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The primary objects for the spectral theory of a linear bounded operator T on an
arbitrary complex Banach space X derive from a function θT of complex variable
λ given by the equality θT (λ) = λ− T , λ ∈ C. Some facts from spectral theory
for T can be considered more generally, in a natural way, for an arbitrary analytic
operator valued function θ of complex variable λ, θ(λ) linear bounded operator
on X for λ ∈ C. For instance, the spectrum of θ, σ(θ), consists of all λ ∈ C

with θ(λ) not invertible, such that in particular σ(θT ) = σ(T ), the spectrum
of T . In the following, Dunford's single valued extension property (s.v.e.p),
Bishop's spectral spaces and (β) property will be de�ned for θ in a similar way.
Some natural localizations of these properties to the open subsets of complex
numbers are de�ned and these localizations of (s.v.e.p) or (β) property hold
for θ in some open subset G ⊂ C. These localizations of (s.v.e.p) or Bishop's
property (β) for θT (i.e. for T ) for an arbitrary T hold for some open subsets
of C although (s.v.e.p) and (β) may be not true for T . First we use this in a
particular case in [20] (De�nition 2.1). The analysis of these localizations gives
also an evaluation of (s.v.e.p.) and (β) property for an arbitrary T . Finally, a
class of spectral subspaces for an arbitrary analytic operator valued function θ
of complex variable is de�ned. In particular, for θT this is a new class of spectral
subspaces of an arbitrary bounded operator T , intermediate between the strong
and weak Bishop's spectral spaces of T and having the restriction property to
the spectrum of T .
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1. INTRODUCTION

Let T ∈ B(X ) be a linear bounded operator on a complex Banach space
X and let C be the �eld of complex numbers. Generally speaking, a spectral
theory of T means a study of T in connection with a compact set of complex

REV. ROUMAINE MATH. PURES APPL. 61 (2016), 3, 185�228



186 Mihai �Sabac 2

numbers, the spectrum of T usually denoted by σ(T ) and de�ned as σ(T ) =
C \ ρ(T ), where

ρ(T ) = {λ ∈ C | (λI − T )−1 ∈ B(X )}

is the resolvent set of T .

The function R(λ, T ),the resolvent function of T is de�ned on ρ(T ) by

R(λ, T ) = (λI − T )−1, λ ∈ ρ(T ).

It is well known that R(., T ) is an analytic operator-valued function on ρ(T )
and the boundedness of T implies that ∞(the compacti�cation point of C) is
a regular point of it, actually ρ(T ) ∪ ∞ is a neighbourhood of ∞ containing
{z | | z |>‖ T ‖}, limλ→∞R(λ, T ) = 0 and the spectrum of T is a compact
subset of C, σ(T ) ⊂ {z | | z |≤‖ T ‖} .

If X is of �nite dimension, the objects de�ned above together with certain
subspaces associated to closed subsets of σ(T )(actually �nite subsets because
σ(T ) is also �nite in this case), named the spectral spaces associated to T , give
a complete description of the operator T .

The general in�nite dimensional case of T ∈ B(X ), a linear bounded
operator on a complex Banach space X , is far from being so well understood.
The important advances were made in the following two directions.

The �rst one concerns the study of certain operators having special prop-
erties while the second direction is primarily interested in spectral properties of
a completely arbitrary bounded operator T , speci�cally looking for those spec-
tral properties which hold for every T and are relevant for its structure. The
important advances in this direction are the results concerning the following
classes of operators. First, the Dunford's class of bounded operators having
the single valued extension property(s.v.e.p) and subclasses of Dunford scalar
or spectral operators [9,10] with their extensions: the class of scalar generalized
operators introduced by C. Foia�s [12] and the class of spectral generalized oper-
ators introduced by I. Colojoara [7]. Finally, observing that every spectral space
Y from the Jordan model of a linear �nite dimensional operator T contains all
T -invariant subspaces Z having the property σ(T | Z) ⊂ σ(T | Y), C. Foia�s in-
troduced the concept of a spectral maximal space and the corresponding in�nite
dimensional Jordan spectral model for a new class of operators called decom-
posable operators [13]. The class of decomposable operators is a subclass of the
class of operators having (s.v.e.p) and contains all the others classes mentioned
above, spectral and scalar generalized operators, spectral and scalar operators
(see also [1, 2, 8, 15, 17, 22]. As E. Albrecht and J. Eschmeier proved [1], every
bounded operator may be represented as a quotient of restriction of a decom-
posable operator. The restrictions and quotients of decomposable operators
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were becoming very important for the general spectral theory and not only for
it if we remember that S. Brown's result concerning the existence of invariant
subspaces for hyponormal operators with thick spectrum [6] was obtained after
M. Putinar proved [18] that every hyponormal operator is a restriction of a
decomposable operator.

The most relevant results for the second direction mentioned above are
Bishop's results. E. Bishop attached [3] to each closed subset F ⊂ C two
spectral subspaces for an arbitrary linear bounded operator T ∈ B(X ). These
spectral subspaces, called strong and weak respectively spectral manifolds of
T corresponding to F , were denoted by M(F, T ) respectively N(F, T ). The
generic element x of these manifolds is de�ned by the existence of a X -valued
analytic function f on C \ F which is an exact respectively approximative
solution for the equation (T −z)f(z) = x, z ∈ C\F . Using invariant subspaces
for T in particular these spectral manifolds, E. Bishop considers four types
of spectral theory called �duality theories�, establishing a certain duality of
spectral point of view between T and its adjoint T ∗ ∈ B(X ∗). One of these
dualities is valid for every T and the others, in some sense close to property
of Foia�s-decomposability of T , have as consequences certain classical results in
spectral theory such as the spectral theorem for Hermitian or unitary operators.
For a re�exive Banach space X and T an arbitrary linear bounded operator on
X , E. Bishop's weakest duality theory (of type 4) holds for every T and means
that the following inclusions hold:

M(F1, T )⊥ ⊃ N(F2, T
∗), N(F1, T )⊥ ⊃M(F2, T

∗)

M(G1, T )⊥ ⊂ N(G2, T
∗), N(G1, T )⊥ ⊂M(G2, T

∗)

for arbitrary F1, F2 disjoint compact subsets of the complex numbers C and
arbitrary open sets G1, G2 which cover C. The inclusionM(F, T ) ⊂ N(F, T ) is
always true. If X has �nite dimension, then M(F, T ) = N(F, T ) is a maximal
spectral space derived from Jordan model (decomposability of T ). Bishop's
property (β) for an arbitrary bounded linear operator T is a su�cient condition
for the equality M(F, T ) = N(F, T ) for every closed subset F ⊂ C and the
property (β) holds for every T ∈ B(X ) when X has �nite dimension.

Our aim in the paper is to enlarge the frame of spectral theory in those two
directions described before. As mentioned above, the primary objects for the
spectral theory of T are derived from an operator-valued function of complex
variable given by θT (λ) = λ − T, λ ∈ C. It is then natural to try to develop
a spectral theory starting from an arbitrary analytic operator valued function
θ(λ), λ ∈ C. Some facts from spectral theory can be considered for an analytic
operator valued function θ of complex variable λ, θ(λ) linear bonded operator
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on a complex Banach space X , such that, for θT , they reduced to the facts from
spectral theory of T and many of the results concerning the study of analytic
operator valued functions can be found in the well known book of I.Gohberg
and J.Leiterer [14]. As we mentioned above the spectrum of θ is de�ned such
that in particular σ(θT ) = σ(T ), the spectrum of T (see [16, 21]).

Single valued extension property (s.v.e.p.), Bishop's spectral spaces and
(β) property have not been considered for an arbitrary analytic operator valued
function θ. In the following, (s.v.e.p.), spectral spaces and (β) property will all
be generalized in the next Sections 2, 3, 4, 5, for an analytic operator valued
function θ, such that,for θT , they reduce to the well known (s.v.e.p.), Bishop's
spectral spaces and (β) property of T , respectively.

In the Sections 3, 4, 5 we also de�ne and analyse the localization of
(s.v.e.p.) and (β) property of θ to an arbitrary open subset of complex num-
bers G ⊂ C. For instance, the localization to G of (s.v.e.p.) for θ means the
injectivity of the following map de�ned on O(G,X ) ,

O(G,X ) 3 f → g ∈ O(G,X ); g(λ) = θ(λ)f(λ), λ ∈ G

and we say that G is analytic spectral compatible with θ or θ has (s.v.e.p.) on
G. For θT , this means f ∈ O(G,X ) and (λ − T )f(λ) = 0 for every λ ∈ G
implies f ≡ 0 (f(λ) = 0 for every λ ∈ G) such that G is analytic spectral
compatible with T or T has (s.v.e.p.) on G [20, Def. 2.1]. For an arbitrary T
these localizations of (s.v .e.p.) or (β) can hold for some open subsets G ⊂ C

although (s.v .e.p.) or (β) property may be not true for T . For instance, T
has (s.v.e.p.)on every ω an open subset of a set of analytic uniqueness of T
(see De�nition 1.1 in [22]). In particular, the above localization of (s.v .e.p.)
holds on every open set of analytic uniqueness of T . We observe also that the
above open sets G ⊂ C spectral compatible with T (i.e. T has (s.v.e.p.) on
G) are not necessarily open sets of analytic uniqueness of T , they are more
general sets. As T has (s.v .e.p.) or (β) property if and only if each localization
of this property holds for every open subset G ⊂ C, the analysis of these
localizations in Sections 3, 5, gives an evaluation of (s.v .e.p.) or (β) property
for an arbitrary T when these properties are not true for T . Finally, in Section
6 we obtain for θT , as a particular case of θ, a class of spectral spaces of T
intermediate between Bishop's spectral manifolds M(F, T ) and N(F, T ). This
new class is attached to a class of analytic functions on C\F , contains Bishop's
spectral manifolds M(F, T ) and N(F, T ) (see De�nition 6.3) and a new one
denoted L(F, T ), intermediate between M(F, T ) and N(F, T ). L(F, T ) has the
restriction property to the spectrum of T i.e. L(F, T ) = L(F∩σ(T ), T )for every
closed subset F ⊂ C. We recall that M(F, T ) has the restriction property to
the spectrum of T but N(F, T ) does not have this property.
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2. OPERATOR VALUED FUNCTIONS

OF COMPLEX VARIABLE

The basic concepts of spectral theory for a bounded linear operator
T ∈ B(X ) are derived from the invertibility of the operators λ − T for λ ∈ C.
The following two operator-valued functions give the basic concepts of the spec-
tral theory corresponding to T ∈ B(X ):

θT : C→ B(X ), θT (λ) = λ− T

R(., T ) : ρ(T )→ B(X ), R(λ, T ) = (λ− T )−1

It is possible to de�ne the concepts of resolvent and spectrum for an arbi-
trary operator-valued function θ de�ned on some set D of complex numbers,
θ : D → B(X ), D ⊂ C, such that ρ(θT ) = ρ(T ) and σ(θT ) = σ(T ).

De�nition 2.1. If θ : D → B(X ), D ⊂ C, is an operator valued function,
we de�ne

ρ(θ) = {λ ∈ D | θ(λ)−1 ∈ B(X )} and σ(θ) = D \ ρ(θ)

ρ(θ) is called the resolvent set of θ inD and σ(θ) is called the spectrum of θ inD.
The function R(λ, θ) = θ(λ)−1, λ ∈ ρ(θ), is called the resolvent function of θ.
R(., θ) : ρ(θ)→ B(X ) is an operator valued function on ρ(θ), ρ(R(., θ)) = ρ(θ)
and R(., R(., θ)) = θ | ρ(θ).

For θ : C → B(X ), ρ(θ) will be simply called the resolvent set of θ,
C \ ρ(θ) = σ(θ) the spectrum of θ; ρ(θ | D), respectively σ(θ | D) denotes the
resolvent set in D, respectively the spectrum in D of θ | D. R(., θ) is called the
resolvent function of θ and R(., θ | D) = R(., θ) | ρ(θ | D).

Remark 2.2. 1. The resolvent set of θT is ρ(θT ) = ρ(T ), σ(θT ) = σ(T )
and R(., θT ) = R(., T ). The resolvent set of R(., T ) in ρ(T ) is ρ(T ) and
the spectrum of R(., T ) in ρ(T ) is the empty set.

2. If R denotes the set of all invertible elements of B(X ) and θ is as in 2.1,
we have ρ(θ) = θ−1(R) ⊂ D, that is the inverse image of R through θ.

Obviously, the basic properties ρ(θT ) = ρ(T ) 6= ∅ respectively σ(θT ) =
σ(T ) 6= C are not true for all operator functions, not even for all analytic ones.
Then everywhere in the following we consider only operator-valued functions
having a nonempty resolvent set and, for simplicity, de�ned on the complex
�eld C, θ : C → B(X ), ρ(θ) 6= ∅. Everything can be easily restated for an
operator valued function de�ned on an open subset of C.

On the other hand for a continuous operator function, in particular for an
analytic operator function θ with ρ(θ) 6= ∅, ρ(θ) is like ρ(θT ) an open set and
R(λ, θ) is a continuous function.
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Remark 2.3. It is well known that R, the set of all invertible elements of
B(X ), is an open set in the Banach space B(X ) and the function on R de�ned
by T → T−1 is a continuous function.

This remark and 2 from Eemark 2.2, give the following.

Proposition 2.4. If θ : C → B(X ) is a continuous operator function
with ∅ 6= ρ(θ) = θ−1(R), then the resolvent set ρ(θ) is an open nonempty set of
C, and R(., θ) : ρ(θ) → B(X ), R(λ, θ) = (θ(λ))−1, the resolvent function of θ
is a continuous function.

The next proposition is also easy to prove.

Proposition 2.5. If θ : C → B(X ) is an analytic function (having a
nonempty resolvent set), then the resolvent function R(., θ) is an analytic func-
tion on the nonempty open set ρ(θ).

Proof. Using the de�nition, we obtain the C− derivability of R(., θ) in a
standard way as a consequence of Proposition 2.4:

d

dλ
R(λ, θ) = −θ(λ)−1[

d

dλ
θ(λ)]θ(λ)−1 �

In the following, we consider only analytic operator valued functions,
called for simplicity analytic operator functions, having a nonempty resolvent
set ρ(θ) 6= ∅( σ(θ) 6= C, the spectrum σ(θ) a closed subset not necessarily
compact).

3. SINGLE VALUED EXTENSION PROPERTY

AND ANALYTIC OPERATOR-VALUED FUNCTIONS

In order to de�ne in this context a single-valued extension property,
(s.v.e.p.), we use a general idea concerning operators acting in function spaces
used also in [17] to describe properties in connection with (s.v.e.p.) for T ∈
B(X ).

De�nition 3.1. If θ : C → B(X ) is an operator-valued function and the
set of X -valued functions on E ⊂ C is denoted {f | f : E → X}, we de�ne:

Φθ : {f | f : E → X} −→ {f | f : E → X}

[Φθf ](z) = θ(z)f(z) for every z ∈ E.

