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1. INTRODUCTION, MAIN RESULTS

Throughout this work, H denotes an arbitrarily �xed in�nite dimensional
complex Hilbert space with the scalar product 〈x|y〉 which is linear in x and
conjugate linear in y, giving rise to the norm ‖x‖ = 〈x|x〉1/2. We denote the
open unit ball {e ∈ H : ‖e‖ < 1} with B and for any vector a ∈ H we shall
write a∗ := [x 7→ 〈x|a〉] for its dual functional.

Recall that the group Aut(B) of all holomorphic automorphisms of B
consists of the biholomorphic maps B ↔ B, and the H-unitary operators re-
stricted to B form the isotropy subgroup of the origin in Aut(B). Stone's
classical theorem on strongly continuous one-parameter groups of unitary op-
erators can be reformulated in terms of Aut(B) as a statement that we can
identify the in�nitesimal generator of a strongly continuous one-parameter
subgroup of Aut(B) leaving �xed the origin with the restriction to B of a
possibly unbounded skew-self-adjoint linear operator with dense domain in H.
The �rst attempt to reach an analogous description for the strongly continu-
ous one-parameter subgroups of Aut(B) formed by possibly non-linear maps
can be found in Vesentini's celebrated paper [15] in 1987 based on a linear
model generalizing naturally a well-known analogous concept for �nite dimen-
sional M�obius groups. Later on [16] he returned to the theme with the aim of
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extending the results to strongly continuous one-parameter semigroups holo-
morphic automorphisms of the unit ball of a Cartan factor of type 1 that is
a space of the form L(H1,H2) with Hilbert spaces Hk where a linear model
is still available. Katshkevich�Reich�Shoikhet [9] extended these investigations
to general strongly continuous one-parameter semigroups of holomorphic frac-
tional linear transformations. Nevertheless, it seems that a simple explicit
algebraic description for these semigroups did not yet appear in the literature.

Our purpose in this paper will be to develop an alternative shorter ap-
proach to the description of vector �elds and their integration arising as in-
�nitesimal generators of strongly continuous one-parameter subsemigroups of
Aut(B). Though several details presented here seem to be contained implic-
itly in [9, 15, 16], our treatment based on the existence of joint �xed points
uses essentially di�erent ideas which may be of independent geometric interest
concerning the structure of the Banach-Lie group of the surjective isometries
of a hyperbolic space. We try to give a self-contained presentation starting
only from the familiar form (2.3)�(2.6) for the M�obius shifts established �rst
in [5, Ch.X] for in�nite dimensions. At the beginning, we provide some general
results concerning the existence of joint �xed points and continuity of boundary
extensions in the setting of re�exive spaces. We pay particular attention (Sec-
tion 4, The Jordan case) to characterize the cases where a Kaup type formula
[x 7→ b − 〈x|b〉x + iAx], given �rst in [10] for the uniformly continuous case,
is available for the vector �elds of the in�nitesimal generators. We focus to
one-parameter groups, establishing the following main results.

Theorem 1.1. Assume
[
Ψt : t ∈ R] is a strongly continuous one-parameter

group of holomorphic automorphisms of B.1 Then there exists a vector x with

‖x‖ ≤ 1 along with a constant λ ∈ R and a densely de�ned possibly unbounded

self-adjoint operator A : Z→ H with dense domain such that

(1.2) B∩(x+Z) = D where D :=
{
x ∈ D : t 7→ Ψt(x) is di�erentiable onR

}
,

(1.3)
d

dt

∣∣∣
t=0

Ψt(x) = −
〈
(iA− λ)(x− x)

∣∣x〉x+ (iA+ λ)(x− x) (x ∈ D).

Given any tuple (A, x, λ) consisting of a densely de�ned self-adjoint operator

A : Z → H, a vector x with ‖x‖ ≤ 1 and a real number λ, there exists (a

necessarily unique) strongly continuous one-parameter group [Ψt : t ∈ R] sat-
isfying (1.2) and (1.3) if and only if one of the following alternatives holds:

(1) ‖x‖=1; (2) ‖x‖<1, λ=0.

1That is Ψt+s = Ψt ◦ Ψs ∈ Aut(B) for all couples t, s ∈ R and the functions [t 7→ Ψt(x)]
are continuous R→ H for any �xed vector x ∈ B.
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Corollary 1.4. If ‖x‖ = 1 above and x is an eigenvector of the operator

A with eigenvalue ρ(∈ R) then the following alternatives hold: either for some

0 6= λ ∈ R we have

Ψt(x0 + ξx) =
eλt exp(itA)x0

2λ− ϕ(ρ, λ, t)(ξ − 1)
+
(

1 +
2λe2λt(ξ − 1)

2λ− ϕ(ρ, λ, t)(ξ − 1)

)
x

where λ 6= 0 and ϕ(ρ, λ, t) := (iρ− λ)e2λt − (λ+ iρ), or

Ψt(x0 + ξx) =
exp(itA)x0

1 + iρt(ξ − 1)
+
(

1 +
ξ − 1

1 + iρt(ξ − 1)

)
x

for all t ∈ R, and x0 + ξx ∈ B with x0 ⊥ x.

Corollary 1.5. If x 6= x′ ∈ ∂B are the only common �xed points of

[Ψt : t ∈ R], there exists Θ ∈ Aut(B) along with a constant 0 6= λ ∈ R such

that Θ(x) = x, Θ(x′) = −x and

Θ ◦Ψt ◦Θ−1(x+ ξx) =
eλt exp(itA)x0

2λ− ϕ(0, λ, t)(ξ − 1)
+
(

1 +
2λe2λt(ξ − 1)

2λ− ϕ(0, λ, t)(ξ − 1)

)
x

for all t ∈ R, and x0 + ξx ∈ B with x0 ⊥ x.

2. PRELIMINARIES: LINEAR MODEL

WITH JOINT FIXED POINTS

Lemma 2.1. Assume K is a compact topological space and let [ft : t ∈
R+] be a one-parameter semigroup of continuous maps K → K admitting

�xed points such that all the functions t 7→ ft(x) are continuous. Then also⋂
t∈R+

Fix(ft) 6= ∅.

Proof. Consider any parameter t > 0 and a point x ∈ Fix(ft). For
n = 1, 2, . . . recursively we have fnt(x) = ft

(
f(n−1)t(x)

)
= x. Thus Fix(fnt) ⊃

Fix(ft) 6= ∅ (t ∈ R+, n = 1, 2, . . .). From the continuity of the maps ft it follows
that Fix(f1/n!) (n = 1, 2, . . .) is a decreasing sequence of non-empty compact
sets with non-empty intersection X :=

⋂
n Fix(f1/n!). Since any rational num-

ber 0 6= q ∈ Q+ can be written in the form q = m/n! for suitable integers
m,n > 0, it follows even that

⋂
q∈Q+

Fix(fq) = X 6= ∅. Consider any parame-
ter t > 0 and any point x ∈ X . Given any sequence q1, q2, . . . ∈ Q+ converging
to t, the continuity of the orbit t 7→ ft(x) ensures that x = limn fqn(x) = ft(x).

