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This note is mostly an expository survey, centered on the topology of comple-
ments of hyperplane arrangements, their Milnor �brations, and their boundary
structures. An important tool in this study is provided by the degree 1 resonance
and characteristic varieties of the complement, and their tight relationship with
orbifold �brations and multinets on the underlying matroid. In favorable situa-
tions, this approach leads to a combinatorial formula for the �rst Betti number
of the Milnor �ber and the algebraic monodromy. We also produce a pair of ar-
rangements for which the respective Milnor �bers have the same Betti numbers,
yet are not homotopy equivalent: the di�erence is picked up by isolated torsion
points in the higher-depth characteristic varieties.
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1. INTRODUCTION

1.1. The Milnor �bration

A construction due to J. Milnor [41] associates to each homogeneous po-
lynomial Q P Crz0, . . . , zds a �ber bundle, with base space C� � Czt0u, total
space the complement in Cd�1 to the hypersurface V given by the vanishing of
Q, and projection map Q : Cd�1zV Ñ C�.

The Milnor �ber F � Q�1p1q is a Stein manifold, and thus has the ho-
motopy type of a �nite, d-dimensional CW-complex. The monodromy of the
�bration, h : F Ñ F , is given by hpzq � e2πi{nz, where n is the degree of Q.
If the polynomial Q has an isolated singularity at the origin, then F is homo-
topy equivalent to a bouquet of d-spheres, whose number can be determined
by algebraic means. In general, though, it is a rather hard problem to compute
the homology groups of the Milnor �ber, even in the case when Q completely
factors into distinct linear forms.
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This situation is best described by a hyperplane arrangement, that is, a
�nite collection of codimension-1 linear subspaces in Cd�1. Choosing a linear
form fH with kernel H for each hyperplane H in the arrangement A , we obtain
a homogeneous polynomial, Q �

±
HPA fH , which in turn de�nes the Milnor

�bration of the arrangement, and the Milnor �ber, F � F pA q. A central
question in the subject is to determine whether ∆A ptq, the characteristic po-
lynomial of the algebraic monodromy h� : H1pF,Cq Ñ H1pF,Cq, is determined
by the intersection lattice of the arrangement, LpA q. We present here some
recent progress on this and other related questions, mostly based on [52] and
on joint work with G. Denham [14] and S. Papadima [47].

1.2. Complement and jump loci

Let U be the complement of the complexi�ed arrangement, Ā � PpA q.
It turns out that the Milnor �ber F is a regular, cyclic n-fold cover of U ,
where n � |A |. The classifying homomorphism for this cover, δ : π1pUq Ñ Zn,
takes each meridian loop around a hyperplane to 1. Embedding Zn into C� by
sending 1 to a primitive n-th root of unity, we may view δ as a character on
π1pUq, see [10, 52]. The relative position of this character with respect to the
characteristic varieties of U determines the Betti numbers of F , as well as the
characteristic polynomial of the algebraic monodromy.

Since U is a smooth, quasi-projective variety, its characteristic varieties
are �nite unions of torsion-translates of algebraic subtori of the character group
Hompπ1pUq,C�q, cf. [1, 2, 7]. Since U is also a formal space, its resonance
varieties (de�ned in terms of the Orlik�Solomon algebra of A ) coincide with
the tangent cone at the origin to the corresponding characteristic varieties,
cf. [11,21,22,34]. As shown by Falk and Yuzvinsky [28], the degree 1 resonance
varieties may be described solely in terms of multinets on sub-arrangements of
A . In general, though, the degree 1 characteristic varieties of an arrangement
may contain components which do not pass through the origin [14,50], and it is
still an open problem whether such components are combinatorially determined.

Under simple combinatorial conditions, it is shown in [47] that the multi-
plicities of the factors of ∆A ptq corresponding to certain eigenvalues of order a
power of a prime p are equal to the `Aomoto�Betti numbers' βppA q, which in
turn can be extracted from the intersection LpA q by considering the resonance
varieties of U over a �eld of characteristic p. When Ā is an arrangement of
projective lines with only double and triple points, this approach leads to a
combinatorial formula for the algebraic monodromy.
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1.3. Boundary structures

Both the projectivized complement U and the Milnor �ber F are boun-
daryless, non-compact manifolds. Removing a regular neighborhood of the ar-
rangement yields a compact manifold with boundary, U , onto which U deform-
retracts. Likewise, intersecting the Milnor �ber with a ball in Cd�1 centered at
the origin yields a compact manifold with boundary, F , onto which F deform-
retracts.

We focus on the case d � 2, when both the boundary manifold of the
arrangement, BU , and the boundary of the Milnor �ber, BF , are closed, orien-
table, 3-dimensional graph manifolds. Once again, there is a regular, cyclic
n-fold cover BF Ñ BU , whose classifying map can be described in concrete
terms. Various topological invariants of these manifolds, including the coho-
mology ring and the depth 1 characteristic variety of BU [12,13], as well as the
Betti numbers of BF [42], can be computed from the combinatorics of A .

In [25], Falk produced a pair arrangements, A and A 1, for which the
intersection lattices are non-isomorphic, but the projective complements, U
and U 1, are homotopy equivalent. Nevertheless, the boundary manifolds are not
homotopy equivalent, [13,30], and thus the complements are not homeomorphic.
We show here that the respective Milnor �bers, F and F 1, as well as their
boundaries, BF and BF

1
, have the same Betti numbers, but that F � F 1. The

di�erence between the two Milnor �bers is detected by the depth 2 characteristic
varieties: V2pF q � t1u, whereas V2pF

1q � Z3.

2. COMPLEMENT, BOUNDARY MANIFOLD

AND MILNOR FIBRATION

2.1. The complement of a hyperplane arrangement

An arrangement of hyperplanes is a �nite set A of codimension-1 linear
subspaces in a �nite-dimensional, complex vector space Cd�1. The combinato-
rics of the arrangement is encoded in its intersection lattice, LpA q, that is, the
poset of all intersections of hyperplanes in A (also known as �ats), ordered by
reverse inclusion, and ranked by codimension. Given a �at X, we will denote
by AX the sub-arrangement tH P A | H � Xu.

