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This survey paper is a structured concise presentation of four of our recent
papers on the stochastic regularity of di�usions that are associated to regular
strongly local (but not necessarily symmetric) Dirichlet forms. Here, by stochas-
tic regularity we mean the question whether a di�usion associated to a Dirichlet
form as mentioned above can be started and identi�ed as a solution to an expli-
cit stochastic di�erential equation for explicitly given starting points. Beyond
the stochastic regularity, we consider its applications to strong existence and
pathwise uniqueness of singular stochastic di�erential equations.
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1. INTRODUCTION

This survey paper is a summary of the main results of [28�31], which we
present systematically in concise structured form. Throughout, we consider a
(non-)symmetric, strongly local, regular Dirichlet form E on L2(E,m) where E
is a locally compact separable metric space and m is a positive Radon measure
on (E,B(E)) with full support. We further assume that the symmetric part
of E admits a carr�e du champ. Our main concerns are the construction of a
Hunt process associated to E that starts from as much as possible explicitly
speci�ed points in E and subsequently the identi�cation of the corresponding
stochastic di�erential equation (hereafter SDE) for any of these starting points.
Step by step we present methods to arrive at the identi�cation of the corre-
sponding SDE.
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The �rst step is to �nd a pointwise heat kernel, i.e. the existence of a
heat kernel pt(x, y) for all x, y ∈ E, associated with E , and in the sequel to
construct a Hunt process with the help of the transition function of pt(·, ·). By
association of pt(·, ·) with E , we mean that the L2(E,m)-semigroup of E coin-
cides m-a.e. with the transition function of pt(·, ·), i.e. the transition function
of pt(·, ·) induces an L2(E,m)-semigroup that coincides with the one of E . In
accordance with the symmetric case, we call this association Fukushima's ab-
solute continuity condition. We explain two ways to obtain a pointwise heat
kernel. In the symmetric case, we adopt the method of [33] to obtain its exis-
tence. If the four conditions of De�nition 2.3 are satis�ed, then pt(x, y) exists,
is locally H�older in (0,∞) × E × E and satis�es the heat kernel estimate of
Theorem 2.4. Moreover, the transition function is strong Feller (cf. Propo-
sition 2.5(i)). In the general, possibly non-symmetric case, we consider the
non-symmetric Dirichlet form given by the closure of the bilinear form in (2.5)
below on L2(Rd,m), m := ρ dx, where the conditions on A, ρ, B are formulated
in (A1)�(A3) of Subsection 2.3.2. Here, as a toy example we only consider the
case where A = id, the case where A is not the identity matrix can be treated
similarly. We may then apply known elliptic regularity results from [4, Theo-
rem 5.1] and [9, Theorem 1.7.4] (see Propositions 2.7 and 2.8 below) and follow
the main lines of [1] to �nd a pointwise heat kernel.

The next step is to construct a Hunt process with given pointwise heat
kernel pt(·, ·). This construction is in general di�erent from the construction of
a Hunt process via the canonical scheme from a regular Dirichlet form which has
only unique distributions for quasi-every starting point. A well-known method
to obtain a pointwise Hunt process is to show that the transition function of
pt(·, ·) induces a Feller semigroup. Here the conditions of Lemma 2.16 appear
to be the right ones in our framework since one can use the continuity of the
heat kernel and estimates for it to verify these (see for instance Remark 2.17
below). Another method to obtain a Hunt process with given pointwise heat
kernel pt(·, ·) is the Dirichlet form method. It is a re�nement of the construction
scheme introduced in [1, Section 4] to the case of symmetric Dirichlet forms on
a locally compact separable metric space that admit a carr�e du champ. The
method applies to certain non-symmetric cases as well, for instance to our toy
example.

Once having constructed a Hunt process from the pointwise heat kernel,
we aim at identifying it as a pointwise weak solution to a SDE. We explain two
methods for its identi�cation. The �rst one is the well-known strict Fukushima
decomposition (see Proposition 3.3 here, or [15] from where it originates, or
in the monograph [16, Theorem 5.5.5]) and it applies in the symmetric case.
Proposition 3.3 requires estimates on potentials coming from supersmooth me-
asures that appear in the integration by parts formulas and in the energy for
the Dirichlet form applied to the coordinate projections. Here Proposition 3.4
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in combination with Lemma 3.5 appear as very useful and make it possible
to apply Fukushima's strict decomposition to a wide range of situations as we
demonstrate by concrete examples in Subsections 3.1.1 and 3.1.2. However,
in some cases the global estimate on the resolvent density which is obtained
by taking the Laplace transform of the global estimate on the transition kernel
density from Theorem 2.4 may not lead to satisfactory results as explained right
after Lemma 3.5. For these cases, we use a localization procedure that stems
from [30, Section 5]), but we formulate it here in more details and in a more
general frame. It applies on open or closed subsets E of the d-dimensional Eu-
clidean space and involves part Dirichlet forms, Nash type inequalities (hence
better local Gaussian heat kernel estimates) on a nice exhaustion up to a ca-
pacity zero set of E by an increasing sequence of relatively compact open sets.
In this localization procedure, described right after the paragraph that fol-
lows Lemma 3.5, the strict Fukushima decomposition is applied only locally.
The second method for the identi�cation of the SDE is classical direct sto-
chastic calculus. It is used in Subsection 3.2. The drift corresponding to the
coordinate projections is determined locally through the generator applied to
smooth functions with compact support and the quadratic variation of the
corresponding local martingale part can, for instance, be determined as in Pro-
position 3.42. For details, we refer to the mentioned subsection.

Section 4 is devoted to applications of stochastic regularity to strong ex-
istence and pathwise uniqueness of SDEs. We show that the weak solutions
constructed in Subsections 3.2 and 3.1.2 coincide with the strong and pathwise
unique solutions that were constructed by probabilistic means up to their explo-
sion times in [19, Theorem 2.1] and [40, Theorem 1.1]. Thus if E is conservative
and symmetric or if the corresponding transition function is strong Feller in
the non-symmetric case, then the weak solutions obtained by stochastic regu-
larity are non-explosive for any starting point (cf. [16, Theorem 4.5.4(iv)] and
Remark 2.2). In particular, analytic conservativeness criteria that cover the
whole framework of this paper can be found in [17]. In this way, we provide
new analytic non-explosion criteria for the strong and pathwise unique solutions
of [19, Theorem 2.1] and [40, Theorem 1.1] which di�er from the probabilistic
non-explosion criteria presented in these papers.

2. PRELIMINARIES AND CONSTRUCTION
OF A HUNT PROCESS SATISFYING FUKUSHIMA'S

ABSOLUTE CONTINUITY CONDITION

2.1. Notations

As a �rst general remark on our notations, we shall follow the monographs
[16, 24, 25] and [21]. Thus should there be a notation that is not de�ned here,
it can be found in these references.
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For a locally compact separable metric space (E, d) with Borel σ-algebra
B(E) we denote the set of all B(E)-measurable f : E → R which are bounded,
or nonnegative by Bb(E), B+(E), respectively. The usual Lq-spaces Lq(E,µ),
q ∈ [1,∞] are equipped with Lq-norm ‖ · ‖Lq(E,µ) with respect to the measure
µ on E and Lqloc(E,µ) := {f | f · 1U ∈ Lq(E,µ), ∀U ⊂ E,U relatively compact
open}, where 1A denotes the indicator function of a set A ⊂ E. If A is a set
of functions f : E → R, we de�ne A0 := {f ∈ A | supp(f) : = supp(|f |dm) is
compact in E} and Ab : = A∩Bb(E). The inner product on L2(E,µ) is denoted
by (·, ·)L2(E,µ). As usual, we also denote the set of continuous functions on E,
the set of continuous bounded functions on E, the set of compactly supported
continuous functions in E by C(E), Cb(E), C0(E), respectively. The space
of continuous functions on E which vanish at in�nity is denoted by C∞(E).
For A ⊂ E let A denote the closure of A in E, Ac := E \ A. We write
Br(y) := {x ∈ E | d(x, y) < r}, r > 0, y ∈ E.

Let ∇f := (∂1f, . . . , ∂df) and ∆f :=
∑d

j=1 ∂jjf where ∂jf is the j-th

weak partial derivative of f on Rd and ∂ijf := ∂i(∂jf), i, j = 1, . . . , d. As
usual dx denotes Lebesgue measure on Rd and δx is the Dirac measure at x.
Let U ⊂ Rd, d ≥ 2 be an open set. The Sobolev space H1,q(U, dx), q ≥ 1 is
de�ned to be the set of all functions f ∈ Lq(U, dx) such that ∂jf ∈ Lq(U, dx),

j = 1, . . . , d, and H1,q
loc (U, dx) := {f | f · ϕ ∈ H1,q(U, dx), ∀ϕ ∈ C∞0 (U)}. Here

C∞0 (U) denotes the set of all in�nitely di�erentiable functions with compact
support in U . We denote the set of all locally H�older continuous functions
of order 1 − α on U by C1−α

loc (U), 0 < α < 1. For any F ⊂ Rd, F closed,
let C∞0 (F ) := {f : F → R | ∃g ∈ C∞0 (Rd), g|F = f}. If F is compact, we
also write C∞(F ) instead of C∞0 (F ). We equip Rd with the Euclidean norm
‖ · ‖ and the corresponding inner product 〈·, ·〉. Let f j(x) := xj , j = 1, . . . , d,
x = (x1, ..., xd) ∈ Rd, be the coordinate projections.

2.2. The conditions (H1) and (H2)

Throughout this paper, we consider a possibly non-symmetric, strongly
local, regular Dirichlet form (E , D(E)) on L2(E,m) where E is a locally com-
pact separable metric space and m is a positive Radon measure on (E,B(E))
with full support on E (see [16,24,25] and [21]). As usual we de�ne E1(f, g) :=
E(f, g) + (f, g)L2(E,m) for f, g ∈ D(E) and ‖ f ‖D(E) := E1(f, f)1/2, f ∈ D(E).

Let (Tt)t>0 (resp. (T̂t)t>0) and (Gα)α>0 (resp. (Ĝα)α>0 ) be the strongly conti-
nuous contraction L2(E,m)-semigroup (resp. cosemigroup) and resolvent (resp.
coresolvent) associated to (E , D(E)) and (L,D(L)) (resp. (L̂,D(L̂))) be the cor-
responding generator (resp. cogenerator) (see [21, Diagram 3, p. 39]). Then
(Tt)t>0 (resp. (T̂t)t>0) and (Gα)α>0 (resp. (Ĝα)α>0) are sub-Markovian (cf. [21,
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I. Section 4]). Here an operator S is called sub-Markovian if 0 ≤ f ≤ 1 implies
0 ≤ Sf ≤ 1. Then (Tt)t>0 (resp. (Gα)α>0) restricted to L1(E,m) ∩ L∞(E,m)
can be extended to strongly continuous contraction semigroups (resp. con-
traction resolvents) on all Lr(E,m), r ∈ [1,∞). We denote the corresponding
operator families again by (Tt)t>0 and (Gα)α>0 and let (Lr, D(Lr)) be the cor-
responding generator on Lr(E,m). Furthermore by [21, I. Corollary 2.21], it
holds that (Tt)t>0 is analytic on L2(E,m) and then by Stein interpolation (cf.
e.g. [2, Lecture 10, Theorem 10.8]) (Tt)t>0 is also an analytic semigroup on
Lr(E,m) for all r ∈ (2,∞). Moreover, (Tt)t>0 can be de�ned as a semigroup
of contractions on L∞(E,m), which is in general not strongly continuous. We
denote the corresponding semigroup again by (Tt)t>0.

We consider the condition

(H1) There exists a B ((0,∞)) ⊗ B(E) ⊗ B(E) measurable non-negative
map pt(x, y) such that

(2.1) Ptf(x) :=

∫
E
pt(x, y) f(y)m(dy) , t > 0, x ∈ E, f ∈ Bb(E),

is a (temporally homogeneous) sub-Markovian transition function (see [12,
Section 1.2]) and an m-version of Ttf if f ∈ L2(E,m)b.

Here pt(x, y) is called the transition kernel density or heat kernel. Taking
the Laplace transform of p·(x, y), we see that (H1) implies that there exists a
B(E)⊗ B(E) measurable non-negative map rα(x, y) such that

Rαf(x) :=

∫
E
rα(x, y) f(y)m(dy) , α > 0, x ∈ E, f ∈ Bb(E),

is an m-version of Gαf if f ∈ L2(E,m)b. Here rα(x, y) is called the resolvent
kernel density. For a signed Radon measure µ on E, let us de�ne

Rαµ(x) =

∫
E
rα(x, y)µ(dy) , α > 0, x ∈ E,

whenever this makes sense. Throughout this paper, we set P0 := id.

Furthermore, assuming that (H1) holds, we can consider the condition

(H2) There exists a Hunt process with transition function (Pt)t≥0.

