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We consider a non-Newtonian �uid displaced by air in a Hele-Shaw cell and study
the modal linear stability. The particular �ow geometry � a very thin Hele-Shaw
cell � allows us to use some simpli�ed �ow equations. The novelty of the paper
is an approximate formula for the growth constant (of perturbations), which
can grow unbounded when the corresponding Weissenberg number is located
in a certain range. We get a strong destabilization e�ect, compared with the
Newtonian case studied by Sa�man and Taylor (1958). This phenomenon was
observed in experiments, during the �ow of some complex �uids in thin Hele-
Shaw cells. While we used the linear stability method, the (possible) very large
values of the growth constant should be studied in the frame of the nonlinear
stability.
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1. INTRODUCTION

A Hele-Shaw cell is a technical device consisting of two parallel plates at
a small distance b and length l. The ratio ε = b/l is in general of order 10−3 or
less. The main phenomenon studied by using this device is the displacement
of two immiscible �uids � see Figure 3. We give below some details concerning
this subject.

The �ow of a viscous �uid in the small gap between two parallel plates was
�rst considered by Hele-Shaw in [5]. An average procedure was used, starting
with a Stokes �uid. Two main assumptions were used by Hele-Shaw: 1) the
velocity component in the direction orthogonal on the plates is zero; 2) the
partial derivatives in the directions contained in the plates plane are neglected
in front of the derivative in the direction orthogonal on the plates. These two
assumptions were con�rmed in a large number of experiments. The main re-
sult obtained by Hele-Shaw was the following: the obtained averaged velocities
(called in many papers as ��ltration velocities�) verify an equation quite similar
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with the Darcy law for the �ow in a porous medium, whose �permeability�

is given by the Hele-Shaw gap b and the viscosity of the considered Stokes

�uid. An important property of the ��ltration �uid� is the following: even if

we started with a Stokes (then viscous) �uid, the ��ltration� velocities are not

zero on the Hele-Shaw plates.

In [12] it was studied the linear stability of the interface between two

immiscible �uids displacing in a Hele-Shaw cell. The main application of this

study is related with the secondary oil recovery process � that of obtaining the

oil from a porous media by displacing it with a second �uid (usually water or

salted water). Sa�man and Taylor obtained an exact formula for the growth

constant, by using the modal linear stability method. This formula leads to a

very important result: if the displacing �uid is less viscous, then the interface

is unstable. It is interesting to see the section devoted to this problem in [1]:

when the Hele-Shaw plates are transparent, we can can directly observe the

evolution of the water-oil interface and the �uid lines between the injection and

extraction wells.

As the water is less viscous compared with the oil, an interesting problem

appears: how is it possible to minimize (or to suppress) the Sa�man-Taylor

instability? In some previous papers the use of an intermediate �uid layer

between water and oil is suggested, where the viscosity is a parameter used to

improve the interface stability. Some experiments were carried out by using

polymer-solutes, with good results for an exponential growth of the viscosity

in the intermediate layer. The polymers are non-Newtonian �uids, that means

the constitutive relations between the stress and the strain-rate tensors are not

linear. In this way, the problem of the stability of the interface(s) between

non-Newtonian and Newtonian �uids displacing in a Hele-Shaw cell appears.

The non-Newtonian �uids are studied in a large number of papers � see

[4, 11, 13, 14]. A particular type of non-Newtonian �uids, called second order

�uids, are studied in [2,3,6]. Some numerical methods are used in [7,8,16], for

studying the displacement of Oldroyd-B and Maxwell upper-convected �uids

by air in a Hele-Shaw cell. In these papers, a strong destabilizing e�ect due

to the non-Newtonian constitutive relations was obtained, compared with the

case of a Newtonian �uid displaced by air. In [7, 8] it was obtained a blow-

up of the growth constant of perturbations in the range of large and very

large Weissenberg numbers W which appear in the constitutive relations. This

possible singularity may be related to the fractures observed in the �ows of some

complex �uids in Hele-Shaw cells � see [9,10,17]. On the contrary, in [16] it was

not reported a blow-up of the growth constant, but this result was (numerically)

obtained for W near 1.
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In this paper, we consider a non-Newtonian �uid displaced by air in a
Hele-Shaw cell and study the modal linear stability of the interface, for small
Weissenberg numbers � see the de�nition (19). We get an approximate expres-
sion of the amplitude f of the velocity perturbations, by using the equations
of the pressure perturbations. We use an average procedure (across the Hele-
Shaw gap) in the corresponding Laplace law and a method based on a continuity
argument.

