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The primary objects for the spectral theory of a linear bounded operator 7" on an
arbitrary complex Banach space X’ derive from a function 67 of complex variable
A given by the equality 67(\) = A — T, A € C. Some facts from spectral theory
for T' can be considered more generally, in a natural way, for an arbitrary analytic
operator valued function € of complex variable A, #(\) linear bounded operator
on X for A € C. For instance, the spectrum of 6, o(6), consists of all A\ € C
with 6(X\) not invertible, such that in particular o(0r) = o(T), the spectrum
of T. In the following, Dunford’s single valued extension property (s.v.e.p),
Bishop’s spectral spaces and () property will be defined for § in a similar way.
Some natural localizations of these properties to the open subsets of complex
numbers are defined and these localizations of (s.v.e.p) or (3) property hold
for 0 in some open subset G C C. These localizations of (s.v.e.p) or Bishop’s
property (3) for Or (i.e. for T') for an arbitrary T hold for some open subsets
of C although (s.v.e.p) and (8) may be not true for 7. First we use this in a
particular case in [20] (Definition 2.1). The analysis of these localizations gives
also an evaluation of (s.v.e.p.) and (B) property for an arbitrary 7. Finally, a
class of spectral subspaces for an arbitrary analytic operator valued function 6
of complex variable is defined. In particular, for 07 this is a new class of spectral
subspaces of an arbitrary bounded operator T, intermediate between the strong
and weak Bishop’s spectral spaces of 7" and having the restriction property to
the spectrum of 7.
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1. INTRODUCTION

Let T € B(X) be a linear bounded operator on a complex Banach space
X and let C be the field of complex numbers. Generally speaking, a spectral
theory of T means a study of T in connection with a compact set of complex
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numbers, the spectrum of 7" usually denoted by o(T") and defined as o(T') =
C\ p(T), where

p(T) = {Ae C|AI-T)"" € BX))

is the resolvent set of T'.
The function R(A,T),the resolvent function of 7" is defined on p(7) by

RNT) =M -T)"Y, xep(T).

It is well known that R(.,T) is an analytic operator-valued function on p(7T)
and the boundedness of T implies that co(the compactification point of C) is
a regular point of it, actually p(T") U co is a neighbourhood of oo containing
{z]] 2> T |}, imyyeo R(\,T) = 0 and the spectrum of 7" is a compact
subset of C, o(T) C{z | |z || T ||} -

If X is of finite dimension, the objects defined above together with certain
subspaces associated to closed subsets of o(7")(actually finite subsets because
o(T) is also finite in this case), named the spectral spaces associated to T, give
a complete description of the operator T

The general infinite dimensional case of T € B(X), a linear bounded
operator on a complex Banach space X, is far from being so well understood.
The important advances were made in the following two directions.

The first one concerns the study of certain operators having special prop-
erties while the second direction is primarily interested in spectral properties of
a completely arbitrary bounded operator T, specifically looking for those spec-
tral properties which hold for every T and are relevant for its structure. The
important advances in this direction are the results concerning the following
classes of operators. First, the Dunford’s class of bounded operators having
the single valued extension property(s.v.e.p) and subclasses of Dunford scalar
or spectral operators [9,10] with their extensions: the class of scalar generalized
operators introduced by C. Foiag [12] and the class of spectral generalized oper-
ators introduced by L. Colojoara |7]. Finally, observing that every spectral space
Y from the Jordan model of a linear finite dimensional operator T' contains all
T-invariant subspaces Z having the property o(T' | Z2) C o(T' | V), C. Foiag in-
troduced the concept of a spectral maximal space and the corresponding infinite
dimensional Jordan spectral model for a new class of operators called decom-
posable operators [13]. The class of decomposable operators is a subclass of the
class of operators having (s.v.e.p) and contains all the others classes mentioned
above, spectral and scalar generalized operators, spectral and scalar operators
(see also [1,2,8,15,17,22]. As E. Albrecht and J. Eschmeier proved [1], every
bounded operator may be represented as a quotient of restriction of a decom-
posable operator. The restrictions and quotients of decomposable operators
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were becoming very important for the general spectral theory and not only for
it if we remember that S. Brown’s result concerning the existence of invariant
subspaces for hyponormal operators with thick spectrum [6] was obtained after
M. Putinar proved [18] that every hyponormal operator is a restriction of a
decomposable operator.

The most relevant results for the second direction mentioned above are
Bishop’s results. E. Bishop attached [3] to each closed subset ' C C two
spectral subspaces for an arbitrary linear bounded operator T' € B(X). These
spectral subspaces, called strong and weak respectively spectral manifolds of
T corresponding to F, were denoted by M(F,T) respectively N(F,T). The
generic element = of these manifolds is defined by the existence of a X-valued
analytic function f on C \ F which is an exact respectively approximative
solution for the equation (7T'—z)f(2) = x, 2z € C\ F. Using invariant subspaces
for T in particular these spectral manifolds, E. Bishop considers four types
of spectral theory called “duality theories”, establishing a certain duality of
spectral point of view between T and its adjoint 7% € B(X™*). One of these
dualities is valid for every T and the others, in some sense close to property
of Foiag-decomposability of T', have as consequences certain classical results in
spectral theory such as the spectral theorem for Hermitian or unitary operators.
For a reflexive Banach space X and T' an arbitrary linear bounded operator on
X, E. Bishop’s weakest duality theory (of type 4) holds for every T' and means
that the following inclusions hold:

M(Fy,T)t > N(Fy,, T*), N(F\,T)* > M(Fy, T*)

M(Gy,T)t € N(Gy,T*), N(G1,T)* ¢ M(G,T%)

for arbitrary Fj, Fb disjoint compact subsets of the complex numbers C and
arbitrary open sets G, G2 which cover C. The inclusion M (F,T) C N(F,T) is
always true. If X’ has finite dimension, then M (F,T) = N(F,T) is a maximal
spectral space derived from Jordan model (decomposability of T'). Bishop’s
property () for an arbitrary bounded linear operator T is a sufficient condition
for the equality M(F,T) = N(F,T) for every closed subset ' C C and the
property (3) holds for every T' € B(X) when X has finite dimension.

Our aim in the paper is to enlarge the frame of spectral theory in those two
directions described before. As mentioned above, the primary objects for the
spectral theory of T' are derived from an operator-valued function of complex
variable given by 07(\) = A — T, A € C. It is then natural to try to develop
a spectral theory starting from an arbitrary analytic operator valued function
O(N), A € C. Some facts from spectral theory can be considered for an analytic
operator valued function 6 of complex variable A, #()\) linear bonded operator
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on a complex Banach space X, such that, for 7, they reduced to the facts from
spectral theory of T" and many of the results concerning the study of analytic
operator valued functions can be found in the well known book of I.Gohberg
and J.Leiterer [14]. As we mentioned above the spectrum of 6 is defined such
that in particular o(67) = o(T"), the spectrum of T' (see [16,21]).

Single valued extension property (s.v.e.p.), Bishop’s spectral spaces and
(B) property have not been considered for an arbitrary analytic operator valued
function 6. In the following, (s.v.e.p.), spectral spaces and () property will all
be generalized in the next Sections 2, 3, 4, 5, for an analytic operator valued
function 6, such that,for 67, they reduce to the well known (s.v.e.p.), Bishop’s
spectral spaces and () property of T, respectively.

In the Sections 3, 4, 5 we also define and analyse the localization of
(s.v.e.p.) and (f3) property of 6 to an arbitrary open subset of complex num-
bers G C C. For instance, the localization to G of (s.v.e.p.) for § means the
injectivity of the following map defined on O(G, X) ,

OG,X)3 f = geOG,X)g(\) =0\ fN),\ € G

and we say that G is analytic spectral compatible with 6 or 0 has (s.v.e.p.) on
G. For Or, this means f € O(G,X) and (A —T)f(\) = 0 for every A € G
implies f = 0 (f(A) = 0 for every A € G) such that G is analytic spectral
compatible with T or T has (s.v.e.p.) on G |20, Def. 2.1|. For an arbitrary T’
these localizations of (s.v.e.p.) or (8) can hold for some open subsets G C C
although (s.v.e.p.) or (8) property may be not true for 7. For instance, T'
has (s.v.e.p.)on every w an open subset of a set of analytic uniqueness of T'
(see Definition 1.1 in [22]). In particular, the above localization of (s.v.e.p.)
holds on every open set of analytic uniqueness of T. We observe also that the
above open sets G C C spectral compatible with 7' (i.e. T has (s.v.e.p.) on
() are not necessarily open sets of analytic uniqueness of 7', they are more
general sets. As T has (s.v.e.p.) or (§) property if and only if each localization
of this property holds for every open subset G C C, the analysis of these
localizations in Sections 3, 5, gives an evaluation of (s.v.e.p.) or () property
for an arbitrary 7" when these properties are not true for 7'. Finally, in Section
6 we obtain for 67, as a particular case of 6, a class of spectral spaces of T
intermediate between Bishop’s spectral manifolds M (F,T) and N(F,T). This
new class is attached to a class of analytic functions on C\ F', contains Bishop’s
spectral manifolds M (F,T) and N(F,T) (see Definition 6.3) and a new one
denoted L(F,T), intermediate between M (F,T) and N(F,T). L(F,T) has the
restriction property to the spectrum of T i.e. L(F,T) = L(FNo(T),T)for every
closed subset F' C C. We recall that M (F,T) has the restriction property to
the spectrum of T' but N(F,T) does not have this property.
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2. OPERATOR VALUED FUNCTIONS
OF COMPLEX VARIABLE

The basic concepts of spectral theory for a bounded linear operator
T € B(X) are derived from the invertibility of the operators A — 7" for A € C.
The following two operator-valued functions give the basic concepts of the spec-
tral theory corresponding to T' € B(X):

0 : C = B(X), 0r(\) =A—T
R(.,T): p(T) = B(X), RAT)=M\-T)""

It is possible to define the concepts of resolvent and spectrum for an arbi-
trary operator-valued function 6 defined on some set D of complex numbers,
0:D — B(X), D C C, such that p(6r) = p(T) and o(07) = o(T).

Definition 2.1. 1f 0 : D — B(X), D C C, is an operator valued function,
we define

p() ={r€ D |6(N)~" € B(X)} and o(0) = D\ p(6)

p(0) is called the resolvent set of 6 in D and () is called the spectrum of 6 in D.
The function R(\,0) = 0(A)~%, X € p(f), is called the resolvent function of 6.
R(.,0) : p(f) — B(X) is an operator valued function on p(6), p(R(.,0)) = p(0)
and R(.,R(.,0)) =0 | p(6).

For 8 : C — B(X), p(#) will be simply called the resolvent set of 6,
C\ p(0) = o(8) the spectrum of 8; p(6 | D), respectively o(0 | D) denotes the
resolvent set in D, respectively the spectrum in D of 6 | D. R(.,0) is called the
resolvent function of # and R(.,0 | D) = R(.,0) | p(6 | D).

Remark 2.2. 1. The resolvent set of O is p(6r) = p(T), o(0r) = o(T)
and R(.,07) = R(.,T). The resolvent set of R(.,T) in p(T) is p(T") and
the spectrum of R(.,T) in p(T) is the empty set.

2. If R denotes the set of all invertible elements of B(X) and 6 is as in 2.1,
we have p(8) = §~1(R) C D, that is the inverse image of R through 6.

Obviously, the basic properties p(07) = p(T) # 0 respectively o(67) =
o(T) # C are not true for all operator functions, not even for all analytic ones.
Then everywhere in the following we consider only operator-valued functions
having a nonempty resolvent set and, for simplicity, defined on the complex
field C, 6 : C — B(X), p(0) # (. Everything can be easily restated for an
operator valued function defined on an open subset of C.

On the other hand for a continuous operator function, in particular for an
analytic operator function 6 with p(6) # 0, p(0) is like p(f7) an open set and
R(\,0) is a continuous function.
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Remark 2.3. It is well known that R, the set of all invertible elements of
B(X), is an open set in the Banach space B(X) and the function on R defined
by T — T~ is a continuous function.

This remark and 2 from Eemark 2.2, give the following.