We recall that (H2) means that there exists a Hunt process

M = (Ω,F , (Ft)t≥0, ζ, (Xt)t≥0, (Px)x∈E∆
),

with state space E and the lifetime ζ := inf{t ≥ 0 | Xt = ∆} such that
Pt(x,B) := Pt1B(x) = Px(Xt ∈ B) for any x ∈ E, B ∈ B(E), t ≥ 0 (cf. [16]).
Here, ∆ is the cemetery point and as usual any function f : E → R is extended
to {∆} by setting f(∆) := 0. E∆ := E ∪{∆} is the one-point compacti�cation
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if E is not already compact, if E is compact then ∆ is added to E as an isolated
point.

By [21, V. 2.12 (ii)], it follows that (E , D(E)) is strictly quasi-regular.
Then, by [21, V.2.13] there exists a Hunt process

(2.2) M̃ = (Ω̃, F̃ , (F̃)t≥0, ζ̃, (X̃t)t≥0, (P̃x)x∈E∪{∆})

(strictly properly) associated with (E , D(E)). It is here important to note that
the transition function of M̃ will in general satisfy (2.1) only for m-a.e. x ∈ E
(or quasi-every x ∈ E), even if (Tt)t≥0 is strong Feller, i.e. Ttf has a continuous
m-version for any f ∈ Bb(E), because the Hunt process M̃ is unique only for
quasi-every (hence in particular m-a.e) starting point (see for instance [16,
Theorems 4.2.8 and A.2.8.]). Therefore a Hunt process as in (H2) has to be
explicitly constructed from the transition function in (H1). This will be done
in Subsection 2.4 below.

De�nition 2.1. If (H1) and (H2) hold, then we say that M satis�es the
absolute continuity condition (cf. [16, (4.2.9)] and also [25, Theorem 3.5.4 (ii)]).

Remark 2.2. Let M satisfy the absolute continuity condition. Suppose
(E , D(E)) is conservative and (Pt)t≥0 is strong Feller, i.e. for t > 0 we have
Pt(Bb(E)) ⊂ Cb(E). Then, since m has full support, one can easily see that

Px(ζ =∞) = 1, ∀x ∈ E.

2.3. The existence of a transition kernel density

In this subsection, we illustrate two methods to �nd a transition kernel
density as in (H1). The �rst method is from [33]. The second method depends
on elliptic regularity results. In the symmetric case in [4] it has been shown
in a nice way how to obtain (H1) (and more) starting from an embedding of
D(Lp) for some p > 1 into the space of continuous functions on compact subsets
of E. The latter is naturally implied by elliptic regularity results via Sobolev
embedding. Instead of formalizing the results of [4] to the non-symmetric case
in Subsection 2.3.2 right after Proposition 2.8 below, we follow a toy example
that we continue in course of the subsequent sections.

2.3.1. SYMMETRIC DIRICHLET FORMS REPRESENTED BY A CARR�E DU CHAMP

Throughout this subsection, we assume that (E , D(E)) is symmetric. Then
(E , D(E)) can be written as

E(f, g) =
1

2

∫
E
dµ〈f,g〉, f, g ∈ D(E),
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where µ〈·,·〉 is a positive symmetric bilinear form on D(E)×D(E) with values in
the signed Radon measures on E, called energy measures. The positive measure
µ〈f,f〉 can be de�ned via the formula∫

E
φdµ〈f,f〉 = 2E(f, φf)− E(f2, φ),

for every f ∈ D(E)b and every φ ∈ D(E) ∩ C0(E). Let D(E)loc be the set of
all measurable functions f on E for which on every relatively compact open
set G ⊂ E there exists a function g ∈ D(E) with f = g m-a.e on G. By
an approximation argument we can extend the quadratic form f 7→ µ〈f,f〉 to
D(E)loc =

{
f ∈ L2

loc(E,m) |µ〈f,f〉 is a Radon measure
}
. By polarization we

then obtain for f, g ∈ D(E)loc a signed Radon measure

µ〈f,g〉 =
1

4
(µ〈f+g,f+g〉 − µ〈f−g,f−g〉).

For these properties of energy measures we refer to [16], [20, Proposition 1.4.1],
and [23] (cf. [33, Appendix]). In this article, whenever E is symmetric, we will
assume that it admits a carr�e du champ

Γ : D(E)×D(E)→ L1(E,m)

as in [10, De�nition 4.1.2]. This means

µ〈f,g〉 = Γ(f, g) dm

i.e. µ〈f,g〉 is absolutely continuous with respect to m with density Γ(f, g) for
any f, g ∈ D(E). The energy measures µ〈f,f〉 or equivalently the carr�e du champ
operator, de�ne in an intrinsic way a pseudo metric γ on E by

γ(x, y) = sup
{
f(x)− f(y) | f ∈ D(E)loc ∩ C(E), Γ(f, f) ≤ 1m-a.e. on E

}
,

(cf. [5]). We de�ne the balls with respect to the intrinsic metric by

B̃r(x) = {y ∈ E | γ(x, y) < r}, x ∈ E, r > 0.

De�nition 2.3. (i) (E , D(E)) is called strongly regular if γ(·, ·) is a metric
on E whose topology coincides with the original one.

(ii) We say the completeness property holds, if for all balls B̃2r(x) ⊂ E, x ∈
E, r > 0, the closed balls B̃r(x) are complete (or equivalently, compact).

(iii) We say the doubling property holds if there exists a constant N= N(E)
such that for all balls B̃2r(x) ⊂ E

m(B̃2r(x)) ≤ 2Nm(B̃r(x)).

(iv) We say the (scaled) weak Poincar�e inequality holds, if there exists a con-
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stant Cp = Cp(E) such that for all balls B̃2r(x) ⊂ E∫
B̃r(x)

|f − f̃x,r|2 dm ≤ Cp r2

∫
B̃2r(x)

Γ(f, f) dm, ∀f ∈ D(E),

where f̃x,r = 1
m(B̃r(x))

∫
B̃r(x) f dm.

Suppose (E , D(E)) satis�es the properties (i)-(iv) of De�nition 2.3. Then
by [33, p. 286 A)] with Y = E, there exists a jointly continuous transition
kernel density pt(x, y), locally H�older continuous in (t, x, y) ∈ (0,∞) × E × E
(see [33, Proposition 3.1)]), such that

(2.3) Ptf(x) :=

∫
E
pt(x, y)f(y)m(dy), t > 0, x, y ∈ E, f ∈ Bb(E)

is an m-version of Ttf if f ∈ L2(E,m)b. In particular, condition (H1) is satis-
�ed. Furthermore, we obtain from [33, Corollary 4.2)] the following estimate of
transition kernel density:

Theorem 2.4. Suppose (E , D(E)) satis�es the properties (i)-(iv) of De�-
nition 2.3. Then, given any ε > 0, for all points x, y ∈ E and all t > 0

(2.4) pt(x, y) ≤ C 1√
m(B̃√t(x))

· 1√
m(B̃√t(y))

· exp

(
−γ

2(x, y)

(4 + ε)t

)
,

where C is a constant depending only on N = N(E) and Cp = Cp(E).

Using Theorem 2.4, exactly as in [30, Proposition 3.3], we can show:

Proposition 2.5. Suppose (E , D(E)) satis�es the properties (i)�(iv) of
De�nition 2.3. Then:

(i) (Pt)t≥0 and (Rα)α>0) are strong Feller.

(ii) (H1) and (H2)′(iii), (iv) from Subsection 2.4.2 below hold for (Pt)t≥0.

(iii) Suppose E = Rd and C−1‖x−y‖ ≤ γ(x, y) ≤ C‖x−y‖ for some constant
C ≥ 1 and any x, y ∈ Rd. Then Pt(L1(Rd,m)0) ⊂ C∞(Rd).

According to [32, Theorem 4], [34, Theorems 3.1(i),(ii), and 3.6], we have
the following conservativeness criterion:

Theorem 2.6. Suppose (E , D(E)) satis�es properties (i) and (ii) of De�-
nition 2.3 and that γ(x, y) < ∞ for all x, y ∈ E. Then (E , D(E)) is conserva-
tive, if ∫ ∞

1

r

log
(
m(B̃r(x0)

) dr =∞,

where x0 ∈ E is arbitrary but �xed.
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2.3.2. USING ELLIPTIC REGULARITY

We consider the following conditions (A1)�(A3) in dimension d ≥ 2:

(A1) ρ = ξ2, ξ ∈ H1,2
loc (Rd, dx), ρ > 0 dx-a.e. and

‖∇ρ‖
ρ
∈ Lploc(R

d,m), m := ρdx,

p := d + ε for some ε > 0, aij = aji ∈ H1,p
loc (Rd, dx), 1 ≤ i, j ≤ d

and the matrix A = (aij)1≤i,j≤d is locally strictly elliptic dx-a.e. on Rd,
i.e. for each compact set K ⊂ Rd, there exists some κK > 0 such that
κK‖ξ‖2 ≤ 〈A(x)ξ, ξ〉, ∀ξ ∈ Rd, dx-a.e. x ∈ K.

By (A1) the symmetric positive de�nite bilinear form

E0(f, g) :=
1

2

∫
Rd
〈A∇f,∇g〉 dm, f, g ∈ C∞0 (Rd)

is closable in L2(Rd,m) and its closure (E0, D(E0)) is a symmetric, strongly
local, regular Dirichlet form. We further assume

(A2) B : Rd → Rd, ‖B‖ ∈ Lploc(R
d,m) where p is the same as in (A1)

and ∫
Rd
〈B,∇f〉 dm = 0, ∀f ∈ C∞0 (Rd),

and

(A3)
∣∣∫

Rd〈B,∇f〉 g ρ dx
∣∣ ≤ c0 E0

1 (f, f)1/2 E0
1 (g, g)1/2, ∀f, g ∈ C∞0 (Rd),

where c0 is some constant (independent of f and g).

Next, we consider the non-symmetric bilinear form

(2.5) E(f, g) :=
1

2

∫
Rd
〈A∇f,∇g〉 dm−

∫
Rd
〈B,∇f〉 g dm, f, g ∈ C∞0 (Rd)

in L2(Rd,m). Then by (A1)-(A3) (E , C∞0 (Rd)) is closable in L2(Rd,m) and
the closure (E , D(E)) is a non-symmetric Dirichlet form (cf. [21, II. 2.d)]), which
is strongly local and regular.

We now state the elliptic regularity result [4, Theorem 5.1], which is based
on results of [7], [8], but improves them. [4, Theorem 5.1] is formulated for
general open subsets U ⊂ Rd, but we shall only be concerned with U = Rd.

Proposition 2.7. Let d ≥ 2 and µ a locally �nite (signed) Borel measure
on Rd that is absolutely continuous with respect to the Lebesgue measure dx on
Rd. Suppose A = (aij)1≤i,j≤d is as in (A1). Let either hi, c ∈ Lploc(R

d, dx) or
hi, c ∈ Lploc(R

d, µ) and let f ∈ Lploc(R
d, dx). Assume that
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∫
Rd

( d∑
i,j=1

aij∂ijϕ+
d∑
i=1

hi∂iϕ+ cϕ
)
dµ =

∫
Rd
ϕf dx, ∀ϕ ∈ C∞0 (Rd),

where hi, c are locally µ-integrable. Then µ has a density in H1,p
loc (Rd) that is

locally H�older continuous.

Additionally, we restate Morrey's estimate in our setting (see [9, Theo-
rem 1.7.4]).

Proposition 2.8. Assume p > d ≥ 2. Let V be a bounded domain in Rd,
h = (h1, ..., hd) : V → Rd and c, e : V → R such that

hi ∈ Lp(V, dx), 1 ≤ i ≤ d, and c, e ∈ Lq(V, dx) for q :=
dp

d+ p
> 1.

Let aij = aji, aij ∈ H1,p
loc (Rd, dx) for all 1 ≤ i, j ≤ d and κ−1 ‖ξ‖2 ≤

〈A(x)ξ, ξ〉 ≤ κ‖ξ‖2, ∀ξ ∈ Rd, x ∈ V for some κ ≥ 1. Assume that u ∈ H1,p(V )
is a solution of∫

V

d∑
i=1

(
∂iϕ
( d∑
j=1

aij∂ju+ hiu
))

+ ϕ(cu+ e) dx = 0, ∀ϕ ∈ C∞0 (V ),

Then for every domain V ′ with V ′ ⊂ V ′ ⊂ V , we obtain the estimate

‖u‖H1,p(V ′) ≤ c0(‖e‖Lq(V,dx) + ‖u‖L1(V,dx)),

where c0 <∞ is some constant independent of e and u.

The elliptic regularity results of Propositions 2.7 and 2.8 have been applied
in the symmetric case, i.e. B ≡ 0 in [4] and in particular (H1), (H2), up to
the solution of a corresponding martingale problem have been derived in this
situation. We refer the interested reader to the mentioned article. Propositions
2.7 and 2.8 and the elliptic regularity results of [7], [8], can also be applied in
the non-symmetric case. This has been done in case A = (ai,j)1≤i,j≤d is the
identity matrix in [28] and we will consider this case as a toy example that
we will continue throughout this article. From now on up to the end of this
subsection, we shall hence assume that

(2.6) aij = δij , 1 ≤ i, j ≤ d,

where δij ∈ {0, 1} is the Kronecker symbol, i.e. A is the identity matrix.