Remark 3.2. For θ = θT , ΦθT = Tz (from [17]), (Tzf)(λ) = (λ − T )f(λ)
and for simplicity we denote ΦT = ΦθT .
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If we consider θ : C → B(X ) an analytic operator-valued function and
O(G,X ) the Fr�echet space of analytic X -valued functions on an arbitrary open
subset G ⊂ C, it is easy to observe the following.

Remark 3.3. The simple identity

θ(z)f(z)− θ(z0)f(z0)

z − z0
= θ(z)

f(z)− f(z0)

z − z0
+
θ(z)− θ(z0)

z − z0
f(z0)

implies that

Φθ : O(G,X ) −→ O(G,X ).

If for any x ∈ X we denote by x the constant function on G having value
x, we write x ∈ O(G,X ) for every x ∈ X .

The following de�nition describes an adequate set of analytic function on
G in order to introduce (s.v.e.p.) for θ on the open subset G ⊂ C. We mention
that the same set will be used in the following Section 4 to de�ne the strong
Bishop's spectral spaces for θ.

De�nition 3.4. The set Φ−1
θ ({x})∩O(G,X ), for every x ∈ X and an open

subset G ⊂ C, is called the (e.p.) index, the extention property index, attached
to θ in x on the open subset G ⊂ C.

For θ = θT , T ∈ B(X ) the (e.p) index of θT is called (e.p.) index attached
to T in x ∈ X on the open subset G ⊂ C.

When (e.p.) index attached to θ on G in x is nonempty then there exists
an analytic extension of R(., θ)x on G i.e. θ has �extension property�, (e.p.),
on G in x and it justi�es the name.

Obviously, the (e.p.) index for θ in x ∈ X on G has at the most one
element if and only if the (e.p.) index for θ in 0 ∈ X on G is reduced to
0 ∈ O(G,X ). The (s.v.e.p.) for θ on the open set G is given now by the
following property of the (e.p.) index attached to θ.

De�nition 3.5. Let θ : C→ B(X ) be an analytic operator-valued function
and let G be an arbitrary open subset G ⊂ C. We say that θ has (s.v.e.p.) on
G(or G is spectral analytic compatible with θ) if one of the following equivalent
conditions holds:

1. the (e.p.) index attached to θ in 0 ∈ X on G is reduced to 0 ∈ O(G,X ),

2. Φθ is injective on O(G,X ),

3. the (e.p.) index attached to θ in x ∈ X on G has at the most one
element f ∈ O(G,X ) for every x ∈ X .

If θT has (s.v.e.p.) on G we say that T has (s.v.e.p.) on G (or G is spectral
analytic compatible with T , see De�nition 2.1 [20]).
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We simply say θ has (s.v.e.p.) if θ has (s.v.e.p.) on every open subset
G ⊂ C. If θT has (s.v.e.p.), this means that T has (s.v.e.p.) on every open
subset G ⊂ C i.e. T has (s.v.e.p.) in Dunford's well known sense.

Remark 3.6. 1. By 3. of the above De�nition, θ has (s.v.e.p.) on G
means that every nonempty (e.p.) index attached to θ in x ∈ X on G , ∅ 6=
Φ−1
θ ({x})∩O(G,X ) has a �single value�, the unique analytic extension to G of

the analytic function R(., θ)x (R(., T )x for θ = θT ) i.e. θ has a �single value�
for its �extension property� in x ∈ X on G.

2. If G1 ⊂ G2 are two open subsets of C then the restriction to G1 of
the (e.p.) index attached to θ in x ∈ X on G2 is contained in the (e.p.) index
attached to θ in x ∈ X on G1 and the (s.v.e.p.) for θ can hold on G2 but not
on G1 ⊂ G2.

3. A set of analytic uniqueness for T (see [22]) is an open subset Ω ⊂ C

such that T has (s.v.e.p.) on every open subset ω ⊂ Ω.

Let us consider now an analytic operator function θ : C → B(X )
(ρ(θ) 6= ∅).

Examples 3.7. Using ρ(θ) the resolvent set of θ, a nonempty open subset
of C, we can describe open subsets G ⊂ C such that θ has (s.v.e.p.) on G.

e1. θ has (s.v.e.p) on every open subset G ⊂ ρ(θ) because θ(z) is invertible
for every z ∈ ρ(θ).

e2. θ has (s.v.e.p.) on every open connected subsetD ⊂ C having a nonempty
intersection with ρ(θ) as a consequence of e1 and the theorem of identity
applied to the elements of the (e.p.) index attached to θ in 0 ∈ X on D.

e3. If θ has (s.v.e.p.) on an open subset V , ∅ 6= V ⊂ U , U a connected
open subset of C , then θ has (s.v.e.p.) on U . If θ has not (s.v.e.p.) on
the connected open subset U of C, then θ has not (s.v.e.p.) on every
nonempty open subset V of U .

e4. If the sets Uα ⊂ C are open for all α ∈ I and θ has (s.v.e.p.) on Uα, then
θ has (s.v.e.p.) on

⋃
α∈I

Uα.

Lemma 3.8. There exists a nonempty set Ds
θ, the largest open subset of C

such that θ has (s.v.e.p.) on every open subset G ⊂ Ds
θ.

Always Ds
θ ⊃ ρ(θ) and Ds

θ = C means that θ has (s.v.e.p.).

This lemma extends to an arbitrary analytic operator function θ, a similar
result of F.-H. Vasilescu [22] for T ∈ B(X ).

Proof. Let us denote Gsθ = {D ⊂ C open | θ has (s.v.e.p.) on every open
G ⊂ D}. If Ds

θ exists it would have to be the largest set in Gsθ . We will prove
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that Ds
θ =

⋃
D∈ Gsθ

D. Indeed, by e1, ρ(θ) ∈ Gsθ thus ∅ 6= ρ(θ) ⊂ Ds
θ. Hence D

s
θ is a

nonempty open set. If G is an open subset G ⊂ Ds
θ, we have G =

⋃
D∈ Gsθ

G∩D
and by e4 θ has (s.v.e.p.) on G because G∩D is an open subset of D for every
D ∈ Gsθ and θ has (s.v.e.p.) on G ∩D by de�nition of Gsθ . Hence Ds

θ ∈ Gsθ and
it is the largest set of Gsθ and the proof ends. �

Let G ⊂ C be now an arbitrary open subset and let G =
⋃
α∈Λ

Gα be

the decomposition of G given by its connected components (open subsets) Gα,
α ∈ Λ, of G. Using this decomposition we describe open subsets of G such that
θ has (s.v.e.p.) on it.

De�nition 3.9. For the above decomposition of G we denote

Λθ = {α ∈ Λ | Gα ∩ ρ(θ) 6= ∅} and Gρ(θ) =
⋃
α∈Λθ

Gα

and we call Gρ(θ) the θ-spectral interior of G.

Remark 3.10. Obviously G =
⋃

α∈Λθ

Gα ∪
⋃

α∈Λ\Λθ
Gα = Gρ(θ) ∪

⋃
α:Gα⊂σ(θ)

Gα

and (Gρ(θ))ρ(θ) = Gρ(θ)

Observing that every analytic function h on Gα has an analytical exten-
sion f to G, f | Gβ = 0 for every β 6= α, it results from e4 the following
equivalence:

e5. θ has (s.v.e.p.) on G if and only if θ has (s.v.e.p.) on every connected
component of G, i.e. for every Gα, α ∈ Λ.

From e2, e4 we deduce also the following property.

e6. For every open subset G ⊂ C, θ has (s.v.e.p.) on Gρ(θ) and Gρ(θ) is a
nonempty set if and only if G ∩ ρ(θ) 6= ∅.

The following property follows from e5.

e7. θ has (s.v.e.p.) on G if and only if θ has (s.v.e.p.) on every connected
component of G contained in σ(θ). In other words, the connected com-
ponents of G contained in σ(θ) determine whether θ has (s.v.e.p.) on G.
Thus, θ does not have (s.v.e.p.) on G if and only if there exists a con-
nected component Gα of G, Gα ⊂ σ(θ) and θ has not (s.v.e.p.) on every
open subset of Gα (see e3).

Now e8 is an easy consequence of e7.

e8. θ has (s.v.e.p.) (i.e. (s.v.e.p.) on every open G ⊂ C) if and only if θ has
(s.v.e.p.) on every connected open subset of σ(θ).

Lemma 3.11. For every open subset G ⊂ C there exists Sθ(G) the largest
open subset of G such that θ has (s.v.e.p.) on it.
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Proof. If we denote

Gθ = {ω | ω open subset in G, θ has (s.v.e.p.) on ω},

then using e4, Sθ(G) =
⋃

ω∈Gθ
ω ∈ Gθ. �

Remark 3.12. IfG has no nonempty open subsets on which θ has (s.v.e.p.),
then Sθ(G) = Gρ(θ) = ∅ and G ⊂ σ(θ). Obviously Gρ(θ) ⊂ Sθ(G) and Sθ(G) 6=
∅ if Gρ(θ) 6= ∅.

Let G ⊂ C be a �xed arbitrary open subset and let G =
⋃
α∈Λ

Gα be the

decomposition given by the set of all connected components(open subsets) of
G. If Sθ(G) is the set from Lemma 3.11 then its decomposition given by all its
connected components can be given in terms of σ(θ) and connected components
of Gρ(θ)(from De�nition 3.9). For this we �rst make some useful remarks.

Lemma 3.13. If G,ω are two nonempty open subsets of C, G =
⋃
α∈Λ

Gα

and ω =
⋃
β∈Υ

ωβ being the decompositions given by the connected components of

G respectively ω, then the following implications hold:

1. ω ⊂ G =⇒ ωρ(θ) ⊂ Gρ(θ)

2. Gρ(θ) ⊂ ω =⇒ Gρ(θ) ⊂ ωρ(θ)

3. Gρ(θ) ⊂ ω ⊂ G =⇒ ωρ(θ) = Gρ(θ) and the connected components of G
which have nonempty intersection with ρ(θ) are the connected components
of ω which have nonempty intersection with ρ(θ).

Proof. We recall that

Λθ = {α ∈ Λ | Gα ∩ ρ(θ) 6= ∅} and Gρ(θ) =
⋃
α∈Λθ

Gα

and

Υθ = {β ∈ Υ | ωβ ∩ ρ(θ) 6= ∅} and ωρ(θ) =
⋃
β∈Υθ

ωβ

If ω ⊂ G, then
⋃
β∈Υ

ωβ ⊂
⋃
α∈Λ

Gα and for β ∈ Υ there exists a unique α(β) ∈ Λ

such that ωβ ⊂ Gα(β) because Gα is a connected component of G, ωβ ⊂
⋃
α∈Λ

Gα

and ωβ is a connected set as being a connected component of ω. If β ∈ Υθ we
have ωβ ∩ ρ(θ) 6= ∅ and than obviously Gα(β) ∩ ρ(θ) 6= ∅. Therefore, for every
β ∈ Υθ we have ωβ ⊂ Gα(β) ⊂ Gρ(θ) and 1. has been proved.

2. is an easy consequence of 1. because from Gρ(θ) ⊂ ω we deduce
using 3.10 Gρ(θ) = (Gρ(θ))ρ(θ) ⊂ ωρ(θ).
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3. the equality ωρ(θ) = Gρ(θ) is an easy consequence of 1. and 2. On the
other hand, for α ∈ Λθ, β ∈ Υθ, Gα respectively ωβ are all the connected com-
ponents of Gρ(θ) respectively ωρ(θ) and the above equality shows that these are
the same which concludes the proof of 3. and the lemma has been proved. �

Using 3.13 and 3.10 we can describe (s.v.e.p.) for θ on ω when Gρ(θ) ⊂
ω ⊂ G.

Proposition 3.14. Let Gρ(θ) ⊂ ω ⊂ G as in Lemma 3.13. If θ has
(s.v.e.p.) on ω then we have

ω = ωρ(θ) ∪
⋃

β:ωβ⊂σ(θ)

ωβ = Gρ(θ) ∪
⋃

β:ωβ⊂σ(θ)

ωβ

θ has (s.v.e.p.) on ωβ for every β ∈ Υ and by Examples 3.7(e3) on every Gα(β)

where α(β) ∈ Λ is unique with the property ωβ ⊂ Gα(β).

For ω = Sθ(G) a similar result as in the above proposition is more precise
and describes its connected components.

Proposition 3.15. If G ⊂ C is an open subset of C and G =
⋃
α∈Λ

Gα is

the decomposition given by the set {Gα}α∈Λ of the connected components(open
subsets) of G, then Sθ(G) the largest open subset of G on which θ has (s.v.e.p.)
is given by

Sθ(G) =
⋃
α∈ΛS

Gα, ΛS = {α ∈ Λ | θ has (s.v.e.p.) on Gα} ⊃ Λθ

and {Gα}α∈ΛS are the connected components of Sθ(G); in other words, the
above equality is the decomposition of Sθ(G) given by its connected components.

Proof. By (e3) θ has (s.v.e.p.) on
⋃

α∈ΛS

Gα because θ has (s.v.e.p.) on Gα

for every α ∈ ΛS . Let ω be an arbitrary open subset of G and ω =
⋃
β∈Υ

ωβ

the decomposition given by its connected components. If θ has (s.v.e.p.) on ω
then θ has (s.v.e.p.) on ωβ for every β ∈ Υ. But ωβ is a connected set and
then there exists α(β) ∈ Λ such that ωβ ⊂ Gα(β). So, for every β ∈ Υ we
deduce from (e3) that θ has (s.v.e.p.) on Gα(β) and α(β) ∈ ΛS . Therefore we
deduce ω ⊂

⋃
β∈Υ

Gα(β) ⊂
⋃

α∈ΛS

Gα. Thus we have proved that θ has (s.v.e.p.) on⋃
α∈ΛS

Gα and
⋃

α∈ΛS

Gα contains every open subset ω ⊂ G if θ has (s.v.e.p.) on

ω. This means Sθ(G) =
⋃

α∈ΛS

Gα(see Lemma 3.11) and obviously this equality

is the decomposition of Sθ(G) given by its connected components. �
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Corollary 3.16. Let G be an open subset of C, G =
⋃
α∈Λ

Gα the decom-

position given by its connected components and Gρ(θ) =
⋃

α∈Λθ

Gα the θ-spectral

interior of G, Λθ = {α ∈ Λ | Gα ∩ ρ(θ) 6= ∅}(Definition 3.9). Let Sθ(G) be
the largest open subset of G on which θ has(s.v.e.p.) (3.11), Sθ(G) =

⋃
γ∈Γ

Sγ the

decomposition given by its connected components, Γθ = {γ ∈ Γ | Sγ∩ρ(θ) 6= ∅},
(Sθ(G))ρ(θ) =

⋃
γ∈Γθ

Sγ the θ-spectral interior of Sθ(G). Then we have,

{Sγ | γ ∈ Γθ} = {Gα | α ∈ Λθ}, (Sθ(G))ρ(θ) = Gρ(θ)

{Sγ | γ ∈ Γ \ Γθ} = {Gα | α ∈ ΛS \ Λθ} =

= {Gα | Gα ⊂ σ(θ), θ has (s.v.e.p.) on Gα}
and

Sθ(G) = Gρ(θ) ∪
⋃

α∈ΛS\Λθ

Gα = Gρ(θ) ∪ sσ(θ)(G)

where we denoted
⋃

α∈ΛS\Λθ
Gα = sσ(θ)(G).