PROPOSITION 24. If 6 : C — B(X) is a continuous operator function
with () # p(0) = 671 (R), then the resolvent set p(0) is an open nonempty set of
C, and R(.,0) : p(0) — B(X), R(\,0) = (0(\))~L, the resolvent function of 0

s a continuous function.
The next proposition is also easy to prove.

PROPOSITION 2.5. If § : C — B(X) is an analytic function (having a
nonempty resolvent set), then the resolvent function R(.,0) is an analytic func-
tion on the nonempty open set p(0).

Proof. Using the definition, we obtain the C — derivability of R(.,0) in a
standard way as a consequence of Proposition 2.4:

d d
—R(\,0) = -0\ <0\t O

In the following, we consider only analytic operator valued functions,
called for simplicity analytic operator functions, having a nonempty resolvent
set p(0) # O( o() # C, the spectrum o(f) a closed subset not necessarily
compact).

3. SINGLE VALUED EXTENSION PROPERTY
AND ANALYTIC OPERATOR-VALUED FUNCTIONS

In order to define in this context a single-valued extension property,
(s.v.e.p.), we use a general idea concerning operators acting in function spaces
used also in [17] to describe properties in connection with (s.v.e.p.) for T €
B(X).

Definition 3.1. If § : C — B(X) is an operator-valued function and the
set of X-valued functions on E C C is denoted {f | f: E — X'}, we define:

Qg {f|f:E—=X}—{f|f:E— X}
[Dgf](z) = 0(2)f(2) for every z € E.

Remark 3.2. For § = 0, ®p, = T, (from [17]), (T.f)(A) = A =T)f(N)
and for simplicity we denote ®7 = ®y,..
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If we consider § : C — B(X) an analytic operator-valued function and
O(G, X) the Fréchet space of analytic X-valued functions on an arbitrary open
subset G C C, it is easy to observe the following.

Remark 3.3. The simple identity

0 () =B (0) _ g P = ) | 6(2) = (z0)

Z— 20 Z— 20 zZ— 20

f(z0)

implies that
dy: O(G,X) — O(G, X).

If for any « € X we denote by x the constant function on G having value
x, we write x € O(G, X) for every z € X.

The following definition describes an adequate set of analytic function on
G in order to introduce (s.v.e.p.) for 6 on the open subset G C C. We mention
that the same set will be used in the following Section 4 to define the strong
Bishop’s spectral spaces for 6.

Definition 3.4. The set @, ({z})NO(G, &), for every € X and an open
subset G C C, is called the (e.p.) index, the extention property index, attached
to 6 in x on the open subset G C C.

For § = 0r,T € B(X) the (e.p) index of Or is called (e.p.) index attached
to T in z € X on the open subset G C C.

When (e.p.) index attached to § on G in x is nonempty then there exists
an analytic extension of R(.,0)x on G i.e. 6 has “extension property”, (e.p.),
on G in x and it justifies the name.

Obviously, the (e.p.) index for # in z € X on G has at the most one
element if and only if the (e.p.) index for # in 0 € X on G is reduced to
0 € O(G,X). The (s.v.e.p.) for 0 on the open set G is given now by the
following property of the (e.p.) index attached to 6.

Definition 3.5. Let 6 : C — B(X) be an analytic operator-valued function
and let G be an arbitrary open subset G C C. We say that 6 has (s.v.e.p.) on
G(or G is spectral analytic compatible with 6) if one of the following equivalent
conditions holds:

1. the (e.p.) indez attached to 6 in 0 € X on G is reduced to 0 € O(G, X),

2. @y is injective on O(G, X),

3. the (e.p.) index altached to 0 in x € X on G has at the most one
element f € O(G, X) for every z € X.

If 07 has (s.v.e.p.) on G we say that T has (s.v.e.p.) on G (or G is spectral
analytic compatible with T', see Definition 2.1 [20]).
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We simply say 6 has (s.v.e.p.) if 6 has (s.v.e.p.) on every open subset
G C C. If 07 has (s.v.e.p.), this means that T has (s.v.e.p.) on every open
subset G C C i.e. T has (s.v.e.p.) in Dunford’s well known sense.

Remark 3.6. 1. By 3. of the above Definition, € has (s.v.e.p.) on G
means that every nonempty (e.p.) index attached to # in z € X on G , ) #
@, ({z}) N O(G, X) has a “single value”, the unique analytic extension to G of
the analytic function R(.,0)x (R(.,T)x for § = 07) i.e. 0 has a “single value”
for its “extension property” in x € X on G.

2. If Gy C Gy are two open subsets of C then the restriction to Gy of
the (e.p.) index attached to 6 in z € X on G3 is contained in the (e.p.) index
attached to € in z € X on G and the (s.v.e.p.) for € can hold on Go but not
on G1 C Gs.

3. A set of analytic uniqueness for T' (see [22]) is an open subset  C C
such that T has (s.v.e.p.) on every open subset w C .

Let us consider now an analytic operator function § : C — B(X)

(p(6) # ).

Ezamples 3.7. Using p(0) the resolvent set of #, a nonempty open subset
of C, we can describe open subsets G C C such that 0 has (s.v.e.p.) on G.
e1. 6 has (s.v.e.p) on every open subset G C p(f) because 6(z) is invertible
for every z € p(6).
eg. O has (s.v.e.p.) on every open connected subset D C C having a nonempty
intersection with p(#) as a consequence of e; and the theorem of identity
applied to the elements of the (e.p.) index attached to # in 0 € X on D.
eg. If 6 has (s.v.e.p.) on an open subset V, ) £ V C U, U a connected
open subset of C , then 6 has (s.v.e.p.) on U. If 6 has not (s.v.e.p.) on
the connected open subset U of C, then 6 has not (s.v.e.p.) on every
nonempty open subset V of U.
eq. If the sets U, C C are open for all @ € I and 0 has (s.v.e.p.) on U,, then
6 has (s.v.e.p.) on | Ua.
acl
LEMMA 3.8. There exists a nonempty set Dy, the largest open subset of C
such that 0 has (s.v.e.p.) on every open subset G C Dj.
Always Dy O p(8) and Dj = C means that 6 has (s.v.e.p.).

This lemma extends to an arbitrary analytic operator function 6, a similar
result of F.-H. Vasilescu [22] for T' € B(X).

Proof. Let us denote Gj = {D C C open |6 has (s.v.e.p.) on every open
G C D}. If Dy exists it would have to be the largest set in G;. We will prove
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that Dj = |J D. Indeed, by e, p(0) € G; thus ) # p(8) C Dj. Hence Dj is a
De G;

nonempty open set. If G'is an open subset G C D, we have G = Jp¢ G GND

and by ey 6 has (s.v.e.p.) on G because GN D is an open subset of D for every

D € Gj and 0 has (s.v.e.p.) on GN D by definition of G;. Hence Dj € G and

it is the largest set of Gj and the proof ends.  [J

Let G C C be now an arbitrary open subset and let G = |J G, be
aEA
the decomposition of G given by its connected components (open subsets) G,

a € A, of G. Using this decomposition we describe open subsets of G such that
0 has (s.v.e.p.) on it.

Definition 3.9. For the above decomposition of G we denote

Ag = {OéGA | Gaﬂp(g) #@} and GP(G) = U Ga
a€lg

and we call G (g the f-spectral interior of G.
Remark 3.10. Obviously G = |J GaU U Goa=G,eU U Ga
a€lg acA\Ay a:GaCo(0)
and (Gp))p0) = Gp(0)

Observing that every analytic function A on GG, has an analytical exten-
sion f to G, f | Gg = 0 for every § # «, it results from ey the following
equivalence:

es. 0 has (s.v.e.p.) on G if and only if 0 has (s.v.e.p.) on every connected
component of G, i.e. for every Go, a € A.
From eo, e4 we deduce also the following property.
eg. For every open subset G C C, ¢ has (s.v.e.p.) on G, and G, is a
nonempty set if and only if G N p(0) # 0.
The following property follows from es.
er. 6 has (s.v.e.p.) on G if and only if § has (s.v.e.p.) on every connected
component of G contained in o(f). In other words, the connected com-

ponents of G contained in ¢(#) determine whether 6 has (s.v.e.p.) on G.

Thus, 6 does not have (s.v.e.p.) on G if and only if there exists a con-

nected component G, of G, G, C 0(f) and 0 has not (s.v.e.p.) on every

open subset of G, (see e3).
Now eg is an easy consequence of es.
eg. 0 has (s.v.e.p.) (i.e. (s.v.e.p.) on every open G C C) if and only if # has
(s.v.e.p.) on every connected open subset of o(0).

LEMMA 3.11. For every open subset G C C there exists Sp(G) the largest
open subset of G such that 6 has (s.v.e.p.) on il.
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Proof. If we denote
Go = {w | w open subset in G, has (s.v.e.p.) on w},

then using eq, Sp(G) = |J we Gyp. O
w€Gy

Remark 3 12. If G has no nonempty open subsets on which 6 has (s.v.e.p.),
then Sy(G) = G 9) =0 and G C o(). Obviously G, C S9(G) and Sp(G) #
0 if Gy # 0.

Let G C C be a fixed arbitrary open subset and let G = |J G, be the
acel
decomposition given by the set of all connected components(open subsets) of

G. If Syp(G) is the set from Lemma 3.11 then its decomposition given by all its
connected components can be given in terms of o(#) and connected components
of G g)(from Definition 3.9). For this we first make some useful remarks.

LemMMA 3.13. If G,w are two nonempty open subsets of C, G = |J G,
a€A
and w = |J wg being the decompositions given by the connected components of
BeY
G respectively w, then the following implications hold:
lLwCcG= Wp(e) C Gp(g)
2. Gpg) Cw == Gy) C wp(o)
3. Gy Cw C G = wyp) = Gy and the connected components of G
which have nonempty intersection with p(0) are the connected components
of w which have nonempty intersection with p(6).

Proof. We recall that
Ag={a€A|Ganp(®) #0} and G = | J Ga

aElNg

and
To={B€T |wgNp(d) #0} and wyg Uwg
BETy

If wC G, then |Jwg C | Gq and for B € T there exists a unique o(3) € A
BEY a€A
such that wg C G, (g) because Gy, is a connected component of G, wg C J Ga
aEA
and wg is a connected set as being a connected component of w. If 8 € Ty we

have wg N p(#) # O and than obviously Gygy N p(#) # 0. Therefore, for every
B € Ty we have wg C G(g) C Gyp) and 1. has been proved.

2. is an easy consequence of 1. because from G,y C w we deduce
using 3.10 Gp(g) = (Gp(g))p(g) C Wy(h)-
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3. the equality w,g) = G,() 1s an easy consequence of 1. and 2. On the
other hand, for o € Ag, B € Ty, G respectively wg are all the connected com-
ponents of G, g) respectively w,) and the above equality shows that these are
the same which concludes the proof of 3. and the lemma has been proved. [

Using 3.13 and 3.10 we can describe (s.v.e.p.) for § on w when G4 C
wCG.

PROPOSITION 3.14. Let G,y C w C G as in Lemma 3.15. If 0 has
(s.v.e.p.) on w then we have

w=wupU | ws=Gupu U ws
B:wgCo(0) BiwgCo(0)

0 has (s.v.e.p.) on wg for every B € T and by Evamples 3.7(e3) on every Gy
where a(f3) € A is unique with the property wg C Gy(g)-

For w = Sy(@G) a similar result as in the above proposition is more precise
and describes its connected components.

PROPOSITION 3.15. If G C C is an open subset of C and G = |J G, is
aEN
the decomposition given by the set {Gq}aca of the connected components(open

subsets) of G, then Syg(G) the largest open subset of G on which 0 has (s.v.e.p.)
1s given by

Se(G) = U Ga, As ={a € A |0 has (s.v.ep.) on Go} D Ag

a€lg

and {Ga}acag are the connected components of So(G); in other words, the
above equality is the decomposition of Sg(G) given by its connected components.

