

n)

2
_

n

Qn =
0
1
2

 0 1
pn qn

0 1

 .
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The transition matrices of the above Markov chain are monotone, but Qn is
not. Nevertheless,

2
_

n

Pn−1Qn =

0

1

2

 pn−1pn 1− pn−1pn

qn−1pn 1− qn−1pn

0 1


is monotone if 1− pn−1pn ≤ 1− qn−1pn, i.e., since pn > 0, if pn−1 ≥ qn−1.

We consider the chain (Um)m≥0 with state spaces

Sm =

{
〈〈2〉〉 if m 6= n− 1,{

2,
_

n
}

if m = n− 1,

m ≥ 0, initial distribution ψ0 = (1, 0, 0), and transition matrices

Rm =


Pm if m 6= n− 1, n,

Pn−1Qn if m = n− 1,

Cn if m = n,

m ≥ 1, where
0 1 2

Cn :=
2
_

n

(
1 0 0

0 1 0

)
.

Since the chain (Um)m≥0 is monotone if pn ≥ qn,∀n ≥ 1, and

P (X = n) = P (X0 < 2, X1 < 2, ..., Xn−1 < 2, Xn = 2) =

= P (U0 < 2, U1 < 2, ..., Un−2 < 2, Un−1 = 2) =

= P (Un−1 = 2) = 1− P
(
Un−1 =

_

n
)
,

the equations from Theorem 4.15 follow by Theorem 2.8. �

We can obtain a result related to Theorem 4.15. Indeed, keeping the con-
ditions before Theorem 4.15, if we work with Pn−2Pn−1Qn instead of Pn−1Qn
(see the above proof), then the chain (Rm)m≥1 corresponding to this situation

is monotone if pn ≥ 1
3 (pn ≥ 1

3 ⇐⇒ qn ≤ 2
3), ∀n ≥ 1. Consequently, we have

P (X = n) =
_

α (P0,n−1Qn) =
_

µ (P0,n−1Qn) =

=
_

µ
(

(P0,n−1Qn){
_

n}
)

= 1− (P0,n−1Qn)0
_

n = (P0,n−1Qn)02 ,∀n ≥ 3.

(Warning! These equations hold, here, for n ≥ 3.) On the other hand, Theorem
4.15 leads to things similar to some from B.1.1, namely, Remark 4.11 and
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Theorem 4.12, with only the di�erence that these refer to the case pn ≥ qn,∀n ≥
1. Moreover, Theorem 4.15 leads to a result related to Theorem 4.13; more
precisely, keeping the same conditions as in Theorem 4.15, we have (for X from
here, i.e., from B.1.2)

P (X = m+ n) ≤ P (X > m)P
(
Y (m) = n

)
, ∀m ≥ 0,∀n ≥ 1,

where the random variables Y (m),m ≥ 0, are similar to those from A.1.1 and
B.1.1, and, in particular, if the trials are identically distributed,

P (X = m+ n) ≤ P (X > m)P (X = n) , ∀m ≥ 0,∀n ≥ 1.

The general inequality leads, for pn ≥ qn, ∀n ≥ 1 (see Theorem 4.15), to

P (X = m+ n)

P
(
Y (m) = n

) ≤ P (X > m) , ∀m ≥ 0,∀n ≥ 1

with P
(
Y (m) = n

)
> 0 (consequently,

P (X = m+ n)

P
(
Y (m) = n

)
is a lower bound for P (X > m) , ∀m ≥ 0, ∀n ≥ 1 with P

(
Y (m) = n

)
> 0 �

note that P
(
Y (m) = 1

)
= 0, ∀m ≥ 0, and, since pn ≥ qn ( pn ≥ qn =⇒ pn > 0),

∀n ≥ 1, we have P
(
Y (m) = n

)
> 0, ∀m ≥ 0, ∀n ≥ 2) and to

P (X = m+ n | X > m) ≤ P
(
Y (m) = n

)
,∀m ≥ 0, ∀n ≥ 1

(see also Remark 4.14 (b)). (The special inequality is left to the reader.)
For other examples of waiting time random variables, see, e.g., [1] and

[6] − our results, some of them with certain di�erences, could be extended to
many other cases.

In [16�17], using our method based on ergodicity coe�cients, etc., we
gave upper bounds for certain probabilities and for the expectation of certain
random variables (these studies could be used, in particular, to other ones,
such as the study of expectation under the perturbation of probabilities). In
this article, we used our method to obtain basic results for certain systems and
random variables (some of results, such as Theorems 3.2 and 4.3, are interesting
bridges between probability theory and Markov chain theory). This is the main
contribution of our work.
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