Proof. Indeed, by Proposition 3.15 we have

Sθ(G) =
⋃
α∈ΛS

Gα =
⋃
α∈Λθ

Gα ∪
⋃

α∈ΛS\Λθ

Gα,

where

ΛS = {α | θ has (s.v.e.p.) on Gα} ⊃ Λθ.

So

{Sγ | γ ∈ Γθ} = {Gα | α ∈ Λθ},

Gρ(θ) =
⋃
α∈Λθ

Gα =
⋃
γ∈Γθ

Sγ = (Sθ(G))ρ(θ)

and

Sθ(G) = Gρ(θ) ∪ sσ(θ)(G). �

Proposition 3.17. If G1, G2 are two open subsets of C, then

G1
ρ(θ) ∪G

2
ρ(θ) ⊂ (G1 ∪G2)ρ(θ).

Proof. The following obvious property will be used.

If G is an open subset of C and Gα is a connected component of G, then
for every connected subset C ⊂ G we have either C∩Gα = ∅, or C ⊂ Gα. So, if
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G =
⋃
j∈J

Cj and Cj are connected subsets for every j ∈ J , then every connected

component Gα of G is given by

Gα =
⋃
j∈Jα

Cj , Jα = {j | Cj ∩Gα 6= ∅}.

Let now G1, G2 be open subsets of C from the above proposition and
G1 =

⋃
α∈Λ1

G1
α, G

2 =
⋃

β∈Λ2

G2
β the decompositions given by all the connected

components of G1, respectively G2. Denote by {G1,2
ν , ν ∈ Λ1.2} the set of all

connected components of G1 ∪G2.

Obviously, every connected component of G1 or G2 is contained in some
connected component of G1 ∪G2.

Every connected component of G1 ∪ G2 is a union of some connected
components of G1 or G2. The following equality explains this and follows by
the above remark

G1,2
ν =

⋃
α∈Λ1,ν

G1
α ∪

⋃
β∈Λ2,ν

G2
β ,

where

Λi,ν = {α ∈ Λi | Giα ∩G1,2
ν 6= ∅}, i = 1, 2.

As mentioned above for every α ∈ Λ1, β ∈ Λ2 there exist ν(α), ν(β) such
that G1

α ⊂ G1,2
ν(α), G

2
β ⊂ G1,2

ν(β). So G1
α ⊂ G1

θ(i .e. G
1
α ∩ ρ(θ) 6= ∅) implies

G1
α ⊂ G

1,2
ν(α) ⊂ (G1 ∪G2)θ and in a similar way G2

β ⊂ G2
θ implies G2

β ⊂ G
1,2
ν(β) ⊂

(G1∪G2)θ. Thus, by De�nition 3.9 we obtain G1
ρ(θ)∪G

2
ρ(θ) ⊂ (G1∪G2)ρ(θ). �

Remark 3.18. Some assertions from the above proof show that generally
speaking the above inclusion given in Proposition 3.17 is not an equality. For
example let G1, G2 be two nonempty connected open subsets of C such that
G1∩ρ(θ) = ∅ andG2∩ρ(θ) 6= ∅ (in particularG1∩G2∩ρ(θ) = ∅). IfG1∩G2 6= ∅,
then G1∪G2 is a connected open set, (G1∪G2)ρ(θ) = G1∪G2, G

1
ρ(θ) = ∅, G2

ρ(θ) =

G2, and G2 = G1
ρ(θ) ∪G

2
ρ(θ) ⊂6=

(G1 ∪G2)ρ(θ) = G1 ∪G2.

Corollary 3.19. If G1, G2 are two open subsets of C, G1∩G2 = ∅, then

G1
ρ(θ) ∪G

2
ρ(θ) = (G1 ∪G2)ρ(θ).

Proof. Using the notations of Proposition 3.17, we have G1
α ∩G2

β = ∅ for
every α ∈ Λ1, β ∈ Λ2. So, for every connected component G1,2

ν of G1∪G2 there
exists a unique α(ν) ∈ Λ1 such that G1,2

ν = G1
α(ν), or there exists a unique

β(ν) ∈ Λ2 such that G1,2
ν = G2

β(ν). �
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Remark 3.20. If θ = θT for some T ∈ B(X ) then ρ(θ) = ρ(T ) 6= ∅ and any
of the above assertions concerning (s.v.e.p.) for θ gives an assertion concerning
(s.v.e.p.) for T .

Let T ∈ B(X ). We now translate for θT , hence for T , only e1, . . . , e8,
Lemma 3.8, De�nition 3.9, Lemma 3.11, Proposition 3.15 and Corollary 3.16
but any other of the assertions concerning (s.v.e.p.) for θ can also be rewritten
in the same way for T .

f1. T has (s.v.e.p.) on every open subset G ⊂ ρ(θ).

f2. T has (s.v.e.p.) on every open connected subsetD ⊂ C having a nonempty
intersection with ρ(T ).

f3. If T has (s.v.e.p.) on an open subset V , ∅ 6= V ⊂ U , U a connected open
subset of C, then T has (s.v.e.p.) on U .

f4. If Uα ⊂ C are open for all α ∈ I and Thas (s.v.e.p.) on Uαfor all α ∈ I,
then T has (s.v.e.p.) on

⋃
α∈I

Uα.

Lemma 3.21. There exists a nonempty set Ds
T , the largest open subset of

C such that T has (s.v.e.p.) on every open subset G ⊂ Ds
T . (see Proposi-

tion 2.1 [22])
Always Ds

T ⊃ ρ(T ) and Ds
T = C means that T has (s.v.e.p.).

Let G ⊂ C be now an arbitrary open subset and let G =
⋃
α∈ΛGα be

the decomposition of G given by Gα, α ∈ Λ, the connected components (open
subsets) of G.

De�nition 3.22. For the above decomposition of G we denote

ΛT = {α ∈ Λ | Gα ∩ ρ(T ) 6= ∅} and Gρ(T ) =
⋃
α∈ΛT

Gα

and we call Gρ(T ) the T -spectral interior of G (a particular case of De�ni-
tion 3.9).

f5. T has (s.v.e.p.) on G if and only if T has (s.v.e.p.) on every connected
component of G, i.e. for every Gα, α ∈ Λ.

f6. For every open subset G ⊂ C, T has (s.v.e.p.) on Gρ(T ) and Gρ(T ) is a
nonempty set if and only if G ∩ ρ(T ) 6= ∅.

f7. T has (s.v.e.p.) on G if and only if T has (s.v.e.p.) on every connected
component of G contained in σ(T ). In other words, the connected com-
ponents of G contained in σ(T ) determine whether T has (s.v.e.p.) on
G.

f8. T has (s.v.e.p.) (i.e. (s.v.e.p.) on every open G ⊂ C) if and only if T
has (s.v.e.p.) on every connected open subset of σ(T ).
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Lemma 3.23. For every open subset G ⊂ C there exists ST (G) the largest
open subset of G such that T has (s.v.e.p.) on it (see Lemma 3.11).

Proposition 3.24. If G ⊂ C is an open subset of C and G =
⋃
α∈Λ

Gα is

the decomposition given by the set {Gα}α∈Λ of the connected components (open
subsets) of G, then ST (G) the largest open subset of G on which T has (s.v.e.p.)
is given by

ST (G) =
⋃
α∈ΛS

Gα, ΛS = {α | T has (s.v.e.p.) on Gα} ⊃ ΛT

and {Gα}α∈ΛS are the connected components of ST (G); in other words, the
above equality is the decomposition of ST (G) given by its connected components.

The decomposition of ST (G) given by its connected components can be
detailed as in Proposition 3.15 and the structure of ST (G) can be described in
the following corollary.

Corollary 3.25. Let G be an open subset of C, G =
⋃
α∈Λ

Gα the de-

composition given by its connected components and Gρ(T ) =
⋃

α∈ΛT

Gα the T -

spectral interior of G(De�nition 3.22). Let ST (G) be the largest open subset
of G on which T has(s.v.e.p.) (Lemma 3.23), ST (G) =

⋃
γ∈Γ

Sγ the decomposi-

tion given by its connected components, ΓT = {γ ∈ Γ | Sγ ∩ ρ(T ) 6= ∅} and
(ST (G))ρ(T ) =

⋃
γ∈ΓT

Sγ the T -spectral interior of ST (G). Then we have,

{Sγ | γ ∈ ΓT } = {Gα | α ∈ ΛT }, (ST (G))ρ(T ) = Gρ(T ),

{Sγ | γ ∈ Γ \ ΓT } = {Gα | α ∈ ΛS \ ΛT } =

{Gα | Gα ⊂ σ(T ), T has (s.v.e.p.) on Gα}.
Denoting

⋃
α∈ΛS\ΛT

Gα = sσ(T )(G) we obtain

ST (G) = Gρ(T ) ∪
⋃

α∈ΛS\ΛT

Gα = Gρ(T ) ∪ sσ(T )(G).

4. THE NONEMPTINESS OF THE EXTENSION PROPERTY

INDEX AND SPECTRAL SPACES ATTACHED

TO AN ANALYTIC OPERATOR VALUED FUNCTION

ON A BANACH SPACE X

Let us consider as before, a complex Banach space X and an analytic
operator function θ : C −→ B(X ) with a nonempty resolvent ρ(θ) 6= ∅. Then,
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for every open subset G ⊂ C we recall the map Φθ from De�nition 3.1 de�ned
on the Fr�echet space O(G,X ) of all analytic X -valued functions on G:

Φθ : O(G,X ) −→ O(G,X ), [Φθ(f)](z) = θ(z)f(z), ∀z ∈ G

Every x ∈ X is canonically identi�ed with the constant analytical function
on G with value x and Φ−1

θ ({x}) was called the (e.p.) index of θ in x on the
open subset G (De�nition 3.4). Obviously Φθ is a linear continuous map in
the Fr�echet topology of O(G,X ) and Φ−1

θ ({x}) is a closed Fr�echet subspace of
O(G,X ). The Banach space X is identi�ed with the closed Fr�echet subspace of
O(G,X ) consisting of all constant function on G. Thus we have

⋃
x∈X

Φ−1
θ ({x}) =

Φ−1
θ (X ) also a Fr�echet subspace of O(G,X ).

We can de�ne the strong spectral spaces of θ in the same way as Bhishop's
strong spectral spaces of T (i.e. θT ) is given by a property of (e.p.) index of θT
in x on the open subset G(De�nition 3.4). So, these strong spectral spaces of θ
are the Banach subspaces of X given by the non-emptiness of the (e.p.) index
of θ. Actually, such a subspace is attached to an arbitrary �xed open subset
G ⊂ C and consists of the points x ∈ X for which the (e.p.) index of θ in x on
G ⊂ C is a nonempty set.

De�nition 4.1. For every closed subset F ⊂ C we call the strong spectral
Bishop space of θ (or the strong θ-spectral Bishop space)corresponding to F ,
the following closed subspace of X :

M(F, θ) = M0(F, θ), M0(F, T ) = {x ∈ X | Φ−1
θ ({x}) 6= ∅},

where Φ−1
θ ({x}) is the extension property index attached to θ in the point

x ∈ X on the open set G = C \ F .

Remark 4.2.
1. Obviously, the map Φθ depends on the open setG. To keep the notation

simple, we use the same notation Φθ for each G and we always specify the set
G on which we consider the map Φθ and correspondingly the (e.p.) index of θ.

2. x ∈ M0(F, θ) means the nonemptiness of the (e.p.) index of θ in x on
the open subset C \ F .

3. For θ = θT , T ∈ B(X ),M(F, θT ) = M(F, T ) is the Bishop's strong
spectral space of T corresponding to F (see [3]).

De�nition 4.3. We call the weak spectral Bishop space of θ, or the weak
θ-spectral Bishop space corresponding to a closed subset F ⊂ C, the following
closed subspace of X :

N(F, θ) =

{x ∈ X | ∀ε > 0,∃fε ∈ O(C \ F,X ), ‖ [Φθ(fε)](z)− x ‖< ε,∀z ∈ C \ F} =
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{x ∈ X | ∀ε > 0,∃gε ∈ Φθ(O(C \ F,X )), ‖ gε(z)− x ‖< ε,∀z ∈ C \ F}.

Remark 4.4.
1. N(F, θ) consists of all x ∈ X such that there exists a sequence (fn)n,

(fn)n ⊂ O(C \ F,X ) and

θ(z)(fn)(z)→ x, uniformly on C \ F, as n→∞.

2. If we denoteM(C \ F,X ) the Banach space of all bounded X -valued
functions on C \ F with ‖ ‖∞, we have

N(F, θ) = Φθ(O(C \ F,X )) ∩M(C \ F,X )
∞ ∩ X ,

where ( )
∞

means the closure in ‖ ‖∞ and X is identi�ed with the space of
X -valued constant functions, here on C \ F .

3. If θ = θT , T ∈ B(X ), then N(F, θ) = N(F, T ) is Bishop's weak spectral
space of T corresponding to F (see [3]) and all the results which follow can be
rewritten for θT , and thus for T .

The following properties of the spectral spaces of θ follow directly from
De�nitions 4.1 and 4.3.

General Properties:

P1. M(F, θ) ⊂ N(F, θ) for every closed subset F ⊂ C.

P2. The maps F −→M(F, θ), F −→ N(F, θ) are monotone.

P3. X = M(F, θ) = N(F, θ) for every closed subset F ⊃ σ(θ).

As we can see in 3.3, X can be identi�ed with O(C\F,X )ct the subspace of all
X -valued constant functions on C\F , a closed Fr�echet subspace of O(C\F,X )
and

Φθ : O(C \ F,X ) −→ O(C \ F,X )

is a continuous linear map. So we denote Oθ(C\F ) = Φ−1
θ (X ) a closed(Fr�echet)

subspace of O(C\F,X ) and obviouslyM0(F, θ) = Φθ(Oθ(C\F )). This proves
the following property.

P4. The strong θ-spectral Bishop space attached to a closed subset F ⊂ C is
the closure in X of the image of a linear continuous map Φθ restricted to
a Fr�echet space Oθ(C \ F ).

M0(F, θ) = Φθ(Oθ(C \ F )) and M(F, θ) = Φθ(Oθ(C \ F ))

Properties in connection with (s.v.e.p.)
First, we prove some equivalent assertions concerning the consistency of

(e.p.) index of an analytic operator valued function θ in x ∈ X on an open
subset D ⊂ C. As a consequence of these equivalences we can describe more
precisely the general property P4 when θ has (s.v.e.p.) on the open subset
C \ F . The next lemma follows directly from de�nitions.
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Lemma 4.5. Let θ be an analytic operator valued function having (s.v.e.p.)
on an open subset D ⊂ C. The following assertions concerning the consistency
of (e.p.) index of θ in x ∈ X on the open subset D ⊂ C are equivalent:

(i) Φ−1
θ ({x}) 6= ∅,

(ii) Φ−1
θ ({x}) consists of only one element.