Proof. By (e3) 6 has (s.v.e.p.) on |J G4 because 6 has (s.v.e.p.) on G,
a€lg
for every o € Ag. Let w be an arbitrary open subset of G and w = |J wg
BeY
the decomposition given by its connected components. If 6 has (s.v.e.p.) on w
then 0 has (s.v.e.p.) on wg for every f € Y. But wg is a connected set and
then there exists () € A such that wg C Gy ). So, for every 8 € T we
deduce from (e3) that 6 has (s.v.e.p.) on Gy gy and a(B) € Ag. Therefore we
deduce w C |J Gy € U Ga- Thus we have proved that ¢ has (s.v.e.p.) on
BeYT a€lg
U Go and |J G, contains every open subset w C G if 6 has (s.v.e.p.) on
a€Ag aclg
w. This means Sp(G) = |J Ga(see Lemma 3.11) and obviously this equality
a€lg
is the decomposition of Sy(G) given by its connected components. [
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COROLLARY 3.16. Let G be an open subset of C, G = |J G4 the decom-
acel
position gwen by ils connected components and G, = | Gq the 0-spectral
CVGAQ
interior of G, Ag = {a € A | G4 N p(0) # @}(Defim’tion 3.9). Let Sp(G) be
the largest open subset of G on which 0 has(s.v.e.p.) (3.11), Sp(G) = U S, the

decomposition given by its connected components, Tg = {y € T | S.yﬂp( ) # 0},
(So(G))poy = U Sy the O-spectral interior of Se(G). Then we have,

v€ly
{8y v €T} ={Ga | a € Ao}, (So(G)) p0) = G0
{Sy 17 e\ Ty} ={Ga|acAs\ Ag} =

={Gy | Go C 0(0),0 has (s.v.e.p.) on Gu}

and
So(G) =GppU | Ga =G Usse)(G)
aGAs\Ag
where we denoted )  Ga = 55(0)(G).
OAEAs\Ag
Proof. Indeed, by Proposition 3.15 we have
= JGu=JG.u |J Ga
a€lhg aElNy a€Ag\Ag
where
Ags ={a |6 has (s.v.e.p.) on Go} D Ag.
So
{Sy[veTe} ={Ga | a € Ag},
Gooy = U Ga = U 81 = (5a(G))p0)
aENg v€lg
and

So(G) = Gp(o) U 85(9)(G). O

PROPOSITION 3.17. If G', G? are two open subsets of C, then
1 2 1 2
Gp(G) U Gp(@) C (G UG >p(9).

Proof. The following obvious property will be used.
If G is an open subset of C and G, is a connected component of GG, then
for every connected subset C' C G' we have either CNG, =0, or C C G,. So, if
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G = |J C;j and C; are connected subsets for every j € J, then every connected
Jj€J
component G, of G is given by
Go=JCj Jo=1{jlCjnGa#0}.

Jj€Ja

Let now G',G? be open subsets of C from the above proposition and

Gt= UG, ac2= U G’% the decompositions given by all the connected
aEN BEA2

components of G, respectively G2. Denote by {G}/Q,l/ € Aq2} the set of all
connected components of G' U G2.

Obviously, every connected component of G or G2 is contained in some
connected component of G! U G2.

Every connected component of G' U G? is a union of some connected
components of G! or G2. The following equality explains this and follows by

the above remark
¢’= |Jelu | 63,
a1, BEA2,,
where

Ny ={a €N |GLNGL2#0}, i=1,2.

As mentioned above for every a € Ay, 8 € Ao there exist v(a), v(8) such
that G C G, G3 C G, So G& C Gjlie. Gy 1 p(6) # 0) implies
Gl C G}/’Q) C (G'UG?)g and in a similar way G% C G% implies G% C Gi’fﬂ) C

(a
(G'UG?)y. Thus, by Definition 3.9 we obtain G;(Q)UG?)(O) C (G'UG?) 9. O

Remark 3.18. Some assertions from the above proof show that generally
speaking the above inclusion given in Proposition 3.17 is not an equality. For
example let G', G? be two nonempty connected open subsets of C such that
G1Np(0) = 0 and GaNp(0) # 0 (in particular G1NG2Np(0) = 0). If G1NGy # 0,
then G1UG5 is a connected open set, (G1UG2)p(9) = G1UGo, G;(e) = (), G?)(Q) =
G27 and G = G;(G) U G?)(@) g (Gl U Gg)p(g) =G UGs.

COROLLARY 3.19. If G', G? are two open subsets of C, G*NG? = 0, then
1 2 1 2
Goo) Y Gpo) = (G UGy 0)-

Proof. Using the notations of Proposition 3.17, we have G. N G% = () for
every a € A1, B € As. So, for every connected component Gi? of G1 UG5 there
exists a unique a(v) € A; such that GL? = Gi(y), or there exists a unique

B(v) € Ay such that GL? = G%(y). O
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Remark 3.20. If @ = 67 for some T' € B(X) then p(0) = p(T') # 0 and any
of the above assertions concerning (s.v.e.p.) for 6 gives an assertion concerning
(s.v.e.p.) for T.

Let T € B(X). We now translate for 67, hence for T, only ey,...,es,
Lemma 3.8, Definition 3.9, Lemma 3.11, Proposition 3.15 and Corollary 3.16
but any other of the assertions concerning (s.v.e.p.) for 6 can also be rewritten
in the same way for 7'

f;. T has (s.v.e.p.) on every open subset G C p(0).

fa. T has (s.v.e.p.) on every open connected subset D C C having a nonempty
intersection with p(7T').

f3. If T has (s.v.e.p.) on an open subset V, () # V C U, U a connected open
subset of C, then T has (s.v.e.p.) on U.

fy. If U, C C are open for all @ € I and Thas (s.v.e.p.) on Uyfor all a € I,

then T has (s.v.e.p.) on | U,.
ael

LEMMA 3.21. There exists a nonempty set D7, the largest open subset of
C such that T has (s.v.e.p.) on every open subset G C D4. (see Proposi-
tion 2.1 [22])

Always D5 D p(T) and D5 = C means that T has (s.v.e.p.).

Let G C C be now an arbitrary open subset and let G = [J,cp G be
the decomposition of G given by G,, o € A, the connected components (open
subsets) of G.

Definition 3.22. For the above decomposition of G we denote

Ap={a € A|Ganp(T)#0} and Gypy = | J Ga

a€Ap

and we call Gy the T-spectral interior of G' (a particular case of Defini-
tion 3.9).

f5. T has (s.v.e.p.) on G if and only if T has (s.v.e.p.) on every connected
component of G, i.e. for every G,, a € A.

fg. For every open subset G C C, T has (s.v.e.p.) on G,y and Gp) is a
nonempty set if and only if G N p(T) # 0.

f7. T has (s.v.e.p.) on G if and only if T has (s.v.e.p.) on every connected
component of G contained in o(7"). In other words, the connected com-
ponents of G contained in o(T') determine whether 7" has (s.v.e.p.) on
G.

fs. T has (s.v.e.p.) (i.e. (s.v.e.p.) on every open G C C) if and only if T
has (s.v.e.p.) on every connected open subset of o(T).
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LEMMA 3.23. For every open subset G C C there exists Sp(G) the largest
open subset of G such that T has (s.v.e.p.) on it (see Lemma 3.11).
PROPOSITION 3.24. If G C C is an open subset of C and G = |J G4 is

acl
the decomposition given by the set {Go}taca of the connected components (open

subsets) of G, then S7(QG) the largest open subset of G on which T has (s.v.e.p.)
15 given by

St(G) = U Go, As ={a | T has (s.v.e.p.) on Gy} D Ap
a€lg
and {Gatacrg are the connected components of St(G); in other words, the
above equality is the decomposition of ST(G) given by its connected components.

The decomposition of Sp(G) given by its connected components can be
detailed as in Proposition 3.15 and the structure of S7(G) can be described in
the following corollary.

COROLLARY 3.25. Let G be an open subset of C, G = |J Gq the de-
a€A

composition given by its connected components and G,y = | Go the T-
aEAT

spectral interior of G(Definition 3.22). Let St(G) be the largest open subset

of G on which T has(s.v.e.p.) (Lemma 3.23), Sp(G) = | Sy the decomposi-
yel’
tion given by its connected components, I'r = {y € T | Sy, N p(T) # 0} and
(ST(G))pry = U Sy the T-spectral interior of S(G). Then we have,
yell

T

{Sy[v€eTlr} ={Ga | a€ Ar}, (S7(G))pr) = Gpir)s
{Sy[veD\Tr} ={Ga|a € As\Ar} =

{Ga | Go C o(T),T has (s.v.e.p.) on Gu}.
Denoting  |J Ga = sq(7)(G) we obtain
a€As\Ar
ST<G) = Gp(T) U U Gy = Gp(T) U SU(T)(G)'
aEAs\AT

4. THE NONEMPTINESS OF THE EXTENSION PROPERTY
INDEX AND SPECTRAL SPACES ATTACHED
TO AN ANALYTIC OPERATOR VALUED FUNCTION
ON A BANACH SPACE X

Let us consider as before, a complex Banach space X and an analytic
operator function 6 : C — B(X) with a nonempty resolvent p(f) # (). Then,
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for every open subset G C C we recall the map ®y from Definition 3.1 defined
on the Fréchet space O(G, X) of all analytic X-valued functions on G:

Dy : O(G, &) — O(G, X), [@9(f)](2) = 0(2)f(2),V2 € G

Every z € X is canonically identified with the constant analytical function
on G with value z and ®,'({z}) was called the (e.p.) index of § in = on the
open subset G (Definition 3.4). Obviously ®y is a linear continuous map in
the Fréchet topology of O(G, X) and @, ({z}) is a closed Fréchet subspace of
O(G, X). The Banach space X is identified with the closed Fréchet subspace of

O(G, X) consisting of all constant function on G. Thus we have |J @, ({z}) =
TeX

®, ' (X) also a Fréchet subspace of O(G, X).

We can define the strong spectral spaces of 8 in the same way as Bhishop’s
strong spectral spaces of T' (i.e. Or) is given by a property of (e.p.) index of fp
in x on the open subset G(Definition 3.4). So, these strong spectral spaces of ¢
are the Banach subspaces of X’ given by the non-emptiness of the (e.p.) index
of #. Actually, such a subspace is attached to an arbitrary fixed open subset
G C C and consists of the points x € X for which the (e.p.) index of # in x on
G C C is a nonempty set.

Definition 4.1. For every closed subset F' C C we call the strong spectral
Bishop space of 6 (or the strong #-spectral Bishop space)corresponding to F,
the following closed subspace of X

M(F.0) = Mo(F.,6), Mo(F.T)={z € X | o, ({z}) # 0},

where ®,'({z}) is the extension property index attached to 6 in the point
x € X on the open set G = C\ F.

Remark 4.2.

1. Obviously, the map ®y depends on the open set G. To keep the notation
simple, we use the same notation @y for each G and we always specify the set
G on which we consider the map ®y and correspondingly the (e.p.) index of 6.

2. © € My(F,0) means the nonemptiness of the (e.p.) index of § in x on
the open subset C\ F.

3. For 0 = 07, T € B(X),M(F,0r) = M(F,T) is the Bishop’s strong
spectral space of T' corresponding to F' (see [3]).

Definition 4.3. We call the weak spectral Bishop space of 8, or the weak
0-spectral Bishop space corresponding to a closed subset F' C C, the following
closed subspace of X

N(F,0) =
{w € X |Ve>0,3f € O(C\ LX), || [®6(f))(z) — < &,Vz € C\ F} =
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{r € X|Ve>0,3ge € Pg(O(C\ F, X)), || ge(2) —z ||[< e,Vz € C\ F}.

Remark 4.4.
1. N(F,6) consists of all x € X such that there exists a sequence (fp)n,
(fa)n C O(C\ F, X) and
0(z)(fn)(2) = «, uniformly on C\ F, as n — oo.

2. If we denote M(C \ F,X') the Banach space of all bounded X'-valued
functions on C\ F' with || ||o, we have

N(F,0) = ®(O(C\ F,X))NM(C\ F,X)" NX,

where () means the closure in || |ls and X is identified with the space of
X-valued constant functions, here on C\ F.

3. 1f0 =07, T € B(X), then N(F,0) = N(F,T) is Bishop’s weak spectral
space of T' corresponding to F'(see [3]) and all the results which follow can be
rewritten for 67, and thus for T.