Lemma 2.2. Let K be a domain in a Banach space E and let ft : Dt → E
(t ∈ R+] be a family of holomorphic maps de�ned on open neighborhoods of

K such that the restrictions [ft|K : t ∈ R+] form a strongly continuous one-

parameter semigroup. Assume that for every boundary point x ∈ ∂K there
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exists a 1-dimensional complex disc ∆x centered at x and intersecting K such

that ∆x ⊂
⋂
t∈[0,δx] Dt and

⋃
t∈[0,δx] ft(∆x) is a bounded set for some δx > 0.

Then [ft|K : t ∈ R] is also a strongly continuous one-parameter semigroup.

Proof. By assumption fs(ft(x)) = fs+t(x) (x ∈ K, s, t ∈ R+). Since the
maps ft|K are all continuous, it follows fs(ft(x)) = fs+t(x) (x ∈ K, s, t ∈ R+).
That is [ft|K : t ∈ R+] is a one-parameter semigroup of continuous maps on
the closure K. Hence, to complete the proof, it su�ces to see only that for
any x ∈ ∂K, the function t 7→ ft(x) is continuous on some neighborhood the
origin, namely on [0, δx). Fix any x ∈ ∂K and consider a convergent sequence
tn → t within [0, δx]. We show the convergence ftn(x) → ft(x) as follows.
We can write ∆x = {x + ζv : |ζ| < 1} with a suitable vector v ∈ E. By
assumption, the functions gn(ζ) := ftn(x + ζv) (n = 1, 2, . . .) are uniformly
bounded and holomorphic on the unit disc. Furthermore, they are assumed to
converge pointwise to g(ζ) := ft(x+ζv) on the non-empty open complex domain
{ζ ∈ C : x+ ζv ∈ K}. In Banach space setting, pointwise convergence implies
uniform convergence on compact sets for holomorphic maps [12]. In particular,
we have uniform convergence for [gn : n = 1, 2, . . .] on some compact disc
with positive radius. By a theorem of Vigu�e [17, 8], for a uniformly bounded
sequence of holomorphic maps, the uniform convergence on some subdomain
entails locally uniform (and hence pointwise) convergence on the whole domain.
In particular, gn → g pointwise and hence ftn(x) = gn(0)→ g(0) = ft(x). �

Corollary 2.3. If E is a JB*-triple, K is its open unit ball and [ft : t ∈
R] is a strongly continuous one-parameter subgroup of Aut(K) then the maps f t
obtained with graph closure from the respective ft, form a strongly continuous

one-parameter group of maps K→ K.

Proof. It is well-known [11] that we can write ft = Mft(0) ◦ Ut with
some invertible linear operator Ut ∈ L(E) and a so-called M�obius transfor-
mation with the fractional linear form x 7→ ft(0) +Bt[I +L(x, ft(0)]−1x where
Bt, L(x, ft(0)) ∈ L(E) and ‖L(x, ft(0))‖ ≤ ‖ft(0)‖‖x‖. In particular each ft
extends holomorphically to the ball of radius 1/‖ft(0)‖. Thus the conditions
required by the lemma are ful�lled since lim

t→0
f(0) = 0 by assumption. �

Henceforth, we focus to the case of the unit ball B of an in�nite dimen-
sional Hilbert space.

Recall [5, Ch. VI] that the group Aut(B) of all holomorphic automor-
phisms of B admits a matrix representation. Namely each element Ψ of Aut(B)
has the fractional linear form

(2.4) Ψ(x) =
Ax+ b

〈x|c〉+ d
, A ∈ L(H), b, c ∈ H, d ∈ C
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and we have

Ψ1◦Ψ2(x) = Ψ1

(
Ψ2(x)

)
=

Ax+ b

〈x|c〉+ d
whenever

[
A b
c∗ d

]
=

[
A1 b1
c∗1 d1

] [
A2 b2
c∗2 d2

]
.

This representation is unique up to a constant, since in (2.4) we necessarily
have[
A b
c∗ d

]
= d

[
Qa a
a∗ 1

][
U 0
0 1

]
where a :=Ψ(0), U= (β2

aPa+ βaPa)
−1Ψ′(0)

in terms of the the Fr�echet derivative Ψ′ and the standard notations

Pa :=
[
orthogonal projection H→Ca

]
, βa=

√
1−‖a‖2, Qa := Pa+βa(I−Pa).

We call the matrix

Ψ̃ :=

[
Qa a

a∗ 1

][
U 0

0 1

]
=

[
QaU a

(U∗a)∗ 1

]
corresponding to the case with constant d = 1 the canonical representation of
Ψ. In the sequel we shall write

H :=H⊕C=
{[
x
ξ

]
: x∈H, ξ∈C

}
and identify the matrixM :=

[
mij

]2
i,j=1

where m11∈L(H), m12∈H, m2,1∈H∗

and m22∈C with the linear operator
[
x
ξ

]
7→M

[
x
ξ

]
on H. Notice that, by (2.4)

we have

(2.5) Ψ(x) =
[
Ψ̃
[x

1

] ]−1

C

[
Ψ̃
[x

1

] ]
H

(x ∈ B)

where [ · ]C resp. [ · ]H are the standard notations for the canonical projections
H → C resp. H → H. It is immediate that any Ψ ∈ Aut(B) extends holo-
morphically to the ball (1− ‖Ψ(0)‖)−1B. Hence we can de�ne the group of all
automorphisms of the closed unit ball B := {x ∈ H : ‖x‖ ≤ 1} as

Aut(B) :=
{

Ψ : Ψ ∈ Aut (B)
}

where Ψ :=
[
continuous extension of Ψ to B

]
.

It is also well-known [5, Ch.VI] that any mapping Ψ ∈ Aut(B) is weakly con-
tinuous and preserves the Grassmann family Aff(B) of all complex a�ne closed
subspaces intersected with B.2 By Schauder's �xed point theorem, Fix(Ψ) 6= ∅
since B is weakly compact. Moreover we have the following alternatives:

(1) Fix(Ψ) ∈ Aff(B), (2) Fix(Ψ) consists of two boundary points.

In case (2) from the proof of [5, Thm.VI.4.8] we see even that Ψ = Φ◦Θa ◦Φ
−1

with a suitable automorphism Φ ∈ Aut(B) and a M�obius shift

2If x=
∑2
k=1λkxk with λ1, λ2∈ C and

∑2
k=1λk = 1 then Ψ(x) =

∑2
k=1αkΨ(xk) for some

α1, α2∈C with
∑2
k=1αk=1

(
namely αk=λk[1+〈xk|U∗a〉]/[1+〈λ1x1+λ2x2|U∗a〉]

)
.
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(2.6) Θa : x 7→ Qax+ a

1 + 〈x|a〉
for some 0 6= a ∈ B such that Fix(Θa) = {−e, e} where e := a/‖a‖.

Remark 2.7. In �nite dimensions, it is customary to normalize (2.4) by

requiring det
[
A b
c∗d

]
=1. Thus, in case of dim(H) = N , in this manner one can

establish a canonical identi�cation of Aut(B) with a subgroup of the classical
matrix group SL(N + 1). Though in in�nite dimensions such a normalization
is not available, for one-parameter groups with common �xed point there is an
alternative way as follows.

