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We give large deviation estimates when there is a potential, when the gener-
ated semi-group is not Markovian. This paper enters in the problematic of
semi-classical asymptotics of Maslov and his school but with a different type of
estimates.
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1. INTRODUCTION

Let us consider a symbol a(z, &) on R? x R? which represents a pseudod-
ifferential operator L. According to the terminology of Maslov-Fedoriuk [1], we
consider the symbol %a(w, €€) which represents another pseudodifferential oper-
ator Le. The object of semi-classical asymptotics is to get precise asymptotics
of the Schroedinger operator (if it exists) exp[iLe].

In the present context, we consider X;,i = 1,..,m m vector fields on R?
with bounded derivatives at each order and without divergence with respect to
the Lebesgue measure on R%. Let V be a smooth bounded function on R? with
bounded derivatives at each order. The Hamiltonian is

(1) H@,6=Y <Xi@),e>"+V(@)= > A, .@]]& +V(),
1 > ij=4

We suppose that we are in an elliptic situation: there exists C' > 0 such that
m

(2) < Xi(w), ¢ >*= Clglt
1

The Hamiltonian is the symbol of the operator:

(3) L= Z A“""if(x)H;” +V(z).

i
Sij=4 L
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It generates a semi-group F; solution of the parabolic equation:

o
(4) 5= —LP:.

By elliptic theory [2—4],
5) Puf(@) = [ fnte.dy),
Rd

where y(z,dy) is a bounded measure on R?. The symbol of the considered
operator L is

m 1 . m 1
(6) He(z,8)=¢" zlj < Xi(w),e€ >" +-V(2)=¢ 212<X,»<:c),§ >t -V (@),

L¢ generates a semi-group Pf where

@ Fif@) = [ f@ite.d).

Instead of doing precise estimates of Pf when ¢ — 0 as in [1], we perform
in this paper rough logarithmic estimates of |Pf|, by adapting in this context
the proof of Wentzel-Freidlin of such estimates, because we have an analog in
this non-Markovian situation of the Girsanov formula and of the exponential
martingales. See [5] for review. This paper enters in the general problematic to
introduce stochastic analysis tools in the general framework of non-Markovian
semi-groups [5].

In [6], we have translated the classical proof of Wentzel-Freidlin estimates,
upper-bound, for Poisson processes, which was done originally for the whole
process instead of the semi-group only as in [6]. Let us recall that the simplest
proof for diffusions of Wentzel-Freidlin [7] estimates is done by the author in
[8-10]. In the present paper, the estimates are of the type of those in [11],
which are closely related to the classical Wentzel-Freidlin estimates. The proof
follows closely the lines of [12]. See [13, 14] and [15] for related topics.

2. STATEMENT OF THE THEOREM

According to the general framework of the large deviation theory, we
introduce the Legendre transform of the Hamiltonian H (z,):

(8) L(x,p) = Slglp(< p,§ > —H(z,§>).

A simple computation shows that

(9) Ci 4 Ci|p|*® > L(x,p) > Calp|*/? + C4.
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If [0,1] — R%: ¢t — ¢; is a piecewise continuous C' curve, we introduce the
action:

1
(10) S(0) = | Liondfataar.
0
Definition 1. We put
(11) lz,y)= inf 5(¢)
Po=w;P1=y

By using the Ascoli theorem, we deduce from (9) that:

PROPOSITION 2. The control function (x,y) — l(x,y) is continuous. More-
over there exists at least one curve ¢ joining x to y such that l(x,y) = S(¢).
Moreover l(x,y) — oo when y — oo.

The main result of this paper is the following and is a large deviation
estimate of the type of [11].

THEOREM 3. We have

(12) lim,_,0e Log| Pf[[1](z) < — in

£ U(z,y).
nf, (z,y)

Remark. It is nonsense in this non-Markovian situation to get a lower

bound.

3. PROOF OF THE MAIN THEOREM

The proof follows slightly the lines of [10, 12], the main difference is that
we consider the absolute values of semi-groups instead of the semi-group. This
leads to two interpretations of the martingales exponentials.

LEMMA 4. We consider the generator on R% x R
0
(13) L = L + H(z, g)@.

The parabolic equation issued of f(x)exple (< x,& > —y)]

(19) 2P exple (< o — 0,6 > () =

— L P f(af)[exple (< 2!, € > —y)]](@,v)
has a unique solution. Moreover, the map
(15) f = P [f(a) exple (< 2/ — 2, > —1)]|(x,0)

defines a bounded measures when e <1t <1 and |£| < C and all x.
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Proof. Let Pf the semi-group on R?
(16) [ — exp[< x,& >]|Peilexp|— < 2, & >]f(2))] ().
Its generator is
(17)  LEf(x) = exp[< z,& >]|Lelexp[— < x,& >|f(x)] = L. + lower terms.

By standard result, Lé generates a semi group in bounded measures.
In order to solve the parabolic equation associated to (13), we use Volterra
expansion.

(18) PI4[f(a))expl(< o’ — z,& > —y)]|(z,y) = exp[—y]+

Z(—U"/ dsy..ds,

n In

PS, [H(2h, €)[PL,, _, [H(2h, €)..PE, [H (2, €) f () exp|—y]]) (),

where [,, is the simplex of length n on [0,t] ordered by decreasing order. By
using the previous results, we can estimate the integral on the simplex by

(19) 1P e LB )2

Therefore the series converges. In order to prove the last statement of the
lemma, we remark that

(20) f = P!y exple (< o — 2,6 > —y/)]](2,0)

defines a semi-group because

(21) PIYEf(2) exple (< 2’ — 2,€ > —y)])(z,y) =
exp[—y/e| P14 f(a!) exple (< 2’ — 2,€ > —1/)]|(=,0).