The novelty of our paper is an approximate formula of the growth constant
of perturbations, obtained in the range of small Weissenberg numbers � see the
formula (52). We get a strong non-Newtonian destabilizing e�ect, compared
with the Newtonian case � see Figure 2. WhenW = O(b/l) we obtain a blow-up
of the growth rates in terms of the wave numbers of perturbations. Our main
result is the following: the non-Newtonian �uid with constitutive relations (2)
can give rise to the same destabilizing e�ect obtained in the previous papers
[7, 8, 16]. The dispersion curves given in our Figure 2 are similar with those
obtained (by using numerical methods) in [16], even if in this cited paper were
considered Weissenberg numbers of order 1 � see Figure 1 of [16].

2. THE BASIC FLOW AND PERTURBATIONS

We consider a Hele-Shaw cell with plates parallel with the xOy plane.
The Oz axis is orthogonal on the plates. The gap between plates is denoted
by b and the length of the Hele-Shaw cell is l. Our problem is characterized by
the small parameter ε = b/l << 1.

We use the following notations: τ , E are the the extra-stress and strain-
rate tensors; µ is the �uid viscosity; x1 = x, x2 = y, x3 = z are the spatial
coordinates; (u1, u2, u3) and p are the velocity components and pressure. V is
the matrix of the velocity gradients and we have

(1) V ij = ∂ui/∂xj , (V ij)
T = V ji, E = (V + V T ).

a) Our �uid is governed by the following constitutive relations:

(2) τ = µE + µa(V E + EV T ), a > 0,

where the dimension of a is (time). Our constitutive relations are steady; it can
be proved that (2) are frame-independent with respect to coordinate changes
x+ = Qx, where Q is an ortonormal matrix not depending on time. From now
on we use the notation

(3) (u1, u2, u3) = (u, v, w).
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We consider an incompressible �uid, then we have

(4) ux + vy + wz = 0

where the lower indices denote the partial derivatives in terms of x, y, z. The
no-slip conditions on the plates are imposed for the velocity, then

(5) (u, v, w) = 0 on z = 0, z = b.

The �ow equations of our �uid are given below:

(6) p
x
= τ11,x + τ12,y + τ13,z;

(7) p
y
= τ21,x + τ22,y + τ23,z;

(8) p
z
= τ31,x + τ32,y + τ33,z.

We consider below the particular basic �ow described by the relations (9),
(10). The characteristic velocity U of this basic �ow will be used to de�ne
the Weissenberg dimensionless number, related with the parameter a - see the
relations (18) and (19).

b) We consider the following basic �ow (in the positive direction Ox),
denoted by the super-index 0:

(9) ∇p0 = (p0x(x), 0, 0), v0 = (u0(z), 0, 0),

(10) τ0 = µ{E0 + a(V 0E0 + E0V 0T )}, a > 0,

where

(11) V 0
ij = 0 ∀ (i, j) 6= (1, 3); V 0

13 = u0z;

E0
ij = 0 ∀ (i, j) 6= (1, 3), (3, 1); E0

13 = E0
31 = u0z.

Therefore from (10) we get the components of the basic extra-stress tensor:

(12) τ011 = 2aµ(u0z)
2, τ012 = 0, τ013 = µu0z,

τ022 = 0, τ023 = 0, τ033 = 0.
We have the following basic �ow equations:

(13) p0x = τ011,x + τ012,y + τ013,z,

(14) p0y = τ021,x + τ022,y + τ023,z,

(15) p0z = τ031,x + τ032,y + τ033,z.

The basic extra-stress tensor veri�es the relations τ032 = τ033 = 0 and τ031 =
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τ031(z), then the last above equation gives us

p0z = 0.

We can see also that τ011 is depending only on z and τ012 = τ013 = 0, then from
the equation (13) it follows the important relation

(16) p0x(x) = τ013,z(z) = µu0zz = G,

where G is a negative constant (the pressure is decreasing in terms of x, our
�ow is in the positive direction Ox). We point out that the �uid displacement
is produced by the above constant pressure gradient G, which is considered the
main parameter of the displacement process. The pressure gradient G is giving
the basic �ow with the velocity (u0(z), 0, 0) and the above relation (16) allows
us to obtain the component u0 of the basic velocity in terms of G:

(17) u0 =
G

µ
(z2 − bz)/2.

We introduce the average operator < ∗ > across the Hele-Shaw plates and use
the above relation (17) for obtaining the characteristic velocity U of our basic
�ow:

(18) U =< u0 >:=
1

b

∫ b

0
u0(z)dz = −( b

2

12µ
)G.

The dimension of U is (space)/(time). As the dimension of the parameter a in
(2) is (time), we introduce the dimensionless Weissenberg number W :

(19) W = aU/l.