Proposition 4.6. Let D be a connected open subset D ⊂ C such that
D ∩ ρ(θ) 6= ∅. The following assertions concerning the consistence of (e.p.)
index of θ in x ∈ X on the open subset D ⊂ C are equivalent:

(i) Φ−1
θ ({x}) 6= ∅,

(ii) Φ−1
θ ({x}) consists of only one element,

(iii) The function z −→ R(z, θ)x = (θ(z))−1x has a unique analytic extension
on D.

Proof. We can apply the above lemma because by e2 in 3.7, θ has (s.v.e.p.)
on D. The proof is completed by observing that a solution f ∈ O(D,X ) of the
equation Φθf = x satis�es the equality f(z) = (θ(z))−1x = R(z, θ)x for every
z ∈ D ∩ ρ(θ) and we can apply the identity theorem for analytic functions on
the connected open set D. �

Corollary 4.7. For an arbitrary open subset G ⊂ C let Gρ(θ) be the

θ-spectral interior of G (see De�nition 3.9 and e6), and Φ−1
θ ({x}) the (e.p.)

index of θ in a point x ∈ X on the open subset Gρ(θ) ⊂ C. The following
assertions are equivalent:

(i) Φ−1
θ ({x}) 6= ∅

(ii) Φ−1
θ ({x}) consists of only one element

(iii) The function z −→ R(z, θ)x has a unique analytic extension on Gρ(θ).

Proof. We apply the above proposition for every connected component of
Gρ(θ). �

Remark 4.8. If θ has (s.v.e.p.) on C \ F , then Φθ from P4 of General
properties is an isomorphism between Oθ(C \ F ) and M0(F, θ).

By this remark we derive from P4 the following property.

P5. If F is a closed subset of C and θ an analytic operator valued function
having (s.v.e.p.) on C \ F , then the strong θ-spectral Bishop space cor-
responding to F is the closure in X of the image of a linear continuous
X -valued injective map de�ned on a Fr�echet space.

For every closed subset F ⊂ C with (C \ F ) ∩ ρ(θ) 6= ∅, θ has (s.v.e.p.) on
(C \ F )ρ(θ) 6= ∅ the θ-spectral interior of C \ F (see De�nition 3.9 and e6). So
the complement of the θ-spectral interior of (C \ F ) is a closed subset of C
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which exempli�es the above Remark 4.8. Some notations will be useful for
describing this particular case given by (C\F )ρ(θ). We recall that Gρ(θ), the θ-
spectral interior of G (see 3.9, e6) was de�ned as the union of all the connected
components of G having nonempty intersection with the resolvent set ρ(θ),
(Gρ(θ))ρ(θ) = Gρ(θ) and θ has (s.v.e.p.) on Gρ(θ).

De�nition 4.9. For an arbitrary closed subset F of C and θ an analytic
operator valued function, we denote F θ = C \ (C \ F )ρ(θ), which is a closed

subset of C. We call F θ the θ-spectral closure of F .

Obviously F ⊂ F θ, F = (F θ)θ, C \ F θ = (C \ F )ρ(θ), θ has (s.v.e.p.) on

C \ F θ, and F = F θ if and only if every connected component of C \ F has a
nonempty intersection with ρ(θ). Thus the consequence of Remark 4.8 can be
easily written for F θ as a particular case of property P5.

P6. If F is an arbitrary closed subset of C and θ an analytic operator valued
function, then the strong θ-spectral Bishop space attached to F θ is the
closure in X of the image of a linear injective continuous map de�ned on
a Fr�echet space with values in X .
Proof. Indeed Φθ : Oθ(C \F θ) −→ X is a continuous linear injective map

and

Φθ(Oθ(C \ F θ)) = M0(F θ, θ), Φθ(Oθ(C \ F θ)) = M(F θ, θ). �

Proposition 4.10. Let us consider now F a closed subset of C and θ
an analytic operator valued function having (s.v.e.p.) on C \ F (in particular
F can be the θ-spectral closure of a closed arbitrary subset). Then the inverse
operator of the restriction Φθ | Oθ(C\F ) given in P4 is a closed densely de�nite
operator S in M(F, θ) (the corresponding to F strong θ-spectral Bishop space
which is a Banach subspace of X ):

S : M0(F, θ)→ O(C \ F ), M0(F, θ) = M(F, θ).

Proof. Indeed, by De�nition 4.1 we can de�ne for every x ∈M0(F, θ)

Sx = Φ−1
θ ({x}) ∈ Oθ(C \ F )

because by Lemma 4.5, x ∈ M0(F, θ) means Φ−1
θ ({x}) 6= ∅ and contains only

one element. Thus Sx is the unique solution fx ∈ Oθ(C \ F ) of the equation

θ(z)fx(z) = x, for every z ∈ C \ F.

Therefore,

S : M0(F, θ)→ O(C \ F ), Sx = fx, M0(F, θ) = M(F, θ)

and it is easy to verify that S is a closed operator. Indeed, if (xn)n ⊂M0(F, θ),
xn → x ∈ X , Sxn = fxn and Sxn → g in O(C \ F ), then fxn(z) → g(z) for
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every z ∈ C \ F and θ(z)g(z) = x for every z ∈ C \ F because θ(z) ∈ B(X )
and xn → x ∈ X . So, x ∈ M0(F, θ) and g = fx = Sx which proves that S is
closed. �

Remark 4.11. All the results of Sections 3, 4, hold for θT , T ∈ B(X ), and
the reader can see that some of them (for instance Proposition 3.24, Corol-
lary 3.25, Proposition 4.10) are new for θT hence for T . Note however, that
an elementary property of Bishop's strong spectral spaces for θT , hence for T ,
which does not have an analogue for an arbitrary θ is M(∅, T ) = 0. This is a
consequence of the fact that lim

λ→∞
R(λ, T ) = 0, but for an arbitrary θ this may

not hold for R(z, θ).

5. BISHOP'S CONDITION β AND ANALYTIC OPERATOR

VALUED FUNCTIONS

An analogue of condition β for T ∈ B(X ) can be given for a general
analytic operator valued function θ : C −→ B(X ). As for (s.v.e.p.), for every
open subset G ⊂ C we consider a property of θ called condition β on G. This
is in some way a weak property β relative to G because it could be possible that
this property does not hold for all open subsets of C.

De�nition 5.1. An analytic operator valued function θ : C −→ B(X )
satis�es condition β on the open subset G of C, if the following assertion holds:

(β′) for every (fn)n ⊂ O(G,X ) and x ∈ X such that θ(z)fn(z)→ x uniformly
on G as n → ∞ it follows that the sequence (fn)n is uniformly bounded on
every compact subset of G.

Remark 5.2. For θ = θT , (β′) is in some way the restriction to G of
Bishop's condition β for T . It is natural to say in this case that T satis�es
condition β on the open subset G.

In the same way as in [3], (β′) can be reformulated as follows.

Lemma 5.3. For every θ an analytic operator valued function and G an
open subset of C, condition (β′) is equivalent with

(β′′) for every (fn)n ⊂ O(G,X ) and x ∈ X , such that θ(z)fn(z)→ 0 uniformly
on G as n → ∞, it follows that (fn)n is uniformly bounded on every compact
subset of G.

Proof. The proof from [3] (see the remark after De�nition 8) can be rewrit-
ten for this case. �
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Remark 5.4. If one of the equivalent conditions (β′), (β′′) is true for θ =
θT , T ∈ B(X ), we say that T satis�es Bishop's condition β on the open subset
G ⊂ C. If θT , hence T , satis�es condition β on every open subset G ⊂ C, then
T satis�es Bishop's condition β [3].

The above remark suggests the following de�nition.

De�nition 5.5. If θ : C −→ B(X ), an analytic operator valued function,
satis�es condition β on every open subset G of C, we simply say that θ satis�es
condition β.

One of the main consequences of the condition β for a bounded linear
operator T can be reformulated for a general operator valued function θ. Let
us recall �rst some useful objects and notations: an open set G ⊂ C, x ∈ X ,
Φθ : O(G,X ) −→ O(G,X ) and f ∈ O(G,X ) such that f ∈ Φ−1

θ ({x}) i.e.

(I) θ(z)f(z) = x for all z ∈ G.
A function f ∈ O(G,X ) which satis�es (I) is called an exact solution of (I)
in G and a sequence (fn)n ⊂ O(G,X ) such that θ(z)fn(z) → x uniformly on
G as n → ∞ is called an approximate solution of (I) in G. It is not di�cult
to reformulate the proof of Theorem 4 from [3] and we obtain the following
proposition.

Proposition 5.6. Every exact solution of (I) in G is an approximate
solution of (I) in G. If θ, an analytic operator function, satis�es β on G, then
any approximate solution of (I) in G gives an exact solution of (I) in G, in other
words, (I) has exact solutions in G if and only if it has approximate solutions
in G.

Proof. If (fn)n is an approximate solution of (I) on G and θ satis�es β on
G, then (fn)n is uniformly bounded on every compact subset K ⊂ G. So there
exists a subsequence (fnk)k converging pointwise in the weak topology of X to
a function f ∈ O(G,X ). (fnk)k being also an approximate solution for (I) in
G, we deduce that θ(z)f(z) = x for every z ∈ G, so f is an exact solution of
(I) in G. �

x ∈ M0(F, θ) respectively x ∈ N(F, θ) means (by De�nition 4.1 respec-
tively Remark 4.4 ) that equation θ(z)f(z) = x for all z ∈ G, has an exact solu-
tion f ∈ O(C\F,X ) respectively an approximate solution (fn)n ⊂ O(C\F,X ).
In the other words, Proposition 5.6 is the following one.

Corollary 5.7. If θ, an analytic operator function, satis�es condition
β on C \ F (see De�nition 5.1) for a closed subset F of C, then we have the
equality

M0(F, θ) = N(F, θ)
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which implies that M0(F, θ) is a closed subspace of X . If θ satis�es condition
β (see De�nition 5.5) then for every closed subset F ⊂ C we have the equality

M0(F, θ) = N(F, θ)

and M0(F, θ) is a closed subspace of X .

Remark 5.8. For θ = θT , T ∈ B(X ), the above Corollary 5.7 is the fol-
lowing. If T , T ∈ B(X ), satis�es condition β on C \ F (see Remark 5.4) for a
closed subset F of C, then we have the equality

M0(F, T ) = N(F, T )

which implies that M0(F, T ) is a closed subspace of X .
If T satis�es condition β (see Remark 5.4) then for every closed subset F ⊂ C
we have the well-known equality

M0(F, T ) = N(F, T )

and M0(F, T ) is a closed subspace of X for every closed subset F of C [3].

For an arbitrary analytic operator valued function θ and for an arbitrary
T ∈ B(X ) we would like to know how many open sets G ⊂ C there exists
such that θ, respectively T satis�es condition β on G. Obviously ρ(θ) and ρ(T )
are open sets and θ, respectively T satis�es condition β on ρ(θ), respectively
ρ(T ). We can also prove that for every analytic operator valued function θ(in
particular for every T ∈ B(X ) which generates θT )there exists the biggest open
nonempty subset of C such that θ (respectively T ∈ B(X ) ) satis�es condition
β on every open subset of it.

Let us denote,

Gβθ = {G open set, G ⊂ C | θ satis�es β on ∆,∀ open set ∆ ⊂ G}

Obviously ∅ 6= ρ(θ) ∈ Gβθ and
⋃
G∈Gβθ

G is a nonempty open set. Indeed, if ∆

is an open subset of ρ(θ) and (fn) ⊂ O(∆,X ), θ(z)fn(z) → x ∈ X uniformly
on ∆, as n → ∞, we have for z ∈ ∆ ⊂ ρ(θ), fn(z) → θ(z)−1x ,as n → ∞,
uniformly on every compact K ⊂ ∆. Thus, (fn) is uniformly bounded on every

compact K ⊂ ∆ and θ satis�es condition β on ∆ and ρ(θ) ∈ Gβθ .

Proposition 5.9. De�ne Dβ
θ :=

⋃
G∈Gβθ

G 6= ∅. Then Dβ
θ is the largest

open subset in C such that θ satis�es condition β on every open subset ∆ ⊂ Dβ
θ .

Proof. Dβ
θ is a non-empty open set and Dβ

θ ⊃ G ∈ G
β
θ ; hence D

β
θ contains

every open subset D ⊂ C where θ satis�es condition β on every open subset
of D. It remains to prove that θ satis�es condition β on every open subset
∆ ⊂ Dβ

θ . We have to prove that θ satis�es condition β on ∆ a non-empty
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open subset of Dβ
θ . Let us consider (fn)n ⊂ O(∆,X ) and x ∈ X such that

θ(z)fn(z) → x uniformly on ∆, as n → ∞. We have to prove (fn)n uniformly
bounded on every compact K ⊂ ∆. For a compact set K ⊂ ∆ =

⋃
G∈Gβθ

∆∩G,
∆ ∩G being open subsets we deduce:

∀z ∈ K, ∃G ∈ Gβθ , ∃r
G
z > 0 and D(z, rGz ) ⊂ D(z, rGz ) ⊂ G ∩∆.

K being a compact set, there exists zi ∈ K, Gi ∈ Gβθ and rGizi > 0,i = 1, ...,m
such that

K ⊂
m⋃
i=1

D(zi, r
Gi
zi ), D(zi, r

Gi
zi ) ⊂ Gi ∩∆, for every i = 1, ...,m,

where D(z, r) = {ζ ∈ C || ζ − z |< r}, D(z, r) = {ζ ∈ C || ζ − z |≤ r}.
Gi ∩ ∆ are open subsets of Gi ∈ Gβθ , hence θ satis�es condition β on Gi ∩ ∆
for i = 1, ...,m. But θ(z)fn(z) → x uniformly on Gi ∩ ∆ as n → ∞ and
(fn |Gi∩∆)n ⊂ O(Gi ∩ ∆,X ) for i = 1, ...m, because Gi ∩ ∆ ⊂ ∆. Hence, for
every i = 1, ...,m

(fn | D(zi, r
Gi
zi ))n

is uniformly bounded because D(zi, r
Gi
zi ) is a compact subset of Gi ∩ ∆ and

θ satis�es condition β on Gi ∩ ∆ for i = 1, ...m. We deduce (fn)n uniformly
bounded on K because K ⊂

⋃m
i=1D(zi, r

Gi
zi ). Thus, we proved that θ satis�es

condition β on every open subset ∆ ⊂ Dβ
θ , which concludes the proof. �

Corollary 5.10. For every closed subset F ⊃ C \Dβ
θ we have

M0(F, θ) = N(F, θ).

Proof. From C \ F ⊂ Dβ
θ it follows that θ satis�es condition β on C \ F

and we can apply Corollary 5.7 of Proposition 5.6. �

Remark 5.11. The equality Dβ
θ = C means that θ satis�es condition β on

every open subset of C or simply θ satis�es condition β.

For θ = θT , T ∈ B(X ), denote Dβ
θT

= Dβ
T . Then Proposition 5.9 and

Corollary 5.10 can be rewritten and this result is new for T .