Without much loss of generality, we will assume throughout that the ar-
rangement is central, that is, all the hyperplanes pass through the origin. For
each hyperplane H P A , let fH : Cd�1 Ñ C be a linear form with kernel H.
The product

(1) QpA q �
¹

HPA

fH ,
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then, is a de�ning polynomial for the arrangement, unique up to a (non-zero)
constant factor. Notice that Q � QpA q is a homogeneous polynomial of degree
equal to |A |, the cardinality of the set A . The complement of the arrangement,

(2) MpA q � Cd�1z
¤

HPA

H,

is a connected, smooth complex quasi-projective variety. Moreover, M �
MpA q is a Stein manifold, and thus it has the homotopy type of a CW-complex
of dimension at most d� 1. In fact, M splits o� the linear subspace

�
HPA H.

Thus, we may safely assume that the arrangement A is essential, i.e., that this
subspace is just 0.

The group C� acts freely on Cd�1zt0u via ζ � pz0, . . . , zdq � pζz0, . . . , ζzdq.
The orbit space is the complex projective space of dimension d, while the orbit
map, π : Cd�1zt0u Ñ CPd, z ÞÑ rzs, is the Hopf �bration. The set PpA q �
tπpHq : H P A u is an arrangement of codimension 1 projective subspaces in
CPd. Its complement, U � UpA q, coincides with the quotient PpMq �M{C�.

The Hopf map restricts to a bundle map, π : M Ñ U , with �ber C�.
Fixing a hyperplane H P A , we see that π is also the restriction to M of the
bundle map Cd�1zH Ñ CPdzπpHq � Cd. This latter bundle is trivial, and so
we have a di�eomorphism M � U � C�.

Fix now an order H1, . . . ,Hn on the hyperplanes of A , and denote the
corresponding linear forms by f1, . . . , fn. We may then de�ne a linear map
ι : Cd�1 Ñ Cn by ιpzq � pf1pzq, . . . , fnpzqq. Since we assume A is essential,
the map ι is injective. Its restriction to the complement yields an embedding
ι : M Ñ pC�qn. As shown in [14, 52], this embedding is a classifying map for
the universal abelian cover Mab ÑM .

Clearly, the map ι : M Ñ pC�qn is equivariant with respect to the di-
agonal action of C� on both source and target. Thus, ι descends to a map
ι : M{C� Ñ pC�qn{C�. Since A is essential, this map de�nes an embedding
ι : U ãÑ pC�qn�1, which is a classifying map for the universal abelian cover
Uab Ñ U .

2.2. The boundary manifold

Let V be the union of the hyperplanes in A , and letW � PpV q. A regular
neighborhood of the algebraic hypersurface W � CPd may be constructed
as follows. Let φ : CPd Ñ R be the smooth function de�ned by φprzsq �
|Qpzq|2 {||z||2n, where Q is a de�ning polynomial for the arrangement, and n �
|A |. Then, for su�ciently small δ ¡ 0, the space νpW q � φ�1pr0, δsq is a
closed, regular neighborhood of W . Alternatively, one may triangulate CPd
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with W as a subcomplex, and take νpW q to be the closed star of W in the
second barycentric subdivision.

As shown by Durfee [24], these constructions yield isotopic neighborhoods,
independent of the choices made. Plainly, νpW q is a compact, orientable,
smooth manifold with boundary, of dimension 2d; moreover, νpW q deform-
retracts onto W . The exterior of the projectivized arrangement, denoted by
U , is the complement in CPd of the open regular neighborhood intpνpW qq. It
is readily seen that U is a compact, connected, orientable, smooth 2d-manifold
with boundary, and that U deform-retracts onto U .

The boundary manifold of the arrangement A is the common boundary
BU � BνpW q of the exterior U and the regular neighborhood of W de�ned
above. Clearly, BU is a compact, orientable, smooth manifold of dimension
2d � 1. The inclusion map BU Ñ U is a pd � 1q-equivalence, see Dimca [16,
Prop. 2.31]; in particular, πipBUq � πipUq for i   d� 1. Thus, BU is connected
if d ¥ 2, and π1pBUq � π1pUq if d ¥ 3. For more information on the boundary
manifolds of arrangements, we refer to [12,13,29,32,52].

2.3. The Milnor �bration

Once again, let A be a central arrangement of n hyperplanes in Cd�1. The
polynomial map Q � QpA q : Cd�1 Ñ C restricts to a map Q : MpA q Ñ C�,
whereM �MpA q is the complement of the arrangement. As shown by J. Mil-
nor [41] in a more general context, this map is the projection map of a smooth,
locally trivial bundle, known as the Milnor �bration of the arrangement. The
typical �ber of this �bration,

(3) F pA q � Q�1p1q

is called the Milnor �ber of the arrangement. It is readily veri�ed that F �
F pA q is a smooth, connected, orientable manifold of dimension 2d. Moreover,
F is a Stein domain of complex dimension d, and thus has the homotopy type
of a �nite CW-complex of dimension d.

For each θ P r0, 1s, let us denote by Fθ the �ber over the point e
2πiθ P C�,

so that F0 � F1 � F . For each point z P M , the path γθ : r0, 1s Ñ C�,
t ÞÑ e2πitθ lifts to the path γ̃θ,z : r0, 1s Ñ M given by t ÞÑ e2πitθ{nz. Clearly,
Qpγ̃θ,zp1qq � e2πiθQpzq. Therefore, if z P F0, then γ̃θ,zp1q P Fθ; moreover,
γ̃θ,zp0q � z.

By de�nition, the monodromy of the Milnor �bration is the di�eomor-
phism h : F0 Ñ F1 given by hpzq � γ̃1,zp1q. In view of the preceding discussion,
this di�eomorphism can be written as h : F Ñ F , z ÞÑ e2πi{nz. Clearly, h has
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A

F pA q

h

F pA q

Fig. 1. Milnor �ber and monodromy for a pencil of 3 lines.

order n, and the complement M is homotopy equivalent to the mapping torus
of h.

By homogeneity of the polynomial Q, we have that Qpwzq � wnQpzq, for
every z PM and w P C�. Thus, the restriction of Q to a �ber of the Hopf bundle
map π : M Ñ U may be identi�ed with the covering projection q : C� Ñ C�,
qpwq � wn. Now, if both z and wz belong to F , then Qpzq � Qpwzq � 1, and
so wn � 1. Thus, the restriction

(4) π : F pA q Ñ UpA q

is the orbit map of the free action of the geometric monodromy on F pA q.
Hence, the Milnor �ber F pA q may be viewed as a regular, cyclic n-fold cover
of the projectivized complement UpA q, see for instance [10,43,52].

