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Geometry and Its Applications, hosted by the Petroleum Gas University from
Ploiesti, between September 23rd and September 26th, 2015. Jordan algebras
and Lie algebras are the main non-associative structures. In the last years,
several attempts to unify non-associative algebras and associative algebras led
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to unify non-associative algebras and associative algebras is the Yang-Baxter
equation.
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1. INTRODUCTION

At the end of the 1950s, Professor Vranceanu began a systematic study of
the spaces with constant a�ne connection. In 1966, he proposed the study
of such spaces associated to �nite-dimensional real Jordan algebras, study
which was afterwards developed by Professors Iordanescu, Popovici and Turtoi
(see [13]).

A systematic study of projective planes over large classes of associative
rings was initiated by Dan Barbilian (see [13]). He proved that the rings which
can be the underlying rings for projective geometries are (with a few exceptions)
rings with a unit element in which any one-sided inverse is a two-sided inverse.
Today, his name is listed in the AMS Classi�cation.

The main non-associative structures are Lie algebras and Jordan alge-
bras. Several Jordan structures have applications in quantum group theory
and exceptional Jordan algebras play an important role in recent fundamental
physical theories namely, in the theory of super-strings (see [11,13]). In the last
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years, attempts to unify non-associative structures and associative structures
have led to interesting results (see, for example, [15�17,30,36]).

The discovery of the Yang-Baxter equation [40] in theoretical physics and
statistical mechanics (see [2,3,43]) has led to many applications in these �elds
and in quantum groups, quantum computing, knot theory, braided categories,
analysis of integrable systems, quantum mechanics, etc. (see [29]). The interest
in this equation is growing, as new properties are found, and its solutions are not
classi�ed yet (see also [10, 37]). One of the newly discovered properties of this
equation is its unifying feature for dual structures (see, for example, [21,22,33]).

The organization of our paper is the following. In Section 2, we review
some properties of unifying structures and we present new properties and open
problems. We de�ne (weak) unifying structures and compatible structures.
Compatible weak unifying structures give rise to another weak unifying struc-
ture, and this construction generalizes known results. In the next section, we
discuss on the Yang-Baxter equation, and we will refer to the construction quan-
tum gates and link invariants from solutions of it. The set-theoretical Yang-
Baxter equation is presented. Section 4 deals with transcendental numbers and
some applications. A conclusions section refers to other communications given
at International Workshops on Di�erential Geometry and Its Applications, and
it explains the connections between the sections of our paper.

2. NON-ASSOCIATIVE ALGEBRAS
AND THEIR UNIFICATIONS

The main non-associative structures are Lie algebras and Jordan algebras.
Arguable less known, Jordan algebras have applications in physics, di�erential
geometry, ring geometries, quantum groups, analysis, biology, etc. (see [8, 11,
13,14,19,20]).

We will de�ne some structures which unify Jordan algebras, Lie algebras
and (non-unital) associative algebras. The results for UJLA structures could be
�decoded� in results for Jordan algebras, Lie algebras or (non-unital) associative
algebras.

In this paper, tensor products are de�ned over the �eld k.

De�nition 2.1. We de�ne the unifying structure (V, η), also called a
�UJLA structure�, in the following way. Let V be a vector space, and η :
V ⊗ V → V, η(a ⊗ b) = ab, be a linear map, which satis�es the following
axioms ∀a, b, c ∈ V :
(1) (ab)c+ (bc)a+ (ca)b = a(bc) + b(ca) + c(ab),

(2) (a2b)a = a2(ba),
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(3) (ab)a2 = a(ba2),

(4) (ba2)a = (ba)a2,

(5) a2(ab) = a(a2b).

If just the identity (1) holds, we call the structure (V, η) a �weak unifying
structure�.

Remark 2.2. If (A, θ), where θ : A ⊗ A → A, θ(a ⊗ b) = ab, is a (non-
unital) associative algebra, then we de�ne a UJLA structure (A, θ′), where
θ′(a⊗ b) = αab + βba, for some α, β ∈ k. For α = β = 1

2 , (A, θ′) is a Jordan
algebra, and for α = 1 = −β, (A, θ′) is a Lie algebra.