Proposition 5.12. For every T ∈ B(X ), Dβ
T is the largest open subset of

C such that T satis�es condition β on every open subset of it. Dβ
T = C means

that T satis�es Bishop's condition β and for every closed subset F ⊃ C \ Dβ
T

we have M0(F, T ) = N(F, T ). For an arbitrary T , Dβ
T gives an evaluation of

Bishop's condition β for T .
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6. THE RESTRICTION PROPERTY FOR θ-SPECTRAL SPACES

We maintain the notation from the above sections. So, B(X ) is the algebra
of all bounded operators on a complex Banach space X , θ : C −→ B(X ) is an
analytic operator valued function with a nonempty resolvent ρ(θ) 6= ∅ and
σ(θ) is the spectrum of θ (Section 2). For F a closed subset of C, we de�ned
(De�nitions 4.1, 4.3) the strong and weak Bishop θ-spectral spaces,

M0(F, θ) = M(F, θ) ⊂ N(F, θ)

which for θT are the strong and weak Bishop spectral spaces of T (see [3]),

M0(F, T ) = M(F, T ) ⊂ N(F, T ).

Recall that

M0(F, θ) = {x ∈ X | ∃f ∈ O(C \ F,X ), θ(z)f(z) = x,∀z ∈ C \ F},

M0(F, T ) = {x ∈ X | ∃f ∈ O(C \ F,X ), (T − z)f(z) = x, ∀z ∈ C \ F},

N(F, θ)

= {x ∈ X | ∀ε > 0,∃fε ∈ O(C \ F,X ), ‖ θ(z)fε(z)− x ‖< ε,∀z ∈ C \ F},

N(F, T )

= {x ∈ X | ∀ε > 0,∃fε ∈ O(C \ F,X ), ‖ (T − z)fε(z)− x ‖< ε,∀z ∈ C \ F}.
Lemma 6.1. For x ∈ X the following assertions are equivalent:

1. there exists f ∈ O(C \ F,X ), θ(z)f(z) = x, every z ∈ C \ F ,
2. there exists g ∈ O(C \ (F ∩ σ(θ)),X ), θ(z)g(z) = x for all z,
z ∈ (C \ F ) ∪ ρ(θ).

Proof. Obviously 2.⇒ 1.: f can be g | C \ F .
1. ⇒ 2.. by De�nition 2.1 of R(z, θ), z ∈ ρ(θ), we deduce from 1. that f(z) =
R(z, θ)x for every z ∈ (C \ F ) ∩ ρ(θ). Thus, the equalities

g(z) =

{
f(z) if z ∈ C \ F
R(z, θ)x if z ∈ ρ(θ)

de�ne g ∈ O((C \ F ) ∪ ρ(θ),X ) = O((C \ (F ∩ σ(θ)),X ) and g veri�es 2. �

Therefore M0(F, θ) = M0(F ∩ σ(θ), θ) and the following property of the
strong θ-spectral Bishop spaces holds.

Property (r). For every closed subset F ⊂C and for an analytic operator
valued function θ : C −→ B(X ) we have

M(F, θ) = M(F ∩ σ(θ), θ).

We say that the strong θ-spectral Bishop spaces have the restriction property to
the spectrum of θ, or simply have the Property (r).
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Remark 6.2. We can prove in a similar way a similar property(r) for the
weak θ-spectral spaces N(F, θ) only in the case when (C \ F ) ∩ ρ(θ) = ∅;
generally speaking there is a natural obstruction to use the above proof for
N(F, θ) for every closed subset F ⊂ C.

The inclusion N(F, θ) ⊃ N(F ∩ σ(θ), θ) is obviously true as above. But
for proving the opposite one, in the same way as above, we have to obtain a
sequence(see Remark 4.4)(gn) ⊂ O((C \ F ) ∪ ρ(θ),X ) with the property

θ(z)gn(z)→ x uniformly on(C \ F ) ∪ ρ(θ), as n→∞,
when we have (fn) ⊂ O(C \ F,X ) with a weak similar property

θ(z)fn(z)→ x uniformly on C \ F, as n→∞,
which gives only

θ(z)fn(z)→ x for z ∈ (C \ F ) ∩ ρ(θ)

This last assertion is, generally speaking, not enough for obtaining (gn)n; ex-
cepting the case when (C \ F ) ∩ ρ(θ) = ∅, the equalities

gn(z) =

{
fn(z) if z ∈ C \ F
R(z, θ)x if z ∈ ρ(θ)

cannot always de�ne an analytic functions on (C \ F ) ∪ ρ(θ). For instance,
if D1 ⊂ D are open subsets in C and ϕ ∈ O(D1) does not have an analytic
extension to D, then fn = 1/n ϕ gives a sequence (fn)n ⊂ O(D1), fn → 0 as
n→∞ and for every n, fn does not have an analytic extension to D.

The obstruction described above does not exist for a new class of θ-
spectral subspaces which are intermediate between the strong and weak θ-
spectral spaces. We will describe this new class in what follows. First we
describe a large class of such a θ-spectral spaces attached to the closed subsets
F ⊂ C and being between M(F, θ) and N(F, θ) the strong, respectively weak
θ-spectral spaces. In order to describe a class of such spaces, a natural way is
to look for common elements of the de�nitions ofM(F, θ) and N(F, θ), F being
as above a closed set of complex numbers. So, as above, X being a complex
Banach space and B(X ) the algebra of all linear bounded operators on X we
can enumerate the following elements:

1. the space of the X -valued analytic functions O(C \ F,X ) de�ned on
the open subset G = C \ F ,

2. the map
Φθ : O(G,X ) −→ O(G,X )

associated to an analytic operator function θ : C → B(X ) having nonempty
resolvent ρ(θ) 6= ∅ (Section 3),

[Φθf ](z) = θ(z)f(z) for every f ∈ O(C \ F,X ) and every z ∈ G = C \ F,
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3. the subspace of X -valued constant function on C \ F ,
Oct(C \ F,X ) ⊂ O(C \ F,X )

Oct(C \ F,X ) =
∼
X can be identi�ed with X as usual.

Using 1., 2., 3., from above and De�nitions 4.1, 4.3 we can write N(F, θ) =

{x ∈ X | ∀ε > 0, ∃hε ∈ RangeΦθ, ‖ hε(z)− x ‖< ε,∀z ∈ C \ F},
M(F, θ) =

{x ∈ X | ∀ε > 0, ∃hε ∈ RangeΦθ ∩ Oct(C \ F,X ), ‖ hε(z)− x ‖< ε,

∀z ∈ C \ F}.
Indeed, the �rst equality is obvious and for the second we observe that
hε ∈ RangeΦθ ∩ Oct(C \ F,X ) is equivalent with the assertion
� ∃fε ∈ O(C \ F,X ),∃xε ∈ X , hε(z) = Φθ(fε)(z) = xε ∀z ∈ C \ F � i.e.
xε ∈M0(F, θ) and in this case the property of x can be obviously rewritten

∀ε > 0 ∃xε ∈M0(F, θ) such that ‖ xε − x ‖< ε,

which means that x ∈ M0(F, θ) = M(F, θ). This description of M(F, θ) and
N(F, θ) given by the above two equalities proves the existence of a similar
description for both of this subspaces and their inclusion in a large class of
subspaces between M(F, θ) and N(F, θ). Indeed, if we consider a subspace
Y(C \ F,X ),

Oct(C \ F,X ) ⊂ Y(C \ F,X ) ⊂ O(C \ F,X )

where the inclusions are not strict, we associate to this functional subspace
Y(C \ F,X ), a θ-spectral subspace in the same way as N(F, θ) corresponds to
O(C \ F,X ) and M(F, θ) corresponds to Oct(C \ F,X ). So we de�ne:

De�nition 6.3. Let θ : C −→ B(X ) be an analytic operator valued func-
tion with a nonempty resolvent set ρ(θ) 6= ∅, F = F ⊂ C an arbitrary closed
subset of C and Y(C \ F,X ) a subspace of X -valued functions on C \ F ,

Oct(C \ F,X ) ⊂ Y(C \ F,X ) ⊂ O(C \ F,X ).

The θ-spectral space Y (F, θ) associated to F and de�ned by Y(C \ F,X ) is
described by the following equality:

Y (F, θ) = {x ∈ X | ∀ε > 0, ∃hε ∈ RangeΦθ ∩ Y(C \ F,X ),

‖ hε(z)− x ‖< ε,∀z ∈ C \ F}.
and will be called θ-spectral space �associated to Y(C \F,X )� or simply �asso-
ciated to F� when no misunderstanding is possible.

The property (r), the restriction property to the spectrum σ(θ), of the
class of θ-spectral spaces Y (F, θ), is the set of equalities Y (F, θ) = Y (F∩σ(θ), θ)
for every closed subset F ⊂ C.
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Remark 6.4. Obviously we have:

1. M(F, θ) ⊂ Y (F, θ) ⊂ N(F, θ) for every F = F ⊂ C,
2. Y (F, θ) = N(F, θ) if Y(C \ F,X ) = O(C \ F,X ),
Y (F, θ) = M(F, θ) if Y(C \ F,X ) = Oct(C \ F,X ).

De�nition 6.3 can be rewritten using sequences of analytic functions ob-
tained replacing �∀ε > 0� by the values of some positive numerical sequence
converging to 0, for example (1/n)n. Then for every natural number n for
ε = 1/n we denote hε by hn. Thus we obtain an equivalent statement of
De�nition 6.3.

Lemma 6.5. x ∈ Y (F, θ) if and only if there exists a sequence (hn)n ⊂
RangeΦθ ∩ Y(C \ F,X ) such that hn(z) −→ x uniformly for z ∈ C \ F , or in
detail x ∈ Y (F, θ) if and only if there exists a sequence (fn)n ⊂ O(C \ F,X )
such that Φθ(fn) ∈ Y(C \ F,X ) and for n −→∞ Φθ(fn)(z) = θ(z)fn(z) −→ x
uniformly for z ∈ C \ F .

In the following, we introduce a class of functional spaces
L(C \ F,X ), a particular case of Y(C \ F,X ) considered above, such that

Oct(C \ F,X ) ⊂ L(C \ F,X ) ⊂ O(C \ F,X )

and the class of θ-spectral spaces L(F, θ) associated to L(C \ F,X ) by De�ni-
tion 6.3. The class of θ-spectral spaces L(F, θ) contains only the weak θ-spectral
spaces N(F, θ) corresponding to the closed subsets F ⊂ C, (C \ F ) ∩ ρ(θ) = ∅
and the above mentioned obstruction (see Remark 6.2) concerning a property(r)
for the weak θ-spectral spaces N(F, θ) does not exist for these θ-spectral spaces
L(F, θ).

As we will see, �rst we discuss the relation between the decompositions
given by the connected components of the open subsets C \ F , ρ(θ) and (C \
F ) ∪ ρ(θ). This relation is described in general for the arbitrary open subsets
G, ρ,G ∪ ρ of C and used in the particular case of the sets C \ F , ρ(θ) and
(C \ F ) ∪ ρ(θ) for F a closed subset of C.

So, let G, ρ, be now two open arbitrary open subsets of C and

G =
⋃
α∈Λ

Gα, ρ =
⋃
i∈I
ρi

the decomposition given by the connected components {Gα}α∈Λ of G and
{ρi}i∈I of ρ. In the following, we obtain from these decompositions the de-
composition of G ∪ ρ given by its connected components. We will denote for
α ∈ Λ,

Iα = {j ∈ I | ρj ∩Gα 6= ∅}
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and

I0 = {k ∈ I | ρk ∩G = ∅} = {k ∈ I | ρk ∩Gα = ∅, ∀α ∈ Λ} = I \
⋃
α∈Λ

Iα.

Then we have,

(∗) G ∪ ρ =
⋃
α∈Λ

Gα ∪
⋃
i∈I
ρi =

⋃
α∈Λ

(Gα ∪
⋃
j∈Iα

ρj) ∪
⋃
k∈I0

ρk =
⋃
α∈Λ

_
Gα ∪

⋃
k∈I0

ρk

where
_
Gα := Gα ∪

⋃
j∈Iα

ρj and
_
Gα ∩

⋃
k∈I0

ρk = ∅, ∀α ∈ Λ.

It is easy to prove that
_
Gα is a connected set. Indeed for every j ∈ Iα we have

Gα∩ρj 6= ∅, Gα∪ρj is a connected set, Gα∪ρj ⊃ Gα and
_
Gα =

⋃
j∈Iα

(Gα∪ρj).

It is also easy to verify that for α 6= β
_
Gα ∩

_
Gβ 6= ∅ if and only if Iα ∩ Iβ 6= ∅

i.e. there exists j ∈ I, ρj ∩Gα 6= ∅, ρj ∩Gβ 6= ∅.
Let us consider now the following equivalence relation in the set {

_
Gα |

α ∈ Λ}.

De�nition 6.6. We say that
_
Gα and

_
Gβ are equivalent and denote

_
Gα ∼

_
Gβ , if there exists {α1, ..., αn} ⊂ Λ such that,

_
Gα ∩

_
Gα1 6= ∅, ...,

_
Gαk ∩

_
Gαk+1

6= ∅, ...,
_
Gαn ∩

_
Gβ 6= ∅

We can consider Cα = {
_
Gβ |

_
Gβ ∼

_
Gα} for α ∈ Λ , the equivalence class

of
_
Gα given by the above de�ned equivalence ∼ and

{Cα | α ∈ Λ1}, Λ1 ⊂ Λ

the set of all distinct equivalence classes (two arbitrary equivalent classes Cα
and Cβ with α, β ∈ Λ are disjoint or coincide).

Remark 6.7. 1. If α ∈ Λ and Iα = ∅, i.e. Gα ∩ ρ = ∅, we have
_
Gα =

Gα, Cα = {Gα} and α ∈ Λ1.

2. If
_
Gα ∼

_
Gβ as in De�nition 6.6 we have

_
Gβ ∈ Cα,

_
Gαk ∈ Cα for every

k = 1, ..., n and
_
Gα ∪

_
Gα1 ∪ ... ∪

_
Gαk ∪ ... ∪

_
Gαn ∪

_
Gβ is a connected

set. [Indeed as we have already remarked,
_
Gα is connected for every α

and
_
Gα ∩

_
Gα1 6= ∅ gives

_
Gα ∪

_
Gα1 a connected set,

_
Gα1 ∩

_
Gα2 6= ∅ gives

(
_
Gα ∪

_
Gα1) ∩

_
Gα2 6= ∅ hence (

_
Gα ∪

_
Gα1) ∪

_
Gα2 6= ∅ is a connected set,

etc.]
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Lemma 6.8. If we denote Gα =
⋃

_
Gβ∈Cα

_
Gβ =

⋃
_
Gβ∼

_
Gα

_
Gβ, α ∈ Λ1,then Gα is

an open connected subset of C for every α, Gα1 ∩ Gα2 = ∅ for every α1, α2 ∈
Λ1, α1 6= α2 and

⋃
α∈Λ1

Gα =
⋃
α∈Λ

_
Gα.

Proof. Gα are open subsets because
_
Gβ are open sets for every β ∈ Λ.