Example 2.1. Let Bn be the Boolean arrangement in Cn. Upon identifying
the complement MpBnq with the algebraic torus pC�qn, we see that the map
QpBnq : pC�qn Ñ C�, z ÞÑ z1 � � � zn is a morphism of complex algebraic groups.
Hence, the Milnor �ber F pBnq � kerpQpBnqq is an algebraic subtorus, which
is isomorphic to pC�qn�1. The monodromy automorphism h is isotopic to the
identity, via the isotopy htpzq � e2πit{nz. Thus, the Milnor �bration of the
Boolean arrangement is trivial.

As noted in [52], the map ι : MpA q ãÑ MpBnq is compatible with the
Milnor �brations QpA q : MpA q Ñ C� and QpBnq : MpBnq Ñ C�. It follows
that the Milnor �ber F pA q may be obtained by intersecting the complement
MpA q, viewed as a subvariety of the algebraic torus MpBnq � pC�qn via the
inclusion ι, with F pBnq � pC�qn�1, viewed as an algebraic subgroup of pC�qn;
that is,

(5) F pA q �MpA q X F pBnq.
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2.4. The closed Milnor �ber and its boundary

As before, let A be a (central) arrangement of hyperplanes in Cd�1. In-
tersecting the Milnor �ber F pA q with a ball in Cd�1 of large enough radius, we
obtain a compact, smooth, orientable 2d-dimensional manifold with boundary,

(6) F pA q � F pA q XD2pd�1q,

which we call the closed Milnor �ber of the arrangement. The boundary of

the Milnor �ber of the arrangement A is the compact, smooth, orientable,
p2d� 1q-dimensional manifold

(7) BF pA q � F pA q X S2d�1.

Fig. 2. Local Milnor �bration and closed Milnor �ber for 2 lines.

We will drop A from the notation when the arrangement is understood.
As noted in [16, Proposition 2.4], the pair pF , BF q is pd � 1q-connected. In
particular, if d ¥ 2, the boundary of the Milnor �ber is connected, and the
inclusion-induced homomorphism π1pBF q Ñ π1pF q is surjective. Furthermore,
as shown in [52, Lemma 7.5], the map π : Cd�1zt0u Ñ CPd restricts to regular,
cyclic n-fold covers, π : F Ñ U and π : BF Ñ BU . In summary, we have a
commuting ladder

(8) Zn

��

Zn

��

Zn //

��

C�

��

C�

��
BF

π
��

// F

π
��

� // F

π

��

//M //

π

��

Cd�1zt0u

π
��

BU // U
� // U U // CPd

where the horizontal arrows are inclusions, and the maps denoted by π are
principal bundles with �ber either Zn or C�, as indicated.
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2.5. Classifying homomorphisms for cyclic covers

As before, let A be a central arrangement in Cd�1, and set n � |A |. Fix a
basepoint for the complementM �MpA q. For each H P A , let xH denote the
based homotopy class of a compatibly oriented meridian curve about the hyper-
plane H. A standard application of the van Kampen theorem shows that the
fundamental group π1pMq is generated by these elements. To simplify notation,
we will denote the image of xH in H1pM,Zq by the same symbol. Similarly, we
will denote by xH the image of xH in both π1pUq and its abelianization. We
then have that H1pM,Zq is isomorphic to Zn, with basis txH : H P A u, and
H1pU,Zq is isomorphic to the quotient of Zn by the cyclic subgroup generated
by
°
HPA xH .
Let Q be a de�ning polynomial for A , and let Q : M Ñ C� be the Mil-

nor �bration. By [52, Prop. 4.6], the induced homomorphism Q7 : π1pMq Ñ
π1pC�q � Z sends each generator xH to 1. Recall that the Hopf �bration
restricts to a regular, cyclic n-fold cover π : F Ñ U . As shown for instance
in [8, 10, 51, 52], this cover is classi�ed by the homomorphism δ : π1pUq � Zn
given by xH ÞÑ 1. If d ¥ 3, we know that π1pBUq � π1pUq, and so the n-fold
cover π : BF Ñ BU is classi�ed by the same epimorphism δ.

In the critical case d � 2, the 3-dimensional manifold BU is a graph ma-
nifold, with underlying graph Γ the bipartite graph whose vertices correspond
to the lines and the intersection points of the projectivized line arrangement
in CP2, and with edges p`, P q joining a line vertex ` to a point vertex P if
P P `; see Figure 2.5 for an illustration. Furthermore, each vertex manifold is
the product of S1 with a sphere S2 with a number of open 2-disks removed.
For more details on this construction we refer to [13,29�32].

`1

`2 `3

P1 P2

P3

`1

`2

`3

P2

P3

P1

Fig. 3. An arrangement of lines and its associated graph.

The group π1pBUq, then, has generators xH for H P A and generators yc
corresponding to the cycles in Γ. As shown in [52, Prop. 7.6], the regular Zn-
cover π : BF Ñ BU is classi�ed by the homomorphism δ̄ : π1pBUq � Zn given
by xH ÞÑ 1 and yc ÞÑ 0.
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3. MULTINETS AND PENCILS

3.1. Multinets

For our purposes here, it will be enough to assume that the arrangement
A lives in C3, in which case Ā � PpA q is an arrangement of (projective) lines
in CP2. This is clear when the rank of A is at most 2, and may be achieved
otherwise by taking a generic 3-slice. This operation does not change the poset
L¤2pA q, nor does it change the monodromy action on H1pF pA q,Cq.

For a rank-3 arrangement, the set L1pA q is in 1-to-1 correspondence with
the lines of Ā , while L2pA q is in 1-to-1 correspondence with the intersection
points of Ā . Moreover, the poset structure of L¤2pA q mirrors the incidence
structure of the point-line con�guration Ā . We will say that a rank-2 �at X
has multiplicity q if |AX | � q, or, equivalently, if the point PpXq has exactly
q lines from Ā passing through it. The following notion, due to Falk and
Yuzvinsky [28], will play an important role in the sequel.

De�nition 3.1 ( [28]). A multinet N on an arrangement A consists of the
following data:

(i) An integer k ¥ 3, and a partition of A into k subsets, say, A1, . . . ,Ak.

(ii) An assignment of multiplicities on the hyperplanes, m : A Ñ N.
(iii) A subset X � L2pA q, called the base locus.

Moreover, the following conditions must be satis�ed:

1. There is an integer d such that
°
HPAi

mH � d, for all i P rks.