We can compute easily the generator of this semi-group. We see that the
diverging terms are cancelling, because they come when we apply L. only on
exp[l/e < x,& >| when we apply chain rules and one derivatives of exp[—1/ey].
Therefore the result. [

The second lemma is an analog of exponential inequality which arises in
stochastic analysis from the use of exponential martingales [16-18]. Here they
follow from the standard Davies method [19].

LEMMA 5. For all 6 > 0, all C there exists ts such that if t < ts
(22) |Pet|[1B(2.6)c](2) < exp[-C/e],

where B(x,6) is the ball in R of center x and radius 6.
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Proof. We consider the semi-group

(23) exp[— < x,& > [€|P.slexp[< 2, & > /€| f(2))](x)

It has as generator

(24) Lef(z) + H(x,8)/ef(x)

L. generates a semi-group P, ; in bounded measures such that || P || is bounded
when € — 0.

It is enough to show the estimate for x = 0. We use the Volterra expan-
sion. We get

(25)  |Pellexp[< 2’,& > /el f(2))](0) < || flloot

Z/ dsy..dsy,
I,

[ Pet—si |[H (@, ]I/ €l Peysy—sol [H (2, ]|/ €| Peys, [[H (2, )1 /€] f (27)]].) (2, 0)
< CexpltCIE[*? /€] foo-

Therefore

(26) | Petl[13(0,):)(0) < C exp[=6l€|/e + Ot[&|*/* /e].

We extremize in £ and choose ¢ small in order to conclude. O

Proof of Theorem 3. This follows closely the lines of [10] or [12]. We cut
the time interval [0,1] is small intervals of length s, [t;, ti+1]. We use by the
semi-group property

(27) [Peal[1)(2) < [Pepyl | Pei—t, [} (2)-

In Pey,—t;,,, we distinguish if x4, , and zy, are far or not. If they are, we use
the previous lemma. If they are close, we deduce a positive measure |[W|
on polygonal paths ¢; which join z¢, to x4, where the distance between two
contiguous points is smaller than §. By the previous lemma, it remains to
estimate |W¢|[1)]. But |W| is a positive measure. Therefore, we have the
inequality
(28) (Wel[1] < [Wellexp[S(¢)/€]1] exp[— yigﬂ{d (@,y)/e]-
Therefore, we have only to estimate |We|[exp[S(¢)/¢€]1].

The sequel follows closely [14, p. 152] or [12, p. 188]. We remark that on
the set of polygonal paths considered d/dt¢; and ¢; remain bounded. We can
choose some p; in finite numbers such that if we put

0

(2
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we have for all polygonal paths considered

(30) L((bt, d/dt¢t) — L/(d)t, d/dtqbt) § X

for a small y. Let us put

1
(31) $'6) = | L'énd/atoat.
0
Since |W¢| is a positive measure, we have only to estimate
(32) [Wel[exp[S'()/€]1].
We remark that
(33) explsup a;] < Z expla;].
Moreover
(34) L'(z,p) = sup(< &, p > —H(z,&)),
where & = a%L(av,pi) Therefore it is enough to show that
1+
) swp |Plllen N (< g 0> st 0)])()

z,|¢|<C

has a small exponential blowing up when ¢ — 0.
We consider Pff;fs’g as in (14).
In order to estimate the previous quantity, we only have to estimate the
quantity:
1+x
36) P e (< eal - a s —tsH @6 4y - w)](.0)
We distinguish in the previous quantity if |tsH (x, &) — y| > Cstsd or not.
tot,
If |ts H(z,&) — y| < Cstsd, the result holds by (15) because |P635£|[.](.7), 0)
is a positive measure.
If |tsH(z,&) — y| > Cstsd, we remark that in the definition of |W¢|, we
keep values where |z4,,, — 24,| < d. Therefore, we have only to estimate
(14 x)0,, o,
(37) exp[*— ]| PG
Therefore, we have only to show that |P:(;§£|[|y —tsH(z,£)| > Csts0](x,0) has
an enough big exponential decay.
We use the analog of (18). We get that if

ly — tsH (z, €)| > Csts0](z,0).

(38) P95 lexplaly — ts H(z, O)(2,0) < 3 /1 dsi..dsy
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‘H($/1,£) 6_ H(13,€)| |P6751_32][|a\ |H($,2, g) 6_ H(l’,f)|

a| ’H(x;’wf) — H(xvg)‘

€

| Pet—s: [[la]

[ Pesi [l J. ().

The main remark is that £ is bounded.
If one of the x/ is such |z; — x| > (¢ for a big C, Lemma 5 shows that
the series is smaller than

(39) exp[ 0} e )

where

(40) O = [ H () ow 51p | Py
s<ts

/
J
| where

H(z.€)— H(z'
(41) Cy = sup [Posl|  sup  L&E —H@.E)]
s<ts lz—a!|<C8 Cé

We can choose Cy very big. If all the x
Cz|a‘t5§
€

are such |z; — z| < C6, we have an

estimate of the series in exp|[

Therefore for a > 0

(42) [Py — tsH (2, €)| > Cstso](x,0) <
_a03t55 Ciatg

Csatsd
€

exs Jexpl~ 2] + exp 2250

J(exp|
We choose a = t(s_l and C3 big in order to deduce that
(43) [Py — taH (2,€)| > Csts0)(x,0) < exp[~Cud/e],

€ls

for a big C4. The result holds. [

4. CONCLUSION

We have adapted the classical proof of Wentzel-Freidlin estimates for jump
processes to the case of an operator of order four, where the semi-group is not
Markovian and where there is a potential. Normalization are those classical of
semi-classical asymptotics [1].
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