We have Gα =
⋃

_
Gβ∼

_
Gα

_
Gα ∪

_
Gα1 ∪ ... ∪

_
Gαk ∪ ... ∪

_
Gαn ∪

_
Gβ, with

_
Gαk given

by the equivalence
_
Gα ∼

_
Gβ, because

_
Gα ∼

_
Gαk for every k = 1, ..., n by

de�nition. On the other hand, for every β with
_
Gβ ∼

_
Gα, the sets

_
Gα ∪

_
Gα1 ∪

...∪
_
Gαk ∪ ...∪

_
Gαn ∪

_
Gβ contain

_
Gα and are connected sets by 2. of the above

Remark 6.7. Hence their union i.e. Gα is a connected set. We recall that for
α1, α2 ∈ Λ1, α1 6= α2 we have Cα1 6= Cα2 . If there exists α1, α2 ∈ Λ1, α1 6= α2

such that Gα1 ∩ Gα2 6= ∅ then(by De�nition of Gα) there exists
_
Gβ ∈ Cα1 ,

_
Gγ ∈ Cα2 and

_
Gβ∩

_
Gγ 6= ∅ which means

_
Gβ ∼

_
Gγ and

_
Gβ ∈ Cα1 ,

_
Gγ ∈ Cα2 give

Cα1 = Cα2 . But Cα1 6= Cα2 . Hence Gα1 ∩Gα2 = ∅ for every α1, α2 ∈ Λ1, α1 6= α2.

The equality
⋃

α∈Λ1

Gα =
⋃
α∈Λ

_
Gα results from the de�nition of Λ1 which gives⋃

α∈Λ1

Cα = {
_
Gα | α ∈ Λ} and the lemma has been proved. �

Proposition 6.9. The decomposition of G∪ρ given by its connected com-
ponents is

G ∪ ρ =
⋃
α∈Λ1

Gα ∪
⋃
k∈I0

ρk

i.e. {Gα, ρk | α ∈ Λ1, k ∈ I0} is the set of all connected components of G∪ ρ. If
we consider the subset

Λ0 = {α ∈ Λ | Gα ∩ ρ = ∅ i.e. Iα = ∅}

similar to I0 ⊂ I, by 1. of the above Remark 6.7 we have Λ0 ⊂ Λ1 and the
decomposition of G∪ ρ given by its connected components can be rewritten in a
symmetrical form

G ∪ ρ =
⋃
α∈Λ0

Gα ∪
⋃

α∈Λ1\Λ0

Gα ∪
⋃
k∈I0

ρk.

Proof. The �rst equality derives from (∗) equality(before De�nition 6.6)

G ∪ ρ =
⋃
α∈Λ

_
Gα ∪

⋃
k∈I0

ρk,
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and the last equality from Lemma 6.8. Then, {Gα, ρk | α ∈ Λ1, k ∈ I0} are the
connected components of G∪ρ because by Lemma 6.8 and de�nition of I0 they
are open, connected and mutually disjoint sets. The second equality is an easy

consequence of 1. Remark 6.7 because α ∈ Λ0 means Iα = ∅ i.e.
_
Gα = Gα so

Cα = {Gα}, α ∈ Λ1 and Gα = Gα. �

Lemma 6.10. For every β ∈ Λ \ Λ0 there exists a unique α(β) ∈ Λ1 \ Λ0

such that Gβ ⊂ Gα(β).

Proof. For every β ∈ Λ \ Λ0, Gβ is a connected component of G ⊂ G ∪ ρ
and Gβ ∩ ρk = ∅ for every k ∈ I0. Obviously, Gβ ∩Gα = ∅ for every α 6= β in
particular for every β ∈ Λ \Λ0 and α ∈ Λ0. On the other hand, as a connected
subset of G ∪ ρ ,Gβ is contained in only one connected component of G ∪ ρ
and this connected component cannot be one of Gα with α ∈ Λ0 or ρk with
k ∈ I0 because, as we proved before, Gβ has a void intersection with these. So
by Proposition 6.9 this unique connected component of G ∪ ρ which contains
Gβ can be denoted Gα(β) with α(β) ∈ Λ1 \ Λ0 and the lemma is proved. �

A similar proof gives the following lemma.

Lemma 6.11. For every k ∈ I \ I0 there exists a unique α(k) ∈ Λ1 \ Λ0

such that ρk ⊂ Gα(k).

Lemma 6.12. Let Gα be a connected component of G∪ ρ with α ∈ Λ1 \Λ0

(Proposition 6.9). Then

α ∈ Λα = {β ∈ Λ | Gβ ⊂ Gα}
and

Gγ ∩ ρ 6= ∅ for every Gγ ⊂ Gα, γ ∈ Λ

i.e. Λα ⊂ Λ \ Λ0.

Proof. α ∈ Λα because for α ∈ Λ1 \ Λ0 we have
_
Gα = Gα ∪

⋃
j∈Iα

ρj ∈ Cα

and by de�nition we have Gα =
⋃

_
Gβ∈Cα

_
Gβ . For proving the second part of the

lemma we start by assuming the opposite: that for some α ∈ Λ1 \ Λ0 and
Gγ ⊂ Gα, γ ∈ Λ, we have Gγ ∩ ρ = ∅. Now we prove that this is impossible,
which conclude the proof. Obviously, Gγ ∩ ρ = ∅ implies γ ∈ Λ0, such that

Gγ =
_
Gγ , Cγ = {Gγ}, γ ∈ Λ1 (1. Remark 6.7). Then Gγ = Gγ ⊂ Gα which is

impossible because for γ ∈ Λ0 and α ∈ Λ1\Λ0 we have α 6= γ hence Gγ∩Gα = ∅,
and the lemma has been proved. �

Corollary 6.13. For every α ∈ Λ1 \ Λ0 and β ∈ Λ the following asser-
tions are equivalent:
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1. Gβ ⊂ Gα
2.

_
Gβ = Gβ ∪

⋃
i∈Iβ

ρi ⊂ Gα and Iβ 6= ∅(i .e. Gβ ∩ ρ 6= ∅).

We have also
⋃

α∈Λ1\Λ0

Λα = Λ \ Λ0 and for every α ∈ Λ1 \ Λ0, we have

Gα =
⋃

_
Gβ∈Cα

_
Gβ =

⋃
_
Gβ∼

_
Gα

_
Gβ =

⋃
β:Gβ⊂Gα

_
Gβ =

⋃
β:Gβ⊂Gα

Gβ ∪
⋃
i∈Iβ

ρi.

Proof. IfGβ ⊂ Gα,α ∈ Λ1\Λ0, by Lemma 6.12 we deduceGβ∩ρ 6= ∅. Then
β ∈ Λ\Λ0, Iβ 6= ∅,

_
Gβ = Gβ∪

⋃
i∈Iβ

ρi ⊂ Cβ = Cδ(β) for some δ(β) ∈ Λ1\Λ0. Thus

Gβ ⊂
_
Gβ ⊂ Gδ(β) by de�nition of Gδ(β), δ(β) ∈ Λ1. Then Gδ(β) = Gα because

Gβ ⊂ Gδ(β) ∩ Gα. So
_
Gβ ⊂ Gδ(β) = Gα, 1. implies 2. and the assertions 1. and

2. are equivalent because obviously 2. implies 1.. We prove now the equality⋃
α∈Λ1\Λ0

Λα = Λ \ Λ0. The inclusion
⋃

α∈Λ1\Λ0

Λα ⊂ Λ \ Λ0 is a consequence of

the Lemma 6.12. For proving the second inclusion Λ \ Λ0 ⊂
⋃

α∈Λ1\Λ0

Λα we can

proceed as in Lemma 6.10. By de�nitions, we �rst note that γ ∈ Λ \ Λ0 gives

Iγ 6= ∅ and
_
Gγ ∈ Cγ = Cα(γ) for some α(γ) ∈ Λ1. Observing that

_
Gγ ∈ Cα(γ)

gives
_
Gγ ∼

_
Gα(γ), we deduce α(γ) /∈ Λ0 by the de�nition of equivalence ∼. So

Gγ ⊂ Gα(γ) with α(γ) ∈ Λ1 \Λ0 and γ ∈ Λα(γ). Hence γ ∈
⋃

α∈Λ1\Λ0

Λα for every

γ ∈ Λ\Λ0, which concludes the proof of the second inclusion and the corollary,
the last equalities are obvious. �

Remark 6.14. We mention now a particular case of the above Proposi-
tion 6.9 namely the case of G, ρ open subsets of C, G ∪ ρ = G ⊃ ρ and
{Gα}α∈Λ, {ρi}i∈I , the sets of all connected components of G respectively ρ as
in Proposition 6.9. In this case, we have I0 = ∅ and for every α ∈ Λ and j ∈ I,
Gα ∩ ρj 6= ∅ means Gα ⊃ ρj ,

_
Gα = Gα, Cα = {Gα}, Gα = Gα and Λ1 = Λ.

The decomposition of G∪ ρ = G given by its connected components from
Proposition 6.9 corresponds to a setting of terms Gα, α ∈ Λ as in the following:

G ∪ ρ = G =
⋃
α∈Λ0

Gα ∪
⋃

α∈Λ\Λ0

Gα, ρ ⊂
⋃

α∈Λ\Λ0

Gα

where Λ0 = {α | Gα ∩ ρ = ∅}, Λ \ Λ0 = {α | Gα ∩ ρ 6= ∅}.

The decomposition given by Proposition 6.9 will be written now for G =
C \ F , F a closed subset F ⊂ C and ρ = ρ(θ) the resolvent set of an operator
analytic function θ with ρ(θ) 6= ∅. We use the same notation as before for the
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decompositions ofG = C\F and ρ = ρ(θ) given by their connected components,

C \ F =
⋃
α∈Λ

Gα, ρ(θ) =
⋃
i∈I
ρi

So we have the following proposition.

Proposition 6.15. If {Gα | α ∈ Λ} are the connected components of
C \ F , F = F ⊂ C, and {ρi | i ∈ I} are the connected components of ρ(θ)
for an operator analytic function θ with ρ(θ) 6= ∅, then the decomposition of
(C \ F ) ∪ ρ(θ) given by its connected components is

(C \ F ) ∪ ρ(θ) =
⋃
α∈Λ0

Gα ∪
⋃

α∈Λ1\Λ0

Gα ∪
⋃
k∈I0

ρk

where Λ0,Λ1,Gα, I0 are as in Proposition 6.9.

Remark 6.16. Obviously all the properties concerning this decomposition
in the general case (Proposition 6.9) can be used in the case F = F ⊂ C,
G = C \ F and ρ = ρ(θ). In this case, we can also recognize some previously
introduce objects as Λ0 = Λ \ Λθ(see De�nition 3.9), Λ1 \ Λ0 = Λ1 ∩ Λθ and
Λ \ Λ0 = Λθ,

⋃
α∈Λ\Λ0

Gα =
⋃

α∈Λθ

Gα = (C \ F )ρ(θ) the θ-interior of C \ F .

Now we introduce the class of functional spaces L(C \F,X ), a particular
case of functional spaces Y(C \ F,X ) from De�nition 6.3.

De�nition 6.17. Let F and the decomposition of C \ F from Proposi-
tion 6.15. We denoted Λα = {β ∈ Λ | Gβ ⊂ Gα} for every α ∈ Λ1 \ Λ0, (see
Lemma 6.12). Then the functional space L(C \ F,X ) attached to an arbitrary
closed subset F = F ⊂ C is

L(C \ F,X ) = {g | g ∈ O(C \ F,X ),∀α ∈ Λ1 \ Λ0 ∃xα ∈ X ,

g| ⋃
β∈Λα

Gβ = xα}

xα denoting as usual the constant X -valued function with value xα.

Remark 6.18. 1. Explicitly(see Remark 6.16), g ∈ L(C \ F,X ) means
that the following properties hold:

(i) g ∈ O(C \ F,X )

(ii) for every α ∈ Λ1 \ Λ0 there exists xα ∈ X , such that g |Gβ= xα for
every connected component Gβ of G, Gβ ⊂ Gα.

2. If K is a closed subset of C, K ⊂ σ(θ), then C \ K ⊃ ρ(θ) and by
Remark 6.14 the above condition (ii) is simpler because in this case Gα =
Gα for every α ∈ Λ,Λ = Λ1 and Λ0 = {α ∈ Λ | Gα ∩ ρ(θ) = ∅}. So
h ∈ L(C \K,X ) signi�es that the following assertions hold:
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(i) h ∈ O(C \K,X )

(ii) for every α ∈ Λ \ Λ0 = {α ∈ Λ | Gα ∩ ρ(θ) 6= ∅} there exists yα ∈ X ,
such that g|Gα = yα i.e. g is constant on every connected component Gα
of G = C \K ⊃ ρ(θ), Gα ∩ ρ(θ) 6= ∅.
In other words, if K is a closed subset of C, K ⊂ σ(θ), then L(C \K,X )
consists of all analytic functions h : C −→ X , h a constant function on
every connected component of C\K having a nonempty intersection with
ρ(θ).

It is easy to see that we have

Oct(C \ F,X ) ⊂ L(C \ F,X ) ⊂ O(C \ F,X ).

If θ is an analytic operator function on C, F a closed subset F ⊂ C and
Φθ : O(C \ F,X ) −→ O(C \ F,X ) as in the beginning of Section 6, the θ-
spectral space corresponding to L(C \ F,X ) is the subspace of X denoted by
L(F, θ) and given by De�nition 6.3 for Y(C \ F,X ) = L(C \ F,X ) as follows.

De�nition 6.19. We de�ne the θ-spectral space L(F, θ) associated to a
closed subset F ⊂ C by the following equality:

L(F, θ) = {x ∈ X | ∀ε > 0,∃gε ∈ RangeΦθ ∩ L(C \ F,X ),

‖ gε(z)− x ‖< ε,∀z ∈ C \ F}.
A particular case of the spaces L(C\F,X ) respectivelyL(F, θ) are Ls(C\

F,X ) respectively Ls(F, θ), de�ned by the equalities:

Ls(C \ F,X ) = O(C \ F,X ) ∩ Oct(
⋃

β∈Λ\Λ0

Gβ,X )

Ls(F, θ) = {x ∈ X | ∀ε > 0,∃gε ∈ RangeΦθ ∩ Ls(C \ F,X ),

‖ gε(z)− x ‖< ε,∀z ∈ C \ F}.

By De�nition 3.9 we have
⋃

β∈Λ\Λ0

Gβ = (C \ F )ρ(θ) the θ-interior of C \ F

and the above equalities can be rewritten,

Ls(C \ F,X ) = O(C \ F,X ) ∩ Oct((C \ F )ρ(θ),X )

Ls(F, θ) = {x ∈ X | ∀ε > 0,∃gε ∈ RangeΦθ ∩ Oct((C \ F )ρ(θ),X )

‖ gε(z)− x ‖< ε ∀z ∈ C \ F} =

{x ∈ X | ∀ε > 0, ∃gε ∈ RangeΦθ, ∃xε ∈ X , ‖ gε(z) − x ‖< ε ∀z ∈ C \ F and
gε|(C\F )ρ(θ) = xε}.