2. For any two hyperplanes H and K in di�erent classes, H XK P X .

3. For each X P X , the sum nX :�
°
HPAi : H�X mH is independent of i.

4. For each i P rks, the space
��

HPAi
H
�
zX is connected.

We say that a multinet as above has k classes and weight d, and refer
to it as a pk, dq-multinet, or simply as a k-multinet. Without essential loss of
generality, we may assume that gcdtmHuHPA � 1. If all the multiplicities are
equal to 1, the multinet is said to be reduced. If, furthermore, every �at in X
is contained in precisely one hyperplane from each class, the multinet is called
a pk, dq-net.

The various possibilities are illustrated in Fig. 4. The �rst picture shows
a p3, 2q-net on a planar slice of the re�ection arrangement of type A3. The
second picture shows a non-reduced p3, 4q-multinet on a planar slice of the
re�ection arrangement of type B3. Finally, the third picture shows a simplicial
arrangement of 12 lines in CP2 supporting a reduced p3, 4q-multinet which is
not a 3-net.
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2

2

2

Fig. 4. A p3, 2q-net; a p3, 4q-multinet; and a reduced p3, 4q-multinet which is not a 3-net.

Work of Yuzvinsky [56,57] and Pereira�Yuzvinsky [48] shows that, if N is
a k-multinet on an arrangement A , with base locus of size greater than 1, then
k � 3 or 4; moreover, if the multinet N is not reduced, then k � 3. Although
several in�nite families of multinets with k � 3 are known, only one multinet
with k � 4 is known to exist: the p4, 3q-net on the Hessian arrangement. For
more examples and further discussion, we refer to [6, 28, 54,55].

As noted in [47, Lemma 2.1], if A has no 2-�ats of multiplicity kr, for
any r ¡ 1, then every reduced k-multinet on A is a k-net. The next lemma
provides an alternative de�nition of nets.

Lemma 3.2 ( [47]). A k-net on an arrangement A is a partition with non-

empty blocks, A �
²
αPrks Aα, with the property that, for every H P Aα and

K P Aβ with α � β we have that |H XK XAγ | � 1, for every γ P rks.

In particular, a 3-net on A is a partition into 3 non-empty subsets with
the property that, for each pair of hyperplanes H,K P A in di�erent classes, we
have HXK � HXKXL, for some hyperplane L in the third class. Nets of type
p3, dq are intimately related to Latin squares of size d, i.e., d� d matrices with
each row and column a permutation of the set rds. Indeed, if A1,A2,A3 are the
parts of such a 3-net, then the multi-colored 2-�ats de�ne a Latin square: if we
label the hyperplanes of Aα as Hα

1 , . . . ,H
α
d , then the pp, qq-entry of this matrix

is the integer r given by the requirement that H1
pXH

2
q XH

3
r P L2pA q. A similar

procedure shows that a k-net is encoded by a pk� 2q-tuple of orthogonal Latin
squares.

3.2. Pencils

Let A be a (central) arrangement in C3, with de�ning polynomialQpA q �±
HPA fH . Suppose we have a pk, dq-multinet N on A , with parts Aα and mul-

tiplicity vectorm. WriteQα �
±
HPAα

fmHH , and de�ne a rational map f : C3 Ñ

CP1 by fpxq � pQ1pxq : Q2pxqq. There is then a setD � tpa1 : b1q, . . . , pak : bkqu
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of k distinct points in CP1 such that each of the degree d polynomialsQ1, . . . , Qk
can be written as Qα � aαQ2�bαQ1, and, furthermore, the image of f : MpA q
Ñ CP1 misses D. The pencil associated to the multinet N , then, is the re-
striction of f to the complement of the arrangement,

(9) f � fN : MpA q Ñ CP1zD.

The map f can also be viewed as an `orbifold �bration', or, in the termi-
nology of Arapura [1], an `admissible map'. To compute the homomorphism
induced in �rst homology by this map, let γ1, . . . , γk be compatibly oriented
simple closed curves on S � CP1zD, going around the points of D, so that
H1pS,Zq is generated by the homology classes cα � rγαs, subject to the sin-
gle relation

°k
α�1 cα � 0. The following lemma was proved in [47] using an

approach based on de Rham cohomology. We give here another proof.

Lemma 3.3 ( [47]). Let f : MpA q Ñ S be the pencil associated to a multi-

net N on an arrangement A . The induced homomorphism f� : H1pMpA q,Zq Ñ
H1pS,Zq is then given by

f�pxHq � mHcα, for H P Aα.

Proof. Each polynomial Qα de�nes a map Qα : MpAαq Ñ C�. If we let
θα : S Ñ C� be the map given by θαpz1 : z2q � aαz2�bαz1, and let ια : MpA q Ñ
MpAαq be the inclusion map, we obtain a commuting diagram,

(10) MpA q
f //

ια
��

S

θα
��

MpAαq
Qα // C�

Apply now theH1p�,Zq functor to this diagram, and identifyH1pC�,Zq �
Z. Clearly, if H P Aβ , then pιαq� takes xH to δαβaH , whereas pθαq� takes cβ to
δαβ , where δαβ is the Kronecker delta. On the other hand, pQαq� is given by
xH ÞÑ mH , see [52, Prop. 4.6]. This completes the proof. l

4. COHOMOLOGY JUMP LOCI

4.1. Resonance varieties of a graded algebra

Let A be a graded, graded-commutative algebra over a �eld k. We will
assume that each graded piece Ai is free and �nitely generated over k, and
A0 � k. We will also assume that a2 � 0, for all a P A1, a condition which
is automatically satis�ed if charpkq � 2, by graded-commutativity of multipli-
cation in A. For each element a P A1, we turn the algebra A into a cochain
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complex,

(11) pA, δaq : A0 δa // A1 δa // A2 // � � � ,

with di�erentials the maps δapbq � ab. The (degree i, depth s) resonance

varieties of A are then de�ned as the jump loci for the cohomology of this
`Aomoto' complex,

(12) Ri
spAq � ta P A1 | rankkH

ipA, δaq ¥ su.

These sets are Zariski-closed, homogeneous subsets of the a�ne space A1.
Furthermore, these varieties respect �eld extensions: if k � K, then Ri

spAq �
Ri
spAbKqXA1. As shown in [46,53], the resonance varieties obey the following

`product formulas':

R1
s pAbBq � R1

s pAq � t0u Y t0u �R1
s pBq,(13)

Ri
1pAbBq �

¤

j�k�i

Rj
1pAq �Rk

1 pBq.