Since by (A1), (A2),
∥∥∥∇ρ2ρ

∥∥∥, ‖B‖ ∈ Lploc(Rd,m), we get C∞0 (Rd) ⊂ D(Lr)

for any r ∈ [1, p] and

(2.7) Lru =
1

2
∆u+ 〈∇ρ

2ρ
+B,∇u〉, u ∈ C∞0 (Rd), r ∈ [1, p].
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In particular ∫
Rd
Ludm = 0, u ∈ C∞0 (Rd).

Thus by Proposition 2.7 and Sobolev embedding:

Corollary 2.9. ρ is in H1,p
loc (Rd, dx) and has hence a continuous dx-

version in C
1−d/p
loc (Rd).

We shall always consider the continuous dx-version of ρ and denote it
also by ρ. Under the assumptions (A1)�(A3) we apply Proposition 2.7 and
Proposition 2.8 to∫

(α− L̂)u Gαg ρ dx =

∫
u g ρ dx, ∀u ∈ C∞0 (Rd),

where

L̂u =
1

2
∆u+ 〈∇ρ

2ρ
−B,∇u〉.

Doing this, we get (cf. [28]):

Corollary 2.10. Let α > 0, t > 0, and r ∈ [p,∞). Then:

(i) For g ∈ Lr(Rd,m), we have

ρ Gαg ∈ H1,p
loc (Rd, dx)

and for any open balls B′ ⊂ B′ ⊂ B ⊂ B ⊂ {ρ > 0} there exists cB,α ∈
(0,∞), independent of g, such that

(2.8) ‖ ρ Gαg ‖H1,p(B′,dx) ≤ cB,α
(
‖Gαg‖L1(B,m) + ‖g‖Lp(B,m)

)
.

(ii) For u ∈ D(Lr), we have

ρ Ttu ∈ H1,p
loc (Rd, dx)

and for any open balls B′ ⊂ B′ ⊂ B ⊂ B ⊂ {ρ > 0} there exists cB ∈
(0,∞) (independent of u and t) such that

(2.9) ‖ρ Ttu‖H1,p(B′,dx) ≤ cB
(
‖Ttu‖L1(B,m) + ‖Tt(1− Lr)u‖Lp(B,m)

)
≤ cB

(
m(B)

r−1
r ‖u‖Lr(Rd,m) +m(B)

r−p
rp ‖(1− Lr)u‖Lr(Rd,m)

)
.

(iii) Let f ∈ Lr(Rd,m). Then the above statements still hold with (2.9) repla-
ced by

‖ρ Ttf‖H1,p(B′,dx) ≤ c̃B (1 + t−1)‖f‖Lr(Rd,m),

where c̃B ∈ (0,∞) (independent of f , t).
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Remark 2.11. By (2.9) and Sobolev imbedding, for r ∈ [p,∞), R > 0 the
set

{Ttu | t > 0, u ∈ D(Lr), ‖u‖Lr(Rd,m) + ‖Lru‖Lr(Rd,m) ≤ R}
is equicontinuous on {ρ > 0}.

Now by Corollaries 2.9, 2.10, and Remark 2.11, exactly as in [1, section 3]
(cf. [28]), we obtain:

Theorem 2.12. (i) There exists a transition kernel density pt(·, ·) on the
open set

E := {ρ > 0}
such that

Ptf(x) :=

∫
Rd
f(y)pt(x, y)m(dy), x ∈ E, t > 0

is a (temporally homogeneous) sub-Markovian transition function and an
m-version of Ttf for any f ∈ ∪r≥pLr(Rd,m).

(ii) (Pt)t>0 is a semigroup of kernels on E which is Lr(Rd,m)-strong Feller
for all r ∈ [p,∞), i.e.

Ptf ∈ C(E), ∀f ∈ ∪r≥pLr(Rd,m), ∀t > 0.

(iii)
lim
t→0

Pt+sf(x) = Psf(x), ∀s ≥ 0, x ∈ E, f ∈ C∞0 (Rd).

(iv) (Pt)t>0 is a measurable semigroup on E, i.e. for f ∈ B+(Rd) the map
(t, x) 7→ Ptf(x) is B([0,∞)× E)-measurable.

(v) There exists a resolvent kernel density rα(·, ·) de�ned on E such that

Rαf(x) :=

∫
f(y) rα(x, y)m(dy), x ∈ E, α > 0,

satis�es Rαf=Gαf m-a.e for any f ∈∪r≥pLr(Rd,m) and αRα1(x) ≤ 1.

(vi) (Rα)α>0 is a resolvent of kernels on E and (Rα)α>0 is Lr(Rd,m)-strong
Feller for all r ∈ [p,∞), i.e. Rαf ∈ Cb(E) for all f ∈ Bb(Rd), and
Rαf ∈ C(E) for all f ∈ ∪r≥pLr(Rd,m).

(vii) Let α > 0. Then for all f ∈ Bb(Rd) ∪ B+(Rd) and all x ∈ E

Rαf(x) =

∫ ∞
0

e−αtPtf(x) dt.

(viii) For all u ∈ C∞0 (Rd)

lim
α→∞

αRαu(x) = u(x) ∀x ∈ E.

Note that applying Corollary 2.10, we obtain in Theorem 2.12 a locally
H�older continuous m-version Ptf of Ttf only on E = {ρ > 0}, because the
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product ρTtf has a locally H�older continuous m-version and ρ is H�older con-
tinuous. The same holds for the locally H�older continuous m-version Rαf of
Gαf .

In order to show that condition (H1) holds (on E = {ρ > 0}) we still need
some preparations. Consider the strict capacity CapE of the non-symmetric
Dirichlet form (E , D(E)) as de�ned in [21, V.2.1] and [38, De�nition 1], i.e.

CapE = cap1,Ĝ1ϕ

for some �xed ϕ ∈ L1(Rd,m)∩Bb(Rd), 0 < ϕ ≤ 1. Let Cap be the capacity re-
lated to the symmetric Dirichlet form (E0, D(E0)) as de�ned in [16, Section 2.1].
It is known from [14, Theorem 2] that Cap({ρ = 0}) = 0. Then the following
has been shown in [28, Lemma 2.10]:

Lemma 2.13. Let N ⊂ Rd. Then

Cap(N) = 0⇒ CapE(N) = 0.

In particular CapE({ρ = 0}) = 0.

The result of Lemma 2.13 is intuitively clear by [16, Lemma 2.2.7(ii)] and
condition (A2). In particular, it implies that for the Hunt process (2.2) it
holds P̃x(σ̃Ec < ∞) = 0 for m-a.e. x ∈ Rd (actually for E-q.e. x, see [21, IV.
Proposition 5.30]), where σ̃Ec := inf{t > 0 | X̃t ∈ Ec}.

Let (EE , D(EE)) denote the part Dirichlet form on E of (E , D(E)) given by
(2.5) with A = (aij)1≤i,j≤d satisfying (2.6). Let (TEt )t>0 denote its L2(E,m)-
semigroup. By [25, Theorem 3.5.7] the part process (X̃E

t )t≥0 of the Hunt process
(2.2) is associated to (EE , D(EE)). Hence for any f ∈ Bb(E)0 and m-a.e. x ∈ E

(2.10) TEt f(x) = Ẽx[f(X̃E
t ), t < σ̃Ec ] = Ẽx[f(X̃t), t < σ̃Ec ] = Ẽx[f(X̃t)]

= Ttf(x) =

∫
E
f(y) pt(x, y)m(dy),

where the second equality follows from the de�nition of part process, the third
since CapE(E

c) = 0 and the last since f is in particular in Lp(E,m). Extending

Ptf(x) :=

∫
E
f(y)pt(x, y)m(dy), x ∈ E, t > 0

to f ∈ L1(E, pt(x, ·) dm) ⊃ L2(E,m)b, we see that condition (H1) holds for
the part Dirichlet form (EE , D(EE)).

Remark 2.14. By using elliptic regularity results we do not necessarily
obtain condition (H1) for the original Dirichlet form (E , D(E)) on Rd. Instead,
we have to exclude a capacity zero set from the state space. The new state
space E = Rd \ {ρ = 0} will then be an invariant set for the corresponding sto-
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chastic process that will be constructed and identi�ed below in subsections 2.4
(see Theorem 2.21) and 3.2.1, i.e. we will be able to start and identify the
corresponding SDE for every point in E and the process will remain in E until
its lifetime. This is in contrast to the construction via the Feller method which
can allow entrance boundaries, i.e. capacity zero sets from which the process
can be started and identi�ed but to which it will never return. As an example,
we mention for instance Proposition 3.13(i). Here we can start and identify the
SDE (3.8) for every starting point x ∈ Rd, α ∈ (−d+ 1, 1), but by [16, Exam-
ple 3.3.2] Cap({0}) = 0, if and only if α ∈ [−d+ 2, d). Thus in the situation of
Proposition 3.13(i), 0 is an entrance boundary for any α ∈ [−d+ 2, 1).

2.4. Construction of a Hunt process

with given transition kernel density

In this subsection, we illustrate two methods to obtain M as in De�nition
2.1 starting from assumption (H1). Concerning the second method in Sub-
section 2.4.2, we continue our toy example from Subsection 2.3.2 to explain the
non-symmetric case.

2.4.1. THE FELLER METHOD

Assuming (H1), a Hunt process as in (H2) can be constructed by means
of a Feller semigroup. For the de�nition of Feller semigroup, we refer to [12,
Section 2.2].

Remark 2.15. Under (H1), (Pt)t≥0 is a Feller semigroup, if

(i) ∀f ∈ C∞(E), limt→0 Ptf = f uniformly on E,

(ii) PtC∞(E) ⊂ C∞(E) for each t > 0.

It is well known that the condition of uniform convergence in Remark
2.15 (i) can be relaxed to pointwise convergence (see for instance [12, Section
2.2 Exercise 4.]). The conditions of Remark 2.15 can be further relaxed to the
conditions of the following lemma which are suitable for us.

Lemma 2.16. Suppose (H1) and that

(i) limt→0 Ptf(x) = f(x) for each x ∈ E and f ∈ C0(E),

(ii) PtC0(E) ⊂ C∞(E) for each t > 0.

Then (Pt)t≥0 is a Feller semigroup. In particular (H2) holds (cf. [6, (9.4)
Theorem]).

Remark 2.17. One can use heat kernel estimates for pt(x, y) to check
the assumptions of Lemma 2.16(i), (ii) (see [30, proofs of Proposition 3.3(iii)
and Lemma 3.6(i)] and the corresponding statement here in Lemma 3.12(i) in
Section 3.1 below).
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2.4.2. THE DIRICHLET FORM METHOD

The second method to obtain a Hunt process as in De�nition 2.1 starting
from assumption (H1) is by a method that we call the Dirichlet form method.

2.4.2.1. The symmetric case. Throughout this subsection let (E , D(E))
be symmetric. We assume further that E admits a carr�e du champ Γ : D(E)×
D(E)→ L1(E,m) as in Subsection 2.3.1.
Consider the condition

(H2)′ We can �nd {un | n ≥ 1} ⊂ D(L) ∩ C0(E) satisfying:

(i) For all ε ∈ Q ∩ (0, 1) and y ∈ D, where D is any given countable
dense set in E, there exists n ∈ N such that un(z) ≥ 1, for all
z ∈ B ε

4
(y) and un ≡ 0 on E \B ε

2
(y).

(ii) R1

(
[(1 − L)un]+

)
, R1

(
[(1 − L)un]−

)
, R1

(
[(1 − L1)u2

n]+
)
, R1

(
[(1 −

L1)u2
n]−
)
are continuous on E for all n ≥ 1.

(iii) R1C0(E) ⊂ C(E).

(iv) For any f ∈ C0(E) and x ∈ E, the map t 7→ Ptf(x) is right-
continuous on (0,∞).

Note that L1u
2
n, n ≥ 1, in (H2)′(ii) is well-de�ned, since D(L1)b is an

algebra by [10, I. Theorem 4.2.1] and D(L)0,b ⊂ D(L1)b by [30, Lemma 2.5(ii)].
The following is the main result of [30, Section 2.1.2]. It is a re�nement of the
results obtained in a concrete symmetric situation in [1, Section 4] to the case of
strongly local regular symmetric Dirichlet forms that admit a carr�e du champ:

Proposition 2.18. Assume (H1) holds. Then (H2)′ implies (H2).

By an obvious application of Proposition 2.18, we obtain:

Remark 2.19. If (Tt)t≥0 is strong Feller and (H2)′(i)-(ii) and (H2)′(iv)
hold for the corresponding transition function (Pt)t≥0 and resolvent (Rα)α>0,
then (H1) and (H2) hold.