The main point of our paper is to study the modal linear stability of the above
basic �ow in the range of small W of order ε.

The relation (18) between < u0 > and G is quite similar with Darcy law
for the �ow in a porous media with �permeability� = b2/12µ. It is important to
note that the averaged velocity < u0 > is not equal to zero on the Hele-Shaw
plates, even if the ��ltration� �uid described by (18) is a viscous one.

In [16] it is supposed that the pressure can depend on time � that means
in the pressure expression we can add a constant not depending on x. As a
consequence, the following dependence of the pressure in terms of the time t
(which �rst appears here) is considered:

(20) p0 = G(x− < u0 > t), for x > < u0 > t.

We emphasize that our basic �ow is steady. The basic moving interface between
air and our �uid is

(21) x =< u0 > t.
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c) The perturbations of the basic �ow are denoted by (u, v, w), p, τ . We
use the dimensionless quantities (denoted by ′)
(22)
x′ = x/l, y′ = y/l, z′ = z/b, (u′, v′, w′) = (u, v, w)/U, ε = b/l << 1

and from the free-divergence condition (4) it follows

ε{u′x′ + v′y′}+ w′z′ = 0.

Here is the point where we can use the particular �ow geometry. The small
parameter ε in front of the parenthesis {u′x′ + v′y′} could give us the following
result

(23) u′x′ + v′y′ = 0, w′z′ = 0

which can be used to obtain

(24) ux + vy = 0, wz = 0.

However, this result holds only if the quantity {u′x′ + v′y′} is bounded in terms
of ε. We can have, for example

{u′x′ + v′y′} ≈ 1/ε or 1/
√
ε

and in this case we cannot obtain the relations (23). We will introduce later the
Fourier expansion (30) for (u, v); this expansion must be bounded. If we avoid
the blow-up of the growth constant σ in the relations (30), then (u′x′ + v′y′)
can be considered bounded and we have the relations (23). We use the no-slip
boundary conditions for the vertical component w′, then from (23)2 we get
w′ = 0 and w = 0. Therefore, we can consider that both relations (24) hold.

As w = 0, the perturbations V,E of V 0, E0 are given by

V11 = ux, V12 = uy, V13 = uz,(25)

V21 = vx, V22 = vy, V23 = vz, V3j = 0 for j = 1, 2, 3;

E11 = 2ux, E12 = (uy + vx), E13 = uz,

E22 = 2vy, E23 = vz, E33 = 0.

The equations of the linear perturbations are obtained by inserting the
perturbations in (10). We neglect the second order terms involving the pertur-
bations products and get

(26) τ = µ{E + a[V 0E + (V 0E)T + V E0 + (V E0)T ]}.

The components of the extra-stress tensor in terms of the velocity pertur-
bations are given in the relations

(27) τ11 = 2µux + 4aµu0zuz, τ12 = µ(uy + vx) + 2aµu0zvz,
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τ13 = µuz + aµu0zux,

(28) τ22 = 2µvy, τ23 = µvz + aµu0zvx, τ33 = 0

and we get the corresponding pressure perturbations

(29) px= τ11,x+τ12,y+τ13,z, py = τ21,x+τ22,y+τ23,z, pz = τ31,x+τ32,y+τ33,z.

We use the following Fourier decomposition for (u, v):

(30) u = f(z) exp(αx+ σt) cos(ny), v = f(z) exp(αx+ σt) sin(ny),

where σ is the growth constant. Then from the free divergence relation (24)1
it follows

(31) α = −n; ux = (−n)u, vy = (n)u, uxy = (n2)v, vxy = (−n2)u,

(32) uxx + uyy = 0, uzx + vzy = 0, uxx + vxy = 0.

The equations (29)�(32) give us the pressure perturbations in terms of the
velocity perturbations:

(33) px = aµ · (3u0zuzx + u0zzux) + µuzz,

(34) px = (−n)aµ · (3u0zuz + u0zzu) + µuzz.

(35) pz = µ(uz + auxu
0
z)x + µ(vz + avxu

0
z)y = 0,

(36) (px)z = (−n)aµ · (3u0zuz + u0zzu)z + µuzzz = 0.

We use the relations (33) and (27) to obtain the expression of (px − τ11,x):

(37) px − τ11,x = µ(−2n2u) + aµn(u0zuz − u0zzu) + µuzz.

3. THE APPROXIMATE GROWTH RATE FORMULA

Our basic velocity is depending on z. However, as in [16], we consider
the kinetic and dynamic boundary condition on the steady air-liquid interface
given by the straight line x =< u0 > t. Therefore, the perturbed interface is
given by

(38) ψ = x− < u0 > t.