For our purposes here, we will mainly consider the degree one resonance
varieties, RspAq � R1

s pAq. Clearly, these varieties depend only on the degree 2
truncation of A. More explicitly, RspAq consists of 0, together with all elements
a P A1 for which there exist b1, . . . , bs P A

1 such that the span of ta, b1, . . . , bsu
has dimension s� 1 and ab1 � � � � � abs � 0 in A2.

The degree 1 resonance varieties enjoy the following naturality property:
if ϕ : AÑ B is a morphism of commutative graded algebras, and ϕ is injective
in degree 1, then the k-linear map ϕ1 : A1 Ñ B1 embeds RspAq into RspBq,
for each s ¥ 1.

Finally, suppose X is a connected, �nite-type CW-complex. We de�ne
then the resonance varieties of X to be the sets Ri

spX,kq :� Ri
spH

�pX,kqq,
viewed as homogeneous subsets of the a�ne space H1pX,kq.

4.2. The resonance varieties of the Orlik�Solomon algebra

The cohomology ring of a hyperplane arrangement complement was com-
puted by E. Brieskorn in the early 1970s, building on pioneering work of V.I. Ar-
nol'd on the cohomology ring of the pure braid group. In [44], Orlik and So-
lomon gave a simple description of this ring, solely in terms of the intersection
lattice of the arrangement.

Once again, let A be a central arrangement, with complement M �
MpA q. Fix a linear order on A , and let E be the exterior algebra over a
�eld k with generators teH | H P A u in degree 1. Next, de�ne a di�erential
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B : E Ñ E of degree �1, starting from Bp1q � 0 and BpeHq � 1, and extending
B to a linear operator on E, using the graded Leibniz rule. Finally, let I
be the ideal of E generated by all elements of the form B

�±
HPB eH

�
, where

B � A and codim
�
HPB H   |B|. Then H�pM,kq is isomorphic, as a graded

k-algebra, to the quotient ring A � E{I.

Under this isomorphism, the basis teHu of A1 is dual to the basis of
H1pM,kq � H1pM,Zq b k given by the meridians txHu around the hyper-
planes, oriented compatibly with the complex orientations on Cd�1 and the
hyperplanes. Since A is a quotient of an exterior algebra, we have that a2 � 0
for all a P A1. Thus, we may de�ne the resonance varieties Ri

spA , kq of our
arrangement A (over the �eld k) as the corresponding resonance varieties of
the Orlik�Solomon algebra H�pMpA q,kq.

As usual, let U � UpA q be the projectivized complement. The di�eo-
morphism M � U � C�, together with the K�unneth formula and the product
formulas for resonance from (13) yields identi�cations

R1
s pA ,kq � R1

s pUpA q, kq,(14)

Ri
1pA ,kq � Ri

1pUpA q, kq YRi�1
1 pUpA q, kq.

If B � A is a proper sub-arrangement, the inclusion MpA q ãÑ MpBq
induces a morphism H�pMpBq, kq Ñ H�pMpBq, kq which is injective in de-
gree 1. We thus obtain an embedding R1

s pB,kq ãÑ R1
s pA , kq. The irreducible

components of R1
s pA ,kq that lie in the image of such an embedding are called

non-essential; the remaining components are called essential.

The description of the Orlik�Solomon algebra given above makes it clear
that the resonance varieties Ri

spA ,kq depend only on the intersection lattice,
LpA q, and on the characteristic of the �eld k.

The complex resonance varieties Ri
1pA ,Cq were �rst de�ned and studied

by Falk in [26]. Soon after, Cohen�Suciu [11], Libgober [34], and Libgober�
Yuzvinsky [37] showed that the varieties RspA q � R1

s pA ,Cq consist of linear
subspaces of the vector space CA , intersecting transversely at 0. Moreover, all
such subspaces have dimension at least two, and the cup-product map vanishes
identically on each one of them. Finally, RspA q is the union of all components
of R1pA q of dimension greater than s.

The resonance varieties R1
s pA ,kq for k a �eld of positive characteristic

were �rst de�ned and studied by Matei and Suciu in [40]. The nature of these
varieties is much less predictable; for instance, their irreducible components
need not be linear, and, even when they are linear, they may intersect non-
transversely. We refer to [14,27,47,49] for more on this subject.
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4.3. Multinets and complex resonance

The work of Falk and Yuzvinsky [28] greatly clari�ed the nature of the
(degree 1) resonance varieties of arrangements. Let us brie�y review their
construction.

Recall that every k-multinet N on an arrangement A with parts A1, . . . ,
Ak and multiplicities mH for each H P A gives rise to an orbifold �bration
(or, for short, a pencil) f : MpA q Ñ S, where S � CP1ztk pointsu. In view
of Lemma 3.3, the induced map in cohomology, f� : H�pS,Zq Ñ H�pM,Zq, is
given in degree 1 by f�pc�αq � uα, where uα �

°
HPAα

mHeH . Consequently,
the homomorphism f� : H1pS,Cq Ñ H1pM,Cq is injective, and thus sends
R1pS,Cq to R1pM,Cq.

Let us identify R1pS,Cq with H1pS,Cq � Ck�1, and view PN � f�pH1pS,
Cqq as lying inside R1pA q. It follows from the preceding discussion that PN is
the pk�1q-dimensional linear subspace spanned by the vectors u2�u1, . . . , uk�
u1. In fact, as shown in [28, Thms. 2.4�2.5], this subspace is an essential
component of R1pA q.

More generally, suppose there is a sub-arrangement B � A supporting
a multinet N . In this case, the inclusion MpA q ãÑ MpBq induces a mono-
morphism H1pMpBq,Cq ãÑ H1pMpA q,Cq, which restricts to an embedding
R1pBq ãÑ R1pA q. The linear space PN , then, lies inside R1pBq, and thus,
inside R1pA q. Conversely, as shown in [28, Thm. 2.5] all (positive-dimensional)
irreducible components of R1pA q arise in this fashion. Consequently,

(15) RspA q �
¤

B�A

¤

N a multinet on B
with at least s � 2 parts

PN .

4.4. Characteristic varieties and �nite abelian covers

We switch now to a di�erent type of jump loci, involving this time homo-
logy with twisted coe�cients. Let X be a connected, �nite-type CW-complex,
let π � π1pX,x0q, and let Hompπ,C�q be the a�ne algebraic group of C-valued,
multiplicative characters on π, which we will identify with H1pX,C�q. The (de-
gree i, depth s) characteristic varieties of X are the jump loci for homology
with coe�cients in rank-1 local systems on X:

(16) V i
s pXq � tξ P Hompπ,C�q | dimCHipX,Cξq ¥ su.