2.4.2.2. The non-symmetric case. This subsection is a continuation
of Subsection 2.3.2 where we considered the Dirichlet form (E , D(E)) of (2.5)
with A = (δij). We consider again the strict capacity CapE and the Hunt
process (2.2). Due to the properties of smooth measures with respect to CapE
in [38, Section 3] it is possible to consider the work [36] with capϕ (as de�ned
in [36]) replaced by CapE . In particular [36, Theorem 3.10 and Proposition 4.2]
apply with respect to the strict capacity CapE and therefore the paths of M̃ are
continuous P̃x-a.s. for strictly E-q.e. x ∈ Rd on the one-point-compacti�cation
Rd∆ of Rd with ∆ as point at in�nity. We may hence assume that

(2.11) Ω̃ = {ω = (ω(t))t≥0 ∈ C([0,∞),Rd∆) | ω(t) = ∆ ∀t ≥ ζ̃(ω)}
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and
X̃t(ω) = ω(t), t ≥ 0.

Since CapE({ρ = 0}) = 0 by Lemma 2.13, we obtain (cf. [28]):

Lemma 2.20. Let (Fk)k≥1 be an increasing sequence of compact subsets
of E := {ρ > 0} with ∪k≥1Fk = E and such that Fk ⊂ F̊k+1, k ≥ 1(here F̊
denotes the interior of F ). Then

P̃x(Ω̃0) = 1 for strictly E-q.e. x ∈ E,

where
Ω̃0 := Ω̃ ∩ {ω | ω(0) ∈ E ∪ {∆} and lim

k→∞
σE\Fk(ω) ≥ ζ(ω)}.

Given the transition function (Pt)t≥0 we can construct M with continuous
sample paths in E∆ following the line of arguments in [1, Section 4] using
in particular Lemma 2.20 and our further previous preparations (cf. [28] for
details).

Theorem 2.21. There exists a Hunt process

M = (Ω,F , (Ft)t≥0, ζ, (Xt)t≥0, (Px)x∈E∆
)

with state space E, having the transition function (Pt)t≥0 as transition semi-
group. In particular (H2) holds and M satis�es the absolute continuity condi-
tion with respect to the part Dirichlet form (EE , D(EE)), since by (2.10)

TEt f = Ptf m-a.e. ∀t > 0, f ∈ L2(E,m)b.

Moreover, M has continuous sample paths in the one point compacti�cation E∆

of E with the cemetery ∆ as point at in�nity.

3. POINTWISE WEAK EXISTENCE OF SINGULAR SDES

ASSOCIATED TO DIRICHLET FORMS

Once having constructed (for instance through the steps (H1) and (H2))
a Hunt process M that satis�es the absolute continuity condition with respect
to (E , D(E)), we want to identify the corresponding stochastic di�erential equa-
tion. We present two ways for the identi�cation. The �rst is the well-known
strict Fukushima decomposition. The second is realized by direct stochastic
calculus.

3.1. The strict Fukushima decomposition

This subsection refers to the monograph [16], hence some of its standard
notations may be adopted below without de�nition. Throughout this sub-
section, we assume that (E , D(E)) is symmetric and that (H1) and (H2) hold.
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In some cases, we will apply the strict Fukushima decomposition (i.e.
Proposition 3.3 below) on an open subset B ⊂ E. Therefore, we need �rst to
state some de�nitions and properties in a local setting.

De�nition 3.1. Let B be an open set in E. For x ∈ B, t ≥ 0, α > 0 and
p ∈ [1,∞) let

• σBc := inf{t > 0 | Xt ∈ Bc}, DBc := inf{t ≥ 0 | Xt ∈ Bc},
• PBt f(x) := Ex[f(Xt); t < σBc ] , f ∈ Bb(B),

• RBα f(x) := Ex
[ ∫ σBc

0 e−αsf(Xs) ds
]
, f ∈ Bb(B) ,

• D(EB) := {u ∈ D(E) | u = 0 E-q.e on Bc}.
• EB := E |D(EB)×D(EB).

• L2(B ,m) := {u ∈ L2(E,m) | u = 0, m-a.e. on Bc}.
• ||f ||pp,B :=

∫
B |f |

p dm.

• ||f ||∞,B := inf
{
c > 0 |

∫
B 1{ |f |>c } dm = 0

}
.

• EB1 (f, g) := EB(f, g) +
∫
B fg dm, f, g ∈ D(EB).

• ‖ f ‖D(EB) := EB1 (f, f)1/2, f ∈ D(EB).

(EB, D(EB)) is called the part Dirichlet form of (E , D(E)) on B. It is
a regular Dirichlet form on L2(B,m) (cf. [16, Section 4.4]). Let (TBt )t>0 and
(GBα )α>0 be the L2(B,m)-semigroup and resolvent associated to (EB, D(EB)).
Then PBt f, R

B
α f arem-versions of TBt f,G

B
α f , respectively for any f ∈L2(B,m)b.

Since PBt 1A(x) ≤ Pt1A(x) for any A ∈ B(B), x ∈ B and m has full support on
E, A 7→ PBt 1A(x), A ∈ B(B) is absolutely continuous with respect to 1B ·m.
Hence there exists a (measurable) transition kernel density pBt (x, y), x, y ∈ B,
such that

(3.1) PBt f(x) =

∫
B
pBt (x, y) f(y)m(dy), t > 0 , x ∈ B

for f ∈ Bb(B). Correspondingly, there exists a (measurable) resolvent kernel
density rBα (x, y), such that

RBα f(x) =

∫
B
rBα (x, y) f(y)m(dy) , α > 0, x ∈ B

for f ∈ Bb(B). For a signed Radon measure µ on B, let us de�ne

RBαµ(x) =

∫
B
rBα (x, y)µ(dy) , α > 0, x ∈ B

whenever this makes sense. The process de�ned by

XB
t (ω) =

{
Xt(ω), 0 ≤ t < DBc(ω)

∆, t ≥ DBc(ω)
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is called the part process corresponding to EB and is denoted by M|B. M|B is
a Hunt process on B (see [16, p.174 and Theorem A.2.10]). In particular, by
(3.1) M|B satis�es the absolute continuity condition on B.

A positive Radon measure µ on B is said to be of �nite energy integral if∫
B
|f(x)|µ(dx) ≤ C

√
EB1 (f, f), f ∈ D(EB) ∩ C0(B),

where C is some constant independent of f . A positive Radon measure µ on B
is of �nite energy integral (on B) if and only if there exists a unique function
UB1 µ ∈ D(EB) such that

EB1 (UB1 µ, f) =

∫
B
f(x)µ(dx),

for all f ∈ D(EB) ∩ C0(B). UB1 µ is called 1-potential of µ. In particular,
RB1 µ is a version of UB1 µ (see e.g. [16, Exercise 4.2.2]). The measures of �nite
energy integral are denoted by SB0 . We further de�ne the supersmooth measures
SB00 := {µ ∈ SB0 | µ(B) <∞, ‖UB1 µ‖∞,B <∞}. A positive Borel measure µ on
B is said to be smooth in the strict sense if there exists a sequence (Ek)k≥1 of
Borel sets increasing to B such that 1Ek · µ ∈ SB00 for each k and

Px( lim
k→∞

σB\Ek ≥ ζ) = 1 , ∀x ∈ B.

The totality of the smooth measures in the strict sense is denoted by SB1 (see

[16]). If µ ∈ SB1 , then there exists a unique A ∈ A+,B
c,1 with µ = µA, i.e. µ is

the Revuz measure of A (see [16, Theorem 5.1.7]), such that

Ex
[ ∫ ∞

0
e−t dAt

]
= RB1 µA(x) , ∀x ∈ B.

Here, A+,B
c,1 denotes the positive continuous additive functionals on B in the

strict sense. If B = E, we omit the superscript B and simply write U1, S0, S00,
S1, and A

+
c,1.

For later purpose we state some auxiliary result (see [30, Lemma 2.12]).

Lemma 3.2. For k ∈ Z, let µAk , µA ∈ SB1 be the Revuz measures associated

with Ak, A ∈ A+,B
c,1 , respectively. Suppose that µA =

∑
k∈Z µAk . Then A =∑

k∈ZA
k.

Now we restate the strict Fukushima decomposition for continuous functi-
ons (cf. [16, Theorem 5.5.5]) which holds under our present assumptions on
(E , D(E)):

Proposition 3.3. Suppose that a function f satis�es the following con-
ditions:
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(i) f ∈ D(E)b,loc, f is continuous on E
(ii) 1G · µ〈M [f ]〉 ∈ S00 for any relatively compact open set G ⊂ E
(iii) ∃ν = ν(1) − ν(2) with 1G · ν(1), 1G · ν(2) ∈ S00 for any relatively compact
open set G ⊂ E and

E(f, g) =

∫
E
g dν, ∀g ∈ C ,

for some special standard core C of E.
Let A(1), A(2) and B be the positive continuous additive functional in the

strict sense with Revuz measures ν(1), ν(2) and µ<M [f ]>, respectively.
Then,

f(Xt)− f(X0) = M
[f ]
t +N

[f ]
t , Px-a.s. ∀x ∈ E.

Here,
N [f ] = −A(1) +A(2), Px-a.s. ∀x ∈ E,

and M [f ] is a local additive functional in the strict sense such that, for any
relatively compact open set G ∈ E,

Ex(M
[f ]
t∧σGc ) = 0, ∀x ∈ G,

Ex((M
[f ]
t∧σGc )

2) = Ex(Bt∧σGc ), ∀x ∈ G.

Applied to concrete situations Proposition 3.3(iii) will serve for the iden-
ti�cation of the drift of the corresponding SDE, since ν can be interpreted

as −Lf dm at least if f ∈ D(L), so that N
[f ]
t =

∫ t
0 Lf(Xs)ds since h dm is

uniquely associated to (
∫ t

0 h(Xs)ds)t≥0 via the Revuz correspondence for any
h ∈ L1

loc(E,m). But of course Proposition 3.3(iii) identi�es the drift also if it is
not absolutely continuous with respect to ds, for instance if it is a local time.

In order to handle quadratic variations and general drifts described through
signed supersmooth measures by verifying Proposition 3.3(ii) and (iii), we use
the following key observation:

Proposition 3.4. Let µ be a positive Radon measure on E, G ⊂ E some
relatively compact open set, and rG1 ∈ C(E). Suppose that

(3.2)

∫
G
r1(·, y)µ(dy) ≤ rG1

m-a.e. on E and that additionally at least one of the following conditions is
satis�ed:

(i)
∫
G r1(·, y)µ(dy) ∈ D(E), i.e. 1G · µ ∈ S0,

(ii) (3.2) holds µ-a.e. on G,

(iii)
∫
G r1(·, y)µ(dy) ∈ L1(G,µ), i.e. R1(1G · µ) ∈ L1(G,µ).

Then 1G · µ ∈ S00. In particular, if this holds for any relatively compact open
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set G, then µ ∈ S1 with respect to a sequence of open sets (Ek)k≥1.

Proof. Obviously (ii) implies (iii). The rest is just a reformulation of [30,
Proposition 2.13]. �

Next, we need to �nd a dominating continuous function rG1 as in (3.2).
For this, let

(3.3) Vηg(x) :=

∫
Rd

1

‖x− y‖d−η
g(y) dy, x ∈ Rd, η > 0,

whenever it makes sense. The following result is from [22, Chapter 4, Theorem
2.2].

Lemma 3.5. Let η ∈ (0, d), 0 < η − d
p < 1 and g ∈ Lp(Rd, dx) with∫

Rd
(1 + ‖y‖)η−d|g(y)| dy <∞.

Then Vηg is H�older continuous of order η − d
p .

In the case of existence of a nice resolvent kernel density estimate, we may
�nd a continuous function rG1 as in Proposition 3.4 by using Lemma 3.5. Such
a function is typically given as a linear combination of functions Vηg (cf. for
instance [30, proof of Lemma 3.6(iii)]). However, in some cases such as Propo-
sition 3.13(ii), Theorem 3.15(ii), Remark 3.19, Subsection 3.1.1 and Subsection
3.1.2, the global resolvent density estimate (cf. e.g. Lemma 3.12(ii)) obtained
from the heat kernel estimate in Theorem 2.4 is not su�cient for the applica-
tion of Proposition 3.4 via Lemma 3.5. Or we simply do not know whether
a global resolvent density estimate exists. In these cases, we use a method to
obtain better Gaussian estimates for local resolvent kernel densities and com-
bine it with a localization method. In this localization method, Proposition 3.3
is applied locally on a nice exhaustion up to a capacity zero set of the state
space which is typically Euclidean. Thus from now on up to the end of this
subsection, we assume that E ⊂ Rd.

Let ϕ > 0 dx-a.e. on E ⊂ Rd, ϕ ∈ L1
loc(E, dx) and A = (aij)1≤i,j≤d be

a symmetric d × d matrix such that aij ∈ L1
loc(E,m) with m := ϕdx and for

dx-a.e. x ∈ E
0 ≤ 〈A(x)ξ, ξ〉, ∀ξ ∈ Rd.

