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We give large deviation estimates when there is a potential, when the gener-
ated semi-group is not Markovian. This paper enters in the problematic of
semi-classical asymptotics of Maslov and his school but with a di�erent type of
estimates.
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1. INTRODUCTION

Let us consider a symbol a(x, ξ) on Rd ×Rd which represents a pseudod-
i�erential operator L. According to the terminology of Maslov-Fedoriuk [1], we
consider the symbol 1

εa(x, εξ) which represents another pseudodi�erential oper-
ator Lε. The object of semi-classical asymptotics is to get precise asymptotics
of the Schroedinger operator (if it exists) exp[iLε].

In the present context, we consider Xi, i = 1, ..,m m vector �elds on Rd
with bounded derivatives at each order and without divergence with respect to
the Lebesgue measure on Rd. Let V be a smooth bounded function on Rd with
bounded derivatives at each order. The Hamiltonian is

(1) H(x, ξ) =

m∑
1

< Xi(x), ξ >
4 +V (x) =

∑
∑
ij=4

Ai1,..,ij (x)
∏

ξ
ij
j + V (x),

We suppose that we are in an elliptic situation: there exists C > 0 such that

(2)
m∑
1

< Xi(x), ξ >
4≥ C|ξ|4

The Hamiltonian is the symbol of the operator:

(3) L =
∑

∑
ij=4

Ai1,..,ij (x)
∏ ∂ij

∂x
ij
j

+ V (x).
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It generates a semi-group Pt solution of the parabolic equation:

(4)
∂

∂t
Pt = −LPt .

By elliptic theory [2�4],

(5) Ptf(x) =

∫
Rd
f(y)µt(x, dy),

where µt(x, dy) is a bounded measure on Rd. The symbol of the considered
operator Lε is

(6) Hε(x, ξ)=ε
−1

m∑
1

< Xi(x), εξ >
4 +

1

ε
V (x)=ε3

m∑
1

<Xi(x), ξ >
4 +

1

ε
V (x).

Lε generates a semi-group P εt where

(7) P εt f(x) =

∫
Rd
f(y)µεt(x, dy).

Instead of doing precise estimates of P ε1 when ε → 0 as in [1], we perform
in this paper rough logarithmic estimates of |P ε1 |, by adapting in this context
the proof of Wentzel-Freidlin of such estimates, because we have an analog in
this non-Markovian situation of the Girsanov formula and of the exponential
martingales. See [5] for review. This paper enters in the general problematic to
introduce stochastic analysis tools in the general framework of non-Markovian
semi-groups [5].

In [6], we have translated the classical proof of Wentzel-Freidlin estimates,
upper-bound, for Poisson processes, which was done originally for the whole
process instead of the semi-group only as in [6]. Let us recall that the simplest
proof for di�usions of Wentzel-Freidlin [7] estimates is done by the author in
[8�10]. In the present paper, the estimates are of the type of those in [11],
which are closely related to the classical Wentzel-Freidlin estimates. The proof
follows closely the lines of [12]. See [13, 14] and [15] for related topics.

2. STATEMENT OF THE THEOREM

According to the general framework of the large deviation theory, we
introduce the Legendre transform of the Hamiltonian H(x, ξ):

(8) L(x, p) = sup
ξ
(< p, ξ > −H(x, ξ >).

A simple computation shows that

(9) C ′1 + C1|p|4/3 ≥ L(x, p) ≥ C2|p|4/3 + C ′2.
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If [0, 1] → Rd: t → φt is a piecewise continuous C1 curve, we introduce the
action:

(10) S(φ) =

∫ 1

0
L(φt, d/dtφt)dt.

De�nition 1. We put

(11) l(x, y) = inf
φ0=x;φ1=y

S(φ).

By using the Ascoli theorem, we deduce from (9) that:

Proposition 2. The control function (x, y)→ l(x, y) is continuous. More-

over there exists at least one curve φ joining x to y such that l(x, y) = S(φ).
Moreover l(x, y)→∞ when y →∞.

The main result of this paper is the following and is a large deviation
estimate of the type of [11].

Theorem 3. We have

(12) limε→0εLog|P ε1 |[1](x) ≤ − inf
y∈Rd

l(x, y).

Remark. It is nonsense in this non-Markovian situation to get a lower
bound.

3. PROOF OF THE MAIN THEOREM

The proof follows slightly the lines of [10, 12], the main di�erence is that
we consider the absolute values of semi-groups instead of the semi-group. This
leads to two interpretations of the martingales exponentials.

Lemma 4. We consider the generator on Rd × R

(13) Ltot,ξε = Lε +H(x, ξ)
∂

∂y
.