By construction, these loci are Zariski-closed subsets of the character group.
To a large degree, the characteristic varieties control the Betti numbers

of regular, �nite abelian covers Y Ñ X. For instance, suppose that the deck-
transformation group is cyclic of order n, and �x an inclusion ι : Zn ãÑ C�, by
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sending 1 ÞÑ e2πi{n. With this choice, the epimorphism ν : π � Zn de�ning the
n-fold cyclic cover Y Ñ X yields a torsion character, ρ � ι � ν : π Ñ C�. A
standard argument using Maschke's theorem yields an isomorphism of CrZns-
modules,

(17) HipY,Cq � HipX,Cq `
à

1 r|n

pCrts{Φrptqq
depthpρn{rq,

where Φrptq is the r-th cyclotomic polynomial, and the depth of a character
ξ : π Ñ C�, de�ned as the dimension of HipX,Cξq, is given by depthpξq �
maxts | ξ P V i

s pXqu.

The exponents in formula (17) arising from prime-power divisors can be
estimated in terms of the corresponding Aomoto�Betti numbers. More preci-
sely, suppose n is divisible by r � ps, for some prime p. Composing the ca-
nonical projection Zn � Zp with ν de�nes a cohomology class ν̄ P H1pX,Fpq.
Assuming that H�pX,Zq is torsion-free, it was shown in [45, Thm. 11.3] that

(18) dimCHipX,Cρn{rq ¤ dimFp H
ipH
.
pX,Fpq, δν̄q.

4.5. Characteristic varieties of arrangements

Let us consider again a hyperplane arrangement A , with complement
M � MpA q. The varieties VspA q :� V 1

s pMpA qq are closed algebraic subsets
of the character torus Hompπ1pMq,C�q � pC�qn, where n � |A |. Since M
is di�eomorphic to U � C�, where U � UpA q, the character torus H1pM,C�q
splits asH1pU,C�q�C�. Under this splitting, the characteristic varieties VspA q
get identi�ed with the varieties V 1

s pUq lying in the �rst factor.

Since M is a smooth, quasi-projective variety, a general result of Ara-
pura [1], as re�ned by Artal Bartolo�Cogolludo�Matei [2] and Budur�Wang [7],
insures that VspA q is a �nite union of translated subtori. Moreover, as shown
by Cohen�Suciu [11] and Libgober�Yuzvinsky [33], and, in a broader context,
by Dimca�Papadima�Suciu [22] and Dimca�Papadima [21], the tangent cone at
the origin to VspA q coincides with the resonance variety RspA q, for all s ¥ 1.

More explicitly, let exp: H1pM,Cq Ñ H1pM,C�q be the coe�cient homo-
morphism induced by the exponential map CÑ C�. Then, if P � H1pM,Cq is
one of the linear subspaces comprising RspA q, its image under the exponential
map, exppP q � H1pM,C�q, is one of the subtori comprising VspA q. Fur-
thermore, the correspondence P;exppP q yields a bijection between the com-
ponents of RspA q and the components of VspA q passing through the origin 1.

Now recall that each positive-dimensional component of R1pA q is obtai-
ned by pullback along a pencil f : M Ñ S, where S � CP1ztk pointsu and
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k ¥ 3. Thus, each positive-dimensional component of V1pA q containing the
origin is of the form exppP q � f�pH1pS,C�qq, for some pencil f . An easy com-
putation shows that V 1

s pSq � H1pS,C�q � pC�qk�1 for all s ¤ k � 2. Hence,
the subtorus f�pH1pS,C�qq is a positive-dimensional component of V1pA q that
contains the origin and lies inside Vk�2pA q.

As shown in [50], the (depth 1) characteristic variety of an arrangement
may have irreducible components not passing through the origin. A general
combinatorial machine for producing such translated subtori has been recently
given in [14]. Namely, suppose A admits a pointed multinet, i.e., a multinet
N and a hyperplane H P A for which mH ¡ 1, and mH | nX for each �at
X in the base locus such that X � H. Letting A 1 � A ztHu be the deletion
of A with respect to H, it turns out that V1pA 1q has a component which
is a 1-dimensional subtorus of H1pMpA 1q,C�q, translated by a character of
order mH .

For instance, if A is the re�ection arrangement of type B3 and N is the
p4, 3q-multinet depicted in the middle of Figure 3.1, then choosing H to be
one of the hyperplanes with multiplicity mH � 2 leads to a translated torus
in the �rst characteristic variety of the deleted B3 arrangement, A 1 � A ztHu.
Whether all positive-dimensional translated subtori in the (degree 1, depth 1)
characteristic varieties of arrangements occur in this fashion is an open problem.

5. THE ALGEBRAIC MONODROMY OF THE MILNOR FIBER

5.1. The homology of the Milnor �ber

Using the interpretation of the Milnor �ber of a hyperplane arrangement
as a �nite cyclic cover of the projectivized complement, we may compute the
homology groups of the Milnor �ber and the characteristic polynomial of the
algebraic monodromy in terms of the characteristic varieties of the arrangement.

To see how that works, let A be an arrangement of n hyperplanes in Cd�1.
Without loss of generality, we may assume d � 2. Let M be the complement
of the arrangement, and let U be its projectivization. Recall that the Milnor
�ber F � F pA q may be viewed as the regular, Zn-cover of U , classi�ed by the
homomorphism π1pUq� Zn taking each meridian loop xH to 1.

For each divisor r of n, let ρr : π1pUq Ñ C� be the character de�ned by
ρrpxHq � e2πi{r. It follows from formula (17) that

(19) H1pF pA q,Cq � H1pU,Cq `
à

1 r|n

pCrts{Φrptqq
erpA q,

as modules over CrZns, where the integers erpA q :� depthpρrq depend on the
position of the diagonal characters ρr P pC�qn�1 with respect to the characteris-
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tic varieties VspUq. Note that only the essential components of these varieties
may contribute to the sum. Indeed, if a component lies on a proper coordinate
subtorus C, then the diagonal subtorus, D � tpt, . . . , tq | t P C�u, intersects C
only at the origin. In particular, components arising from multinets suppor-
ted on proper sub-arrangements of A , do not produce jumps in the �rst Betti
number of F pA q.