De�nition 2.8. Let [Ψt : t ∈ R] be a strongly continuous one-parameter
subgroup of Aut(B). Given any common �xed point x of the continuous exten-

sions Ψ
t
of its members to B, we introduce the x-adjusted matrix representation

of [Ψt : t ∈ R] in terms of the canonical representation matrices Ψ̃t as follows

Ψ̂t
x :=

[
Ψ̃t
[x

1

]]−1

C
Ψ̃t =

1

1 + 〈Utx|at〉

[
Qt at
a∗t 1

] [
Ut 0
0 1

]
(t ∈ R).

where at = Ψt(0) ∈ B, Ut ∈ L(H) is a suitable unitary operator and Qt :=
Qat = Pt + βt(I − Pt) with Ptx := Patx= ‖at‖−2〈x|at〉at, βt=

√
1−‖at‖2.

Later on, conveniently we shall simply write Ψ̂t instead of Ψ̂t
x without

danger of confusion.

Remark 2.9. As we have seen Ψt(x) = (1 + 〈Utx|at〉)−1[QtU
tx + at] =[

Θat◦ Ut
]
(x). Thus, by construction we have

Ψt(x) =
[
Ψ̂t
[x

1

] ]−1

C

[
Ψ̂t
[x

1

] ]
H

(x ∈ B), Ψ̂t
[x

1

]
=
[x

1

]
.

It is worth to notice that the term 〈Utx|at〉 is actually independent of Ut as

(2.10) 〈Utx|at〉 =
〈x− at|at〉
1− 〈x|at〉

, Ψ̂t =
1− 〈x|at〉
1− 〈at|at〉

[
Qt at
a∗t 1

] [
Ut 0
0 1

]
.

Proof. In general we have Pty = 〈y|at〉〈at|at〉−2at (0 6= at, y ∈ H). It
follows 〈PtUtx|at〉 = 〈Utx|at〉 with 〈P tUtx|at〉 = 0 for any t ∈ R. Thus mul-

tiplying the �xed point equation x = Ψ
t
(x) = (1 + 〈Utx|at〉)−1(Pt + βtP t)Utx

with |at〉, we get (1 + 〈Utx|at〉)−1〈Utx + at|at〉 = 〈x|at〉 whence the relations
(2.10) are immediate. �

The power style indexing of Ψ̂t in t is justi�ed by the proposition below.

Proposition 2.11. Given a strongly continuous one-parameter group [Ψt :
t∈R] in Aut(B) with common �xed point x ∈ B, the family [Ψ̂ t

x : t ∈ R] is a
strongly continuous one-parameter group of operators in H.
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Proof. Since Ψt◦Ψs = Ψt+s (t, s∈R), for the representation matrices we
have Ψ̂tΨ̂s = dt,sΨ̂

t+s with suitable constants 0 6= dt,s ∈ C. The �xed point

property Ψ
t
(x) = x implies

Ψ̂t

[
x

1

]
=

[
x

1

]
(t ∈ R).

Hence necessarily dt,s=1 (t, s∈R), thus
[
Ψ̂t : t∈R

]
is a one-parameter matrix

group. By assumption, the function t 7→ at = Ψt(0) is norm-continuous R→ B.
Hence we can deduce the strong continuity of the H-unitary operator valued
function t 7→ Ut. Namely consider any vector x ∈ H. To establish the norm-
continuity of the function t 7→ Ut, we may assume without loss of generality
that x ∈ B. Then, by the aid of the M�obius shifts (2.6) we can write

Utx =
[
Θ−1
at ◦Ψt

]
(x) = Θ−at

(
Ψt(x)

)
(t∈R).

Observe that the norm continuity of t 7→ at implies the continuity of t 7→ 〈x|at〉
and t 7→ βt ∈ [0, 1) entailing the norm-continuity of t 7→ Qt = Pt + βtP t ∈
Ball

(
L(H)

)
. Hence the norm-continuity of t 7→ Utx = (1 − 〈Ψt(x)|at〉)−1

[(QtΨ
t(x) − at] is immediate since, in general, the product of two bounded

strongly continuous linear operator valued functions R→ L(X) over a normed
spaceX is strongly continuous. Hence we conclude that the entries (1, 1), (1, 2),
(2, 1) resp. (2, 2) of the matrices Ψ̂t are strongly continuous functions R →
L(H), R→ H, R→ H∗'H resp. R→ R which completes the proof. �

Corollary 2.12. Given a strongly continuous one-parameter group [T t :
t ∈ R] in L(H), the following statements are equivalent

(i) for all t ∈ R, the maps x 7→
[
T t
[
x
1

]]−1

C
[
T t
[
x
1

]]
H

belong to Aut(B);

(ii) we have T t = eµtΨ̂t (t ∈ R) for some strongly continuous one-para-

meter subgroup [Ψt : t∈R] of Aut(B) and a constant µ∈C;
(iii) each operator T t maps the cone K :=

{[
x
ξ

]
: |ξ|2>‖x‖2

}
onto itself;

(iv) each operator T t maps ∂K :=
{[

x
ξ

]
: |ξ|2 = ‖x‖2

}
onto itself.

Proof. The implication (ii)⇒(i) is trivial by (2.5).

Proof of (i)⇒(ii): By assumption the maps Ψt(x) :=
[
T t
[
x
1

]]−1

C
[
T t
[
x
1

]]
H

(t ∈ R, x ∈ B) are well-de�ned holomorphic automorphisms of the unit ball
B. By (2.5) we have T t = dtΨ̂

t (t ∈ R) with suitable constants dt ∈ C∗.
Fixing any point x ∈ B, the strong continuity of the group [T t : t ∈ R] implies
the continuity of the function T t

[
x
1

]
whence we deduce also the continuity of

t 7→ Ψt(x) which entails the continuity of t 7→ Ψ̂t
[
x
1

]
= d−1

t T t
[
x
1

]
and hence the

continuity of t 7→ dt. By the one-parameter group property, all the relations
T t+s = T tT s, Ψ̂t+s = Ψ̂tΨ̂s (t, s ∈ R) hold. Therefore dt+s = dtds (t, s∈R)
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and the continuity of t 7→ dt establishes the existence of a constant µ ∈ C with
dt = eµt (t ∈ R).

Proof of (i)⇔(iii)⇔(iv): Consider the projective Hilbert space H∗/ ≈
associated with H regarded as the set of all nontrivial punctured complex
rays C∗

[
x
ξ

]
with the factor topology.3 By homogeneity, any injective lin-

ear operator T ∈ L(H) acts holomorphically on H∗/ ≈ by its factorization
T≈ : C∗

[
x
ξ

]
7→ C∗T

[
x
ξ

]
. In particular, as admitting a continuous inverse,

each map T t≈ is a holomorphic automorphism of H∗/ ≈. Hence the equiva-
lences (i)⇔(iii)⇔(iv) are straightforward consequences of the facts that, with
the embedding Π : x 7→ C

[
x
1

]
and its inverse π

(
C
[
x
ξ

])
:= x/ξ (ξ 6= 0), we

have ΠB := K, πK = B and
[
T t
[
x
1

]]−1

C
[
T t
[
x
1

]]
H

= π ◦ T t≈ ◦ Π
[
x
1

]
whenever[

T t
[
x
1

]]
C 6= 0. �

Corollary 2.13. Given any Θ ∈ Aut(B), the Θ-shifted automorphisms

Φt := Θ◦Ψt ◦Θ−1 form strongly continuous one-parameter group with common

�xed point y := Θ(x) when extended continuously to B and Φ̂t
y = eµtΘ̃−1Ψ̂t

xΘ̃
(t∈R) for some µ∈C.