Remark 6.20. 1. If ρ(θ)∩(C\F ) = ∅i.e.(C\F )ρ(θ) = ∅, then Ls(F, θ) =
L(F, θ) = N(F, θ) and has the property(r) (Remark 6.2).
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2. If Λ0 = ∅ i.e. (C \ F )ρ(θ) = C \ F , then Ls(F, θ) = M(F, θ)

3. M0(F, θ) ⊂ Ls(F, θ) ⊂ L(F, θ) ⊂ N(F, θ) for every closed subset F of C.

Now the properties of these new θ -spectral spaces will be proved.

Proposition 6.21 (Monotonicity property). The maps given by F 7−→
L(F, θ), F 7−→ Ls(F, θ) for F closed subset of C are monotone i.e. L(F, θ) ⊂
L(F1, θ) and Ls(F, θ) ⊂ Ls(F1, θ) for every F, F1 closed subsets, F ⊂ F1 ⊂ C.

Proof. Let F, F1 be two closed subsets of C, F ⊂ F1 as above. We �rst
observe that the inclusions L(F, θ) ⊂ L(F1, θ) and Ls(F, θ) ⊂ Ls(F1, θ) are(by
De�nition 6.19) easy consequences of the inclusions L(C\F,X ) ⊂ L(C\F1,X ),
Ls(C \ F,X ) ⊂ Ls(C \ F1,X ).

First we shall prove the inclusion L(C \ F,X ) ⊂ L(C \ F1,X ) for every
F, F1 closed subsets of C, F ⊂ F1, C \ F1 ⊂ C \ F .

In order to describe g ∈ L(C \F,X )(De�nition 6.17) we need the decom-
position of (C\F )∪ρ(θ) given by its connected components (Proposition 6.15):

(C \ F ) ∪ ρ(θ) =
⋃
α∈Λ0

Gα ∪
⋃

α∈Λ1\Λ0

Gα ∪
⋃
k∈I0

ρk

where {Gα}α∈Λ, respectively {ρi}i∈I are the connected components of C \ F ,
respectively ρ(θ), Λ0 = {α ∈ Λ | Gα∩ρ(θ) = ∅}, I0 = {k ∈ I | ρk∩(C\F ) = ∅},
Λα = {β ∈ Λ | Gβ ⊂ Gα} = {β ∈ Λ \ Λ0 |

_
Gβ ∼

_
Gα} if α ∈ Λ1 \ Λ0 (from

Corollary 6.13).

Similarly, for L(C\F1,X ), we consider the decomposition of (C\F1)∪ρ(θ)
given by its connected components (Proposition 6.15):

(C \ F1) ∪ ρ(θ) =
⋃
γ∈∆0

Dγ ∪
⋃

γ∈∆1\∆0

Dγ ∪
⋃
j∈J0

ρj

{Dγ}γ∈∆,respectively {ρi|i ∈ I} are the connected components ofC\F1, respec-
tively ρ(θ), ∆0 = {γ ∈ ∆ | Dγ ∩ ρ(θ) = ∅}, J0 = {j ∈ I | ρj ∩C \ F1 = ∅} ⊃ I0

and ∆γ = {δ ∈ ∆ | Dδ ⊂ Dγ} = {δ ∈ ∆ \ ∆0 |
_
Dδ ∼

_
Dγ} for γ ∈ ∆1 \ ∆0

(Corollary 6.13).

Let be now g ∈ L(C \ F,X ). We will prove g ∈ L(C \ F1,X ).

First we observe by De�nition 6.17 that g ∈ O(C \ F, θ) and g| ⋃
β∈Λα

Gβ is

a constant function for every α ∈ Λ1 \ Λ0. But F ⊂ F1 gives C \ F1 ⊂ C \ F
and O(C \ F,X ) ⊂ O(C \ F1,X ).

Then g ∈ L(C \ F,X ) implies g ∈ O(C \ F,X ) ⊂ O(C \ F1,X ).

Thus for proving g ∈ L(C \ F1,X ) it remains to prove that g| ⋃
δ∈∆γ

Dδ is a

constant function for every γ ∈ ∆1 \∆0.
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So, let us consider γ ∈ ∆1 \∆0, Dγ the corresponding connected compo-
nent of (C \ F1) ∪ ρ(θ) and

⋃
δ∈∆γ

Dδ =
⋃

δ:Dδ⊂Dγ
Dδ.

We have to prove that g|Dδ is the same constant function for every Dδ ⊂
Dγ if γ ∈ ∆1 \∆0.

We recall from the above written decomposition of (C \ F1) ∪ ρ(θ) given
by its connected components, that Dγ ∩ ρj = ∅ for every γ ∈ ∆1 \∆0, j ∈ J0.
But I0 ⊂ J0 because C \ F1 ⊂ C \ F and ρk ∩C \ F1 = ∅ if ρk ∩C \ F = ∅.

So we have in particular Dγ ∩ ρk = ∅ for every k ∈ I0 ⊂ J0.

Recall also that (C\F1)∪ρ(θ) ⊂ (C\F )∪ρ(θ) andDγ is a connected subset
of (C \F1)∪ ρ(θ). Hence there exists a connected component of (C \F )∪ ρ(θ)
containing Dγ . This connected component is one of Gα, α ∈ Λ1, because as we
have observed before Dγ ∩ ρk = ∅ for every k ∈ I0.

So there exists µ(γ) ∈ Λ1 such that Dγ ⊂ Gµ(γ).

On the other hand, γ ∈ ∆1 \ ∆0 gives Dγ ∩ ρ(θ) 6= ∅ and Dγ ⊂ Dγ
for γ ∈ ∆1 \ ∆0(Lemma 6.12). So, Dγ ⊂ Dγ ⊂ Gµ(γ), Dγ ∩ ρ(θ) 6= ∅ gives
Gµ(γ) ∩ ρ(θ) 6= ∅ and by the decomposition of (C \ F ) ∪ ρ(θ) given by its
connected components we deduce that µ(γ) ∈ Λ1 \ Λ0.

Therefore, we have proved that for γ ∈ ∆1\∆0 there exists µ(γ) ∈ Λ1\Λ0,
Dγ ⊂ Gµ(γ).

Then for every Dδ ⊂ Dγ we have Dδ ⊂ Gµ(γ). Dδ being a connected
subset of C \ F1 ⊂ C \ F , for every Dδ ⊂ Dγ there exists a unique connected
component of C \ F denoted Gα(δ), α(δ) ∈ Λ, such that Dδ ⊂ Gα(δ). In the
same way, Gα(δ) being in particular a connected subset of (C \ F ) ∪ ρ(θ) there
exists Gν(δ), for some ν(δ) ∈ Λ1, a unique connected component of (C\F )∪ρ(θ)
such that Gα(δ) ⊂ Gν(δ).

Then, for every Dδ ⊂ Dγ there exists a unique connected component
of C \ F denoted Gα(δ), α(δ) ∈ Λ, and a unique connected component of
(C \ F ) ∪ ρ(θ) denoted Gν(δ), ν(δ) ∈ Λ1, such that Dδ ⊂ Gα(δ) ⊂ Gν(δ).

Now we notice that the above determined sets Gµ(γ), Gν(δ) as connected
components of (C \ F ) ∪ ρ(θ) are disjoint or coincide.

Because Dδ ⊂ Gµ(γ) ∩ Gν(δ) it results that Gµ(γ) = Gν(δ) and µ(γ) = ν(δ)
because µ(γ), ν(δ) ∈ Λ1 (De�nition 6.6).

Thus for every γ ∈ ∆1 \∆0 there exists µ(γ)(= ν(δ)) ∈ Λ1 \ Λ0 and for
every Dδ ⊂ Dγ , δ ∈ ∆, there exists α(δ) ∈ Λ with Dδ ⊂ Gα(δ) ⊂ (Gν(δ) =)Gµ(γ).

Then, if g ∈ L(C \ F,X ) we have g| ⋃
l:Gl⊂Gµ

Gl is a constant function for

every µ ∈ Λ1 \ Λ0. In particular for µ = µ(γ) ∈ Λ1 \ Λ0, for every γ ∈ ∆1 \∆0

there exists xµ(γ) ∈ X such that g| ⋃
l:Gl⊂Gµ(γ)

Gl = xµ(γ).

As we have proved, for every γ ∈ ∆1 \∆0, every Dδ ⊂ Dγ veri�es Dδ ⊂
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Gα(δ) ⊂ Gµ(γ) for some α(δ) ∈ Λ. Then we have

g|Dδ = g|Gα(δ) = xµ(γ).

Therefore for every γ ∈ Λ1 \ Λ0, g| ⋃
δ:Dδ⊂Dγ

Dδ is a constant function(xµ(γ)).

Thus for every g ∈ L(C \ F,X ) we proved g ∈ L(C \ F1,X ) and the
inclusions L(C \ F,X ) ⊂ L(C \ F1,X ) for every closed subsets F, F1, F ⊂
F1 ⊂ C. The inclusions Ls(C \ F,X ) ⊂ Ls(C \ F1,X ) for every closed subsets
F ⊂ F1 ⊂ C can be proved in the same way and conclude the proof. �

Proposition 6.22. L(F, θ) and Ls(F, θ) are closed subspaces of X for
every closed subset F ⊂ C.

Proof. Obviously L(F, θ) and Ls(F, θ) are subspaces of X . We will prove
that L(F, θ) is closed; the closure property for Ls(F, θ) can be proved in the
same way.

First recall that x ∈ L(F, θ) means that

∀ε > 0,∃gε ∈ RangeΦθ ∩ L(C \ F,X ), ‖ gε(z)− x ‖< ε,∀z ∈ C \ F.

Let L(F, θ) be the closure in X of L(F, θ) and y ∈ L(F, θ). Then for every
ε > 0 there exists x ∈ L(F, θ) such that ‖ y − x ‖< ε. If gε is attached to ε > 0
and x ∈ L(F, θ) as above we have

‖ gε(z)− y ‖<‖ gε(z)− x ‖ + ‖ x− y ‖< 2ε for every z ∈ C \ F

Thus y ∈ L(F, θ) and L(F, θ) ⊂ L(F, θ) which conclude the proof. �

Corollary 6.23. For every closed subset F ⊂ C we have,

M(F, θ) = M0(F, θ) ⊂ Ls(F, θ) ⊂ L(F, θ) ⊂ N(F, θ)

Proof. It results by Remark 6.20, 3. and the closure property of
Ls(F, θ). �

Now we prove that the θ-spectral spaces L(F, θ), Ls(F, θ) (De�nition 6.19)
have the property(r) (see after Lemma 6.1), the restriction property to the
spectrum σ(θ).

Theorem 6.24. For every analytic operator valued function θ with
nonempty resolvent set and every closed subset F ⊂ C, the θ-spectral spaces
L(F, θ), Ls(F, θ) have the property (r), the restriction property to the spectrum
σ(θ), i.e.

L(F, θ) = L(F ∩ σ(θ), θ), Ls(F, θ) = Ls(F ∩ σ(θ), θ),

for every closed subset F ⊂ C.
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Proof. We shall give only the proof for L(F, θ) = L(F ∩ σ(θ), θ) for every
closed subset F ⊂ C, the similar equalities for Ls(F, θ) can be proved in a
similar way. Let us consider an arbitrary closed subset F ⊂ C. First we observe
that L(F ∩σ(θ), θ) ⊂ L(F, θ) because the map F 7−→ L(F, θ) is monotone 6.21
(monotonicity property).

So it remains to prove L(F, θ) ⊂ L(F ∩ σ(θ), θ) for every closed subset
F ⊂ C.

For proving this, we consider an arbitrary x ∈ L(F, θ). Then by De�ni-
tion 6.19 we have

∀ε > 0,∃gε ∈ RangeΦθ ∩ L(C \ F,X ), ‖ gε(z)− x ‖< ε,∀z ∈ C \ F.

Explicitly this means:

(i1) for every ε > 0 there exists fε ∈ O(C \ F,X )

(i2) gε = Φθfε, gε(z) = θ(z)fε(z) for every z ∈ C \F veri�es the following
properties a), b):

a) gε| ⋃
β:Gβ⊂Gα

Gβ = xα,ε ∈ X for every α ∈ Λ1 \ Λ0

b) ‖ gε(z)− x ‖< ε, for every z ∈ C \ F .
Recall that Λ,Λ0,Λ1, Gα,Gα are from Proposition 6.9, 6.15 and used be-

fore in the proof of Proposition 6.21. So we have:

{Gα}α∈Λ are all the connected components of C \ F ,
Λ0 = {α ∈ Λ | Gα ∩ ρ(θ) = ∅},
Gα for α ∈ Λ1 are connected components of (C \ F ) ∪ ρ(θ),

Gα for α ∈ Λ1 \ Λ0 are all Gα having nonempty intersection with ρ(θ).
Recall also, from Corollary 6.13, Gβ ∩ ρ(θ) 6= ∅ for every Gβ ⊂ Gα with α ∈
Λ1 \ Λ0 and for every Gβ,Gβ ∩ ρ(θ) 6= ∅(β ∈ Λ1 \ Λ0) there exists α ∈ Λ1 \ Λ0

such that Gβ ⊂ Gα.
We will prove that x ∈ L(F, θ) implies x ∈ L(F ∩ σ(θ), θ), proving that

x satisfying the above assertions (i1), (i2) veri�es also the De�nition 6.19 with
F ∩ σ(θ) instead of F .

So, for x verifying the above assertions (i1), (i2) we have to prove the
following assertion:

∀ε > 0,∃hε ∈ RangeΦθ ∩ L(C \ (F ∩ σ(θ)),X ), ‖ hε(z)− x ‖< ε,

∀z ∈ C \ (F ∩ σ(θ)).

Obviously C \ (F ∩ σ(θ)) = (C \ F ) ∪ ρ(θ) ⊃ ρ(θ) and we used 2. from
Remark 6.18 for K = F ∩ σ(θ) ⊂ σ(θ). We deduce in this case that the
space L(C \ (F ∩ σ(θ)),X ) is the space of all X -valued analytic functions on
C\(F∩σ(θ)) = (C\F )∪ρ(θ) which are constant on every connected component
of C \ (F ∩ σ(θ)) = (C \ F ) ∪ ρ(θ) having nonempty intersection with ρ(θ).
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The decomposition of (C \ F ) ∪ ρ(θ) given by its connected components is
described in Proposition 6.9, Remark 6.14 and 6.18. Using the notations of
this decomposition from 6.9, the connected components of C \ (F ∩ σ(θ)) =
(C \F )∪ ρ(θ) having a nonempty intersection with ρ(θ) are Gα for α ∈ Λ1 \Λ0

and ρk for k ∈ I0. Thus h ∈ L(C\(F∩σ(θ)),X ) means h ∈ O((C\F )∪ρ(θ),X )
and h locally constant on

⋃
α∈Λ1\Λ0

Gα ∪
⋃
k∈I0

ρk i.e. h constant on Gα for every

α ∈ Λ1 \ Λ0 and h constant on ρk for every k ∈ I0.
Thus, what we need to prove can be rewritten as
(r1) for every ε > 0 there exists ϕε ∈ O((C \ F ) ∪ ρ(θ),X )
(r2) hε = Φθϕε, hε(z) = θ(z)ϕε(z) for every z ∈ (C \ F ) ∪ ρ(θ), veri�es

the following properties a), b):
a) hε|Gα = xα,ε ∈ X for every α ∈ Λ1 \ Λ0 and
hε|ρk = yk,ε ∈ X for every k ∈ I0

b) ‖ hε(z)− x ‖< ε, for every z ∈ (C \ F ) ∪ ρ(θ).
In order to de�ne such a ϕε for every ε > 0, we use the above functions fε

attached to x ∈ L(F, θ), verifying (i1), (i2) by de�nition of L(F, θ). Then the
following property of fε derived from (i2)a):
for every α ∈ Λ1 \ Λ0 there exists xα,ε ∈ X such that,

fε| ⋃
β:Gβ⊂Gα

Gβ∩ρ(θ) = R(., θ)xα,ε

i.e. for every α ∈ Λ1 \ Λ0 there exists xα,ε ∈ X such that

fε(z) = R(z, θ)xα,ε for every z ∈
⋃

β:Gβ⊂Gα

Gβ ∩ ρ(θ).