The following properties of the spectral spaces of 8 follow directly from
Definitions 4.1 and 4.3.
General Properties:
P1. M(F,0) C N(F,@) for every closed subset F' C C.
P2. The maps F — M(F,0), FF — N(F,6) are monotone.
P3. X = M(F,0) = N(F,0) for every closed subset F' D o(6).
As we can see in 3.3, X can be identified with O(C\ F, X').; the subspace of all
X-valued constant functions on C\ F', a closed Fréchet subspace of O(C\ F, X)
and
By : O(C\ F,X) — O(C\ F, X)

is a continuous linear map. So we denote Oy(C\F) = ®,*(X) a closed(Fréchet)
subspace of O(C\ F, X') and obviously My(F,0) = ®g(Oy(C\ F)). This proves
the following property.
P4. The strong 6-spectral Bishop space attached to a closed subset F' C C is
the closure in X’ of the image of a linear continuous map ®g restricted to
a Fréchet space Op(C \ F).

Mo (F,0) = ©9(Og(C\ F)) and M(F,0) = ©¢(Og(C \ F))

Properties in connection with (s.v.e.p.)

First, we prove some equivalent assertions concerning the consistency of
(e.p.) index of an analytic operator valued function 6 in x € X on an open
subset D C C. As a consequence of these equivalences we can describe more
precisely the general property P4 when 6 has (s.v.e.p.) on the open subset
C\ F. The next lemma follows directly from definitions.
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LEMMA 4.5. Let 0 be an analytic operator valued function having (s.v.e.p.)
on an open subset D C C. The following assertions concerning the consistency
of (e.p.) index of 6 in x € X on the open subset D C C are equivalent:

N -1
(1) @5 ({z}) #0,

(ii) @, ({x}) consists of only one element.

PROPOSITION 4.6. Let D be a connected open subset D C C such that
D np(8) # 0. The following assertions concerning the consistence of (e.p.)
index of 0 in x € X on the open subset D C C are equivalent:
(i) @5 ({=}) #0,
(ii) @, ({x}) consists of only one element,
(iii) The function z — R(z,0)x = (6(2)) "'z has a unique analytic extension
on D.

Proof. We can apply the above lemma because by es in 3.7, 6 has (s.v.e.p.)
on D. The proof is completed by observing that a solution f € O(D, X)) of the
equation ®yf = x satisfies the equality f(z) = (0(z)) 'z = R(z,0)x for every
z € DN p(f) and we can apply the identity theorem for analytic functions on

the connected open set D. [

COROLLARY 4.7. For an arbitrary open subset G C C let G ) be the
0-spectral interior of G (see Definition 3.9 and eg), and ®,'({z}) the (e.p.)
index of 0 in a point x € X on the open subsel G,y C C. The following
assertions are equivalent:

() @, ({x}) 0
(ii) @, ({x}) consists of only one element
(iii) The function z — R(z,0)x has a unique analytic extension on G ).

Proof. We apply the above proposition for every connected component of
SON

Remark 4.8. If 0 has (s.v.e.p.) on C\ F, then ®y from P; of General
properties is an isomorphism between Oy(C \ F') and My(F,0).

By this remark we derive from P4 the following property.

P5. If F is a closed subset of C and 6 an analytic operator valued function
having (s.v.e.p.) on C\ F, then the strong #-spectral Bishop space cor-
responding to F' is the closure in X of the image of a linear continuous
X-valued injective map defined on a Fréchet space.

For every closed subset F' C C with (C\ F) N p(#) # 0, 6 has (s.v.e.p.) on
(C\ F)p9) # 0 the O-spectral interior of C\ F(see Definition 3.9 and eg). So
the complement of the #-spectral interior of (C \ F) is a closed subset of C
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which exemplifies the above Remark 4.8. Some notations will be useful for
describing this particular case given by (C\ F) ). We recall that G4y, the 0-
spectral interior of G (see 3.9, eg) was defined as the union of all the connected
components of G having nonempty intersection with the resolvent set p(#),
(Gp(g))p(g) = Gp(g) and 0 has (S,v.e,p,) on Gp(g).

Definition 4.9. For an arbitrary closed subset F' of C and 6 an analytic
operator valued function, we denote F? = C\ (C\ F)9), which is a closed
subset of C. We call F? the #-spectral closure of F.

Obviously FF c F? F = (F%)? C\ F? = (C\ F)p9), 0 has (s.v.e.p.) on
C\ FY and F = FY if and only if every connected component of C \ F has a
nonempty intersection with p(#). Thus the consequence of Remark 4.8 can be
easily written for F? as a particular case of property P5.

P6. If F' is an arbitrary closed subset of C and 6 an analytic operator valued
function, then the strong #-spectral Bishop space attached to F? is the
closure in & of the image of a linear injective continuous map defined on
a Fréchet space with values in X.

Proof. ITndeed ®¢ : Oy(C \ F?) — X is a continuous linear injective map
and

®(O0(C\ F¥)) = Mo(F’,6), P(Op(C\ F?)) = M(F,6). O

PROPOSITION 4.10. Let us consider now F a closed subset of C and 0
an analytic operator valued function having (s.v.e.p.) on C\ F (in particular
F can be the 0-spectral closure of a closed arbitrary subset). Then the inverse
operator of the restriction @y | Op( C\ F') given in P/ is a closed densely definite
operator S in M(F,0) (the corresponding to F strong 0-spectral Bishop space
which is a Banach subspace of X ):

S : My(F,0) = O(C\ F), My(F,0) = M(F,0).
Proof. Indeed, by Definition 4.1 we can define for every x € My(F,0)
Sz =&, ({z}) € Og(C\ F)
because by Lemma 4.5, z € Mo(F,6) means ®,'({z}) # 0 and contains only
one element. Thus Sz is the unique solution f, € Oy(C \ F) of the equation
0(z)fz(z) =z, for every z € C\ F.

Therefore,

S My(F,0) — O(C\ F),Sz = f,, My(F,0) = M(F,0)

and it is easy to verify that S is a closed operator. Indeed, if (z,,)n, C Mo(F,0),
Tn = x € X,Sxy = fr, and Sz, — gin O(C\ F), then f, (z) — g(z) for
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every z € C\ F and 6(2)g(z) = x for every z € C\ F because 0(z) € B(X)
and x, > x € X. So, x € My(F,0) and g = f, = Sz which proves that S is
closed. [

Remark 4.11. All the results of Sections 3, 4, hold for 0p, T € B(X'), and
the reader can see that some of them (for instance Proposition 3.24, Corol-
lary 3.25, Proposition 4.10) are new for 7 hence for T. Note however, that
an elementary property of Bishop’s strong spectral spaces for 67, hence for T,
which does not have an analogue for an arbitrary 6 is M(0,T) = 0. This is a
consequence of the fact that Ali_}m R(X\,T) = 0, but for an arbitrary 6 this may

o

not hold for R(z,0).

5. BISHOP’S CONDITION 8 AND ANALYTIC OPERATOR
VALUED FUNCTIONS

An analogue of condition S for T' € B(X) can be given for a general
analytic operator valued function 6 : C — B(X). As for (s.v.e.p.), for every
open subset G C C we consider a property of 6 called condition 8 on G. This
is in some way a weak property (B relative to G because it could be possible that
this property does not hold for all open subsets of C.

Definition 5.1. An analytic operator valued function 6 : C — B(X)
satisfies condition 8 on the open subset G of C, if the following assertion holds:

(B') for every (fn)n C O(G,X) and x € X such that §(z)f,,(z) = x uniformly
on G as n — oo it follows that the sequence (f,), is uniformly bounded on
every compact subset of G.

Remark 5.2. For = 0p, () is in some way the restriction to G of
Bishop’s condition 8 for 7. It is natural to say in this case that T satisfies
condition 8 on the open subset G.

In the same way as in [3], (8’) can be reformulated as follows.

LEMMA 5.3. For every 6 an analytic operator valued function and G an
open subset of C, condition (') is equivalent with

(8") for every (fn)n C O(G,X) and x € X, such that 0(2) fr(2) — 0 uniformly
on G as n — oo, it follows that (fy)n is uniformly bounded on every compact
subset of G.

Proof. The proof from [3] (see the remark after Definition 8) can be rewrit-
ten for this case. [
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Remark 5.4. If one of the equivalent conditions (8'), (8”) is true for § =
Or, T € B(X), we say that T satisfies Bishop’s condition [3 on the open subset
G C C. If 07, hence T, satisfies condition S on every open subset G C C, then
T satisfies Bishop’s condition £ [3].

The above remark suggests the following definition.

Definition 5.5. If § : C — B(X), an analytic operator valued function,
satisfies condition 8 on every open subset G of C, we simply say that 0 satisfies
condition f.

One of the main consequences of the condition § for a bounded linear
operator T' can be reformulated for a general operator valued function 6. Let
us recall first some useful objects and notations: an open set G C C, z € X,
Py : O(G,X) — O(G,X) and f € O(G, X) such that f € &, ({z}) i.e.

(I) 0(2)f(z) = for all z € G.
A function f € O(G,X) which satisfies (I) is called an exact solution of (I)
in G and a sequence (fn)n C O(G,X) such that 0(z)fn(z) = = uniformly on
G as n — o0 is called an approzimate solution of (I) in G. Tt is not difficult
to reformulate the proof of Theorem 4 from [3] and we obtain the following
proposition.

PROPOSITION 5.6. Every ezact solution of (I) in G is an approzimate
solution of (I) in G. If 0, an analytic operator function, satisfies  on G, then
any approzimate solution of (1) in G gives an exact solution of (1) in G, in other

words, (I) has exact solutions in G if and only if it has approximate solutions
mn G.

Proof. If (fy)n is an approximate solution of (I) on G and 6 satisfies § on
G, then (f,)n is uniformly bounded on every compact subset K C G. So there
exists a subsequence (fy, ), converging pointwise in the weak topology of X' to
a function f € O(G,X). (fn,)r being also an approximate solution for (I) in
G, we deduce that 0(z)f(z) = = for every z € G, so f is an exact solution of
(I)in G. O

x € My(F,0) respectively x € N(F,6) means (by Definition 4.1 respec-
tively Remark 4.4 ) that equation 0(z) f(z) = z for all z € G, has an exact solu-
tion f € O(C\ F, X) respectively an approximate solution (fy,), C O(C\F, X).
In the other words, Proposition 5.6 is the following one.

COROLLARY 5.7. If 0, an analytic operator function, satisfies condition
B on C\ F (see Definition 5.1) for a closed subset F' of C, then we have the
equality
My(F,0) = N(F,0)
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which implies that My(F,0) is a closed subspace of X. If 0 satisfies condition
B (see Definition 5.5) then for every closed subset F C C we have the equality

MO(F79> - N(F,@)
and My(F,0) is a closed subspace of X.

Remark 5.8. For 0 = 0p, T € B(X), the above Corollary 5.7 is the fol-
lowing. If T, T' € B(X), satisfies condition 8 on C \ F (see Remark 5.4) for a
closed subset F' of C, then we have the equality

My(F,T) = N(F,T)

which implies that My(F,T') is a closed subspace of X.
If T satisfies condition 3 (see Remark 5.4) then for every closed subset F' C C
we have the well-known equality

MU(FaT) = N(FaT)
and Mo (F,T) is a closed subspace of X for every closed subset F' of C [3].

For an arbitrary analytic operator valued function 6 and for an arbitrary
T € B(X) we would like to know how many open sets G C C there exists
such that 6, respectively T satisfies condition § on G. Obviously p(8) and p(T)
are open sets and 6, respectively T' satisfies condition 5 on p(6), respectively
p(T). We can also prove that for every analytic operator valued function 6(in
particular for every T' € B(X') which generates 61 )there exists the biggest open
nonempty subset of C such that 6 (respectively T € B(X) ) satisfies condition
5 on every open subset of it.