Suppose (E , D(E)) is conservative and given as the closure in L2(E,m) of
1
2

∫
E〈A∇f,∇g〉 dm, f, g ∈ C∞0 (E), where E is either closed or open. We assume

that

(L) There exists an increasing sequence of bounded relatively open Lipschitz
domains {Bk}k∈N ⊂ E, with Cap(E \ B) = 0, B := ∪k≥1Bk and for any
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k ≥ 1 there exists some constant κBk ≥ 1 such that

κ−1
Bk
‖ξ‖2 ≤ 〈A(x)ξ, ξ〉 ≤ κBk‖ξ‖

2, ∀ξ ∈ Rd, dx-a.e. x ∈ Bk,

and ϕ(x) ∈ (d−1
k , dk) for dx-a.e. x ∈ Bk, where dk ↗∞ as k →∞.

Note that (L) implies that EBk(f, g) = 1
2

∫
Bk
〈A∇f,∇g〉 dm, f, g ∈ C∞(Bk),

is closable in L2(Bk,m) ≡ L2(Bk,m), k ≥ 1. We denote the closure by

(EBk , D(EBk)).

Given the strict global ellipticity of A = (aij) on each Bk and that ϕ is
bounded above and below away from zero by a strictly positive constant on
each Bk, we obtain exactly as in [30, Lemma 5.4] the following lemma.

Lemma 3.6 (Nash type inequality). Under (L) it holds for any k ≥ 1:

(i) If d ≥ 3, then for f ∈ D(EBk)

‖f‖2+ 4
d

2,Bk
≤ ck

[
EBk(f, f) + ‖f‖22,Bk

]
‖f‖

4
d
1,Bk

.

(ii) If d = 2, then for f ∈ D(EBk) and any δ > 0

‖f‖
2+ 4

d+δ

2,Bk
≤ ck

[
EBk(f, f) + ‖f‖22,Bk

]
‖f‖

4
d+δ

1,Bk
.

Here ck > 0 is a constant which goes to in�nity as k →∞.

By [11, (3.25)], the Nash type inequalities imply (upper) Gaussian heat

kernel estimates for the heat kernel pBkt (x, y) associated to (EBk , D(EBk)) which
exists uniquely for m-a.e. x, y ∈ Bk (cf. [30, Proposition 5.5]). Since (EBk ,
D(EBk)) is the part Dirichlet form of (EBk , D(EBk)), it is easy to see that

pBkt (x, y) ≤ pBkt (x, y) for m-a.e. x, y ∈ Bk.

Thus the heat kernel estimate also holds for pBkt (x, y). By taking the Lap-
lace transform of pBk· (x, y) and using the heat kernel estimate, we obtain the
following resolvent kernel density estimates (cf. [30, Corollary 5.6]).

Corollary 3.7. Under (L) we have for m-a.e. x, y ∈ Bk
(i) if d ≥ 3, then

rBk1 (x, y) ≤ Ck
‖x− y‖d−2

.

(ii) if d = 2, then for any δ > 0

rBk1 (x, y) ≤ Ck
‖x− y‖d+δ−2

.

Here Ck > 0 is a constant which goes to in�nity as k →∞.
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Note that the part Dirichlet forms (EBk , D(EBk)) of (E , D(E)) on Bk,
k ≥ 1, as well as the part Dirichlet form (EB, D(EB)) of (E , D(E)) on B,
inherit the properties (H1) and (H2) from (E , D(E)) by considering the part
processes. Moreover, since (E , D(E)) is conservative and Cap(E \ B) = 0, we
can use (2.10) to see that its part Dirichlet form (EB, D(EB)) on B is also
conservative. In particular Px

(
σBc = DBc =∞) = 1 for any x ∈ B and exactly

as in [30, Lemma 5.10], we show:

Lemma 3.8. Px
(

limk→∞DBck
= limk→∞ σBck =∞

)
= 1 for all x ∈ B.

We may then apply Proposition 3.3 to the part Dirichlet forms (EBk ,
D(EBk)) by using the resolvent kernel density estimate of Corollary 3.7, Pro-
position 3.4 and Lemma 3.5. Suppose that this is possible and that for each
k ≥ 1, we get according to Proposition 3.3 for the coordinate projections f j ,
1 ≤ j ≤ d (obviously continuous and in D(EBk)b,loc for any k ≥ 1)

(3.4) Xj
t = xj +M

[fj ],k
t +N

[fj ],k
t , t < σBck , Px-a.s. for all x ∈ Bk,

where N [fj ],k = −A(1),k + A(2),k and A(1),k, A(2),k are the positive continuous
additive functionals in the strict sense of M|Bk with Revuz measures 1Bk ·
ν(1), 1Bk · ν(2) ∈ SBk00 , ν

(1), ν(2) being smooth measures on B with respect to

(EB, D(EB)), M [fj ],k is a MAF in the strict sense of M|Bk with covariations

〈M [f i],k,M [fj ],k〉t∧σBc
k

=
∫ t∧σBc

k
0 aij(Xs)ds, 1 ≤ i, j ≤ d. Suppose further that

we can show consistency, in the sense that A
(i),k
t = A

(i),k+1
t , ∀t < σBck Px-a.s.

for all x ∈ Bk, i = 1, 2, and M
[fj ],k
t = M

[fj ],k+1
t , ∀t < σBck Px-a.s. for all

x ∈ Bk. Then M
[fj ]
t := limk→∞M

[fj ],k
t is a well-de�ned local MAF in the

strict sense of M|B and A
(i)
t := limk→∞A

(i),k
t , i = 1, 2, are well-de�ned positive

continuous additive functionals in the strict sense of M|B with Revuz measures
ν(1), ν(2). By letting k →∞ in (3.4)

Xj
t = xj +M

[fj ]
t +N

[fj ]
t , t ≥ 0, Px-a.s. for all x ∈ B,

with N [fj ] = −A(1) +A(2) and 〈M [f i],M [fj ]〉 =
∫ ·

0 aij(Xs)ds.

We will refer to this as localization procedure. For explicit examples where
it is performed in detail, we refer to [30, Section 5] and [31, Section 3.2] and also
here below (see Proposition 3.13(ii), Theorem 3.15(ii), Remark 3.19, Subsection
3.1.1 and Subsection 3.1.2), where we indicate at least why (L) is satis�ed. In
the examples below, A(1),k, A(2),k, k ≥ 1, that appear in the localization proce-
dure are sometimes given as in�nite sums of strict PCAF's and we additionally
have to make use of Lemma 3.2.
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3.1.1. SYMMETRIC DISTORTED BROWNIAN MOTION

We assume throughout this subsection that E = Rd, with d ≥ 3 (except
in Lemma 3.12(vi), Proposition 3.13(ii), and Remark 3.19 where the state space
is Rd \ {0} with d ≥ 2). We consider a weight function ψ in the Muckenhoupt
A2 class, in notation ψ ∈ A2 (cf. [39]), which is the product of two functions,
i.e. ψ = ρφ. Precisely, we assume the following:

(α) φ : Rd → [0,∞) is a B(Rd)-measurable function and φ > 0 dx-a.e.,

(β) ρφ ∈ A2, ρ ∈ H1,1
loc (Rd, dx), ρ > 0 dx-a.e.,

and consider

(3.5) E(f, g) :=
1

2

∫
Rd
∇f · ∇g dm, f, g ∈ C∞0 (Rd), m := ρφdx

in L2(Rd,m).

Remark 3.9. Let c̃ ≥ 1. If φ is measurable with c̃−1 ≤ φ ≤ c̃ and ρ ∈ A2,
then ρφ ∈ A2.

Since ρφ ∈ A2, we have 1
ρφ ∈ L1

loc(Rd, dx), and the latter implies that

(3.5) is closable in L2(Rd,m) (see [21, II.2 a)]). The closure (E , D(E)) of (3.5)
is a strongly local, regular, conservative, symmetric Dirichlet form (cf. e.g. [33,
p. 274]). Furthermore (E , D(E)) satis�es properties (i)-(iv) of De�nition 2.3 (cf.
[33, 5.B]). Therefore there exists a jointly continuous transition kernel density
pt(x, y) as stated in (2.3) with E = Rd. Note that in our case γ(x, y) = ‖x−y‖,
x, y ∈ Rd. Moreover, Proposition 2.5 applies, so that (Pt)t≥0 is in particular
strong Feller. Next, we assume that

(γ) the transition function (Pt)t≥0 satis�es (H2) with E = Rd.
We will use the Feller method and the Dirichlet form method for some

typical Muckenhoupt A2 weights to verify (γ) later. Since ρφ ∈ A2, (E , D(E))
is conservative, i.e. Tt1(x) = 1 for m-a.e. x ∈ Rd and all t > 0 (see [29,
Proposition 2.4]). It follows

Px(ζ =∞) = 1, ∀x ∈ Rd,

by [16, Theorem 4.5.4(iv)] (or Remark 2.2 since (Pt)t≥0 is strong Feller) and

Px
(
t 7→ Xt is continuous on [0,∞)

)
= 1, ∀x ∈ Rd,

by [16, Theorem 4.5.4(ii)]. In order to be explicit, we further assume the follo-
wing integration by parts formula

(IBP) for f ∈ {f1, . . . , fd}, g ∈ C∞0 (Rd)

−E(f, g) =

∫
Rd

(
∇f · ∇ρ

2ρ

)
g dm+

∫
Rd
g dνf ,
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where νf =
∑

k∈Z ν
f
k and νf , νfk , k ∈ Z are signed Radon measures (locally of

bounded total variation).

For a signed Radon measure µ we denote by µ+ and µ− the positive and
negative parts in the Hahn decomposition for µ, i.e. µ = µ+−µ−. Additionally,
we assume that

(δ) for any G ⊂ Rd relatively compact open, k ∈ Z and f ∈ {f1, . . . , fd}, we
have that 1G · νf+, 1G · νf−, 1G · νf+

k , 1G · νf−k , 1G · ‖∇ρ‖ρ m ∈ S0 and the
corresponding 1-potentials are all bounded by continuous functions.

Theorem 3.10. Suppose (α)− (δ) and (IBP). Then

(3.6) Xt = x+Wt +

∫ t

0

∇ρ
2 ρ

(Xs) ds+
∑
k∈Z

Lkt , t ≥ 0,

Px-a.s. for any x∈Rd where W is a standard d-dimensional Brownian motion
starting from zero, Lk=(L1,k, . . . , Ld,k) and Lj,k, j=1, . . . , d, is the di�erence of
positive continuous additive functionals of X in the strict sense associated with

Revuz measure νf
j

k =ν
fj ,(1)
k −νf

j ,(2)
k de�ned in (IBP) (cf. [16, Theorem 5.1.3]).

Proof. Given that (α)−(δ) and (IBP) hold, the assertion follows from [16,
Theorem 5.1.3], Lemma 3.2, and Propositions 3.3, 2.5 and 3.4. �

Remark 3.11. The heat kernel estimate (2.4) is not explicit, since the
volumes of the m-balls in it are unknown. Therefore its use is in a sense
limited. While it was possible to obtain already good information about the
transition function in Proposition 2.5, the last ingredient to obtain (H2)′(i),
(ii) or the Feller property of the transition function is missing. Assuming an
explicit estimate on the weight of m is the main additional ingredient for the
proof of the following lemma (cf. [30, Lemma 3.6]). For other weights the proof
of the lemma can serve as a toy model to show how the full information can be
obtained.

Lemma 3.12. Let c̃−1‖x‖α ≤ ρφ(x) ≤ c̃‖x‖α for some α ∈ (−d, d), c̃ ≥ 1.
Then (α) and (β) are satis�ed and

(i) limt↓0 Ptf(x) = f(x), ∀x ∈ Rd, ∀f ∈ C0(Rd), i.e. (H1) and (H2) hold
(cf. Proposition 2.5(i),(iii) and Lemma 2.16) and (Pt)t≥0 is a Feller
semigroup.

(ii) Let Φ(x, y) := 1
‖x−y‖α+d−2 and Ψ(x, y) := 1

‖x−y‖d−2‖y‖α . Then

c−1
(
Φ(x, y)+Ψ(x, y)1{α∈[0,d)}

)
≤r1(x, y)≤c

(
Φ(x, y)+Ψ(x, y)1{α∈(−d,0)}

)
.

(iii) Let α ∈ (−d+ 1, 2) and G ⊂ Rd any relatively compact open set. Suppose
1G · f ‖x‖α ∈ Lp(Rd, dx), p ≥ 1 with 0 < 2 − α − d

p < 1 and 1G · f ∈
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Lq(Rd, dx) with 0 < 2− d
q < 1. Then R1(1G · |f |m) is bounded everywhere

(hence clearly also bounded m-a.e. on Rd and R1(1G|f |m) ∈ L1(G, |f |m))
by the continuous function

∫
G |f(y)| (Φ(·, y) + Ψ(·, y)) m(dy). In parti-

cular, Proposition 3.4 applies and 1G · |f |m ∈ S00.