The parabolic equation issued of f(x) exp[ε−1(< x, ξ > −y)]

(14)
∂

∂t
P tot,ξε,t [f(x′) exp[ε−1(< x′ − x, ξ > −y′)]](x, y) =

− Ltot,ξε P tot,ξε,t [f(x′)[exp[ε−1(< x′, ξ > −y′)]](x, y)

has a unique solution. Moreover, the map

(15) f → P tot,ξε,t [f(x′) exp[ε−1(< x′ − x, ξ > −y′)]](x, 0)

de�nes a bounded measures when ε ≤ 1 t ≤ 1 and |ξ| ≤ C and all x.
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Proof. Let P ξt the semi-group on Rd

(16) f → exp[< x, ξ >]Pε,t[exp[− < x′, ξ >]f(x′)](x).

Its generator is

(17) Lξεf(x) = exp[< x, ξ >]Lε[exp[− < x, ξ >]f(x)] = Lε + lower terms.

By standard result, Lξε generates a semi group in bounded measures.

In order to solve the parabolic equation associated to (13), we use Volterra
expansion.

(18) P tot,ξε,t [f(x′)exp[(< x′ − x, ξ > −y′)]](x, y) = exp[−y]+∑
n

(−1)n
∫
In

ds1..dsn

P ξε,t−s1 [H(x′1, ξ)[P
ξ
ε,s1−s2 [H(x′2, ξ)...P

ξ
ε,sn [H(x′n, ξ)f(x

′
n) exp[−y]]](x),

where In is the simplex of length n on [0, t] ordered by decreasing order. By
using the previous results, we can estimate the integral on the simplex by

(19) ‖P ξε,t‖n‖f‖∞‖H(., ξ)‖n∞
tn

n!

Therefore the series converges. In order to prove the last statement of the
lemma, we remark that

(20) f → P tot,ξε,t [f(x′) exp[ε−1(< x′ − x, ξ > −y′)]](x, 0)

de�nes a semi-group because

(21) P tot,ξε,t [f(x′) exp[ε−1(< x′ − x, ξ > −y′)]](x, y) =

exp[−y/ε]P tot,ξε,t [f(x′) exp[ε−1(< x′ − x, ξ > −y′)]](x, 0).

We can compute easily the generator of this semi-group. We see that the
diverging terms are cancelling, because they come when we apply Lε only on
exp[1/ε < x, ξ >] when we apply chain rules and one derivatives of exp[−1/εy].
Therefore the result. �

The second lemma is an analog of exponential inequality which arises in
stochastic analysis from the use of exponential martingales [16�18]. Here they
follow from the standard Davies method [19].

Lemma 5. For all δ > 0, all C there exists tδ such that if t < tδ

(22) |Pε,t|[1B(x,δ)c ](x) ≤ exp[−C/ε],

where B(x, δ) is the ball in Rd of center x and radius δ.
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Proof. We consider the semi-group

(23) exp[− < x, ξ > /ε]Pε,t[exp[< x′, ξ > /ε]f(x′)](x)

It has as generator

(24) Lεf(x) +H(x, ξ)/εf(x)

Lε generates a semi-group P ε,t in bounded measures such that ‖P ε,t‖ is bounded
when ε→ 0.

It is enough to show the estimate for x = 0. We use the Volterra expan-
sion. We get

(25) |Pε,t|[exp[< x′, ξ > /ε]f(x′)](0) ≤ ‖f‖∞+∑∫
In

ds1..dsn

|P ε,t−s1 |[H(x′1, ξ)]|/ε[|P ε,s1−s2 |[H(x′2, ξ)]|/ε..[|P ε,sn |[H(x′n, ξ)]|/ε|f(x′n)|]..](x, 0)
≤ C exp[tC|ξ|4/3/ε]‖f‖∞.

Therefore

(26) |Pε,t|[1B(x,δ)c ](0) ≤ C exp[−δ|ξ|/ε+ Ct|ξ|4/3/ε].

We extremize in ξ and choose t small in order to conclude. �

Proof of Theorem 3. This follows closely the lines of [10] or [12]. We cut
the time interval [0, 1] is small intervals of length tδ, [ti, ti+1]. We use by the
semi-group property

(27) ‖Pε,1|[1](x) ≤ |Pε,t1 |...|Pε,1−tn |[[1]](x).