Let us denote,

gg = {G open set, G C C | 0 satisfies f on A,V open set A C G}

Obviously 0 # p(0) € QQB and UGegg G is a nonempty open set. Indeed, if A

is an open subset of p(#) and (f,) C O(A, X),0(2)fn(2) = x € X uniformly
on A, as n — oo, we have for z € A C p(0), fn(2) = 0(2)" 1z jas n — oo,
uniformly on every compact K C A. Thus, (fy) is uniformly bounded on every

compact K C A and 0 satisfies condition 5 on A and p(f) € Qg.
PROPOSITION 5.9. Define Dg = UGGQB G # (. Then Dg is the largest
0

open subset in C such that 0 satisfies condition B on every open subset A C Dg.

Proof. Dg is a non-empty open set and Dg ODGe gg; hence Dg contains
every open subset D C C where 0 satisfies condition § on every open subset
of D. It remains to prove that 6 satisfies condition 8 on every open subset
A C Dg. We have to prove that 6 satisfies condition S on A a non-empty
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open subset of Dg. Let us consider (fn)n, C O(A,X) and z € X such that

0(z) fn(z) = 2 uniformly on A, as n — oo. We have to prove (fy), uniformly

bounded on every compact K C A. For a compact set K C A = UGEgﬁ ANG,
0

A N G being open subsets we deduce:
Vze K, 3G € Gy, 3¢ > 0and D(z,7¢) C D(z,7¢) c GNA.

K being a compact set, there exists z; € K, G; € g(, and r i>02=1,.
such that

m
K C UD(zi,rZGj), D(z;,r¢ r.) C GiNA, for every i = 1,...,m,

i=1
where D(z,7) = {C € C || (—z|<r}, D(z,r) ={C € C || (-2 |}
G; N'A are open subsets of G; € gg, hence 6 satisfies condition § on G; N A
for i = 1,...,m. But 0(2)fn(2) — x uniformly on G; N A as n — oo and
(fn le;na)n € O(GiNAX) for i = 1,...m, because G; N A C A. Hence, for
every it =1,...m

(fn | E(z”L:rgl))n

is uniformly bounded because ﬁ(zi,rgi) is a compact subset of G; N A and
0 satisfies condition 8 on G; N A for i = 1 .m. We deduce (fy), uniformly
bounded on K because K C |JI~, D(zi,7 E ) Thus, we proved that 6 satisfies

condition B on every open subset A C Da: which concludes the proof. O

COROLLARY 5.10. For every closed subset F' D C'\ Dg we have
My(F,0) = N(F,0).

Proof. From C\ F C Dg it follows that € satisfies condition § on C\ F'
and we can apply Corollary 5.7 of Proposition 5.6. [

Remark 5.11. The equality DP = C means that 6 satisfies condition 5 on
every open subset of C or simply 6 satisfies condition 5.

For § = 07, T € B(X), denote D, = D}. Then Proposition 5.9 and
Corollary 5.10 can be rewritten and this result is new for 7.

PROPOSITION 5.12. For every T € B(X), Déi 1s the largest open subset of
C such that T satisfies condition B on every open subset of it. D? = C means
that T' satisfies Bishop’s condition 3 and for every closed subset F' O C'\ D?

we have My(F,T) = N(F,T). For an arbitrary T, D? gives an evaluation of
Bishop’s condition 8 for T.
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6. THE RESTRICTION PROPERTY FOR 6-SPECTRAL SPACES

We maintain the notation from the above sections. So, B(X) is the algebra
of all bounded operators on a complex Banach space X, 6 : C — B(X) is an
analytic operator valued function with a nonempty resolvent p(f) # () and
o(0) is the spectrum of 6 (Section 2). For F' a closed subset of C, we defined
(Definitions 4.1, 4.3) the strong and weak Bishop #-spectral spaces,

Mo(F,0) = M(F,0) C N(F,0)
which for f7 are the strong and weak Bishop spectral spaces of T' (see [3]),

My(F,T)=M(F,T) C N(F,T).
Recall that

Mo(F,0) = {x € X | 3f € O(C\ F,X),0(2)f(z) = 2,¥z € C\ F},

Mo(F\T) ={z e X [3f € O(C\ F, X),(T - 2)f(2) = ,Vz € C\ F},
N(F,0)
={zeX|Ve>0,3f € O(C\F,X),[|0(2)fc(2) —x[|[<eVze C\F},
N(F,T)
={reX|Ve>0,3f € O(C\F,X),|| (T —2)f(z) —x||<eVze C\F}.
LEMMA 6.1. For x € X the following assertions are equivalent:
1. there exists f € O(C\ F,X),0(2)f(z) = x, every z € C\ F,
2. there exists g € O(C\ (FNo(0)),X),0(z)9(z) = x for all 2,
z€ (C\ F)Up).
Proof. Obviously 2. = 1.: fcanbeg|C\ F.
1. = 2.. by Definition 2.1 of R(z,0),z € p(), we deduce from 1. that f(z) =
R(z,0)x for every z € (C\ F') N p(#). Thus, the equalities
| f(z) if ze¢ C\ F
9(2) = { R(z,0)x if z € p(0)
define g € O((C\ F)Up(#),X) =O((C\ (FNa(d)),X) and g verifies 2. [

Therefore My(F,0) = My(F No(#),0) and the following property of the
strong #-spectral Bishop spaces holds.

Property (r). For every closed subset F'C C and for an analytic operator
valued function 6 : C — B(X') we have

M(F,0) = M(Fno(9),0).

We say that the strong 0-spectral Bishop spaces have the restriction property to
the spectrum of 0, or simply have the Property (r).



25 Remarks on the spectral theory 209

Remark 6.2. We can prove in a similar way a similar property(r) for the
weak O-spectral spaces N(F,6) only in the case when (C\ F) N p(8) = 0;
generally speaking there is a natural obstruction to use the above proof for
N(F,0) for every closed subset F' C C.

The inclusion N(F,6) D N(F No(0),0) is obviously true as above. But
for proving the opposite one, in the same way as above, we have to obtain a
sequence(see Remark 4.4)(g,) C O((C \ F') U p(#), X) with the property

0(2)gn(z) — x uniformly on(C \ F) U p(f), as n — oo,
when we have (f,) C O(C\ F, X) with a weak similar property
0(z) fn(z) — x uniformly on C\ F, as n — oo,
which gives only
0(2) fn(z) = x for z € (C\ F)Np(d)

This last assertion is, generally speaking, not enough for obtaining (gn)n; ex-
cepting the case when (C\ F) N p(0) = 0, the equalities

| falz) ifz€¢ C\F
gn(2) = { R(z,0)x if 2z € p(0)
cannot always define an analytic functions on (C\ F') U p(f). For instance,
if Dy C D are open subsets in C and ¢ € O(D;) does not have an analytic
extension to D, then f, = 1/n ¢ gives a sequence (fy)n C O(D1), fr, — 0 as
n — oo and for every n, f,, does not have an analytic extension to D.

The obstruction described above does not exist for a new class of -
spectral subspaces which are intermediate between the strong and weak 6-
spectral spaces. We will describe this new class in what follows. First we
describe a large class of such a #-spectral spaces attached to the closed subsets
F C C and being between M (F,0) and N(F,0) the strong, respectively weak
f-spectral spaces. In order to describe a class of such spaces, a natural way is
to look for common elements of the definitions of M (F, ) and N (F,0), F being
as above a closed set of complex numbers. So, as above, X being a complex
Banach space and B(X) the algebra of all linear bounded operators on X we
can enumerate the following elements:

1. the space of the X-valued analytic functions O(C \ F,X") defined on
the open subset G = C\ F,

2. the map

Dy : O(G,X) — O(G,X)
associated to an analytic operator function 6 : C — B(X) having nonempty
resolvent p(6) # 0 (Section 3),

[Pof](z) = 0(2)f(2) for every f € O(C\ F,X) and every z € G = C\ F,
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3. the subspace of X-valued constant function on C\ F,
Oct(C\FaX) - O(C\FvX)

Ou(C\ F,X) = X can be identified with X as usual.

Using 1., 2., 3., from above and Definitions 4.1, 4.3 we can write N (F,0) =

{x € X | Ve > 0,3h, € RangePy, || he(z) —x ||< €,Vz € C\ F},

M(F,0) =

{z € X |Ve > 0,3h. € Range®y N O (C\ F,X), || he(z) — 2 ||< e,

Vze C\ F}.
Indeed, the first equality is obvious and for the second we observe that
he € Range®y N Oy (C \ F, X) is equivalent with the assertion
“dfe € OC\ F,X),3x. € X, he(z) = Pg(fe)(2) = e V2 € C\ F 7 1.
xe € Mo(F,0) and in this case the property of x can be obviously rewritten
Ve >0 dze € Mp(F,0) such that | ze —z ||[<¥,

which means that © € My(F,0) = M(F,0). This description of M (F,6) and
N(F,0) given by the above two equalities proves the existence of a similar
description for both of this subspaces and their inclusion in a large class of
subspaces between M (F,0) and N(F,0). Indeed, if we consider a subspace
Y(C\F,X),

Oct(C\FaX) Cy(C\F7X) - O(C\Fa‘)()
where the inclusions are not strict, we associate to this functional subspace

Y(C\ F, X), a #-spectral subspace in the same way as N(F,#) corresponds to
O(C\ F,X) and M(F,0) corresponds to Oy (C\ F, X). So we define:

Definition 6.3. Let 0 : C — B(X) be an analytic operator valued func-
tion with a nonempty resolvent set p(f) # (), F = F C C an arbitrary closed
subset of C and Y(C \ F, X) a subspace of X-valued functions on C\ F,

The 6-spectral space Y (F,0) associated to F' and defined by Y(C \ F, X) is
described by the following equality:
Y(F,0) ={z € X | Ve > 0,3h € RangePg N Y(C\ F, X),
| he(z) —z ||< €,Vz € C\ F}.
and will be called 6-spectral space “associated to Y(C \ F, X')” or simply “asso-
ciated to F” when no misunderstanding is possible.

The property (r), the restriction property to the spectrum o(6), of the
class of f-spectral spaces Y (F, 0), is the set of equalities Y (F,0) = Y (Fno(0),0)
for every closed subset F' C C.
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Remark 6.4. Obviously we have:

1. M(F,0) CY(F,0) C N(F,0) for every F = F C C,

2. Y(F,0)=N(F,0)if Y(C\F,X)=0(C\F,X),
Y(F,0) = M(F,0)if Y(C\F,X)=04(C\F,X).

Definition 6.3 can be rewritten using sequences of analytic functions ob-
tained replacing “Ve > 0” by the values of some positive numerical sequence
converging to 0, for example (1/n),. Then for every natural number n for
e = 1/n we denote he by h,. Thus we obtain an equivalent statement of
Definition 6.3.

LEMMA 6.5. x € Y(F,0) if and only if there exists a sequence (hy)n, C
Range®g N Y(C\ F, X) such that h,(z) — x uniformly for z € C\ F, or in
detail x € Y(F,0) if and only if there exists a sequence (fn)n C O(C\ F,X)
such that ®g(fn) € Y(C\ F,X) and for n — oo Py(fn)(2) = 0(2) fu(z) — =z
uniformly for z € C\ F.

In the following, we introduce a class of functional spaces
L(C\ F,X), a particular case of Y(C \ F, X) considered above, such that

O4(C\ F,X)C L(C\ F,X) C O(C\ F,X)

and the class of #-spectral spaces L(F,#) associated to L(C \ F, X’) by Defini-
tion 6.3. The class of f-spectral spaces L(F, 6) contains only the weak #-spectral
spaces N (F,0) corresponding to the closed subsets FF C C, (C\ F)Np(0) =10
and the above mentioned obstruction (see Remark 6.2) concerning a property(r)
for the weak #-spectral spaces N (F, 6) does not exist for these #-spectral spaces
L(F,0).

As we will see, first we discuss the relation between the decompositions
given by the connected components of the open subsets C \ F, p(#) and (C\
F) U p(#). This relation is described in general for the arbitrary open subsets
G,p,G U p of C and used in the particular case of the sets C \ F, p(f) and
(C\ F)Up(0) for F' a closed subset of C.