(iv) Let α ∈ (−d + 1, 2). Then R1

(
1G · ‖∇ρ‖ρ m

)
is pointwise bounded by

a continuous function for any relatively compact open set G ⊂ Rd. In
particular 1G · ‖∇ρ‖ρ m ∈ S00 for any relatively compact open set G ⊂ Rd.

(v) Let α ∈ (−d + 1, 1). Let D ⊂ Rd be a bounded Lipschitz domain with
surface measure σ∂D. Suppose that ρ is bounded on ∂D (more precisely the
trace of ρ on ∂D, which exists since ρ ∈ H1,1

loc (Rd)). Then R1(1G · ρσ∂D)
is pointwise bounded by a continuous function for any relatively compact
open set G ⊂ Rd. In particular 1G ·ρσ∂D ∈ S00 for any relatively compact
open G ⊂ Rd.

(vi) Let α ∈ [−d + 2, d), d ≥ 2. Then Cap({0}) = 0 and the part Dirichlet
form (EB, D(EB)) on B := Rd \ {0} satis�es (H1), (H2) with transition
kernel density pBt = pt|B×B. Moreover (EB, D(EB)) is conservative.

3.1.1.1. Skew re�ection on spheres. Let m0 ∈ (0,∞) and (lk)k∈Z ⊂
(0,m0), 0 < lk < lk+1 < m0, be a sequence converging to 0 as k → −∞ and
converging to m0 as k → ∞, (rk)k∈Z ⊂ (m0,∞), m0 < rk < rk+1 < ∞, be a
sequence converging to m0 as k → −∞ and tending to in�nity as k →∞, and
set

(3.7) φ :=
∑
k∈Z

(
γk · 1Ak + γk · 1Âk

)
,

where γk , γk ∈ (0,∞), Ak := Blk \Blk−1
, Âk := Brk \Brk−1

, k ∈ Z.

Proposition 3.13. Let φ be as in (3.7). Suppose that∑
k∈Z
| γk+1 − γk |+

∑
k≤0

| γk+1 − γk | <∞ and c̃−1 ≤ φ ≤ c̃ for some c̃ ≥ 1.

(i) Let ρ(x) = ‖x‖α, α ∈ (−d+1, 2). If φ ≡ c̃ dx-a.e. (i.e. below in (3.8) and
(3.9) it holds η 6≡ 0) or φ 6≡ c̃ dx-a.e. and α ∈ (−d+ 1, 1). Then the pro-
cesses

(
(Xt)t≥0,Px

)
and

(
(‖Xt‖)t≥0,Px

)
are continuous semimartingales

and

(3.8) Xt = x+Wt +
α

2

∫ t

0
Xs‖Xs‖−2 ds

+

∫ ∞
0

∫ t

0
νa(Xs) d`

a
s(‖X‖) η(da), t ≥ 0, Px-a.s.
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for any x ∈ Rd, where W is a standard d-dimensional Brownian motion
starting from zero, νa = (ν1

a , . . . , ν
d
a), a > 0 is the unit outward normal

vector on ∂Ba, `
a
t (‖X‖) is the symmetric semimartingale local time of

‖X‖ at a ∈ (0,∞) as de�ned in [27, VI.(1.25)], γ := limk→∞ γk, γ :=
limk→−∞ γk and

(3.9) η :=
∑
k∈Z

(
γk+1 − γk
γk+1 + γk

δlk +
γk+1 − γk
γk+1 + γk

δrk

)
+

γ − γ
γ + γ

δm0 .

(ii) Let ρ(x) = ‖x‖α, α ∈ [1, d), d ≥ 2. Then (3.8) holds for any x ∈ Rd\{0}.

Proof. (i) (α), (β) hold by Remark 3.9 since ρ(x) = ‖x‖α, α ∈ (−d, d) is
an A2-weight (see [39, Example 1.2.5]). (γ) follows from Lemma 3.12(i) by the
Feller method, i.e. the corresponding transition semigroup is Feller. (IBP)

follows as in [29, Proposition 3.1] and (δ) follows from Lemma 3.12(iv) and (v).
Thus Theorem 3.10 applies. The identi�cation of the drift part in (3.6) as sum
of local times then follows as in [29, Section 5] using the integration by parts
formula [29, Proposition 3.1].

(ii) By Lemma 3.12(vi) (EB, D(EB)), B := Rd \ {0} satis�es (H1), (H2),
is conservative, and Cap({0}) = 0. Fix α ∈ [1, d). Let

Bk :=
{
x ∈ Rd

∣∣∣ l−k+1 + l−k
2

< ‖x‖ < rk+1 + rk
2

}
, k ≥ 1.

Then

bk := c̃−1
( l−k+1 + l−k

2

)α
< ρφ < c̃

(rk+1 + rk
2

)α
=: ek

on Bk. Set dk := max(b−1
k , ek), k ≥ 1. Then (Bk)k≥1 is an increasing sequence

of relatively compact open sets with smooth boundary such that
⋃
k≥1Bk = B

and ρφ ∈ (d−1
k , dk) on Bk where dk → ∞ as k → ∞. Moreover ‖∇ρ‖ ∈

L∞(Bk, dx) for any k ≥ 1. We can now apply the localization procedure
as explained after Lemma 3.5, since one easily veri�es that condition (L) is
satis�ed. We only repeat here once again that the Nash type inequality of
Lemma 3.6 allows for local resolvent kernel density estimates as in Corollary
3.7 and these local estimates are usable in contrast to the global ones of Lemma
3.12(ii), which do not lead to any result. �

Remark 3.14. For an interpretation of the drift part in (3.8), we refer
to [29, Remark 2.7].

3.1.1.2. Skew re�ection on a Lipschitz domain. Let

(3.10) φ(x) := β 1Gc(x) + (1− β)1G(x), ρ(x) := ‖x‖α, α ∈ (−d+ 1, d),
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where β ∈ (0, 1) and G ⊂ Rd is a bounded Lipschitz domain. Consider the
Dirichlet form determined by (3.5) with φ and ρ as in (3.10). Then the following
integration by parts formula holds for f ∈ {f1, . . . , fd}, g ∈ C∞0 (Rd)

−E(f, g) =

∫
Rd

(
∇f · ∇ρ

2ρ

)
g dm+ (2β − 1)

∫
∂G
∇f · ν ρ

2
dσ,(3.11)

where ν denotes the unit outward normal on ∂G (cf. [35] and [37]). The exis-
tence of a Hunt process associated to E that satis�es the absolute continuity
condition follows from Lemma 3.12 (i). Furthermore:

Theorem 3.15. Let φ, ρ be as in (3.10). Then we have:

(i) Let α ∈ (−d+ 1, 1). Then

(3.12) Xt = x+Wt +
α

2

∫ t

0
Xs‖Xs‖−2 ds+ (2β − 1)

∫ t

0
ν(Xs) d`s t ≥ 0

Px-a.s. for all x ∈ Rd, where (Wt)t≥0 is a d-dimensional Brownian motion
starting from zero and (`t)t≥0 ∈ A+

c,1 is uniquely associated to the surface
measure ρσ

2 on ∂G via the Revuz correspondence.

(ii) Let 0 /∈ ∂G and α ∈ [1, d), d ≥ 2. Then (3.12) holds Px-a.s. for any
x ∈ Rd \ {0}.

Proof. (i) Exactly as in the proof of Proposition 3.13(i) (α)�(δ) are satis-
�ed and (IBP) holds by (3.11). Then the assertion immediately follows from
Theorem 3.10.

(ii) Fix α ∈ [1, d). We have either 0 ∈ G or 0 ∈ Gc. If 0 ∈ G, then choose
k0 ≥ 1 such that ∂G ⊂ {x ∈ Rd | k−1

0 < ‖x‖ < k0} and let

Bk := {x ∈ Rd | (k0 + k)−1 < ‖x‖ < k0 + k}, k ≥ 1.

Then

bk := min(β, 1− β)(k0 + k)−α < ρφ < max(β, 1− β)(k0 + k)α =: ek

and we let dk := max(b−1
k , ek), k ≥ 1. (If 0 ∈ G

c
then similarly, we can

�nd suitable (Bk)k≥1 and (dk)k≥1.) One easily checks that assumption (L) is
satis�ed with respect to the sequences (Bk)k≥1 and (dk)k≥1. Then we proceed
as in the proof of Proposition 3.13(ii). �

Remark 3.16. Theorem 3.15 extends a result obtained by Portenko in [26,
III, �3 and �4].

3.1.1.3. Skew re�ection on hyperplanes. Let (lk)k∈Z ⊂ (−∞, 0),
−∞ < lk < lk+1 < 0 be a sequence converging to 0 as k → ∞ and tending to
−∞ as k → −∞. Let (rk)k∈Z ⊂ (0,∞), 0 < rk < rk+1 < ∞ be a sequence
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converging to 0 as k → −∞ and tending to in�nity as k →∞. Set

(3.13) φ(xd) :=
∑
k∈Z

(
γk+1 · 1(lk,lk+1)(xd) + γk+1 · 1(rk,rk+1)(xd)

)
where γk, γk ∈ (0,∞). Note that φ only depends on the d-th coordinate and
that φ has discontinuities along the hyperplanes

Hs := {x ∈ Rd | xd = s}, s ∈ {0, lk, rk; k ∈ Z}.

Consider the assumptions

(a) ρφ ∈ A2 and ρ(x) = ‖x‖α, α ∈ (−d+ 1, 1),

(b)
∑

k≥0 | γk+1 − γk | +
∑

k≤0 | γk+1 − γk | < ∞ and γ := limk→∞ γk, γ :=
limk→−∞ γk are strictly positive.

Proposition 3.17. Let φ be as in (3.13) and assume that (a), (b) hold.
Then (α)-(γ) hold.

Proof. The assumptions (a), (b) imply (α), (β). Therefore, the closure
(E , D(E)) of (3.5) is a symmetric, regular and strongly local Dirichlet form.
Using the integration by parts formula [30, Proposition 3.11] one can see that
the functions f ∈ C∞0 (Rd) satisfying

∂df(x̄, lk) = ∂df(x̄, rk) = ∂df(x̄, 0) = 0 for all k ∈ Z

and
1

2
∆f +∇f · ∇ρ

2ρ
∈ L2(Rd,m)(3.14)

are in D(L) where x̄ = (x1, . . . , xd−1) ∈ Rd−1. For given r ∈ (0,∞), de�ne Sr
to be the set of functions h ∈ C∞0 (Rd) such that

(3.15) ∇h(x) = 0, ∀x ∈ Br, ∂dh(x̄, xd) = 0 if − r < xd < r

and h satis�es (3.14). Note that if h ∈ Sr then h2 is also in Sr since h
2 satis�es

(3.14) and (3.15). Furthermore for h ∈ Sr, h
2 ∈ D(L1) since D(L1)b is an

algebra. Let S =
⋃
r∈(0,∞) Sr. Since for h ∈ S

Lh ∈ L∞(Rd,m)0,

R1

(
[(1 − L)h]+

)
, R1

(
[(1 − L)h]−

)
, R1

(
[(1 − L1)h2]+

)
, and R1

(
[(1 − L1)h2]−

)
are continuous on Rd by Proposition 2.5(i). Furthermore for all y ∈ Qd, ε ∈
Q ∩ (0, 1) we can �nd h ∈ S such that h ≥ 1 on B ε

4
(y), h ≡ 0 on Rd \ B ε

2
(y).

Therefore, we can �nd a countable subset S̃ ⊂ S satisfying (H2)′(i) and (ii).
Therefore, by Propositions 2.5(ii) and 2.18, (γ) holds. �

Consider assumption

(c) c̃−1 ≤ φ ≤ c̃ for some c̃ ≥ 1.
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Theorem 3.18. Let φ be as in (3.13) and suppose (a)-(c). Let β := γ
γ+γ ,

βk :=
γk+1

γk+1+γk
, and βk :=

γk+1

γk+1+γk
, k ∈ Z. Then the process M satis�es

Xj
t = xj +W j

t +
α

2

∫ t

0
Xj
s‖Xs‖−2 ds, j = 1, . . . , d− 1,

(3.16) Xd
t = xd +W d

t +
α

2

∫ t

0
Xd
s ‖Xs‖−2 ds+

∫
R
`at (X

d)µ(da), t ≥ 0,

Px -a.s. for any x ∈ Rd, where (W 1, . . . ,W d) is a standard d-dimensional
Brownian motion starting from zero, `at (X

d) is the symmetric semimartingale
local time of Xd at a ∈ (−∞,∞) as de�ned in [27, VI.(1.25)] and

µ :=
∑
k∈Z

(
(2βk − 1) δlk + (2βk − 1) δrk

)
+ (2β − 1) δ0.