In Pε,ti−ti+1 , we distinguish if xti+1 and xti are far or not. If they are, we use
the previous lemma. If they are close, we deduce a positive measure |Wε|
on polygonal paths φt which join xti to xti+1 where the distance between two
contiguous points is smaller than δ. By the previous lemma, it remains to
estimate |Wε|[1)]. But |Wε| is a positive measure. Therefore, we have the
inequality

(28) |Wε|[1] ≤ |Wε|[exp[S(φ)/ε]1] exp[− inf
y∈Rd

l(x, y)/ε].

Therefore, we have only to estimate |Wε|[exp[S(φ)/ε]1].
The sequel follows closely [14, p. 152] or [12, p. 188]. We remark that on

the set of polygonal paths considered d/dtφt and φt remain bounded. We can
choose some pi in �nite numbers such that if we put

(29) L′(x, p) = sup
i
(L(x, pi)+ <

∂

∂p
L(x, pi), p− pi >)
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we have for all polygonal paths considered

(30) L(φt, d/dtφt)− L′(φt, d/dtφt) ≤ χ

for a small χ. Let us put

(31) S′(φ) =

∫ 1

0
L′(φt, d/dtφt)dt.

Since |Wε| is a positive measure, we have only to estimate

(32) |Wε|[exp[S′(φ)/ε]1].

We remark that

(33) exp[sup ai] ≤
∑

exp[ai].

Moreover

(34) L′(x, p) = sup(< ξi, p > −H(x, ξi)),

where ξi =
∂
∂pL(x, pi) Therefore it is enough to show that

(35) sup
x,|ξ|<C

|Pε,tδ |[[exp[
(1 + χ)

ε
(< ξ, x′ − x > −tδH(x, ξ))]](x)

has a small exponential blowing up when ε→ 0.

We consider P tot,ξε,tδ
as in (14).

In order to estimate the previous quantity, we only have to estimate the
quantity:

(36) |P tot,ξε,tδ
|[exp[(1 + χ)

ε
(< ξ, x′ − x > −tδH(x, ξ) + y − y)]](x, 0).

We distinguish in the previous quantity if |tδH(x, ξ)− y| > C3tδδ or not.

If |tδH(x, ξ)− y| < C3tδδ, the result holds by (15) because |P tot,ξε,tδ
|[.](x, 0)

is a positive measure.

If |tδH(x, ξ) − y| > C3tδδ, we remark that in the de�nition of |Wε|, we
keep values where |xti+1 − xti | < δ. Therefore, we have only to estimate

(37) exp[
(1 + χ)δ

ε
]|P tot,ξε,tδ

|[|y − tδH(x, ξ)| > C3tδδ](x, 0).

Therefore, we have only to show that |P tot,ξε,tδ
|[|y − tδH(x, ξ)| > C3tδδ](x, 0) has

an enough big exponential decay.

We use the analog of (18). We get that if

(38) |P tot,ξε,tδ
|[exp[a|y − tδH(x, ξ)|]](x, 0) ≤

∑∫
In

ds1..dsn
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|Pε,t−s1 |[|a|
|H(x′1, ξ)−H(x, ξ)|

ε
|Pε,s1−s2 |[|a|

|H(x′2, ξ)−H(x, ξ)|
ε

...

|Pε,sn |[|a|
|H(x′n, ξ)−H(x, ξ)|

ε
]..](x).

The main remark is that ξ is bounded.
If one of the x′j is such |xj − x| > Cδ for a big C, Lemma 5 shows that

the series is smaller than

(39) exp[
C1|a|tδ
ε

] exp[−C0

ε
],

where

(40) C1 = ‖H(., ξ)‖∞ sup
s≤tδ
‖Pε,s‖.

We can choose C0 very big. If all the x′j are such |xj − x| ≤ Cδ, we have an

estimate of the series in exp[C2|a|tδδ
ε ] where

(41) C2 = sup
s≤tδ
‖Pε,s‖ sup

|x−x′|≤Cδ

|H(x, ξ)−H(x′, ξ)|
Cδ

.

Therefore for a > 0

(42) |P tot,ξε,tδ
|[|y − tδH(x, ξ)| > C3tδδ](x, 0) ≤

exp[−aC3tδδ

ε
](exp[

C1atδ
ε

] exp[−C0

ε
] + exp[

C2atδδ

ε
]).

We choose a = t−1δ and C3 big in order to deduce that

(43) |P tot,ξε,tδ
|[|y − tδH(x, ξ)| > C3tδδ](x, 0) ≤ exp[−C4δ/ε],

for a big C4. The result holds. �

4. CONCLUSION

We have adapted the classical proof of Wentzel-Freidlin estimates for jump
processes to the case of an operator of order four, where the semi-group is not
Markovian and where there is a potential. Normalization are those classical of
semi-classical asymptotics [1].
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