So, let G, p, be now two open arbitrary open subsets of C and

G=JGa p=Jpi

acA el

the decomposition given by the connected components {Gqs}aca of G and
{pi}tier of p. In the following, we obtain from these decompositions the de-
composition of G U p given by its connected components. We will denote for
a €A,

In={j€I|pjNGa#0}



212 Mihai Jabac 28

and

Ip={kel|ppNG=0}={kel|pNGa=0VaecA}=T\|]JIL.
acA
Then we have,

(x) GUp= UGO‘UUpi: U(GaU Upj)U Upk: UEJQU Upk
aeA el aEA JjE€ly kely aEA kelp

where

Gy =G U Upj and G, N Upk:(l),VaEA.
j€l, kel
It is easy to prove that G, is a connected set. Indeed for every j € I, we have

GaNp;j # 0, GoUpj is a connected set, GoUp; D Gy and G, = |J (GaUpj).
J€la

It is also easy to verify that for o # 3 5a N 55 # () if and only if I, NI # 0
i.e. there exists j € I, p; N Gq # 0,p; N Gg # 0.

Let us consider now the following equivalence relation in the set {G, |
a € A}

Definition 6.6. We say that G, and G are equivalent and denote G, ~
G, if there exists {1, ..., a, } C A such that,

5a N 5a1 + 0, ...,aak N aam + 0, ...,aan N aﬁ + )

We can consider C, = {55 | 55 ~ 5a} for @ € A, the equivalence class
of G, given by the above defined equivalence ~ and
{CoalaeAi}, Ay CA

the set of all distinct equivalence classes (two arbitrary equivalent classes C,
and Cg with a, f € A are disjoint or coincide).

Remark 6.7. 1. Ifae Aand I, =0, ie. GoNp =10, wehaveaa:
Ga,Ca—{G } and a € Ay.

2. If G ~ G/g as in Definition 6.6 we have G@ € Ca, Gak € C, for every
k=1,..,n and G U Ga1 U..U Gak Uu..u Gan U Gg is a connected
[Indeed as we have already remarked, Ea is connected for every «

and G N Ga1 7& 0 gives G U G’a1 a connected set, Ga1 N Ga2 # () gives

(G u Gal) N Ga2 # () hence (G u Gal) U Ga2 # () is a connected set,
etc.]
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LEMMA 6.8. If we denote G, = |J Gg= U Gs,a € Aj,then G, is
aBECa aﬁ’\‘aa
an open connected subset of C for every o, Go, N Go, = 0 for every ai,as €

A,a1 #ag and |J Go = U Ga.

acN; aEN

Proof. G, are open subsets because Gﬁ are open sets for every B € A.

We have G, = U G U Ga1 U...uU Gak U...uU G U Gg, with Gak given
GG
by the equivalence G, ~ Gpg, because G, ~ Gak for every k = ,n by

definition. On the other hand, for every B with Gg ~ Ga, the sets G U Ga1 U

.U Ga,C U...u Gan U Gg contain G and are connected sets by 2. of the above
Remark 6.7. Hence their union i.e. G, is a connected set. We recall that for
ar, a0 € Aj, a1 # ag we have Cy, # Cq,. If there exists aj, a9 € Al,al # Qg

such that Qal N ga2 # 0 then(by Definition of G,) there exists Gg € Cay,

G € Cq, and GgﬁG # () which means Gg ~ G and Gg € Cay, G € Cq, give
Coé1 = Cq,. But C,, # Cq,. Hence G,, NG,, =0 for every aq, g € Al, a1 # as.

The equality |J Go = |J G results from the definition of A; which gives
aEN aEA

U Cu= {& | « € A} and the lemma has been proved. O
acN

PROPOSITION 6.9. The decomposition of GUp given by its connected com-

ponents is
GUp= U Ga U Upk

aEN kel
i.e. {Gaypr | @ € A1,k € I} is the set of all connected components of GUp. If

we consider the subset
A ={aeA|GaNp=0 ie I,=0}

similar to Iy C I, by 1. of the above Remark 6.7 we have Ay C A1 and the
decomposition of G U p given by its connected components can be rewritten in o

symmetrical form
Gup=JG.u |J Gau
IS aEAl\AQ kely

Proof. The first equality derives from (x) equality(before Definition 6.6)

GUp: Uaau Upka

a€el kelg
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and the last equality from Lemma 6.8. Then, {G,,pr | @« € A1,k € Iy} are the
connected components of GU p because by Lemma 6.8 and definition of Iy they
are open, connected and mutually disjoint sets. The second equality is an easy

consequence of 1. Remark 6.7 because o € Ag means I, = () i.e. G4 = G4 50
Co ={Go},a € Ayand G, =G,. O

LEMMA 6.10. For every B € A\ Ag there exists a unique a(B) € A1\ Ao
such that Gg C Gy(g)-

Proof. For every € A\ Ag, G is a connected component of G C G U p
and Gg N py = 0 for every k € Iy. Obviously, Gg N G, = 0 for every a # 8 in
particular for every 5 € A\ Ag and @ € Ag. On the other hand, as a connected
subset of G U p ,Gg is contained in only one connected component of G U p
and this connected component cannot be one of G, with a € Ag or p; with
k € Iy because, as we proved before, Gg has a void intersection with these. So
by Proposition 6.9 this unique connected component of G U p which contains
G can be denoted G, () with a(8) € A1 \ Ag and the lemma is proved. [

A similar proof gives the following lemma.

LEMMA 6.11. For every k € I\ Iy there exists a unique a(k) € A1\ Ao
such that pr C Ga(r)-

LEMMA 6.12. Let G, be a connected component of GU p with o € Ay '\ A
(Proposition 6.9). Then

a€Ao={B€A|GsCba}
and
GyNp#0D forevery Gy C Gy, vEA
ie. Ao C A\ Ao.

Proof. a € A because for a € Ay \ Ag we have 5a =G, U U pj €Cy
J€la

and by definition we have G, = |J Gp. For proving the second part of the
aﬁéca

lemma we start by assuming the opposite: that for some o € A; \ Ag and

Gy C Ga,v € A, we have G, N p = . Now we prove that this is impossible,

which conclude the proof. Obviously, G, N p = ) implies v € Ao, such that

Gy =G,, C, ={G,}, v € Ay (1. Remark 6.7). Then G, = Gy C G, which is

impossible because for v € Ag and a € A1\ Ag we have o # y hence G,NG, = 0,
and the lemma has been proved. 0O

COROLLARY 6.13. For every a € A1\ Ag and 8 € A the following asser-
tions are equivalent:
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1. Gg C Ga
2. Gg=GgU | pi C Gy and Ig # B(i.e. GgNp # D).
iEIﬁ
We have also  |J Ao = A\ Ay and for every a € A1 \ Ap, we have
aceAi\Ao
Go= U Gs= U Gg= U Gs= U Ggu Upi
Gg€eCa Gg~Ga B:G5CGa B:G3CGa i€lg

Proof. If Gg C Go,ae € A1\ g, by Lemma 6.12 we deduce GgNp # (). Then

B e A\ Ao, Iz #0, 5ﬁ = GgU |J pi C Cg = Cs(g) for some 6(3) € A1\ Ag. Thus
i€lg

Gg C @5 C Gs(py by definition of Gsz), 0(8) € A1. Then Gsz) = G, because

Gg C 95(5) NGa. So G C 95(5) = Gq, 1. implies 2. and the assertions 1. and
2. are equivalent because obviously 2. implies 1.. We prove now the equality
U Aa = A\ Ap. Theinclusion |J As C A\ Ap is a consequence of
aGAl\AO aEAl\AQ
the Lemma 6.12. For proving the second inclusion A\ Ag C |J A, we can
a€A1\A0
proceed as 1n Lemma 6.10. By definitions, we first note that v € A \ Ay gives

Iy # 0 and G € Cy = Cqy(y) for some a(y) € A1. Observing that G eC

gives G ~C a(y)> we deduce a(y) ¢ Ag by the definition of equivalence ~. So

G, C gam with a(y) € A1\ Ag and v € Ay(). Hencey € |J A, for every
acA1\Ao

~v € A\ Ag, which concludes the proof of the second inclusion and the corollary,

the last equalities are obvious. [

a(y)

Remark 6.14. We mention now a particular case of the above Proposi-
tion 6.9 namely the case of GG, p open subsets of C, GUp = G D p and
{Ga}aen, {pitier, the sets of all connected components of G respectively p as
in Proposition 6.9. In this case, we have Iy = () and for every o € A and j € I,
GoNpj # 0 means Gy D pj, Go = G, Co = {Ga}, Go = G4 and A = A.

The decomposition of GUp = G given by its connected components from
Proposition 6.9 corresponds to a setting of terms G, € A as in the following:

Gup=G=[JG,U |J Gapc |J Ga
a€lo a€A\Ag aeM\Ag
where Ag = {a | Ga Np =0}, A\ Ao = {a | Go N p # 0}.
The decomposition given by Proposition 6.9 will be written now for G =

C\ F, F a closed subset F' C C and p = p(f) the resolvent set of an operator
analytic function 6 with p(f) # . We use the same notation as before for the
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decompositions of G = C\ F and p = p(#) given by their connected components,

C\F: UGom ,O(Q)ZUM

acA el

So we have the following proposition.

PROPOSITION 6.15. If {G, | a € A} are the connected components of
C\F, F=F CC, and {p; | i € I} are the connected components of p(0)
for an operator analytic function 6 with p(8) # 0, then the decomposition of
(C\ F)Up(0) given by its connected components is

(C\F)up(o UG U U Ga U Upk

a€lg aGAl\AO kely
where Ao, A1, Ga, Iy are as in Proposition 6.9.

Remark 6.16. Obviously all the properties concerning this decomposition
in the general case (Proposition 6.9) can be used in the case F = F C C,
G = C\ F and p = p(0). In this case, we can also recognize some previously
introduce objects as Ag = A\ Ag(see Definition 3.9), A1 \ Ag = A; N Ay and
A\Ao=Ay, U Ga= U Ga=(C\F),p the O-interior of C\ F.

aeA\Ag a€lg

Now we introduce the class of functional spaces L(C\ F, X), a particular

case of functional spaces Y(C \ F, X) from Definition 6.3.

Definition 6.17. Let F' and the decomposition of C\ F from Proposi-
tion 6.15. We denoted Ay = {8 € A | Gg C Go} for every a € A \ Ao, (see
Lemma 6.12). Then the functional space £(C\ F, X) attached to an arbitrary
closed subset F = F C C is

LIC\F,X)={g|ge O(C\ F,X),Yae€ Ay \ Ay Tz, € X,
g‘ U ngxa}
BEAx

2o denoting as usual the constant X'-valued function with value x,.

Remark 6.18. 1. Explicitly(see Remark 6.16), g € L(C \ F, X') means
that the following properties hold:

(i) g € O(C\ F, X)

(ii) for every a € Ay \ Ag there exists x, € &, such that g [g,= 74 for
every connected component Gig of G, Gg C Gq.

2. If K is a closed subset of C, K C o(6), then C\ K D p(f) and by
Remark 6.14 the above condition (ii) is simpler because in this case G, =
G for every o € A,A = Ay and Ag = {a € A | G, N p(#) = 0}. So
h € L(C\ K, X) signifies that the following assertions hold:
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(i) he O(C\ K, X)

(ii) for every a € A\ Ag = {a € A | G, N p(0) # 0} there exists y, € X,
such that g|g, = ya i.e. g is constant on every connected component G,
of G=C\ K D p(0), Go N p(0) # 0.

In other words, if K is a closed subset of C, K C o(f), then L(C\ K, X)
consists of all analytic functions h : C — X, h a constant function on
every connected component of C\ K having a nonempty intersection with

p(0).
It is easy to see that we have
Ou(C\F,X)C LIC\ F,X) CO(C\ F,X).

If 0 is an analytic operator function on C, F a closed subset F' C C and
dy : O(C\ F,X) — O(C\ F,X) as in the beginning of Section 6, the 6-
spectral space corresponding to £(C \ F, X)) is the subspace of X denoted by
L(F,0) and given by Definition 6.3 for Y(C \ F,X) = L(C \ F, X)) as follows.