Proof. By Proposition 3.17, (α)-(γ) hold. Assumption (c) then implies
(δ), thus (α)-(δ) hold. (IBP) follows from [30, Proposition 3.11]. Thus The-
orem 3.10 applies. The identi�cation of the drift part in (3.16) as sum of
semimartingale local times then follows as in [30, proof of Theorem 3.14]. �

Remark 3.19. Similarly to the proof of Proposition 3.13(ii) and Theorem
3.15(ii), we can also obtain Theorem 3.18 for α ∈ [1, d), d ≥ 2, but then only
for all starting points in Rd \ {0}.

3.1.1.4. Normal re�ection. This subsection is another example for
the application of elliptic regularity results as in Subsection 2.3.2 and a further
example for the localization procedure of Subsection 3.1. For details, we refer
to [30, Section 5].

Let G ⊂ Rd, d ≥ 2 be a relatively compact open set with Lipschitz
boundary ∂G. Suppose

(η) ρ = ξ2, ξ ∈ H1,2(G, dx) ∩ C(G) and ρ > 0 dx-a.e. on G

Then by [35, Lemma 1.1(ii)]

E(f, g) :=
1

2

∫
G
∇f · ∇g dm, f, g ∈ C∞(G)

is closable in L2(G,m). The closure (E , D(E)) is a regular, strongly local and
conservative Dirichlet form (cf. [35]). We further assume

(θ) there exists an open set E ⊂ G with Cap(G \E) = 0 such that (E , D(E))
satis�es the absolute continuity condition on E.

By (θ), we mean that there exists a Hunt process

M = (Ω,F , (Ft)t≥0, (Xt)t≥0, (Px)x∈E∪{∆})
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with transition kernel pt(x, dy) (from E to E) and transition kernel density
pt(·, ·) ∈ B(E × E), i.e. pt(x, dy) = pt(x, y)m(dy), such that

Ptf(x) :=

∫
f(y) pt(x, y)m(dy), t > 0, x ∈ E, f ∈ Bb(E)

with trivial extension to G is an m-version of TGt f for any f ∈ Bb(E), and

(TGt )t>0 denotes the semigroup associated to (E , D(E)). In particular M is
a conservative di�usion on E (see [16, Theorem 4.5.4]). We rely on elliptic
regularity results from [3] which are applicable in our situation because of [30,
Lemma 5.1(ii)] (cf. [30, Remark 5.2]:

Remark 3.20. In [3] also unbounded Lipschitz domains are considered and
according to [3, Theorem 1.14] (θ) holds with E = (G∪Γ2)∩{ρ > 0} where Γ2 is

an open subset of ∂G that is locally C2-smooth, provided ‖∇ρ‖ρ ∈ Lploc(G∩{ρ >
0},m) for some p ≥ 2 with p > d

2 and Cap(G \ E) = 0.

Since E is open in G, we can consider the part Dirichlet form (EE , D(EE))
of (E , D(E)) on E.

Lemma 3.21. Let f ∈ Bb(E). Then Ptf is an m-version of TEt f .

By Lemma 3.21 the Hunt process M is associated with (EE , D(EE)) and
satis�es the absolute continuity condition. In addition to (η) and (θ), we
assume

(ι) there exists an increasing sequence of relatively compact open sets
{Bk}k∈N ⊂ E such that ∂Bk, k ∈ N is Lipschitz,

⋃
k≥1Bk = E and

ρ ∈ (d−1
k , dk) on Bk where dk →∞ as k →∞.

Considering the part Dirichlet forms on each Bk, we obtain the following inte-
gration by parts formula (cf. [35, proof of Theorem 5.4]):

Lemma 3.22. For f ∈ {f1, . . . , fd} and g ∈ C∞0 (Bk), it holds

−EBk(f, g) =
1

2

∫
Bk

(
∇f · ∇ρ

ρ

)
g dm+

1

2

∫
Bk∩∂G

∇f · η g ρ dσ,

where η is a unit inward normal vector on Bk∩∂G and σ is the surface measure
on ∂G.

According to [35] the closure of

EBk(f, g) =
1

2

∫
Bk

∇f · ∇g dm, f, g ∈ C∞(Bk),

in L2(Bk,m) ≡ L2(Bk,m), k ≥ 1, denoted by (EBk , D(EBk)), is a regular
conservative Dirichlet form on Bk and moreover, it satis�es Nash type inequa-
lities as in Lemma 3.6 (cf. [30, Lemma 5.4]). Therefore, we obatain estimates
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for rBk1 (·, ·) as in Corollary 3.7. Using these estimates, Proposition 3.4 and
Lemma 3.5, we obtain the following:

Lemma 3.23. (i) 1Bk∩∂G · ρσ ∈ S
Bk
00 .

(ii) Let f ∈ L
d
2

+ε(Bk, dx) for some ε > 0. Then

1Bk · |f |m ∈ S
Bk
00 .

In particular 1Bk · ‖∇ρ‖dx ∈ SBk00 for d = 2, 3 and for d ≥ 4, if ‖∇ρ‖ ∈
L
d
2

+ε(Bk, dx) for some ε > 0.

In view of Lemma 3.23 (ii), we assume from now on

(κ) If d ≥ 4 and k ≥ 1, then ‖∇ρ‖ ∈ L
d
2

+εk(Bk, dx) for some εk > 0.

Applying Proposition 3.3 to the part Dirichlet form (EBk , D(EBk)), we get:

Proposition 3.24. The process M satis�es

(3.17) Xt = x+Wt +

∫ t

0

∇ρ
2 ρ

(Xs) ds+

∫ t

0
η(Xs) d`

k
s t < DBck

Px-a.s. for any x ∈ Bk where W is a standard d-dimensional Brownian motion
starting from zero and `k is the positive continuous additive functional of XBk

in the strict sense associated via the Revuz correspondence (cf. [16, Theorem
5.1.3]) with the weighted surface measure 1

2ρσ on Bk ∩ ∂G.

The proofs of the following two lemmas can be found in [30, Section 5].

Lemma 3.25. Px
(

limk→∞DBck
= ∞) = Px

(
limk→∞ σBck = ∞

)
= 1 for

all x ∈ E.

Lemma 3.26. `kt = `k+1
t , ∀t < σBck Px-a.s. for all x ∈ Bk where `kt is the

positive continuous additive functional of XBk in the strict sense associated to
1Bk ·

ρσ
2 ∈ S

Bk
00 . In particular `t := limk→∞ `

k
t , t ≥ 0, is well de�ned in A+,E

c,1 ,
and related to ρσ

2 via the Revuz correspondence.

Letting k →∞ in (3.17), we �nally obtain (cf. the localization procedure
of Section 3.1):

Theorem 3.27. The process M satis�es

Xt = x+Wt +

∫ t

0

∇ρ
2 ρ

(Xs) ds+

∫ t

0
η(Xs) d`s , t ≥ 0

Px-a.s. for all x ∈ E where W is a standard d-dimensional Brownian motion
starting from zero and ` is the positive continuous additive functional of X in the
strict sense associated via the Revuz correspondence (cf. [16, Theorem 5.1.3])
with the weighted surface measure 1

2ρσ on E ∩ ∂G.
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3.1.2. DEGENERATE ELLIPTIC FORMS AND 2-ADMISSIBLE WEIGHTS

In this subsection, we consider a 2-admissible weight ρ (see [18, Sec-
tion 1.1]) which is strictly positive, i.e. ρ > 0 dx-a.e. and we let m := ρ dx.
We assume:

(HP1) A = (aij)1≤i,j≤d is a (possibly) degenerate symmetric d×d matrix
of functions aij ∈ L1

loc(Rd, dx) and there exists a constant λ ≥ 1 such that
for dx-a.e. x ∈ Rd

(3.18) λ−1 ρ(x) ‖ξ‖2 ≤ 〈A(x)ξ, ξ〉 ≤ λ ρ(x) ‖ξ‖2, ∀ξ ∈ Rd.

By (3.18) and the properties of 2-admissible weights, the symmetric bili-
near form

EA(f, g) =
1

2

∫
Rd
〈A∇f,∇g〉 dx, f, g ∈ C∞0 (Rd)

is closable in L2(Rd,m) and the closure (EA, D(EA)) is a strongly local, regular,
symmetric Dirichlet form. Note that (EA, D(EA)) can be written as

EA(f, g) =
1

2

∫
Rd

Γ ρ−1A(f, g) dm, f, g ∈ D(EA),

where Γρ
−1A is a carr�e du champ (cf. Section 2.3.1). We assume from now on

(HP2) either
√
ρ ∈ H1,2

loc (Rd, dx) or ρ−1 ∈ L1
loc(Rd, dx).

Then the following holds:

Lemma 3.28. For any x, y ∈ Rd

(3.19)
1√
λ
‖x− y‖ ≤ γ(x, y) ≤

√
λ ‖x− y‖,

where λ ∈ [1,∞) is as in (3.18).

Remark 3.29. (i) Assumption (HP2) is only used to show that the in-
trinsic metric of EA with A = (ρδij)1≤i,j≤d is the Euclidean metric, so that the
second inequality in (3.19) can be obtained (see [31, proof of Lemma 2.2]). It
can hence be replaced by any other assumption that implies the fact mentioned
above.

(ii) By (3.19), the intrinsic balls B̃r(x), x ∈ Rd, r > 0, are all bounded
and open in the Euclidean topology, i.e. they have compact closure.

Since ρ is 2-admissible, it satis�es by de�nition the doubling property and
the scaled weak Poincar�e inequality with respect to the Euclidean metric. With
the help of (3.19) one can then show that these properties are also satis�ed with
respect to the intrinsic metric γ(·, ·) (cf. [31, Lemmas 2.4 and 2.8]). Therefore,
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the properties of De�nition 2.3(i)-(iv) are satis�ed on Rd. In particular, we
obtain the existence of a transition semigroup (Pt)t>0 with H�older continuous
heat kernel (see Subsection 2.3.1) and Theorems 2.4 and 2.6 apply. By the latter
and (3.19), one can easily see that EA is conservative and as in the Subsection
3.1.1, Proposition 2.5 applies, so that (Pt)t≥0 is in particular strong Feller.

2-admissible weights arise typically as in the following example:

Example 3.30. (cf. [18, Chapter 15])

(i) If ρ ∈ A2, then ρ is a 2-admissible weight.

(ii) If ρ(x) = |detF ′(x)|1−2/d where F is a quasi-conformal mapping in Rd,
then ρ is a 2-admissible weight (for the de�nition see [13, Section 3]).

Remark 3.31. Since EA is given by the carr�e du champ Γρ
−1A and by the

Example 3.30 we see that compared to Subsection 3.1.1 the improvement is
that we can consider a uniformly strictly globally elliptic di�usion matrix ρ−1A
and more general weights ρ.

According to Remark 3.11, we will now choose an explicit 2-admissible
weight. By Example 3.30 a concrete 2-admissible weight that satis�es (HP2)
is given by

(3.20) ρ(x) = ‖x‖α, α ∈ (−d,∞), d ≥ 2.

Indeed, if α ∈ (−d, d), then ρ ∈ A2 and if α ∈ (−d+2,∞), then ρ = |detF ′|1−2/d

for some quasi-conformal mapping F (cf. [13, Section 3]).

Up to this end we �x ρ as in (3.20). Then, similarly to Lemma 3.12(i),
(Pt)t>0 is seen to be a Feller semigroup, in particular also in the case α ≥ d.
Thus (H1) and (H2) are satis�ed.

Remark 3.32. Let φ : Rd → R be a measurable function such that c−1 ≤
φ(x) ≤ c dx-a.e. for some constant c ≥ 1. Then by verifying the properties (I)-
(IV) of [31], we see that φρ is a 2-admissible weight if ρ is a 2-admissible weight.
Moreover choosing Ã = (ãij) satisfying (HP1) for ρ ≡ 1 we see that A := φρÃ
satis�es (3.18) with respect to the 2-admissible weight φρ. In particular, the
framework of this subsection also includes Dirichlet forms given as the closure of

1

2

∫
Rd
〈Ã∇f,∇g〉φρ dx, f, g ∈ C∞0 (Rd)

on L2(Rd, φρdx).

3.1.2.1. Concrete Muckenhoupt A2-weights with polynomial

growth. We �rst consider the case where

(3.21) ρ(x) = ‖x‖α, α ∈ (−d, 2), d ≥ 3.
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Then the explicit heat kernel estimate that we obtain by Theorem 2.4 is by
(3.19) comparable to the one that we obtain with γ being the Euclidean me-
tric. Thus, we obtain the same resolvent kernel estimate as in Lemma 3.12(ii).
Consider the following assumption

(HP3) For each i, j = 1, . . . , d:

(i) if α ∈ (−d,−d+2],
∂jaij
ρ ∈ L1

loc(Rd,m)∩Lqloc(R
d, dx), 0 < 2− d

q < 1,

(ii) if α ∈ (−d+ 2, 0), ∂jaij ∈ Lploc(R
d, dx) with 0 < 2− α − d

p < 1 and
∂jaij
ρ ∈ Lqloc(R

d, dx) with 0 < 2− d
q < 1,

(iii) if α ∈ [0, 2), ∂jaij ∈ Lploc(R
d, dx) with 0 < 2− α− d

p < 1.