3. INFINITESIMAL GENERATORS

Throughout this section, let
(
[Ψt: t∈R], x

)
be an arbitrarily �xed couple

of a strongly continuous one-parameter group in Aut(B) with a common �xed
point x for the continuous extensions in B. Recalling the Hille�Yosida theorem
[13, Kap.10], Proposition 2.11 ensures that the di�erential

(3.1) A :h 7→ d

dt
Ψ̂th with D :=dom(A)=

{
h : t 7→Ψ̂th is di�erentiable on R

}
(called the in�nitesimal generator of the linear model

[
Ψ̂t: t∈R

]
where Ψ̂t≡Ψ̂t

x

for short) is a not necessarily bounded linear map with closed graph and [Ψ̂t : t∈
R]-invariant domain being dense in H. Instead of the di�erential A = d

dt |t=0Ψ̂t

of the representations, we are primarily interested in the di�erential

Ω :=
d

dt

∣∣∣
t=0

Ψt : D→ H where D = dom(Ω) =
{
x ∈ B :

d

dt

∣∣∣
t=0

Ψt(x) exists
}
.

In order to regard the vector �eld Ω as a non-linear in�nitesimal generator
for [Ψt : t ∈ R], we should see the density of D in B. In order to establish a
non-linear Stone-type theorem, we should determine precise links to self-adjoint
linear operators.

3As usually, H∗ := H\{0} with the equivalence relation
[
x
ξ

]
∼
[
y
η

]
:⇐⇒ C∗

[
y
η

]
=C∗

[
x
ξ

]
where C∗ := C\{0}. A subset of H/≈ is open if the union of it members (rays in H∗) is open
in H.
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Lemma 3.2. D is
[
Ψ
t

: t ∈ R
]
-invariant. We have

[
x
1

]
∈ D ⇐⇒ x ∈D

whenever x∈B.

Proof. The
[
Ψt : t∈R

]
-invariance of D is clear from the group property

Ψt+s = Ψt ◦ Ψs (t, s ∈R). Moreover even dom
(
d

dt

∣∣
t=0

Θ ◦ Ψt ◦ Θ−1
)

= Θ(D)
whenever Θ is any holomorphic automorphism of B. Hence, given any point
x ∈ B, we have x ∈D if and only if 0 = Θ−x(x) ∈ dom

(
d

dt

∣∣
t=0

Φt
)
with the

one-parameter group of the maps Φt := Θ−x ◦Ψt ◦Θx in terms of the M�obius
transformations (2.3). That is, without loss of generality, it su�ces only to see
the equivalence 0 ∈ dom

(
d

dt

∣∣
t=0

Φt
)
⇐⇒

[
0
1

]
∈ D. According to (2.10), by

setting at := Ψt(0) and at := Ψ̂t
[

0
1

]
we have at = (1 − 〈at|x〉(1 − ‖at‖2)−1

[
at
1

]
(t ∈ R). Hence the curves t 7→ at resp. t 7→ at are di�erentiable in the same
time, which completes the proof. �

For later use, we also introduce the notations

Z :=
{
z ∈ H :

[z
0

]
∈ D

}
; Bz :=

[
A
[z

0

]]
H
, Λz :=

[
A
[z

0

]]
C

(z ∈ Z).

Lemma 3.3. Z is a dense linear submanifold in H with D =
(
x+Z

)
∩B

and D =
[
Z
0

]
+ C

[
x
1

]
. The set D is dense in B and

d

dt

∣∣∣
t=0

Ψ
t
(x) = [Λ(x− x)]x+B(x− x) (x ∈ D).

Proof. By de�nition,
[
x
1

]
∈D withA

[
x
1

]
=0 since Ψ̂t

[
x
1

]
=
[
x
1

]
(t∈R). Since

D is closed for linear combinations, it follows that
[
Z
0

]
+C
[
x
1

]
= D and that Z is

the image of D by the bounded linear operator Π
[
x
ξ

]
:= x− ξx. Since ΠH = H

and since D is dense in H, Z = ΠD is also dense in H = ΠH. From Lemma 3.2
we know that D = B ∩

{
x :

[
x
1

]
∈ D

}
. Hence the relation D =

(
x + Z

)
∩B

along with the density of D in B is immediate. Given any x ∈ D, the relation[
x
1

]
∈ D implies A

[
x
1

]
= d

dt

∣∣
t=0

Ψ̂t
[
x
1

]
. Since Ψ

t
(x) =

{
Ψ̂t
[
x
1

]}−1

C
{

Ψ̂t
[
x
1

]}
H

along with Ψ̂0 = Id and A
[
x
1

]
= 0, we get

d

dt

∣∣∣
t=0
Ψ
t
(x)=−

[
Ψ̂0
[x

1

]]−2

C

(
d

dt

∣∣∣
t=0

{
Ψ̂0
[x

1

]}
C

)[
Ψ̂0
[x

1

]]
H
+
[
Ψ̂0
[x

1

]]−1

C

d

dt

∣∣∣
t=0

{
Ψ̂0
[x

1

]}
H

= −
[
A
[x

1

]]
C
x+

[
A
[x

1

]]
H

= −
[
A
[x− x

0

]]
C
x+

[
A
[x− x

0

]]
H
. �

Lemma 3.4. Suppose a Hilbert space W is the orthogonal sum of the

subspaces W1,W2 and C is the in�nitesimal generator of a strongly contin-

uous one-parameter subgroup [T t : t ∈ R] of L(W). Then, for the cone

K :=
{
w1⊕w2 : ‖w1‖ > ‖w2‖

}
, we have T tK = K (t ∈ R) if and only if C

is tangent to the boundary of K that is if

(3.5) Re
〈
C(w1⊕w2)

∣∣w1−w2

〉
=0

(
w1⊕w2∈dom(C), ‖w1‖=‖w2‖

)
.
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Proof. It is immediate that T tK⊂ K (t ∈ R) ⇒ T t∂K ⊂ ∂K (t ∈ R)
⇒ d

dt |t=0T
t(w1 ⊕ w2) ∈ Tanw1⊕w2(K) for w1 ⊕ w2 ∈ dom(C) ⇒ (3.5). Assume

(3.5) and let P denote the canonical projection of W onto W1 and de�ne
T t,s := exp(tC + sP ) (s, t ∈ R). By the theorem of bounded perturbations [4,
p. 158] the operators T t,s are all well-de�ned. Moreover, by [4, Corollary 1.7
p. 161] (applied with B := sP and A := C there) we have lims→0 T

t,sw = T tw
(w ∈ dom(C), t ∈ R). Therefore, to establish that T tK ⊂ K (t ∈ R), it su�ces
to see only that T t,sw∈K whenever w∈dom(C)∩K and t, s> 0. To proceed
to contradiction, let s, t > 0 and w := w1 ⊕ w2 ∈ dom(C) with ‖w1‖ > ‖w2‖
but ‖[T t,sw]1‖ ≤ ‖[T t,sw]2‖. The function δ(τ) := ‖[T τ,sw]1‖2 − ‖[T τ,sw]2‖2 is
di�erentiable in τ on the whole R and δ(0) > 0 ≥ δ(t). Thus there exists a point
t∗ ∈ (0, t] such that δ(τ) > 0 = δ(t∗) (0 ≤ τ < t∗). Since δ(t∗) = 0, the vector
w∗ := T t∗,sw belongs to ∂K and hence Re〈Cw∗|[w∗]1〉 = Re〈Cw∗|[w∗]2〉. We get
the contradiction 0 ≥ δ′(t∗) = 2Re〈(C+sP )w∗|[w∗]1〉−2Re〈(C+sP )w∗|[w∗]2〉 =
2s‖[w∗]1‖2 > 0. �

Corollary 3.6. Given any vector v ∈ Z, we have

Re
(
− Λv +

〈
Bv
∣∣x〉+

〈
Bv
∣∣v〉) = 0 whenever

∥∥x+ v
∥∥ = 1.