Definition 6.19. We define the 6-spectral space L(F,0) associated to a
closed subset F' C C by the following equality:

L(F,0) ={x € X | Ve > 0,3g. € Range®y N L(C \ F, X),
| ge(2) —z ||< e,Vz € C\ F}.
A particular case of the spaces L(C\ F, X) respectively L(F, 0) are L;(C\
F, X) respectively Ls(F,0), defined by the equalities:
L(C\FX)=0(C\FX)n0a( | G X)
BeA\Ao
Ls(F,0) ={z € X | Ve > 0,3g. € Range®y N Ls(C\ F, X),
| ge(2) —z ||< e,Vz € C\ F}.

By Definition 3.9 we have |J Gpg = (C\ F'),() the O-interior of C\ F’
BEA\Ag
and the above equalities can be rewritten,

Ly(C\F,X) = O(C\ F,X) N Out((C\ F)y9), X)
Ly(F,0) = {x € X | Ve > 0,3gc € Range®y N Ox((C\ F) gy, X)
| ge(2) —z ||[<eVze C\ F} =
{z € X | Ve >0, 3g. € Range®y, Jx. € X,|| ge(z) —z ||[< e Vz € C\ F and
9gel(e\F), 5 = Tet-

Remark 6.20. 1. If p(0)N(C\F) = Pi.e.(C\F),p) = 0, then Ls(F,0) =
L(F,0) = N(F,0) and has the property(r) (Remark 6.2).
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2. If Ag =0 de (C\F)y9 =C\F,then Ly(F,0) = M(F,0)
3. My(F,0) C Ly(F,0) C L(F,0) C N(F,0) for every closed subset F' of C.

Now the properties of these new 6 -spectral spaces will be proved.

PROPOSITION 6.21 (Monotonicity property). The maps given by F +——
L(F,0), F v+~ Lg(F,0) for F closed subset of C are monotone i.e. L(F,0) C
L(F1,0) and Ls(F,0) C Ls(F1,0) for every F, Fy closed subsets, F C F; C C.

Proof. Let F, F} be two closed subsets of C, F' C F} as above. We first
observe that the inclusions L(F,0) C L(F1,0) and Lgs(F,0) C Ls(F1,0) are(by
Definition 6.19) easy consequences of the inclusions L(C\ F, X') C L(C\ F1, X),
L(C\ F,X) C Ly(C\ Fi, X).

First we shall prove the inclusion £(C \ F,X) C L(C \ Fi,X) for every
F, Fy closed subsets of C, F C F}, C\ F; C C\ F.

In order to describe g € L(C\ F, X')(Definition 6.17) we need the decom-
position of (C\ F')Up(#) given by its connected components (Proposition 6.15):

(C\FUp®) = JGaU |J Gau Ur

a€o a1\ Ao kel

where {Gq }aen, respectively {p;}icr are the connected components of C \ F,
respectively p(0), Ao = {a € A | GaNp(0) =0}, In = {k € I | pprN(C\ F) = 0},
A ={BeAN|GgCGa}={B€A\No | Gg~Gu}ifae Ai\ Ag (from
Corollary 6.13).

Similarly, for L(C\ F1, X'), we consider the decomposition of (C\ F1)Up(0)
given by its connected components (Proposition 6.15):

(C\F)Uup®) = |JDyu |J DU s

vE€A vEA1\Ap J€Jo

{D;}ea respectively {p;|i € I} are the connected components of C\ F', respec-
tively p(6), Ao ={y € A | D,Np0) =0}, o={j€l|p;NC\F=0}>DI

and Ay ={0 € A| Ds CD,} ={06 € A\ Ag | Ds ~ Dy} for vy € A1\ Ag
(Corollary 6.13).

Let be now g € L(C \ F, X). We will prove g € L(C\ F, X).

First we observe by Definition 6.17 that g € O(C \ F,0) and g| |y g, is

BEAq

a constant function for every a € Ay \ Ag. But F' C Fj gives C\ F; C C\ F
and O(C\ F, X) C O(C\ Fy, X).

Then g € L(C\ F, X)) implies g € O(C\ F,X) C O(C\ F1,X).

Thus for proving g € £L(C \ F1, X) it remains to prove that g| | p, is a

SEDy
constant function for every v € Ay \ Ag.
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So, let us consider v € Ay \ Ag, D, the corresponding connected compo-

nent of (C\ F1)Up(f) and |J Ds= |J Ds.
SEA, §5:DsCD-

We have to prove that g|p, is the same constant function for every D5 C
2)7 if v € Aq \ Ag.

We recall from the above written decomposition of (C\ Fi) U p(6) given
by its connected components, that D, N p; = O for every v € Ay \ Ay, j € Jo.
But Iy C Jy because C\ F; CC\ F and p, NC\ F; =0 if ppNC\ F = 0.

So we have in particular D, N py, = 0 for every k € Iy C Jp.

Recall also that (C\F1)Up(#) C (C\F)Up() and D5 is a connected subset
of (C\ F1) U p(0). Hence there exists a connected component of (C\ F') U p(0)
containing D,. This connected component is one of G,, a € A1, because as we
have observed before D, N py, = () for every k € I.

So there exists pu(7y) € Ay such that Dy C G-

On the other hand, v € A; \ Ag gives D, N p(9) # 0 and D, C D,
for v € A1\ Ag(Lemma 6.12). So, D, C D, C Gy, Dy N p(0) # O gives
Guy) N p(0) # 0 and by the decomposition of (C \ F) U p(#) given by its
connected components we deduce that u(y) € Aq \ Ao.

Therefore, we have proved that for v € A;\ Ay there exists u(y) € A1\ Ao,
D, C gu(v)'

Then for every Ds C Dy we have D5 C gu(w)' Ds being a connected
subset of C\ F; C C\ F, for every D5 C D, there exists a unique connected
component of C\ F' denoted G 5), a(d) € A, such that Ds C Gy(5). In the
same way, Gq(5) being in particular a connected subset of (C\ F) U p(¢) there
exists G, (5), for some v(J) € A1, a unique connected component of (C\ F')Up(6)
such that G, ) C Gu(s)-

Then, for every Ds C D, there exists a unique connected component
of C\ F' denoted G,), a(6) € A, and a unique connected component of
(C\ F)Up(0) denoted G, 5), v(d) € Ay, such that Ds C G5y C Gu(s)-

Now we notice that the above determined sets gm), Q,,((;) as connected
components of (C\ F') U p(f) are disjoint or coincide.

Because Ds C G(4) NG, (s) it Tesults that G,y = G,(5) and p(y) = v(9)
because p(7y),v(0) € Ay (Definition 6.6).

Thus for every v € Ay \ Ag there exists u(v)(= v(d)) € A1 \ Ap and for
every Ds C Dy, 0 € A, there exists a(5) € A with Ds C G5y C (Gu5) =)Gu(y)-

Then, if g € L(C \ F,X) we have g| |j ¢, is a constant function for

1:G;CGy
every 1 € A1\ Ap. In particular for p = u(y) € Ay \ Ao, for every v € A\ Ay
there exists x,(,) € X such that g| | ¢ = Ty

1:G;CG

()
w(v)
As we have proved, for every v € Ay \ Ay, every D5 C D, verifies D5 C
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Go(s) C Gu(y) for some a(d) € A. Then we have

91Ds = g|Gus5)y = Tp(y)-

Therefore for every v € A1\ Ag, g| | p, is a constant function(z,(,))-
0:D§5CD~

Thus for every g € L(C \ F,X) we proved g € L(C \ F;,X) and the
inclusions L(C \ F,X) C L(C\ F1,X) for every closed subsets F,Fy, F C
Fy C C. The inclusions L,(C \ F,X) C Ls(C \ Fy, X) for every closed subsets

F C Fy C C can be proved in the same way and conclude the proof. [

PROPOSITION 6.22. L(F,0) and Ls(F,0) are closed subspaces of X for
every closed subset FF C C.

Proof. Obviously L(F,0) and Ls(F,0) are subspaces of X'. We will prove
that L(F,6) is closed; the closure property for Ls(F,#) can be proved in the
same way.

First recall that € L(F,#) means that

Ve > 0,3g. € Range®y N L(C\ F, X),|| ge(2) —x ||<¢e,Vz € C\ F.

Let L(F,0) be the closure in X of L(F,0) and y € L(F,0). Then for every
€ > 0 there exists x € L(F,0) such that | y —z ||[< e. If g, is attached to e > 0
and x € L(F,0) as above we have

19¢(z) =y 1<l ge(2) =2 | + || # — y || < 2¢ for every z € C\ F

Thus y € L(F,0) and L(F,0) C L(F,0) which conclude the proof. O

COROLLARY 6.23. For every closed subset F C C we have,

M(F,0) = My(F,0) C Ls(F,0) C L(F,0) C N(F,0)
Proof. 1t results by Remark 6.20, 3. and the closure property of
Ly(F,60). O

Now we prove that the 6-spectral spaces L(F, ), Ls(F,0) (Definition 6.19)
have the property(r) (see after Lemma 6.1), the restriction property to the
spectrum o (6).

THEOREM 6.24. For every analytic operator wvalued function 6 with
nonempty resolvent set and every closed subset F' C C, the 0-spectral spaces
L(F,0), Ls(F,0) have the property (r), the restriction property to the spectrum
o(0), i.e.

L(F,0)=L(Fno(),0),Ls(F,0)=Ls(FNo(6),0),

for every closed subset F' C C.
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Proof. We shall give only the proof for L(F,6) = L(F No(8),0) for every
closed subset F' C C, the similar equalities for Lg(F,0) can be proved in a
similar way. Let us consider an arbitrary closed subset F' C C. First we observe
that L(F'No(0),0) C L(F,0) because the map F —— L(F,#) is monotone 6.21
(monotonicity property).

So it remains to prove L(F,0) C L(F No(#),0) for every closed subset
FccC.

For proving this, we consider an arbitrary x € L(F,6). Then by Defini-
tion 6.19 we have

Ve > 0,3g. € Range®y N L(C\ F, X),|| ge(2) —x ||<¢e,Vz € C\ F.

Explicitly this means:

(i1) for every € > 0 there exists fe € O(C\ F, X)

(12) ge = Do fe, ge(2) = 0(2) fe(2) for every z € C\ F verifies the following
properties a), b):

a) ge| G5 = Ta,e € X for every o € Ay \ Ay
H:Gﬂcga

b) || ge(2) — z ||[< €, for every z € C\ F.

Recall that A, Ag, A1, Ga, G are from Proposition 6.9, 6.15 and used be-
fore in the proof of Proposition 6.21. So we have:

{Ga}aen are all the connected components of C\ F,

Mo ={o € A|Ganpl0) = 0},

Go for a € Ay are connected components of (C\ F) U p(6),

Gq for a € A1\ Ag are all G, having nonempty intersection with p(f).
Recall also, from Corollary 6.13, Gz N p(0) # 0 for every Gz C G, with o €
A1\ Ag and for every Gig, Gg N p(0) # O(5 € A1\ Ap) there exists a € Ay \ Ag
such that Gz C Ga.

We will prove that x € L(F, ) implies z € L(F No(0),0), proving that
x satisfying the above assertions (i1), (i2) verifies also the Definition 6.19 with
F No(0) instead of F.

So, for x verifying the above assertions (i1), (i2) we have to prove the
following assertion:

Ve > 0,3he € Range®y N L(C\ (FNa(0)),X), ]| he(z) —x ||<e,
Vze C\ (Fna(h)).

Obviously C\ (Fnao(d) = (C\ F)Up@) DO p(@) and we used 2. from
Remark 6.18 for K = FNo(d) C o(f). We deduce in this case that the
space L(C\ (FNo(h)),X) is the space of all X-valued analytic functions on
C\(Fno(#)) = (C\F)Up(#) which are constant on every connected component
of C\ (FNao(@) = (C\ F)U p(#) having nonempty intersection with p(6).
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The decomposition of (C \ F) U p(f) given by its connected components is
described in Proposition 6.9, Remark 6.14 and 6.18. Using the notations of
this decomposition from 6.9, the connected components of C \ (F'No(f)) =
(C\ F)Up(f) having a nonempty intersection with p(f) are G, for « € Ay \ Ag
and py for k € Iy. Thus h € L(C\(FNo(h)), X) means h € O((C\F)Up(8), X)
and h locally constant on  |J Go U |J pk i.e. h constant on G, for every
acAi\Ao kelp

a € A\ Ap and h constant on py for every k € Ij.