Let h� : H1pF,Cq Ñ H1pF,Cq be the degree 1 algebraic monodromy of
the Milnor �bration, and let ∆A ptq � detpt � id�h�q be its characteristic poly-
nomial. Formula (19) may be interpreted as saying that

(20) ∆A ptq � pt� 1qn�1 �
¹

1 r|n

Φrptq
erpA q.

Consequently, if ϕprq denotes the Euler totient function, then

(21) b1pF pA qq � n� 1�
¸

1 r|n

ϕprqerpA q.

In the above expressions, not all the divisors r of n appear. For instance,
as shown by Libgober [35, Prop. 2.1] and M�acinic�Papadima [38, Thm. 3.13],
the following holds: if there is no �at X P L2pA q of multiplicity q ¥ 3 such
that r | q, then erpA q vanishes. In particular, if the lines of Ā intersect only
in points of multiplicity 2 and 3, then only e3pA q may be non-zero, whereas
if points of multiplicity 4 occur, then e2pA q and e4pA q may also be non-zero.
For more combinatorial conditions that lead to the vanishing of the exponents
erpA q we refer to [3, 5, 9, 10].

In [9, Thm. 13], Cohen, Dimca, and Orlik give combinatorial upper bounds
on the exponents of the cyclotomic polynomials appearing in (19). The next
result provides lower bounds for those exponents, in the presence of reduced
multinets on the arrangement.

Theorem 5.1 ( [47]). Suppose that an arrangement A admits a reduced

k-multinet, and let f : MpA q Ñ S denote the associated pencil. Then:

(1) The character ρk belongs to f�pH1pS,C�qq, and ekpA q ¥ k � 2.

(2) If k � ps, then ρpr P f
�pH1pS,C�qq and eprpA q ¥ k�2, for all 1 ¤ r ¤ s.

5.2. Aomoto�Betti numbers

Consider now a �eld k of characteristic p, and let A � H�pM, kq be the
Orlik�Solomon algebra over k. Recall that the k-vector space A1 � kA comes
endowed with a preferred basis, teHuHPA ; let σ �

°
HPA eH be the �diagonal"

element. Following [47], we de�ne the Aomoto�Betti number of A (over k) as

(22) βkpA q � maxts | σ P RspA ,kqu.
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Clearly, this integer depends only on the prime p � charpkq, and so we
will write it simply as βppA q. The following result provides useful information
about these combinatorial invariants of arrangements.

Proposition 5.2 ( [47]). Let A be an arrangement, and p a prime.

(1) If p - |X|, for any X P L2pA q with |X| ¡ 2, then βppA q � 0.

(2) If A supports a k-net, then βppA q � 0 if p - k, and βppA q ¥ k � 2,
otherwise.

To a large extent, the βp invariants control the (degree 1) algebraic mo-
nodromy of the Milnor �bration. More precisely, the �modular upper bound�
(18) yields the following inequalities on the prime-power exponents,

(23) epspA q ¤ βppA q,

for all primes p and integers s ¥ 1. In particular, if βppA q � 0, then epspA q �
0, for all s ¥ 1.

5.3. Nets, multiplicities, and the Milnor �bration

Under suitable restrictions on the multiplicities of rank 2 �ats, the above
modular bounds are sharp, at least for the prime p � 3 and for s � 1.

Theorem 5.3 ([47]). Let A be a hyperplane arrangement, and suppose

L2pA q has no �ats of multiplicity 3r, for any r ¡ 1. Then β3pA q � 0 if and

only if A admits a reduced 3-multinet, or, equivalently, a 3-net. Moreover,

β3pA q ¤ 2 and e3pA q � β3pA q.

Putting things together, we have the following immediate corollary.

Corollary 5.4 ([47]). Suppose L2pA q has only �ats of multiplicity 2 and

3. Then

∆A ptq � pt� 1q|A |�1 � pt2 � t� 1qβ3pA q,
where β3pA q P t0, 1, 2u is combinatorially determined.

For more information on the class of `triple point' line arrangements, we
refer to [17,18,20,36]. When multiplicity 4 does occur, some further combina-
torial restrictions lead to equalities in the modular bounds (23), at the prime
p � 2 and for s ¤ 2.

Theorem 5.5 ( [47]). If A admits a 4-net, and if β2pA q ¤ 2, then

e2pA q � e4pA q � β2pA q.

The above results, and many other computations naturally lead to the
following conjecture.
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Conjecture 5.6 ( [47]). The characteristic polynomial of the degree 1
algebraic monodromy for the Milnor �bration of an arrangement A of rank at

least 3 is given by the following combinatorial formula:

(24) ∆A ptq � pt� 1q|A |�1ppt� 1qpt2 � 1qqβ2pA qpt2 � t� 1qβ3pA q.

This conjecture has been veri�ed for several large classes of arrangements,
including

(1) all sub-arrangements of non-exceptional Coxeter arrangements [38];

(2) all complex re�ection arrangements [19, 23,39];

(3) certain types of complexi�ed real arrangements [4, 54,55].

6. FURTHER TOPOLOGICAL INVARIANTS

OF THE MILNOR FIBER

6.1. Torsion in the homology of the Milnor �ber

A long-standing question, raised by Randell and Dimca�N�emethi among
others, asks whether the Milnor �ber of a complex hyperplane arrangement can
have non-trivial torsion in (integral) homology.

As a �rst step towards answering this question, it was shown by Cohen,
Denham, and Suciu [8] that the �rst homology of the Milnor �ber of a multi-
arrangement may have torsion. In recent work of Denham and Suciu [14],
these examples were recast in a more general framework, leading to hyperplane
arrangements B for which HqpF pBq,Zq has torsion, in some degree q ¡ 1. The
precise result reads as follows.

Theorem 6.1 ([14]). Suppose A admits a pointed multinet, with distin-

guished hyperplane H. Let p be a prime dividing the multiplicity mH . There

is then a choice of multiplicities m1 on the deletion A 1 � A ztHu such that

HqpF pBq,Zq has p-torsion, where B is the arrangement obtained from

the multi-arrangement pA 1,m1q by a process of polarization, and q � 1 �
|tK P A 1 : m1

K ¥ 3u|.