Theorem 2.3. For V a k-space, f : V → k a k-map, α, β ∈ k, and
e ∈ V such that f(e) = 1, the following structures can be associated.

(i) (V,M), a non-unital associative algebra, where M(v ⊗ w) = f(v)w;

(ii) (V,M, e), a unital associative algebra, where M(v ⊗ w) = f(v)w +
vf(w)− f(v)f(w)e;

(iii) (V, [, ]), a Lie algebra, where [v, w] = f(v)w − vf(w);

(iv) (V, µ), a Jordan algebra, where µ(v ⊗ w) = f(v)w + vf(w);

(v) (V,Mα,β), a UJLA structure, where Mα,β(v⊗w) = αf(v)w+βvf(w).

Proof. Let us observe that (iii) and (iv) follow from (i).

We now prove (ii), which is more general than (i). We denote by x · y =
M(x⊗y), we observe that � · � is commutative, and e is the unity of our algebra:

x · e = f(x)e+ f(e)x− f(e)f(x)e = x = e · x.
We prove the associativity of � · �:

(x · y) · z = f(x)f(y)z+ f(x)f(z)y− f(x)f(y)f(z)e+ f(x)f(y)z+ xf(y)f(z)

− f(x)f(y)f(z)e− f(x)f(y)z;

x·(y ·z) = f(x)f(y)z+f(x)yf(z)−f(x)f(y)f(z)e+xf(y)f(z)−f(x)f(y)f(z)e.

It follows that (x · y) · z = x · (y · z).
We leave the proof of (v) as an exercise for the reader. �

Remark 2.4. In the above theorem, (V,Mα,β), where Mα,β(v ⊗ w) =
αf(v)w + βvf(w), is also an alternative algebra (i.e. x(yx) = (xy)x)). Al-
ternative algebras are not necessarily UJLA structures, and, obviously, UJLA
structures might not be alternative algebras.

Theorem 2.5 (Nichita [36]). Let (V, η) be a UJLA structure, and α, β ∈
k. Then, (V, η′), η′(a⊗ b) = αab+ βba is a UJLA structure.
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Remark 2.6. Let (V, η) be a UJLA structure. Then, δa : V → V, δa(x) =
xa− ax, is a derivation for the following UJLA structure: (V, η′), η′(a⊗ b) =
ab− ba.

OPEN PROBLEM. A UJLA structure is power associative. We know
that a UJLA structure is power associative for dimensions less or equal then 5.

Remark 2.7. The classi�cation of UJLA structures is also an open
problem.

Theorem 2.8. Let (V, η) be a UJLA structure. Then, (V, η′), η′(a⊗b) =
ab− ba is a Lie algebra.

Proof. The proof follows from formula (1). �

Theorem 2.9. Let (V, η) be a UJLA structure. Then, (V, η′), η′(a⊗b) =
1
2(ab+ ba) is a Jordan algebra.

Proof. The proof follows from formulas (2), (3), (4) and (5). �

De�nition 2.10. Two weak unifying structures de�ned over the same vec-
tor space, (V, ·) and (V, ∗), are called �compatible� if

(6) {a · b, c}+ {b · c, a}+ {c · a, b} = a ∗ [b, c] + b ∗ [c, a] + c ∗ [a, b],

where [, ] and {, } are the brackets associated to the two weak unifying struc-
tures: [a, b] = a · b− b · a, {a, b} = a ∗ b− b ∗ a.

Remark 2.11. A Poisson structure (see [30]) gives rise to compatible weak
unifying structures if and only if the algebra structure is commutative.

Remark 2.12. Let (V, η) be a weak unifying structure. Then, (V, η) and
(V, η′), where η′(a⊗ b) = ab− ba, are compatible.

Theorem 2.13. If two weak unifying structures are compatible, then we

can de�ne a new weak unifying structure on the same vector space: a ◦ b =
ab+ a ∗ b.

Proof. The proof follows from formula (1). �

Remark 2.14. A Lie-Jordan structure (see [9,20]) gives rise to compatible
weak unifying structures in a natural way. The above theorem can be seen as
a generalization for one of the main properties of Lie-Jordan structures.