This interface is a material one, then it follows

(39) ψt = u⇒ ψ = u/σ.

The equality between the pressure jump and the surface tension multiplied
with the interface curvature gives us the dynamic boundary condition on the



300 Gelu Pa�sa 8

air-liquid interface (that means Laplace's law):

(40) (Gψ + p)− (τ011 + τ11) = γ · {ψyy + ψzz} ⇒

(41) Gψx + (px − τ11,x) = γ · (ψyy + ψzz)x,

where γ is the surface tension and {ψyy + ψzz} is denoting the total curvature
of the interface. From the equations (39)2, (30) it follows

ψx = −n
σ
f(z) exp(αx+ σt) cos(ny),

ψyy = −n
2

σ
f(z) exp(αx+ σt) cos(ny),

ψzz =
1

σ
fzz exp(αx+ σt) cos(ny).

We insert the last three relations and the expression (37) in (41), then we get

(42)
G(−n)f

σ
− 2n2µf + aµn · (u0zfz − u0zzf) + µfzz =

γ

σ
[−n2f + fzz](−n).

We introduce the following notations:

(43) R(a) =

∫ b

0
f2, S(a) =

∫ b

0
(fz)

2, J(a) = J(f, a) = R/S,

we use the conditions f(0) = f(b) = 0 and we obtain the relations

(44)

∫ b

0
u0zfzfdz =

∫ b

0

G

µ
(z − b

2
)(
f2

2
)z =

G

2µ

∫ b

0
z(f2)z = −

G

2µ
R(a),

(45)

∫ b

0
u0zzf

2dz =
G

µ
R(a),

∫ b

0
fzzf = −S(a).

We multiply with f in the Laplace law (42), we integrate on (0, b), we use
the above values R,S, J and we get the dimensional formula of the growth
constant σ(a)in terms of J(a):

(46) σ(a) =
Un(12/b2)J(a)− (γ/µ)n3J(a)− (γ/µ)n

1− aUn(18/b2)J(a) + 2n2J(a)
.

Remark 1. To derive the growth constant (46), we need the value of J(a).
For this we use a method based on a �continuity� argument. We �rst compute
J(0). As in this paper we only consider very small values of W , we assume
that J(a) ≈ J(0) for very small values of a. For obtaining this result, we use
the relation (36) and see that (f/n) is continuous in terms of a. Finally, in the
formula (46) for small a we use the value J(0) instead of J(a).
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We derive the expression of J(0) from the relation (36) with a = 0. This

relation gives us uzzz = 0 and we obtain

(47) f(z) = Az(z − b),

where A is a constant. Therefore, from a simple calculus it follows

(48) J(0) =

∫ b
0 [z(z − 1)]2dz∫ b
0 (2z − 1)2dz

=
b2

10
.

We use the above value J(0) instead of J(a) in (46) and obtain the approximate

dimensional growth constant for small a, denoted by σ(sa):

(49) σ(sa) =
(6/5){Un− (γ/µ)(b2/12)n3} − (γ/µ)n

1− (9/5)aUn+ (b2/5)n2
.

Sa�man and Taylor (1959) obtained the following dimensional formula of

the growth rate of a Newtonian liquid with viscosity µ displaced by air (air

viscosity is considered equal to zero):

(50) σST = Un− (γ/µ)(b2/12)n3.

Remark 2. In the case a = 0, the value (49) is quite similar with the

Sa�man-Taylor (50), but two new terms appear: 1) (−γ/µ)n in the numerator,

given by the meniscus curvature; 2) n2(b2/5) in the denominator, given by the

x derivative of the velocity. Moreover, the coe�cient of {Un− (γ/µ)(b2/12)n3}
in the numerator of (49) are (6/5) instead of 1 in (50).

We introduce the following dimensionless quantities:

(51) p′ = p
1

Gl
, t′ = t

U

l
, σ′ = σ

l

U
; f ′ = f/U ; γ′ = γ

1

µU
; n′ = nl,

then from (49) we get the following dimensionless approximate formula of the

growth constant for small W , denoted by σ′SW :

(52) σ′SW =
(6/5){n′ − γ′(ε2/12)n′3} − γ′n′

1− (9/5)Wn′ + (ε2/5)n′2
.

The dimensionless quantities (51) and the formula (50) give us the dimen-

sionless Sa�man-Taylor growth constant

(53) σ′ST = n′ − γ′(ε2/12)n′3.