Proof. By Corollary 2.12, we have Ψ̂tK = K (t ∈ R) where K :=
{[

x
ξ

]
:

|ξ| > ‖x‖
}
⊂ H. An application of Lemma 3.4 with W1 := C, W2 := H,

K := K, T t := Ψ̂t, C := A establishes that Re
[
(Λx)ξ

]
= Re

〈
Bx
∣∣x〉 whenever[

x
ξ

]
∈ D and ‖x‖ = |ξ|. We obtain the statement with the choice x := v+x and

ξ := 1 if v ∈ Z with ‖v + x‖ = 1 because then, by Lemma 3.3,
[
x
1

]
∈ D. �

Proposition 3.7. For some symmetric linear operator A : Z→H and a

suitable constant λ∈R which is necessarily = 0 if ‖x‖ 6=1, we have (1.3) as

B = iA+ λI, Λz =
〈
(iA− λI)z

∣∣x〉 (z ∈ Z).

Proof. Consider any vector 0 6= z ∈ Z. Let ζ ∈ C be the (unique)
constant such that x + ζz ⊥ z and de�ne % :=

√
1− ‖x+ ζz‖2. Actually we

have ζ = −〈x|z〉/〈z|z〉 and 1 ≥ ‖x‖2 = ‖x+ ζz‖2 + ‖− ζz‖2 showing that both
ζ and % are well-de�ned. Consider the unit vectors

vϕ := x+ ζz + eiϕ%z (ϕ∈R).

According to Corollary 3.6,

Re
(

(ζ+eiϕ%)
[
− Λz +

〈
Bz
∣∣x〉]+ |ζ+eiϕ%|2

〈
Bz
∣∣ z〉) = 0 (ϕ ∈ R).

Thus the identity Re
(
α+βeiϕ+γe−iϕ

)
= 0 (ϕ ∈ R) holds with the constants

α := ζ
[
−Λz+

〈
Bz
∣∣x〉]+(|ζ|2+%2)

〈
Bz
∣∣ z〉, β := %

[
−Λz+

〈
Bz
∣∣x〉+ζ〈Bz ∣∣ z〉]
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and γ := %ζ
〈
Bz
∣∣ z〉. Since 2 Re

(
α+βeiϕ+γe−iϕ

)
= 2 Re(α)+(β+γ)eiϕ+(β+

γ)e−iϕ, we have necessarily Re(α) = β + γ = 0. From the relation β + γ = 0,
it follows

(3.8) Λz − 〈Bz |x〉 = 2 ζ Re 〈Bz | z〉 = −2 〈z |x〉 Re 〈Bz | z〉
〈z | z〉

,

and substituting this into the relation 0 = Re(α), we get

(3.8′) 0 = (%2 − |ζ|2) Re
〈
Bz
∣∣ z〉 =

(
1− ‖x‖2

)
Re
〈
Bz
∣∣ z〉 .

From (3.8) we see also that

z 7→
Re
〈
Bz
∣∣ z〉〈

z
∣∣ z〉 = −1

2

Λz −
〈
Bz
∣∣x〉〈

z
∣∣x〉

is a real valued G�ateaux holomorphic function on the algebraically open and
in Z algebraically dense domain {z∈Z : z 6⊥ x} which is possible only if being
constant on Z. By writing λ for this constant value, from (3.8) and (3.8′) we
conclude that

Λz =
〈
(B−2λI)z

∣∣x〉, Re
〈(
B−λI

)
z
∣∣ z〉 = 0 (z ∈ Z),

and, in particular, if ‖x‖ < 1 then necessarily λ = 0 above. By setting A :=
−i(B+λI), hence the statement including the symmetry of A is immediate. �

The following geometric converse of Proposition 3.7 is elementary:

Remark 3.9. Given a dense linear submanifold Z in H, a symmetric linear
operator A : Z→ H, a vector x ∈ B, the vector �eld Ωλ(x) := −

〈
(iA−λI)(x−

x)|x
〉
x + (iA + λI)(x − x) de�ne for x + Z is tangent to the unit sphere ∂B

at the points x ∈ x + Z with ‖x‖ = 1 whenever either ‖x‖ = 1 and λ ∈ R or
‖x‖ < 1 and λ = 0.

4. THE JORDAN CASE

In the sequel, we proceed to the problem if the operator A in Propo-
sition 3.7 arising from the di�erential d

dt

∣∣
t=0

Ψt of a strongly continuous one-
parameter subgroup of Aut(B) is necessarily self-adjoint and conversely if every
self-adjoint operator may appear there. We continue the previous investigations
with unchanged notations but under the additional hypothesis that

(4.1) 0 ∈ D = dom
( d

dt

∣∣∣
t=0

Ψt
)
.

As we know, D =
{
x ∈ B :

[
x
1

]
∈ D

}
= B ∩ (x+ Z) where D = dom(A) with

A = d

dt

∣∣
t=0

Ψ̂t
x and Z =

{
x ∈ H :

[
x
0

]
∈ D

}
is a dense complex linear submani-

fold in H. Thus, as a consequence of (4.1), for the distinguished common �xed



252 L.L. Stach�o 12

point of the extended automorphisms Ψ
t
we have x ∈ Z = dom(B) = dom(Λ).

Therefore also[0

1

]
∈D=

[Z
C

]
, A

[x
ξ

]
=
[B(x− ξx)

Λ(x− ξx)

]
=
[B −Bx

Λ −Λx

][x
ξ

]
(x∈Z, ξ∈C).

Remark 4.2. Recall [10] that the complete holomorphic vector �elds on
B are the in�nitesimal generators of the uniformly continuous one-parameter
subgroups of Aut(B). They can be written in the form x 7→ a− {xc∗x}+ iCx
with suitable c ∈ H and a bounded self-adjoint operator C ∈ L(H) by means
of the Jordan triple product

(4.3)
{
xy∗z

}
:=

1

2

〈
x
∣∣y〉z +

1

2

〈
z
∣∣y〉x.

In terms of the factorization Ψt = Θat ◦Ut|B we introduce the following vector
resp. not necessarily bounded symmetric linear operator:

b :=
d

dt

∣∣∣
t=0

Ψt(0) = lim
t→0

1

t
at, R := −i d

dt

∣∣∣
t=0

Ut : x 7→ lim
t→0

1

it
(Ut − I)x.