Indeed, gε, fε, given before by x ∈ L(F, θ), verify (i2) a). By Corollary 6.13

Gβ ⊂ Gα if and only if
_
Gβ = Gβ ∪

⋃
i∈Iβ

ρi ⊂ Gα and Iβ 6= ∅. Thus we obtain by

(i2) a):

∀α ∈ Λ1 \ Λ0,∃xα,ε ∈ X , gε(z) = θ(z)fε(z) = xα,ε, ∀z ∈ Gβ ⊂ Gα.

We also have for every Gβ ⊂ Gα, Gβ ∩ ρ(θ) = Gβ ∩
⋃
i∈Iβ

ρi 6= ∅ because

Iβ = {i ∈ I | ρi ∩Gβ 6= ∅}, {ρi}i∈I being the all connected components of ρ(θ).
For z ∈ Gβ ∩ ρ(θ) ⊂ Gβ ⊂ Gα obviously we have gε(z) = θ(z)fε(z) = xα,ε and
the above mentioned fε, has the announced property,

fε| ⋃
β:Gβ⊂Gα

Gβ∩ρ(θ) = R(., θ)xα,ε.

Resuming, we have for every x ∈ L(F, θ):
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for every ε > 0 there exists fε ∈ O(C \ F,X ),
for every α ∈ Λ1 \ Λ0 there exists xα,ε ∈ X such that

fε(z) = R(z, θ)xα,ε, for every z ∈
⋃

β:Gβ⊂Gα

Gβ ∩ ρ(θ) =
⋃

β:Gβ⊂Gα

Gβ ∩
⋃
i∈Iβ

ρi,

where Gβ ∩ ρ(θ) 6= ∅, for every Gβ ⊂ Gα,
and

‖ θ(z)fε(z)− x ‖< ε,∀z ∈ C \ F.
For easier reading we recall also (see Proposition 6.9, 6.15):

{Gα}α∈Λ and {ρi}i∈I are all the connected components of C \ F respectively
ρ(θ), (C \F )∪ ρ(θ) =

⋃
α∈Λ0

Gα ∪
⋃

α∈Λ1\Λ0

Gα ∪
⋃
k∈I0

ρk is the decomposition given

by the connected components of (C \ F ) ∪ ρ(θ),
Λ0 = {α ∈ Λ | Gα ∩ ρ(θ) = ∅}, Gα = Gα for every α ∈ Λ0,
I0 = {i ∈ I | ρi ∩ ρ(θ) = ∅}, Iβ = {i ∈ I | Gβ ∩ ρi 6= ∅},
Gβ ∩ ρ(θ) = Gβ ∩

⋃
i∈Iβ

ρi.

Using the function fε attached to x ∈ L(F, θ) and its properties derived
before from (i1), (i2) of de�nition of L(F, θ), we can prove now that every
x ∈ L(F, θ) is verifying (r1), (r2) i.e. x ∈ L(F ∩ σ(θ), θ).

More precisely, having fε as above given by x ∈ L(F, θ) we will de�ne for
every ε > 0 a function ϕε ∈ O((C \F )∪ ρ(θ),X ) verifying (r2). First we de�ne
ψα,ε ∈ O(Gα,X ) for every α ∈ Λ1 \ Λ0,

ψα,ε(z) =

{
fε(z) if z ∈ Gβ for every Gβ ⊂ Gα
R(z, θ)xα,ε if z ∈ ρi for every ρi ⊂ Gα

For every α ∈ Λ1 \ Λ0, the function ψα,ε is well de�ned and analytic on
Gα because Gα =

⋃
β:Gβ⊂Gα

Gβ ∪
⋃
i∈Iβ

ρi(Corollary 6.13), fε and R(., θ) are analytic

functions on C \ F respectively ρ(θ) and by the above proved property of fε,
fε(z) = R(z, θ)xα,ε if z ∈ Gβ ∩ ρi, i ∈ Iβ.

Because Gα ∩ Gβ = ∅ for every α, β ∈ Λ1, α 6= β, the following equalities:

ψε(z) = ψα,ε(z) for every z ∈ Gα and α ∈ Λ1 \ Λ0,

de�ne ψε as analytic function on
⋃

α∈Λ1\Λ0

Gα.

Then, the following equalities de�ne ϕε ∈ O((C \ F ) ∪ ρ(θ),X ),

ϕε(z) =


fε(z) if z ∈

⋃
β∈Λ0

Gβ

ψε(z) if z ∈
⋃

α∈Λ1\Λ0

Gα

R(z, θ)x if z ∈
⋃
k∈I0

ρk
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because
⋃

β∈Λ0

Gβ ,
⋃

α∈Λ1\Λ0

Gα,
⋃
k∈I0

ρk are open disjoint subsets of C.

Thus (r1) holds for every x ∈ L(F, θ).

We will prove that ϕε veri�es (r2). Indeed we have,

hε(z) = θ(z)ϕε(z) =


θ(z)fε(z) if z ∈

⋃
β∈Λ0

Gβ

θ(z)ψε(z) if z ∈
⋃

α∈Λ1\Λ0

Gα

x if z ∈
⋃
k∈I0

ρk

For α ∈ Λ1 \ Λ0 and z ∈ Gα, from de�nition of ψα,ε, we have the equality
fε(z) = R(z, θ)xα,ε for every z ∈ Gβ ∩ ρ(θ) 6= ∅ and the identity theorem for
analytic functions gives:

θ(z)ψε(z) =

{
θ(z)fε(z) = xα,ε if z ∈ Gβ for every Gβ ⊂ Gα
θ(z)R(z, θ)xα,ε = xα,ε if z ∈ ρi for every ρi ⊂ Gα

i.e. θ(z)ψε(z) = xα,ε for every z ∈ Gα and α ∈ Λ1 \ Λ0.

Then we obtain,

hε(z) = θ(z)ϕε(z) =


θ(z)fε(z) = gε(z) if z ∈

⋃
β∈Λ0

Gβ

xα,ε if z ∈ Gα, α ∈ Λ1 \ Λ0

x if z ∈
⋃
k∈I0

ρk

Therefore (r2)a) holds for hε = Φθϕε i.e. ϕε veri�es (r2)a) and we have

hε(z)− x =


gε(z)− x if z ∈

⋃
β∈Λ0

Gβ

xα,ε − x if z ∈ Gα, α ∈ Λ1 \ Λ0

0 if z ∈
⋃
k∈I0

ρk

Then we deduce

‖ hε(z)− x ‖< ε, for every z ∈ (C \ F ) ∪ ρ(θ),

because by (i2)b) we have ‖ gε(z) − x ‖< ε for every z ∈ C \ F , and by (i2)a)
‖ xα,ε − x ‖< ε for z ∈ Gβ , for every Gβ ⊂ Gα and α ∈ Λ1 \ Λ0.

Thus hε veri�es also (r2)b) i.e. ϕε veri�es (r2)b).

Therefore, ϕε veri�es (r2)a), r2)b) hence (r2) and x veri�es (r1), (r2) if
x ∈ L(F, θ).

Hence x ∈ L(F∩σ(θ), θ) if x ∈ L(F, θ), the inclusion L(F, θ) ⊂ L(F∩σ(θ))
has been proved for every closed subset F ⊂ C and this concludes the proof. �
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Remark 6.25. All the above mentioned θ-spectral spaces can be of interest
for a closed subset F ⊂ C only for analytic operator valued functions θ which
do not satisfy condition β onC \ F ; for θ satisfying condition β on C \ F (see
De�nition 5.1), by Corollary 5.7 we have M0(F, θ) = Ls(F, θ) = L(F, θ) =
N(F, θ).

As usual, all the results proved above for θ are true for θ = θT , T ∈ B(X ),
that is for spectral spaces of a general bounded operator T, attached to a closed
subset of complex numbers. Thus we can consider spectral spaces for T ∈ B(X )
given by Y (F, T ) = Y (F, θT ) which are de�ned using X -valued function spaces
Y(C\F,X ) (De�nition 6.3). As in Remark 6.4, 6.25, all this spectral spaces are
between the strong and weak Bishop's spectral spaces and are of interest only
for T which does not satisfy Bishop's condition β on the complement C \ F of
a closed subset F ⊂ C.

1. M(F, T ) ⊂ Y (F, T ) ⊂ N(F, T ) for every F = F ⊂ C.
2. Y (F, T ) = N(F, T ) if Y(C \ F,X ) = O(C \ F,X ),

Y (F, T ) = M(F, T ) if Y(C \ F,X ) = Oct(C \ F,X ).

If T satis�es Bishop's condition β, then it is well known (see [3]) thatM0(F, T ) =
N(F, T ), hence M0(F, T ) = Y (F, T ) = N(F, T ) for every F = F ⊂ C.

Now for an arbitrary T ∈ B(X ) we can consider spectral spaces L(F, θT ),
Ls(F, θT ), de�ned by θT (z) = z − T, z ∈ C and X -valued function spaces
L(C \ F,X ), respectively Ls(C \ F,X ) (de�nitions 6.3, 6.17, 6.19).

These new spectral spaces of T are closed subspaces between Bishop's
spectral spacesM(F, T ), N(F, T ) and have the restriction property to the spec-
trum σ(T ) of T . We close with a short description of these.

As an open subset of C, ρ(T ) the resolvent set of T has a decomposition
given by its connected components {ρi}i∈I , ρ(T ) =

⋃
i∈I
ρi. For every closed

subset F ⊂ C we denote L(F, T ) = L(F, θT ), Ls(F, T ) = Ls(F, θT ) (a particular
case of De�nition 6.19). Explicitly, x ∈ L(F, T ) = L(F, θT ) can be written as
follows.

x ∈ L(F, T ) if and only if the following condition is ful�lled:

∀ε > 0,∃gε ∈ RangeΦθT ∩ L(C \ F,X ), ‖ gε(z)− x ‖< ε,∀z ∈ C \ F.

In order to explain in detail we recall some notations from θ in the particular
case of θT :

{Gα}α∈Λ respectively {ρi}i∈I all the connected components ofC\F respectively
ρ(T ),

(C \ F ) ∪ ρ(T ) =
⋃

α∈Λ0

Gα ∪
⋃

α∈Λ1\Λ0

Gα ∪
⋃
k∈I0

ρk the decomposition given by the

connected components of (C \ F ) ∪ ρ(T ),
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Λ0 = {α ∈ Λ | Gα ∩ ρ(T ) = ∅},
I0 = {i ∈ I | ρi ∩ ρ(T ) = ∅},
Λ1 ⊂ Λ and {Gα}α∈Λ1 (connected components of (C \F )∪ ρ(T ) ) were de�ned
in Lemma 6.8,

{Gα}α∈Λ1\Λ0
are Gα, α ∈ Λ1, having a nonempty intersection with ρ(T ).

Then, x ∈ L(F, T ) is de�ned by the following assertions:

(i1) for every ε > 0 there exists fε ∈ O(C \ F,X )

(i2) gε(z) = (z−T )fε(z) for every z ∈ C\F veri�es the following properties
a), b):

a) gε| ⋃
β:Gβ⊂Gα

Gβ = xα,ε ∈ X for every α ∈ Λ1 \ Λ0

b) ‖ (z − T )fε(z)− x ‖< ε, for every z ∈ C \ F .
Replacing ε > 0 by 1/n, we have as in Lemma 6.5 the following equivalent

assertion for x ∈ L(F, T ):

(i1) there exists (fn)n∈N ⊂ O(C \ F,X ) a sequence of X -valued analytic
functions on C \ F ,

(i2) gn(z) = (z − T )fn(z) for every z ∈ C \ F and veri�es the following
properties a), b):

a) for every α ∈ Λ1 \ Λ0, n ∈ N, gn| ⋃
β:Gβ⊂Gα

Gβ = xα,n ∈ X for every

α ∈ Λ1 \ Λ0,

b) (z − T )fn(z) −→ x for n −→∞, uniformly for every z ∈ C \ F .
Obviously x ∈ Ls(F, T ) means x ∈ L(F, T ) and xα,ε = xε ∈ X for every

α ∈ Λ1 \ Λ0 in �rst formulation, xα,n = xn ∈ X for every α ∈ Λ1 \ Λ0 corre-
spondingly in the second formulation. The properties of L(F, T ) and Ls(F, T )
derived from the properties of L(F, θ) and Ls(F, θ) when θ = θT , are contained
in the following proposition.

Proposition 6.26. For every closed subset F ⊂ C and T ∈ B(X ), the
spectral subspaces L(F, T ) and Ls(F, T ) are closed subspaces of X and the fol-
lowing inclusions hold:

M(F, T ) = M0(F, T ) ⊂ Ls(F, T ) ⊂ L(F, T ) ⊂ N(F, T )

The maps F 7−→ L(F, T ), F 7−→ Ls(F, T ) are monotone and the spectral sub-
spaces L(F, T ) and Ls(F, T ) have the property(r), the restriction property to
the spectrum σ(T ):

(r)Ls(F ∩ σ(T ), T ) = Ls(F, T ) and L(F ∩ σ(T ), T ) = L(F, T ),

for every closed subset F ⊂ C.

The new spectral spaces Ls(F, T ), L(F, T ), intermediate betweenM(F, T )
and N(F, T ), are particular cases of the more general spectral spaces Y (F, θT )
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described in this paper. These spaces answer the �rst part of Bishop's [3] ques-
tion concerning �the existence of a third type of spectral manifold intermediate
betweenM(F, T ) and N(F, T ), which is self-dual�. The second part, the duality
of these spaces will be considered in a future paper.

In closing, as in the general case of θ, it is necessary to make the following
remark.

Remark 6.27. All the above mentioned spectral spaces M0,M,Ls, L,N
can be of interest for a closed subset F ⊂ C only for an operator T ∈ B(X )
which does not satisfy Bishop's condition β on the open set C \ F ; when T
satis�es Bishop's condition β on C \ F (see Remark 5.4), then M0(F, T ) =
N(F, T ) and by the above proposition obviously we have:

M(F, T ) = M0(F, T ) = Ls(F, T ) = L(F, T ) = N(F, T ).

If T satis�es Bishop's condition β, then M0(F, T ) = N(F, T ) for every closed
subset F ⊂ C and the above equalities hold for every closed subset F ⊂ C.
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