3. YANG-BAXTER EQUATIONS

The Yang-Baxter equation �rst appeared in theoretical physics, and it
has applications in many areas of physics, informatics and mathematics. The
classi�cation of its solutions is an open problem (see [7, 17, 29,31,32,35�38]).
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For V a k-space, we denote by τ : V ⊗ V → V ⊗ V the twist map,
τ(v⊗w) = w⊗ v, and by I : V → V the identity map; for R : V ⊗V → V ⊗V
a k-linear map, let R12 = R⊗ I, R23 = I ⊗R, R13 = (I ⊗ τ)(R⊗ I)(I ⊗ τ).

De�nition 3.1. A Yang-Baxter operator is an invertible k-linear map R :
V ⊗V → V ⊗V , which satis�es the braid condition (the Yang-Baxter equation):

(7) R12 ◦R23 ◦R12 = R23 ◦R12 ◦R23.

Both R ◦ τ and τ ◦R satisfy then the quantum Yang-Baxter equation (QYBE):

(8) R12 ◦R13 ◦R23 = R23 ◦R13 ◦R12.

For A be a (unitary) associative k-algebra, and α, β, γ ∈ k, the authors
of [7] de�ned the k-linear map RAα,β,γ : A⊗A→ A⊗A,

(9) a⊗ b 7→ αab⊗ 1 + β1⊗ ab− γa⊗ b

which is a Yang-Baxter operator in some special cases.

Remark 3.2. An interesting property of (9), appears in knot theory, where
the link invariant associated to RAα,β,γ is the Alexander polynomial (cf. [25,42]).
The reciprocal approach was also studied by other authors (see [6]).

Remark 3.3. In dimension two, RAα,β,α leads to a universal quantum gate
(see [17]), which, according to [18], is related to the CNOT gate. It is an open
problem to relate the operator (9) to the abstract controlled-not (obtained
by [44]).

For (L, [, ]) a Lie super-algebra over k, z ∈ Z(L) = {z ∈ L : [z, x] =
0 ∀ x ∈ L}, |z| = 0 and α ∈ k, the authors of the papers [23] and [38] de�ned
the following Yang-Baxter operator: φLα : L⊗ L −→ L⊗ L,

(10) x⊗ y 7→ α[x, y]⊗ z + (−1)|x||y|y ⊗ x .

Formulas (9) and (10) could be seen as a uni�cation for the associative
algebras and Lie algebras.

Remark 3.4. For a connection of the QYBE with Jordan triple systems
see S. Okubo (University of Rochester Report UR-1334, 1993) and also [13],
pp. 114�115.

In 1994, S. Okubo [39] has obtained some solutions of a triple product
equation.

De�nition 3.5. For an arbitrary set X, the map S : X ×X → X ×X, is
a solution for the set-theoretical Yang-Baxter equation if

(11) S12 ◦ S13 ◦ S23 = S23 ◦ S13 ◦ S12.

(Here S12 = S × I, S23 = I × S.)
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The set-theoretical Yang-Baxter equation represents some kind of com-
patibility condition in logic: for three logical sentences p, q and r, let us
suppose that if all of them are true, then the conclusion A could be drawn,
and if p, q, r are all false then the conclusion C can be drawn. Modeling this
situation by the map (p, q) 7→ (p′ = p ∨ q, q′ = p ∧ q), helps us to comprise
our analysis. The Yang-Baxter equation guarantees that the order in which we
start this analysis is not important. Thus, the map (p, q) 7→ (p ∨ q, p ∧ q) is
a solution for (11).

The sorting of numbers (see, for example, [17]) is an important problem
in informatics, and the set-theoretical Yang-Baxter equation is related to it.
Ordering three numbers is related to a common solution for the set-theoretical
QYBE and the set-theoretical braid condition: R(a, b) = (min(a, b),max(a, b)).
In a similar manner, one can �nd the greatest common divisor and the least
common multiple of three numbers, using another common solution for the set-
theoretical QYBE and the set-theoretical braid condition: R′(a, b) = (gcd(a, b),
lcm(a, b)). Since R and R′ can be extended to braidings in certain monoidal
categories, we obtain interpretations for the cases when we deal with more
numbers.