Proposition 4.4. Under hypothesis (4.1), we have D = B∩Z along with

dom(R) ⊃ Z and the vector �eld Ω := d

dt

∣∣
t=0

Ψt admits the Jordan form

(4.5) Ω(x) = b− {xb∗x}+ iRx (x ∈ D).

Proof. The relation D = B ∩ Z is clear since x ∈ Z. By the de�nition of
the generator A,

A
[0

1

]
= lim

t→0

1

t

(
Ψ̂t − Ψ̂0

)[0

1

]
= lim

t→0

1

t

{ 1

1 + 〈Utx|at〉

[at
1

]
−
[0

1

]}
.

Since lim
t→0

at = 0 and ‖Utx‖ ≤ 1 (t ∈ R), taking (2.10) into account, we see that

the limit

b := lim
t→0

1

t
at =

d

dt

∣∣∣
t=0

Ψt(0)

is well-de�ned and

Bx = −
[
A
[0

1

]]
H

= −b, Λx = −
[
A
[0

1

]]
C

=
〈
x
∣∣ b〉.

As a consequence we also have

βt =
√

1− ‖at‖2 =
√

1− ‖tb+ o(t)‖2 = 1− 1

2
‖b‖2t2 + o(t2),

Qt = Pt + βt(I − Pt) = I + (1− βt)Pt = I + o(t) (in operator norm).

Since also Utz = z + o(1) in norm, hence we deduce that for any vector z ∈ Z,
and ζ ∈ C,

(4.6) Ψ̂t
[z
ζ

]
=

1− 〈x|at〉
1− ‖at‖2

[
QtUt at
a∗tUtz 1

] [z
ζ

]
=

[
Utz − t〈x|b〉z
t〈Utz|b〉+ ζ

]
+o(t) in norm.
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By de�nition,
[
Bz
Λz

]
= lim

t→0

1
t

(
Ψ̂t − I

)[
z
0

]
. Hence with well-de�ned limits

we conclude that

(4.7) Bz = lim
t→0

1

it
(Ut−I)z −

〈
x
∣∣b〉z (z ∈ Z).

The strong limit of t−1(Ut − I)|Z is necessarily symmetric due to the fact that
each Ut is unitary. Thus comparing (4.7) with Proposition 3.7 stating that the
operator B has the form iA + λI with some λ ∈ R and a symmetric operator
A with dom(A) = Z, we get

(4.8) λ = −Re
〈
x
∣∣ b〉 , A = lim

t→0

strong (
U t − I

)
− Im

〈
x
∣∣ b〉I∣∣∣Z in 3.7.

We calculate Ω by substituting (4.7-8) into its form Ω(x) =
[
Λ(x − x)

]
x +

B(x − x) applying also the relations Bx = −b, Λx = 〈x|b〉, B = iA + λI,
Λx = 〈(iA − λI)x|x〉 = 〈(B − 2λI)x|x〉. Namely, given any vector x ∈ D,
taking into account the antisymmetry of the operator iA = B−λI, we can
write

Ω(x) =
[
Λx
]
x−

[
Λx
]
x+Bx−Bx =

= 〈x|b〉x− 〈(B − 2λI)x|x〉x+Bx+ b =

= b+
[
〈x|b〉I +B

]
x− 〈(B − λI)x|x〉x+ λ〈x|x〉x =

= b+ iRx+ 〈x|(B − λI)x〉x+ λ〈x|x〉x =

= b+ iRx+ 〈x|Bx〉x = b+ iRx− 〈x|b〉x. �

Corollary 4.9. Z = dom(R) that is x ∈ Z if and only if the limit

lim
t→0

t−1(U tx− x) exists.

Proof. Recall that Z =
{
x ∈ H : d

dt

∣∣
t=0

Ψ̂t
[
x
0

]
is well-de�ned

}
. From

Proposition 4.4 we know that iRx = lim
t→0

t−1(Ut − I)x is well-de�ned for every

vector x ∈ Z. Conversely, suppose u = lim
t→0

t−1(Utx − x) is well-de�ned. Then

Utx=x+tu+onorm(t) and (4.6) establishes Ψ̂t
[
x
0

]
=
[
x
0

]
+t
[u−〈x|at〉x
〈x|b〉

]
+onorm(t). �

Lemma 4.10. We have U−t = U−1
t = U∗t , a−t = −U∗t at (t ∈ R).

Proof. Given any t ∈ R, we have Ψ−t = Ψ−1
t that is Θa−tU−t =

[
ΘatUt

]−1

= U−1
t Θ−1

at = U−1
t Θ−at =

[
U−1
t Θ−atUt

]
U−1
t = ΘU−1

t (−at)U
−1
t . From the

unambiguous decomposability of holomorphic automorphisms of circular do-
mains into M�obius and unitary parts [2] we deduce Θa−t =Θ−U−1

t at
and U−t=

U−1
t . �

Lemma 4.11. The operator R is self-adjoint with dom(R) = Z.
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Proof. Since Utx = x + itRx + onorm(t) for any x ∈ Z = dom(R) =
dom( d

dt

∣∣
t=0

Ut), in view of (4.6) we conclude that

(4.12)
d

dt

∣∣∣
t=0

Ψ̂t
[x
ξ

]
=
[ iR−〈x|b〉I b

b∗ −〈x|b〉

][x
ξ

]
for any

[x
ξ

]
∈ D =

[Z
C

]
.

The linear operator in L(H) with matrix
[−〈x|b〉I b
b∗ −〈x|b〉

]
is bounded. Since A =

d

dt

∣∣
t=0

Ψ̂t with domain D is the generator of a strongly continuous semigroup
in L(H), by the theorem of bounded perturbations [4], also the operator with
matrix

[
iR 0
0 0

]
and domain D is the generator of a strongly continuous one-

parameter subgroup of L(H). Therefore iR is the generator of a strongly con-
tinuous group

[
Vt : t ∈ R

]
in L(H). Since U−t = U−1

t = U∗t , the arguments
on sun adjoint semigroups in [4, p. 69] show that lim

t→0
t−1(U∗t − I) = −iR is the

generator of the sun adjoint group
[
V ∗t : t ∈ R

]
=
[
V−t : t ∈ R

]
and we have

−iR = (iR)∗ which completes the proof. �

Theorem 4.13. Any vector �eld of the form (4.5) where R is a not neces-

sarily bounded self-adjoint operator with dense domain Z ⊂ H, is the in�nites-

imal generator de�ned on D := Z∩B of a pointwise continuous one-parameter

group [Φt : t ∈ R] of holomorphic automorphisms of B.4

Proof. It su�ces to see that there is a strongly (i.e. pointwise) continuous
one-parameter group

[
Vt : t ∈ R

]
of bounded linear operators of the space H

such that
d

dt

∣∣∣
t=0
Vt
[x
ξ

]
=
[ iR b

b∗ 0

][x
ξ

]
(x∈Z, ξ∈C), VtK ⊂ K :=

{[x
ξ

]
: ‖x‖2≥ |ξ|2

}
.