For instance, if A 1 is the deleted B3 arrangement mentioned in �4.5, then
a suitable choice of multiplicities m1 produces an arrangement B of 27 hyper-
planes in C8 such that H6pF pBq,Zq has 2-torsion. Nevertheless, it is still not
known whether there is a hyperplane arrangement A (without multiplicities)
such that H1pF pA q,Zq has non-trivial torsion. For more on this topic, we refer
to [15].
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6.2. The homology of the boundary of the Milnor �ber

A detailed study of the boundary of the Milnor �ber of a non-isolated
surface singularity was done by N�emethi and Szil�ard in [42]. When applied to
arrangements in C3, their work yields the following result.

Theorem 6.2 ([42]). Let A be an arrangement of n planes in C3, and

let BF be the boundary of its Milnor �ber. The characteristic polynomial of the

algebraic monodromy acting on H1pBF ,Cq is equal to the product
¹

XPL2pA q

pt� 1qptgcdp|AX |,nq � 1q|AX |�2.

In particular, the Betti number b1pBF q is determined by very simple com-
binatorial data associated to the arrangement, namely, the multiplicities of the
rank 2 �ats. In general, torsion can occur in the �rst homology of BF . For in-
stance, as noted in [42], if A is an arrangement of 4 planes in general position
in C3, then H1pBF ,Zq � Z6`Z4. For a generic arrangement of n planes in C3,
it is conjectured in [52] that

(25) H1pBF ,Zq � Znpn�1q{2 ` Zpn�2qpn�3q{2
n .

For an arbitrary arrangement A in C3, it is an open question whether all
the torsion in H1pBF ,Zq consists of Zn-summands, where n � |A |. Likewise,
it is an open question whether such torsion is combinatorially determined.

6.3. Complement, boundary, and intersection lattice

Once again, let A be an arrangement in C3, with intersection lattice
LpA q, and let U be its projectivized complement. Recall that the boundary
manifold, BU , is a closed graph manifold, with underlying graph Γ the bipartite
graph whose vertices correspond to the lines and the intersection points of the
projectivized line arrangement Ā .

Now suppose A 1 is another arrangement in C3, and that U is homeo-
morphic to U 1. It follows that BU is homeomorphic to BU

1
, or, equivalently

(since both graph manifolds are either S3 or have positive �rst Betti number),

BU is homotopy equivalent to BU
1
. Using Waldhausen's classi�cation of graph

manifolds, Jiang and Yau [30, 31] conclude that the underlying graphs, Γ and
Γ1 must be isomorphic, and thus the corresponding intersection lattices, LpA q
and LpA 1q, must also be isomorphic.

Example 6.3. Let A and A 1 be the pair of arrangements in C3 whose
projectivizations are depicted in Fig. 5. Both Ā and Ā 1 have 2 triple points
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Fig. 5. The arrangements A and A 1.

and 9 double points, yet the two intersection lattices are non-isomorphic: the
two triple points of A lie on a common line, whereas the two triple points of A 1

don't. Nevertheless, as �rst noted by L. Rose and H. Terao in an unpublished
note, the corresponding Orlik�Solomon algebras are isomorphic. In fact, as
shown by Falk in [25], the two projective complements, U and U 1, are homotopy
equivalent.

Now, since LpA q � LpA 1q, we know from [30,31] that the corresponding

boundary manifolds, BU and BU
1
, are not homotopy equivalent, even though

b1pBUq � b1pBU
1
q � 13. In fact, as noted in [13, Ex. 5.3], the two manifolds

may be distinguished by their (multi-variable) Alexander polynomials: ∆BU ptq
has 7 distinct factors, whereas ∆

BU
1ptq has 8 distinct factors. The characteristic

varieties V1pBUq and V1pBU
1
q are the zero sets of these polynomials. Hence,

the �rst variety consists of 7 codimension-1 subtori in pC�q13, while the second

one consists of 8 such subtori. This shows, once again, that BU � BU
1
.

In [30], Jiang and Yau conjecture that the homeomorphism type of UpA q
is determined by isomorphism type of LpA q, for any arrangement A in C3.
Motivated by the above considerations, we propose a more precise conjecture.

Conjecture 6.4. Let A and A 1 be two central arrangements in C3. The

following conditions are equivalent:

(1) UpA q � UpA 1q.

(2) BUpA q � BUpA 1q.

(3) ∆BUpA qptq � ∆BUpA 1qptq.

(4) ΓpA q � ΓpA 1q.

(5) LpA q � LpA 1q.

6.4. Milnor �ber and intersection lattice

We now show that there are invariants which can tell apart homologically
equivalent Milnor �bers of arrangements.
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Example 6.5. Let A and A 1 be the two arrangements from Example 6.3,

and let F and F 1 be the corresponding Milnor �bers. It is readily seen that

neither of the two arrangements supports an essential multinet. Since both Ā
and Ā 1 have only double and triple points, Corollary 5.4 shows that, in both

cases, the characteristic polynomial of the algebraic monodromy acting on the

Milnor �ber is pt � 1q5. By the same token, Theorem 6.2 shows that, in both

cases, the characteristic polynomial of the algebraic monodromy acting on the

boundary of the Milnor �ber is pt� 1q13pt2 � t� 1q2.

It can also be veri�ed that H1pF,Zq � H1pF
1,Zq � Z5. Nevertheless,

the two Milnor �bers are not homotopy equivalent. In fact, we claim that

π1pF q � π1pF
1q. To establish this claim, we consider the characteristic varieties

of F and F 1, lying in the character torus pC�q5. A computation shows that

V1pF q � tt1 � t4 � t5 � 1u Y tt33t
�1
5 � t63t

�1
4 � t2t

�1
3 � 1u,

V2pF q � t1, p1, ω, ω, 1, 1q, p1, ω2, ω2, 1, 1qu,

where ω � expp2πi{3q, while

V1pF
1q � tt1t4 � t1t5 � t3t

�3
5 � 1u Y tt2t4 � t3t

2
5 � t4t5 � 1u,

V2pF
1q � t1u.

Note that the two, 2-dimensional components of V1pF q meet at the three

characters of order 3 comprising V2pF q. The variety V1pF
1q also consists of two,

2-dimensional subtori, but these subtori only meet at the origin, which is the

only point comprising V2pF
1q.

In view of these considerations, we conclude with a (rather optimistic)

conjecture, which can be viewed as a Milnor �ber analogue of Conjecture 6.4.

Conjecture 6.6. Let A and A 1 be two central arrangements in C3. The

following conditions are equivalent:

(1) F pA q � F pA 1q.

(2) BF pA q � BF pA 1q.

(3) LpA q � LpA 1q.
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