Theorem 3.6 (Nichita [36]). The following is a two-parameter family of

solutions for the set-theoretical QYBE:

S : R× R→ R× R, (x, y) 7→ (xβy1−αβ, yα) ∀α, β ∈ N∗.

Theorem 3.7 (Nichita [36]). The following is a two-parameter family of

solutions for the set-theoretical QYBE:

R : C× C→ C× C, (z, w) 7→ ( βz + (1− αβ)w,αw) ∀α, β ∈ C.

Theorem 3.8. The following is a solution for the set-theoretical QYBE:

S′ : R∗ × R∗ → R∗ × R∗, (x, y) 7→ (x2, yx).

Proof. The direct proof is the shortest. Notice the relationship of S′ with
S from Theorem 3.6. �

We consider a three dimensional Euclidean space, and a point P (a, b, c)
of it.

The symmetry of the point P (a, b, c) about the origin, SO(a, b, c) = (−a,
−b, −c), the symmetries of the point P (a, b, c) about the axes OX, OY, OZ,
SOX(a, b, c) = (a, −b, −c), SOY (a, b, c) = ( −a, b, −c) and SOZ(a, b, c) =
( −a, −b, c), the symmetries of the point P (a, b, c) about the planes XOY,
XOZ, Y OZ, SXOY (a, b, c) = (a, b, −c), SXOZ(a, b, c) = (a, −b, c) and
SY OZ(a, b, c) = ( −a, b, c), with the identity map form a group: {I, SOX , SOY ,
SOZ , SXOY , SXOZ , SY OZ , SO}, which is isomorphic to the group of the following
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matrices

(12)

±1 0 0
0 ±1 0
0 0 ±1

 .

The following instances of the QYBE hold for the above symmetries:

SXOY ◦ SXOZ ◦ SY OZ = SY OZ ◦ SXOZ ◦ SXOY ,
SOX ◦ SOY ◦ SOZ = SOZ ◦ SOY ◦ SOX .
Moreover, Theorem 3.7 and the gluing procedure from [4] are related to

the above solutions of the set-theoretical QYBE.

4. TRANSCENDENTAL NUMBERS AND APPLICATIONS

The well-known identity containing e and π (see [24, 34]), eiπ + 1 = 0,
can be interpreted using the matrix J (for α ∈ R∗), where

(13) J =


0 0 0 1

α i
0 0 i 0
0 i 0 0
αi 0 0 0

 ,

as follows: eπ J + I4 = 04 (here J, I4, 04 ∈M4(C)).

Now, R(x) = exJ : V ⊗2 → V ⊗2 satis�es the colored Yang-Baxter equa-
tion:

(14) R12(x) ◦R23(x+ y) ◦R12(y) = R23(y) ◦R12(x+ y) ◦R23(x) .

Also, R(x) is a solution for the following di�erential matrix equation:

(15) Y ′ = JY .

The combination of the properties (14) and (15) leads to computations of Hamil-
tonians of many body systems in physics.

Remark 4.1. The above solution to the equation (14) can be used to �nd
solutions for Okubo's triple product equation (see Remark 3.4).

Other recent problems with e and π are the following:
| e1−z + ez̄ |> π ∀z ∈ C , x2 + e > πx ∀x ∈ R.
The last inequality holds because ∆ = π2− 4e = −1, 003522913... < 0 , and we
conjecture that 4e− π2 = 1, 003522913... is a transcendental number.

The geometrical interpretation of the formula π2 < 4e could be stated
as: �The length of the circle with diameter π is almost equal (and less) to the
perimeter of a square with edges of length e�.
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The area of the above circle is greater than the area of the square, because
π3 > 4e2.

OPEN PROBLEMS. For an arbitrary convex closed curve, we consider
the largest diameter (D). (It can be found by considering the center of mass of
a body which corresponds to the domain inside the given curve.) In a similar
manner, one can de�ne the smallest diameter (d). Alternatively, d and D can
be de�ned using the concept of �cut locus�.

i) If L is the length of the given curve and the domain inside the given
curve is a convex set, then we conjecture that:

L

D
≤ π ≤ L

d
.