Namely, in this case the maps

Φt(x) :=
[
Vt
[x

1

]]−1

C

[
Vt
[x

1

]]
H

(t ∈ R, x ∈ D)

suit the requirements of the theorem since x ∈ D ⇒
[
x
1

]
∈ K ⇒ Vt

[
x
1

]
⇒

Φt(x) ∈ D and x ∈ D⇒ d

dt

∣∣
t=0

Φt(x) = −
[
V0
[
x
1

]]−2

C
d

dt

∣∣
t=0

[
Vt
[
x
1

]]
C
[
V0
[
x
1

]]
H

+{
V0
[
x
1

]}−1

C
d

dt

∣∣
t=0

[
Vt
[
x
1

]]
H

= −
[[
iR b
b∗ 0

][
x
1

]]
Cx+

[[
iR b
b∗ 0

][
x
1

]]
H

= −〈x|b〉x+ iRx+
b = Ω(x). Notice that, by Corollary 2.12, a strongly continuous one parameter
group of linear operator leaves the cone K invariant if all its members map the
boundary ∂K=

{[
x
ξ

]
: ‖x‖=|ξ|

}
=
{[

x
eiτ‖x‖

]
: x∈H, τ∈R

}
into itself. Therefore it

su�ces to check that there is a (necessarily unique) strongly continuous one-
parameter group in L(H) with domain Z⊕ C =

[
Z
C
]
such that

d

dt
Vt
[x
ξ

]
=
[ iR b

b∗ 0

]
Vt
[x
ξ

]
,

∥∥∥∥[Vt[ x

‖x‖

]]
H

∥∥∥∥ =

∣∣∣∣[Vt[ x

‖x‖

]]
C

∣∣∣∣ (x∈Z, t∈R).

4That is, for all x ∈ D := Z∩B, the functions t 7→ Φt(x) range in Z, they are di�erentiable
and satisfy the identity d

dt
Φt(x) = V

(
Φt(x)

)
(t ∈ R).
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By Stone's theorem, the H-unitary operators Wt
[
x
ξ

]
:=

[ exp(itR)x
ξ

]
form a

strongly continuous one-parameter group whose in�nitesimal generator is de-
�ned on dom(R) ⊕ C = Z ⊕ C with the diagonal matrix

[
iR 0
0 0

]
. Since the

matrix
[

0 b
b∗ 0

]
represents a bounded linear operator in H, by the theorem of

bounded perturbations [4], there is a strongly continuous one-parameter group[
Vt : t ∈ R

]
whose generator is de�ned on Z ⊕ C with the matrix

[
iR b
b∗ 0

]
. In

particular d

dtV
t
[
x
ξ

]
=
[
iR b
b∗ 0

]
Vt
[
x
ξ

]
(t ∈ R, x ∈ Z). To complete the proof, we

show that necessarily

d

dt

[∥∥∥[Vt[ x

‖x‖

]]
H

∥∥∥2
−
∣∣∣[Vt[ x

‖x‖

]]
C

∣∣∣2] = 0 (t ∈ R, x ∈ Z).

Consider any vector x ∈ Z and write
[
xt
ξt

]
:= Vt

[
x
‖x‖
]
for all parameters t ∈ R.

Then
d

dt

[
‖xt‖2−|ξt|2

]
= 2 Re

[〈
dxt/dt

∣∣xt〉− (dξt/dt)ξt] =

= 2 Re

{〈[[ iR b

b∗ 0

][xt
ξt

]]
H

∣∣∣xt〉− [[ iR b

b∗ 0

][xt
ξt

]]
C

(
dξt/dt)ξt

}
=

= 2 Re
[〈
iRxt + ξtb

∣∣xt〉− 〈xt∣∣b〉ξt] =

= −2 Im
〈
Rxt

∣∣xt〉+ 2 Im
(〈
ξb
∣∣xt〉− 〈xt∣∣ξb〉) = 0. �

5. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1. Consider any pointwise continuous one-parameter
subgroup

[
Ψt : t ∈ R

]
of Aut

(
B
)
and let us �x any common �xed point x ∈ B

of the continuous extensions of the maps Ψt (t ∈ R) (guaranteed by Lemma 2.4).
From Proposition 3.7, we know already that (1.2�3) hold for some dense linear
complex submanifold Z of the underlying Hilbert space with a symmetric linear
operator A with dom(A) = Z. We have to see that A is even self-adjoint in
any case and, conversely every self-adjoint operator with domain Z may appear
in (1.3) with any constant λ ∈ R if x ∈ ∂B or λ = 0 if x ∈ B. In order to
establish a link to the Jordan case, �x any point c∈D=dom

(
dΨt

dt

∣∣
t=0

)
and let

Φt := Θ−cΨ
tΘc (t ∈ R), y := Θc(x)

by means of the M�obius transformations (2.6). Clearly
[
Φ
t

: t ∈ R
]
is a

strongly continuous one-parameter subgroup of Aut
(
B
)
such that

(5.1) 0=Θ−c(c)∈Θ−c

(
dom

(∂Ψt

dt

∣∣∣
t=0

))
=dom

(∂Φt

dt

∣∣∣
t=0

)
, y∈

⋂
t∈R

Fix
(
Φ
t)
.

Thus we can apply the results of Section 4 in particular Lemma 4.11 to [Φt :
t ∈ R] to conclude that there is a dense complex linear submanifold Y ⊂ H
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along with a self-adjoint operator R with dom(R) = Y and a vector b ∈ H
such that

Φ̂t
y = e−〈x|b〉t exp

(
t
[ iR b

b∗ 0

])
(t ∈ R).

Hence Corollary 2.12 establishes the existence of a constant ν ∈ C with

Ψ̂t
x = eνtβ−2Θ̃cΦ̂

t
yΘ̃−c (t ∈ R)

due to the identity Θ̃cΘ̃−c = β2I = (1− ‖c‖2)
[
I 0
0 1

]
for the canonical represen-

tations

Θ̃±c =
[Q ± c
±c∗ 1

]
where Q := βI + (1− β)P, β :=

√
1− ‖c‖2, P := Pc.

By passing to in�nitesimal generators, with µ := ν − 〈x|b〉, we get

(5.2)
dΨ̂t

x

dt

∣∣∣
t=0

[x
ξ

]
=µ
[x
ξ

]
+β−2Θ̃c

[ iR b

b∗ 0

]
Θ̃−c

[x
ξ

]
if
[x
ξ

]
∈dom

(dΨ̂t
x

dt

∣∣∣
t=0

)
.

From Lemma 3.3 and (5.1) we see that[Z
0

]
+ C

[x
ξ

]
= dom

(dΨ̂t
x

dt

∣∣∣
t=0

)
= Θ̃cdom

(dΦ̂t
y

dt

∣∣∣
t=0

)
= Θ̃c

[Y
C

]
.

Thus, given any vector z ∈ H, we have z ∈ Z if and only if
[
z
0

]
= Θ̃c

[
y
η

]
for

some y ∈ Y and η ∈ C that is if z = Qy − 〈y|c〉c =
[
Q − ‖c‖2P ]y for some

y ∈ Y. It follows

(5.3) Z =
[
Q− ‖c‖2P

]
Y = Q−1Y

because the operators P,Q commute. Also we have β2 = 1 − ‖c‖2 > 0 and
Q
[
Q − ‖c‖2P

]
=
[
βI + (1 − β)P ]

[
βI + (β2 − β)P

]
= β2I. We are now ready

to establish the self-adjointness of the operator A in (1.3). By (5.2) we have

(iA+ λI)z =

[
dΨ̂t

x

dt

∣∣∣
t=0

[z
0

]]
H

= µz + β
[
iQRQz −Qbc∗z + cb∗Qz

]
(z ∈ Z).