Thus, what we need to prove can be rewritten as

(r1) for every € > 0 there exists ¢ € O((C\ F) U p(0), X)

(ro) he = Pgpe, he(z) = 0(2)pe(2) for every z € (C\ F) U p(0), verifies
the following properties a), b):

a) helg, = xa,c € X for every o € A1\ Ag and

helpy, = Yr,e € X for every k € Iy

b) || he(z) — 2 ||< €, for every z € (C\ F) U p(0).

In order to define such a ¢, for every € > 0, we use the above functions f.
attached to x € L(F,0), verifying (i1), (i2) by definition of L(F, ). Then the
following property of f. derived from (i2)a):
for every av € A; \ Ag there exists z, € X such that,

fl U asnpe) = RB(-0)Za

B:GgCYa
i.e. for every a € Ay \ Ag there exists z,, € X such that
fe(z) = R(z,0)xq, for every z € U Gpnp(h).
BZGBCga

Indeed, g, fe, given before by x € L(F,#), verify (iz) a). By Corollary 6.13

Gp C Gq if and only if Gg = Gz U g pi C G and Ig # (. Thus we obtain by
iclp
(i2) a):
Va € A\ Ag,3za,e € X, 9c(2) = 0(2) fe(2) = Tae, V2 € Gg C Gq.
We also have for every Gg C Go, GgNp(8) = GgN | pi # 0 because
’iEIﬁ

Is={iel|piNGs+#0}, {pi}icr being the all connected components of p(6).

For z € GgN p(#) C Gg C G, obviously we have gc(z) = (2) fe(2) = o, and
the above mentioned f,, has the announced property,

fel U Glgmp(e):R(-ﬁ)xa,e-

B:GgCYa

Resuming, we have for every x € L(F, 0):
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for every € > 0 there exists f. € O(C\ F, X),
for every av € A \ Ag there exists x4, € X such that

fe(z2) = R(z,0)xq,, for every z € U Ggnp(h) = U GgnN U Pis
B:GCGa B:GCGa i€lg
where Gz N p(#) # 0, for every Gg C G,
and
| 0(2)fe(z) —z ||< €, Vze C\ F.

For easier reading we recall also (see Proposition 6.9, 6.15):
{Ga}aca and {p;}icr are all the connected components of C \ F respectively
p(0), (C\F)Up®)= U GoaU U GaU U px is the decomposition given

aclo acMi\Ao kel
by the connected components of (C\ F) U p(0),
Ao ={aeAN|GyNpd) =0}, Gy = G, for every a € Ay,
Ip={icl|pinp(0) =0} Ig={icI|[Ggnp;#0}
Ggnp(0) =GsN g pi-
i€lp

Using the function f. attached to x € L(F, ) and its properties derived
before from (i), (i2) of definition of L(F,6), we can prove now that every
x € L(F,0) is verifying (1), (r2) i.e. z € L(FNo(0),6).

More precisely, having f. as above given by x € L(F,0) we will define for
every € > 0 a function ¢, € O((C\ F)Up(0), X) verifying (r2). First we define
Ya,e € O(Gy, X) for every a € Ay \ Ay,

on(z) = fe(2) if z € G for every Gz C Gq
G R(2,0)z0,  if 2z €p; for every p; C G,

For every a € A; \ A, the function 1, is well defined and analytic on
Gq because G, = |J GgU | pi(Corollary 6.13), fc and R(., ) are analytic
B:G5CGa iclg
functions on C \ F respectively p(6) and by the above proved property of fe,
fe(z) = R(2,0)zq, if z € GgNps,i € I5.
Because G, N Gg = 0 for every a, B € A1, a # f3, the following equalities:

Ye(2) = ac(z) forevery z€ G, and a € A;\ Ay,

define v, as analytic function on  |J Ga.
aEAl\AO
Then, the following equalities define p. € O((C\ F) U p(0), X),

fe(z)  ifze U Gg
) BEAo
o) = Vo) iz U e

R(z,0)z ifze | px
kely
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because |J Gg, U Ga, U pr are open disjoint subsets of C.
BEAo OAEAl\Ao kelp
Thus (1) holds for every x € L(F,0).

We will prove that ¢, verifies (r2). Indeed we have,

0(z)f(z) ifze | Gg

- BEAo
he(z) = 0(2)pe(z) = § OE)Wez) ifz € aeALlj\Aoga
kel

For a € A1\ Ag and z € G,, from definition of ¢, ¢, we have the equality
fe(2) = R(z,0)xq,c for every z € Gg N p(f) # 0 and the identity theorem for
analytic functions gives:

0(2)e(2) = 0(2)fe(2) = xa,e if z € G for every Gg C G,
Y 0(2)R(2,0)T0c = Tae if 2z €p; forevery p; C Gy

i.e. 0(2)1e(2) = xq, for every z € G, and a € Ay \ Ao.
Then we obtain,

Q(Z)fe(z) = 96(2’) if 2 € U Gﬁ

Be€Ao
he(z) = 0(2)pe(2) = ¢ Ta,.e if z€ Ga,a€ A1\ A
x ifze U p
k€ly

Therefore (r2)a) holds for he = ®pp, i.e. @ verifies (r2)a) and we have
ge(z) —x ifze |J Gg

BENo
he(z) —x =% Zae—xz ifz€Gy,ae N\ A
0 ifze U px
kely

Then we deduce

| he(2) —z ||< €, for every z € (C\ F) U p(h),

because by (i2)b) we have || ge(z) — = ||< € for every z € C\ F, and by (i2)a)
| Ta,e — x || < € for z € G, for every Gg C G, and o € Ay \ Ap.

Thus h. verifies also (1r2)b) i.e. @ verifies (r2)b).

Therefore, ¢, verifies (rq)a),r2)b) hence (r3) and z verifies (r1), (re) if
x € L(F,0).

Hence z € L(FNo(6),0) if v € L(F, ), the inclusion L(F,0) C L(FNo(0))
has been proved for every closed subset F' C C and this concludes the proof. [
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Remark 6.25. All the above mentioned #-spectral spaces can be of interest
for a closed subset F' C C only for analytic operator valued functions 6 which
do not satisfy condition § onC \ F’; for 0 satisfying condition § on C\ F' (see
Definition 5.1), by Corollary 5.7 we have My(F,0) = Ly(F,0) = L(F,0) =
N(F,0).

As usual, all the results proved above for 0 are true for 6 = 07, T € B(X),
that is for spectral spaces of a general bounded operator T, attached to a closed
subset of complex numbers. Thus we can consider spectral spaces for T' € B(X)
given by Y(F,T) = Y (F, 07) which are defined using X-valued function spaces
Y(C\ F, X) (Definition 6.3). Asin Remark 6.4, 6.25, all this spectral spaces are
between the strong and weak Bishop’s spectral spaces and are of interest only
for T which does not satisfy Bishop’s condition 5 on the complement C \ F of
a closed subset F' C C.

1. M(F,T) CY(F,T) C N(F,T) for every F = F C C.
2. Y(F,T)=N(F,T)if Y(C\F,X)=0(C\F,X),

Y(F,T)=M(F,T)if Y(C\F,X)=04(C\ F,X).

If T satisfies Bishop’s condition 3, then it is well known (see [3]) that My(F,T) =
N(F,T), hence Mo(F,T) =Y (F,T) = N(F,T) for every F = F C C.

Now for an arbitrary T' € B(X) we can consider spectral spaces L(F,0r),
Ly(F,0r), defined by 0r(z) = z — T,z € C and X-valued function spaces
L(C\ F, X), respectively L;(C \ F, X) (definitions 6.3, 6.17, 6.19).

These new spectral spaces of T are closed subspaces between Bishop’s
spectral spaces M (F,T), N(F,T) and have the restriction property to the spec-
trum o(7") of T. We close with a short description of these.

As an open subset of C, p(T') the resolvent set of T' has a decomposition
given by its connected components {p;}ticr, p(T) = |Jpi- For every closed

1

i€

subset F' C C wedenote L(F,T) = L(F,0r), Ls(F,T) = Ls(F, 6r) (a particular
case of Definition 6.19). Explicitly, z € L(F,T) = L(F,0r) can be written as
follows.

x € L(F,T) if and only if the following condition is fulfilled:
Ve > 0,3gc € Range®y, N L(C\ F,X), || g(2) —x ||[<€,Vz € C\ F.

In order to explain in detail we recall some notations from 6 in the particular

case of O:

{Ga}acea respectively {p; }ier all the connected components of C\ F respectively

p(T),

(C\F)up(T)= U GaU U GaU U px the decomposition given by the
a€lg acAi1\ Ao kely

connected components of (C\ F') U p(T),
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Ao ={a €| Ganp(T) =0},
To={i € 1| pinp(T) = 0},
A1 C A and {Ga}aea, (connected components of (C\ F')Up(T") ) were defined
in Lemma 6.8,
{Gataea\a, are Ga, @ € Ay, having a nonempty intersection with p(T).
Then, z € L(F,T) is defined by the following assertions:

(i1) for every € > 0 there exists fo € O(C\ F, X)

(i2) ge(2) = (2=T) fe(2) for every z € C\ F verifies the following properties
a), b):

a) gel G5 = Ta,e € X for every a € A1\ Ay

B:GgCGa

b) || (z=T)fe(z) —z ||<e¢, for every z € C\ F.

Replacing € > 0 by 1/n, we have as in Lemma 6.5 the following equivalent
assertion for x € L(F,T):

(i1) there exists (fn)nen C O(C\ F, X) a sequence of X-valued analytic
functions on C\ F,

(i2) gn(2) = (2 = T) fu(z) for every z € C\ F and verifies the following
properties a), b):

a) for every a € Ay \ Ag,n € N, gu| Gy = Tan € X for every

ﬁ:GﬁCga

ae M \AO,

b) (z = T)fn(z) — x for n — oo, uniformly for every z € C\ F.

Obviously © € Lg(F,T) means x € L(F,T) and x4 = z. € X for every
a € Ay \ Ag in first formulation, x4, = x, € X for every a € A1 \ Ag corre-
spondingly in the second formulation. The properties of L(F,T) and Lg(F,T)
derived from the properties of L(F,0) and Ls(F,0) when 6 = 67, are contained
in the following proposition.

PROPOSITION 6.26. For every closed subset F C C and T € B(X), the
spectral subspaces L(F,T) and Ls(F,T) are closed subspaces of X and the fol-
lowing inclusions hold:

M(F,T) = My(F,T) C Ly(F,T) C L(F,T) C N(F,T)

The maps F —— L(F,T),F —— Lg(F,T) are monotone and the spectral sub-
spaces L(F,T) and Ls(F,T) have the property(r), the restriction property to
the spectrum o(T):

(r)Ls(FNo(T), T)=Ls(F,T) and L(FNo(T), T) = L(F,T),
for every closed subset F' C C.

The new spectral spaces Ls(F,T), L(F,T), intermediate between M (F,T)
and N(F,T), are particular cases of the more general spectral spaces Y (F, 07)
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described in this paper. These spaces answer the first part of Bishop’s [3] ques-
tion concerning “the existence of a third type of spectral manifold intermediate
between M (F,T) and N(F,T), which is self-dual”. The second part, the duality
of these spaces will be considered in a future paper.

In closing, as in the general case of 8, it is necessary to make the following
remark.

Remark 6.27. All the above mentioned spectral spaces My, M, Lg, L, N
can be of interest for a closed subset F' C C only for an operator T' € B(X)
which does not satisfy Bishop’s condition S on the open set C\ F; when T
satisfies Bishop’s condition 5 on C \ F(see Remark 5.4), then My(F,T) =
N(F,T) and by the above proposition obviously we have:

M(F,T) = My(F,T) = Ly(F,T) = L(F,T) = N(F,T).

If T satisfies Bishop’s condition 3, then My(F,T) = N(F,T) for every closed
subset F' C C and the above equalities hold for every closed subset F' C C.
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