(ii) If A is the area inside the given curve, the equation

(16) x2 − L

2
x+A = 0

and its implications are not completely understood. For example, if the given
curve is an ellipse, solving this equation in terms of the semi-axes of the ellipse
is an unsolved problem.

(iii) The following system of equations is some kind of an inverse of (16).
We consider two real functions with second order derivatives, such that

f : [0, D]→ R, f ≥ 0, f ′′ ≤ 0, g : [0, D]→ R, g ≤ 0, g′′ ≥ 0,∫ D
0

√
1 + (f ′(x))2 +

√
1 + (g(x)′)2 dx = L ,

∫ D
0 f(x)− g(x) dx = A .

5. FURTHER COMMENTS AND CONCLUSIONS

At the 12th International Workshop on Di�erential Geometry and Its Ap-
plications, hosted by the Petroleum Gas University from Ploie�sti (23�26 Septem-
ber, 2015) we commemorated 115 years from the birth of Prof. Vranceanu and
120 from the birth of Prof. Barbilian.

This article is a survey paper based on a talk given at that workshop. At
that time, we discussed about the applications of Jordan algebras in Di�erential
Geometry (see [19]) and we presented some parts of some previous articles
[27, 28] and talks. The current paper also contains some new results and open
problems.
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In the last years, several attempts to unify non-associative structures led
to interesting results. The UJLA structures are not the only structures which
realize such a uni�cation. The formulas (9) and (10) lead to the uni�cation of
associative algebras and Lie (super)algebras in the framework of Yang-Baxter
structures (see [12,30]). For the invertible elements of a Jordan algebra, one can
associate a symmetric space, and, after that, a Yang-Baxter operator. Thus,
the Yang-Baxter equation can be thought as a unifying equation. From some
solutions of the Yang-Baxter equation, one could construct abstract universal
gates from quantum computing or knot invariants.

Professor Osman Gursoy's talk at the 12th International Workshop on
Di�erential Geometry and Its Applications was related to our open problems
about convex closed curves (presented in Section 4).

It is worth mentioning here another paper on Jordan algebras [26], which
was based on a talk at the 11th International Workshop on Di�erential Geome-
try and Its Applications. The following question arises in regard to that paper:
�What kind of cones could be associated to UJLA structures, if we think the
UJLA structures as generalizations for Jordan algebras?�.

In his talk at the 12th International Workshop on Di�erential Geome-
try and Its Applications, Florin Caragiu explained that there exists a special
mathematical discourse, called �proofs without words�, which uses pictures or
diagrams in order to boost the intuition of the reader (see [5]). We thus have
pictorial/diagrammatic style of mathematical language which is much appreci-
ated by both educators and researchers in mathematics. Examples of this type
of language appear in knot theory (where the Yang-Baxter equation plays an
important role), category theory, (di�erential) geometry (see for example [1]),
di�erential topology, quantum �eld theory, etc.

Related to the equation (14) there is a long standing open problem. The
following system of equations, obtained in [37] and extended in [10], is not
completely classi�ed:

(β(v, w)− γ(v, w))(α(u, v)β(u,w)− α(u,w)β(u, v))

+(α(u, v)− γ(u, v))(α(v, w)β(u,w)− α(u,w)β(v, w)) = 0(17)

β(v, w)(β(u, v)− γ(u, v))(α(u,w)− γ(u,w))

+(α(v, w)− γ(v, w))(β(u,w)γ(u, v)− β(u, v)γ(u,w)) = 0(18)

α(u, v)β(v, w)(α(u,w)− γ(u,w)) + α(v, w)γ(u,w)(γ(u, v)− α(u, v))

+γ(v, w)(α(u, v)γ(u,w)− α(u,w)γ(u, v)) = 0(19)

α(u, v)β(v, w)(β(u,w)− γ(u,w)) + β(v, w)γ(u,w)(γ(u, v)− β(u, v))

+γ(v, w)(β(u, v)γ(u,w)− β(u,w)γ(u, v)) = 0(20)

α(u, v)(α(v, w)− γ(v, w))(β(u,w)− γ(u,w))
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+(β(u, v)− γ(u, v))(α(u,w)γ(v, w)− α(v, w)γ(u,w)) = 0(21)

We think that some techniques from [41] might help in solving the above
system.
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