That is, with the bounded self-adjoint operator S := iβ[Qbc∗ − cb∗Qz] =
[iQbc∗]+[iQbc∗]∗ we have A = βQRQ+S+i(λ−µ)I. We know the symmetry of
A already entailing the relations µ = λ with A = βQRQ+S. Here the operator
QRQ is self-adjoint with dom(QRQ) = Q−1dom(R) = Q−1Y = Z = dom(A)
since R is a self-adjoint operator with dom(R) = Y while Q is an invertible
bounded self-adjoint operator, Therefore, as being the bounded self-adjoint
perturbation, the operator A is necessarily self-adjoint.

To see the converse, we need only to check the reversibility of some of
our previous arguments. Assuming A to be self-adjoint in (1.2�3), it is the
theorem of bounded perturbations [4] ensures that the operator A

[
z+ξx
ξ

]
:=
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〈(iA−λI)z|x〉(z+ξx)

]
(z ∈ Z, ξ ∈ C) is the in�nitesimal generator of a strongly

continuous one-parameter subgroup [U t : t ∈ R] of L(H) with graph being
tangent to the boundary of cone K in Corollary 2.12(iii) and we have K = U tK
(t ∈ R). Hence the holomorphic maps Ψt(x) :=

[
U t
[
x
1

]]−1

C
[
U t
[
x
1

]]
H

are well-
de�ned on the unit ball B leaving it invariant, and form a strongly continuous
one-parameter subgroup in Aut(B). �

Proof of Corollary 1.4. By assumption Ax = ρx in particular x ∈ dom(A).
Thus we are in the Jordan case 0 ∈ dom(Ω) and hence

Ω(x) =
〈
x− x

∣∣(iA+ λI)x
〉
x+

(
iA+ λI

)
(x− x =

= b− 〈x|b〉x+ iR with b = Ω(0) = (−λ− iρ)x, iR = Ω′(0) = iA+ iρI .

Recall that we have Ψt(x) =
[
Ψ̂t
(
x
1

)]−1

C
[
Ψ̂t
(
x
1

)]
H

(x ∈ H) for the strongly

continuous one-parameter group [Ψ̂t : t ∈ R] which, according to (4.12), has
the in�nitesimal generator

d

dt

∣∣∣
t=0

Ψ̂t =

[
iR− 〈x|b〉 b

b∗ (−〈x|b〉

]
=

[
iA+ λI (−λ− iρ)x

(−λ+ iρ)x∗ λ− iρ

]
.

Since the operator A is self-adjoint with eigenvector x, it is reduced by the
subspaces Cx and H0 := x⊥(= {x ∈ H : x ⊥ x}). Thus, in terms of H0⊕Cx⊕
C-matrices,

d

dt

∣∣∣
t=0

Ψ̂t =

(iA+ λI)
∣∣H0 0 0

0 λ+ iρ −λ− iρ
0 −λ+ iρ λ− iρ

 .
Conclusions: (a) in case 0 6= λ ∈ R we have

Ψ̂t=

[
eiλt exp(itA)

∣∣H0 0

0 exp t
[
λ+iρ −λ−iρ
−λ+iρ λ−iρ

]] =

=

eiλt exp(itA)
∣∣H0 0 0

0 (λ+iρ)e2λt + (λ+iρ) (−λ−iρ)e2λt+(λ−iρ)
0 (−λ+iρ)e2λt+(λ+iρ) (λ−iρ)e2λt+(λ−iρ)

 ,
(b) in case of λ = 0 we have

Ψ̂t=

[
eiλt exp(itA)

∣∣H0 0

0 exp itρ
[

1 −1
1 −1

]]=

eiλt exp(itA)
∣∣H0 0 0

0 1+itρ −itρ
0 itρ 1−itρ

 .
Hence the statement is straightforward from the relation

Ψt(x0 + ξx) =
[
Ψ̂t[x0, ξ, 1]T

]−1

3

([
Ψ̂t[x0, ξ, 1]T

]
2
x+

[
Ψ̂t(x0, ξ, 1]T

]
1

)
. �
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Lemma 5.4. The group Aut(B) is 2-transitive on ∂B i.e. given any tuple

(e1, f1, e2, f2) of unit vectors with e1 6= e2, f1 6= f2, there is a transformation

Θ ∈ Aut(B)such that Θ(ek) = fk (k = 1, 2).

Proof. Let e1, f1, e2, f2 ∈ ∂B with e1 6= e2, f1 6= f2. Let c be the center of
the circular arc C in the 1-dimensional complex disc D := B ∩ {(1 − ζ)e1 +
ζe2 : ζ ∈ C} connecting the points e1, e2 and being orthogonal in real sense to
the boundary circle of D. Since holomorphic fractional linear transformations
preserve a�ne lines, the M�obius shift Θ−1

c = Θ−c(x) = (1− 〈x|c〉)−1(Qcx− c)
maps D onto an a�ne disc passing through 0 = Θ−c(c) and containing the
points gk := Θ−c(ek) (k = 1, 2) as boundary points. Since the continuous
extension Θ−c preserves the unit sphere ∂B, the image Θ−c(D) is a disc of
the form Θ−c(D) = {ζgk : |ζ| < 1} (k = 1, 2). Since holomorphic maps are
conformal, the image Θ−1(C) is an arc passing through the origin and being
orthogonal to the boundary circle which is possible only if it is a diameter of the
form {τg : −1 < τ < 1} with ‖g‖ = 1 that is we have Θ−c(ek) = gk = (−1)kg
(k = 1, 2) for some unit vector g. Similarly, Θ−d(fk) = (−1)kh (k = 1, 2) for
some unit vector h and a M�obius shift Θ−d. It is a well-known elementary fact
that any unitary group is transitive on ∂B, actually e.g. we have Ug = h with
a twisted re�ection U := κ[I−2Ph−κg] where the constant κ ∈ C is of modulus
1 such that ζg + h ⊥ ζg − h i.e. κ〈g|h〉 ∈ R. Therefore the transformation
Θ := Θd ◦ U ◦Θ−c suits the requirements of the lemma. �

Proof of Corollary 1.5. Due to the 2-transitivity on the boundary, there
exists Θ ∈ Aut(B) such that Θ(x) = x, Θ(x′) = −x. Thus, by passing to the
group [Θ ◦ Ψt ◦ Θ−1 : t ∈ R] instead of [Ψt : t ∈ R], we may assume without

loss of generality that {±x} = Fix
(
Φ
t0) with the e�ect

−
〈
(iA− λI)(x− x)

∣∣x〉x+ (iA+ λI)(x− x) = 0 for x = ±x.

Regarding the case x = −x, since 〈x|x〉 = 1, it follows
〈
Ax
∣∣x〉x + Ax = 0.

However, since the operator A is self-adjoint, necessarily also Ax =
〈
Ax
∣∣x〉x

implying Ax = 0. Hence the statement is immediate from Corollary 1.4.
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