Remark 3. Consider W = cε with c > 0.496. Then the denominator of

(52) has two real roots. Indeed, we have

(54) c2ε2(9/10)2 − ε2/5 > 0⇔ c2 > 0.2469, c > 0.496.
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In Figure 1, we plot the positive dimensionless growth constant (53) in
terms of the dimensionless wave number n′, for the values ε = 0.006 and
γ′ = 0.1.

Fig. 1 � The positive Sa�man-Taylor growth constant (53) (on vertical axis)
vs. the wavenumber (on horizontal axis) for the values: ε = 0.006, γ′ = 0.1.

Fig. 2 � The positive growth constant (52) (on vertical axis) vs. the wavenumber
(on horizontal axis) for the values: ε = 0.006, γ′ = 0.1. W=0 (lower curve),

0.001, 0.002, 0.0022, 0.0024, 0.0026, 0.0028, 0.0029 (upper curve).
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In Figure 2, we plot the positive dimensionless growth constant (52) in
terms of the dimensionless wave number n′, for the same values ε = 0.006 and
γ′ = 0.1. We can see the destabilizing e�ect of the non-Newtonian constitutive
relations (2). The maximum value of σ′SW is increasing in terms of W , from
W = 0 (the lower curve) to 0.0028 (the upper curve). As we proved in the last
Remark, the value W ≈ 0.002976 is giving the blow-up of the growth constant
σ′SW .

Fig. 3 � Air displacing a liquid in a Hele-Shaw cell.

REFERENCES

[1] J. Bear, Dynamics of Fluids in Porous Media. Courier Corporation, 1972.

[2] R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport phenomena, Vol. 1: Fluid
Mechanics. John Wiley and Sons, N.Y., 1960.

[3] R.L. Fosdik and K.D. Rajakopal, Anomalous features in the model of second order �uids,
Arch. Ration. Mech. Anal. 70 (1979), 145�152.

[4] C. Guillope and J.C. Saut, Mathematical problems arising in di�erential models for

viscoelastic �uids. In: J.F. Rodrigues and A. Sequeira (Eds.), Mathematical Topics in

Fluid Mechanics. Longman, Halow, 1992, 64�92.

[5] H.S. Hele-Shaw, The �ow of water. Nature 28 (1898), 34�36.

[6] D.S. Miroshnichenko, Anisotropic second-order �uid. J. Math. Sci. 103 (2001), 43�58.

[7] S. Mora and M. Manna, Sa�man-Taylor instability for generalized Newtonian �uids.
Phys. Rev. E 80 (2009), 016308.

[8] S. Mora and M. Manna, Sa�man-Taylor instability of viscoelastic �uids: From viscous

�ngering to elastic fractures. Phys. Rev. E 81 (2010), 026305.

[9] J. Nase, A. Lindner and C. Creton, On the respective roles of low surface tension and

non-Newtonian rheological properties in fractal �ngering. Phys. Rev. Lett. 101 (2008),
02863.

[10] J. Nittmann, G. Daccord and H. E. Stanley, Fractal growth viscous �ngers: quantitative

characterization of a �uid instability phenomenon. Nature 314 (1985), 141�144.

[11] M. Renardy, Mathematical analysis of viscoelastic �ow. CBMS-NSF Regional Confer-
ence Series in Applied Mathematics 73 (2000). SIAM, Philadelphia, PA.



304 Gelu Pa�sa 12

[12] P.G. Sa�man and G. Taylor, The penetration of a �uid into a porous medium or Hele-

Shaw cell containing a more viscous liquid. Proc. Roy. Soc. London Series A. Mathe-
matical and Physical Sciences 245 (1958), 312�329.

[13] W.R. Schowalter, Mechanics of Non-Newtonian Fluids. Pergamon Press, New York,
1978.

[14] C. Truesdell and W. Noll, The non-linear �led theories of mechanics. Encyclopedia of

Physics (Ed. S. Fluggel), Vol. III/3. Springer Verlag, 1965.

[15] H. Van Damme, E. Alsac, C. Laroche and L. Gatineau, On the respective roles of low sur-

face tension and non-Newtonian rheological properties in fractal �ngering. Europhysics
Letters (EPL) 5 (1988), 25�38.

[16] S.D.R. Wilson, The Taylor-Sa�man problem for a non-Newtonian liquid. J. Fluid Mech.
220 (1990), 413�425.

[17] H. Zhao and J.V. Maher, Associating-polymer e�ects in a Hele-Shaw experiment. Phys.
Rev. E 47 (1993), 4278�4283.

Received 17 April 2016 �Simion Stoilow� Institute of Mathematics

of Romanian Academy,

21 Calea Grivi�tei Street,

010702 Bucharest, Romania

Gelu.Pasa@imar.ro