As in Lemma 3.12(ii), (iii), we then obtain (cf. [31]):

Lemma 3.33. Let ρ be as in (3.21) and G ⊂ Rd any relatively compact
open set. Assume (HP1) and (HP3). Then for each i, j = 1, . . . , d

1G ·
aii
ρ
m ∈ S00, 1G ·

|∂jaij |
ρ

m ∈ S00.

The following integration by parts formula is easily derived for any g ∈
C∞0 (Rd):

(3.22) −EA(f i, g) =
1

2

∫
Rd

 d∑
j=1

∂jaij
ρ

 g dm, 1 ≤ i ≤ d.

Now using Lemma 3.33, (3.22), Proposition 3.3 and the conservativeness, we
get:

Theorem 3.34. Assume (HP1), (3.21) (which in particular implies
(HP2)), and (HP3). Then it holds Px-a.s. for any x ∈ Rd, i = 1, . . . , d

(3.23) Xi
t = xi +

d∑
j=1

∫ t

0

σij√
ρ

(Xs) dW
j
s +

1

2

∫ t

0

 d∑
j=1

∂jaij
ρ

 (Xs) ds, t ≥ 0,

where (σij)1≤i,j≤d =
√
A is the positive square root of the matrix A, W =

(W 1, . . . ,W d) is a standard d-dimensional Brownian motion on Rd.

3.1.2.2. Concrete weights with polynomial growth induced by

quasi-conformal mappings. Here, we consider

(3.24) ρ(x) = ‖x‖α, α ∈ [2,∞), d ≥ 2.

In this case, the resolvent kernel estimate of Lemma 3.12(ii) may not be
good enough and moreover, we are able to allow better integrability conditions
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(see (HP3)′ below) by using the localization procedure. By [16, Example 3.3.2,
Lemma 2.2.7 (ii)] and (3.18), Cap({0}) = 0. Let

(3.25) Bk := {x ∈ Rd | (k + 1)−1 < ‖x‖ < k + 1}, k ≥ 1.

Then condition (L) is immediately veri�ed with κBk ≡ 1 and dk = (k+ 1)α for
all k ≥ 1 Thus for the part Dirichlet forms of (EA,Bk , D(EA,Bk)) of (EA, D(EA))
on Bk, we obtain resolvent kernel estimates according to Corollary 3.7. Due to
these improved estimates, we may assume that

(HP3)′ ∂jaij ∈ L
d
2

+ε

loc (Rd, dx) for some ε > 0 and each i, j = 1, . . . , d,

in order to obtain:

Lemma 3.35. Assume (HP1) and (HP3)′. Let ρ be as in (3.24). Then
for each i, j = 1, . . . , d

1Bk ·
aii
ρ
m ∈ SBk00 , 1Bk ·

|∂jaij |
ρ

m ∈ SBk00 .

From (3.22), we obtain for the coordinate projections f i ∈ D(EA,Bk)b,loc,
i = 1, . . . , d and g ∈ C∞0 (Bk)

(3.26) −EA,Bk(f i, g) =
1

2

∫
Bk

 d∑
j=1

∂jaij
ρ

 g dm.

Then by Lemma 3.35, (3.26) and Proposition 3.3 applied to the part process,
we have:

Proposition 3.36. Assume (HP1), (3.24), and (HP3)′. Then the pro-
cess M satis�es (3.23) up to t < DBck

, Px-a.s. for any x ∈ Bk.

Since Lemma 3.8 holds, we �nally obtain:

Theorem 3.37. Assume (HP1), (3.24), and (HP3)′. Then the process
M satis�es (3.23) for all x ∈ Rd \ {0}.

Remark 3.38. The results of this subsection include the particular case
where φ ≡ 1 in Remark 3.32 with

(3.27) aij(x) = ãij(x)‖x‖α, α ∈ (−d,∞), 1 ≤ i, j ≤ d.

This leads hence to an extension of the results of [30, Section 3.1 and 3.2] with
φ ≡ 1 there to the (aij)-case. In particular, even if ãij = δij (where δij we
obtain partial improvements of results of [30, Section 3]. For instance by our
results it is easy to see that in case φ ≡ 1 [30, Proposition 3.8 (ii)] also holds
for α ∈ [d,∞), d ≥ 2. Moreover, in view of Remark 3.32 and the results of this



252 Jiyong Shin and Gerald Trutnau 36

section, it is also possible to extend the results of [30, Section 3.1 and 3.2] to
the (aij)-case with discontinuous φ, (aij) as in (3.27) satisfying (HP3), resp.
(HP3)′.

3.2. Stochastic calculus for the identi�cation of the SDEs

3.2.1. NON-SYMMETRIC DISTORTED BROWNIAN MOTION

This subsection is a continuation of Subsection 2.4.2, where a Hunt process
M as stated in Theorem 2.21 was constructed under the assumptions (A1)�
(A3) and (2.6) of Subsection 2.3.2. We assume throughout this subsection that
(A1)�(A3) and (2.6) hold. We further consider

(A4) (E , D(E)) is conservative.

Following [1, Proposition 3.8], we obtain:

Proposition 3.39. If (A4) holds additionally (to (A1)�(A3) and (2.6)),
then:

(i) αRα1(x) = 1 for all x ∈ E, α > 0.

(ii) (Pt)t>0 is strong Feller on E, i.e. Pt(Bb(Rd)) ⊂ Cb(E) for all t > 0.

(iii) Pt1(x) = 1 for all x ∈ E, t > 0.

Following [1, Lemma 5.1], we have:

Lemma 3.40. (i) Let f ∈
⋃
s∈[p,∞)L

s(E,m), f≥0, then for all t>0, x∈E,∫ t

0
Psf(x) ds <∞,

hence ∫ ∫ t

0
f(Xs) ds dPx <∞.

(ii) Let u ∈ C∞0 (Rd), α > 0. Then

Rα
(
(α− L)u

)
(x) = u(x) ∀x ∈ E.

(iii) Let u ∈ C∞0 (Rd), t > 0. Then

Ptu(x)− u(x) =

∫ t

0
Ps(Lu)(x) ds ∀x ∈ E.

The following is an immediate consequence of (2.7):

Lemma 3.41. For u ∈ C∞0 (Rd)

Lu2 − 2u Lu = ‖∇u‖2.
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Using in particular Lemma 3.40 and Lemma 3.41, we obtain:

Proposition 3.42. Let u ∈ C∞0 (Rd). Then

Mu
t := u(Xt)− u(X0)−

∫ t

0
Lu(Xr) dr, t ≥ 0,

and

Ku
t :=

(
u(Xt)− u(X0)−

∫ t

0
Lu(Xr) dr

)2

−
∫ t

0
‖∇u‖2(Xr) dr, t ≥ 0.

are continuous (Ft)t≥0-martingales under Px, ∀x ∈ E.

Proof. First, one shows that Mu
t := u(Xt)− u(X0)−

∫ t
0 Lu(Xr) dr, t ≥ 0,

is a continuous (Ft)t≥0-martingale under Px, ∀x ∈ E. Consequently, there
exist stopping times Rn ↗ ∞, such that (Mu

t∧Rn)t≥0 is a bounded continuous
martingale for any n and exactly as in [28, Appendix], we show that (Ku

t∧Rn)t≥0

is a continuous (Ft)t≥0-martingale under Px, ∀x ∈ E. The assertion then follows
by letting n→∞. �

Proposition 3.42 serves to identify the quadratic variation of Mu, u ∈
C∞0 (Rd), and subsequently the corresponding SDE. The coordinate functions
are smooth functions and hence coincide locally with C∞0 (Rd)-functions. We
will use Proposition 3.42 locally up to a sequence of stopping times. For this,
we need:

Lemma 3.43. Let (Bk)k≥1 be an increasing sequence of relatively compact
open sets in E with ∪k≥1Bk = E. Then for all x ∈ E

Px
(

lim
k→∞

σE\Bk ≥ ζ
)

= 1.

By choosing (Bk)k≥1 as in Lemma 3.43 to satisfy additionally Bk ⊂ Bk+1,
k ≥ 1, we can identify (3.28) with the help of Proposition 3.42 for t < σE\Bk ,
Px-a.s. for any x ∈ Bk. Since this holds for any k ≥ 1, we can let k →∞ and
obtain (cf. [28, Theorem 3.6]):

Theorem 3.44. After enlarging the stochastic basis (Ω,F , (Ft)t≥0,Px) ap-
propriately for every x ∈ E, the process M satis�es

Xt = x+Wt +

∫ t

0

(
∇ρ
2ρ

+B

)
(Xs) ds, t < ζ(3.28)

Px-a.s. for all x ∈ E where W is a standard d-dimensional (Ft)-Brownian
motion on E. If additionally (A4) holds, then we do not need to enlarge the
stochastic basis and ζ can be replaced by ∞ (cf. Remark 2.2).
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4. APPLICATIONS TO STRONG UNIQUENESS OF THE SDEs

4.1. (Non)-symmetric distorted Brownian motion

This subsection is a continuation of Subsection 3.2.1. We �rst recall that
by [19, Theorem 2.1] under the conditions (A1), (A2) and (2.6) of Subsection
2.3.2 ((A3) is not needed), for every stochastic basis and given Brownian mo-
tion (Wt)t≥0 there exists a strong solution to (3.28) which is pathwise unique
among all solutions satisfying

(4.1)

∫ t

0

∥∥∥∥(∇ρ2ρ
+B

)
(Xs)

∥∥∥∥2

ds <∞ Px-a.s. on {t < ζ} .

In addition, one has pathwise uniqueness and weak uniqueness in this class.
In the situation of Theorem 3.44 it follows, however immediately from Lemma
3.43 that (4.1) holds for the solution there. Indeed, by Lemma 3.43, (4.1) holds
with σE\Bk for all k ∈ N. But the latter together with (A1) clearly implies
that (4.1) holds Px-a.s. for all x ∈ S for some S ∈ B(E) with m(E \ S) = 0
(by Lemma 2.13 the set S can be chosen such that even CapE(E \ S) = 0).
So, [19, Theorem 2.1], in particular, implies that the law of P̃x of the strong
solution from that theorem coincides with Px for all x ∈ S. But then P̃x = Px
for all x ∈ E, because of the strong Feller property of our Markov process given
by (Px)x∈E and of the one from [19, Theorem 2.1], i.e. P̃x, x ∈ E, since S
is dense in E. In particular, (4.1) holds for all x ∈ E. Hence we obtain the
following (cf. [28, Theorem 4.1]):

Theorem 4.1. Assume (A1)�(A3) and (2.6). For every x ∈ E the
solution in Theorem 3.44 is strong, pathwise and weak unique. In particular, it
is adapted to the �ltration (FWt )t≥0 generated by the Brownian motion (Wt)t≥0

in (3.28).

Remark 4.2. (i) By Theorem 3.44 and 4.1 we have thus shown that (the
closure of) (2.5) is the Dirichlet form associated to the Markov processes given
by the laws of the (strong) solutions to (3.28). Hence we can use the theory of
Dirichlet forms to show further properties of the solutions.

(ii) In [19] also a new non-explosion criterion was proved (hence one
obtains (A4)), assuming that ∇ρ2ρ + B is the (weak) gradient of a function
ψ which is a kind of Lyapunov function for (3.28). The theory of Dirichlet
forms provides a number of analytic non-explosion, i.e. conservativeness crite-
ria (hence implying (A4)) which are completely di�erent from the usual ones
for SDEs and which are checkable in many cases. As stressed in (i) such cri-
teria can now be applied to (3.28). Even the simple case, where m(Rd) < ∞
and ‖B‖ ∈ L1(Rd,m) which entails (A4), appears to be a new non-explosion
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condition for (3.28). For more sophisticated su�cient non-explosion criteria,
we refer to [17] in general and to [28, Lemma 5.4] in a concrete example.

4.2. Di�usions with 2-admissible weights

This subsection is a continuation of Subsection 3.1.2. We consider

(HP4) For each 1 ≤ i, j ≤ d,

(i)
σij√
ρ is continuous on Rd.

(ii)
∥∥∥∇(σij√ρ)∥∥∥ ∈ L2(d+1)

loc (Rd, dx).

(iii)
∑d

k=1
∂kaik
ρ ∈ L2(d+1)

loc (Rd, dx).

Theorem 4.3 (cf. [31, Theorem 5.1]). Assume that (HP1), (3.21), (HP3),
and (HP4), resp. (HP1), (3.24) (HP3)′, and (HP4) hold. Then the (weak)
solution in Theorem 3.34, resp. Theorem 3.37 is strong and pathwise unique.
In particular, it is adapted to the �ltration (FWt )t≥0 generated by the Brownian
motion (Wt)t≥0 as in (3.23) and its lifetime is in�nite.

Proof. Assume that (HP1), (3.21), (HP3), and (HP4), or (HP1),
(3.24), (HP3)′, and (HP4) hold. By [40, Theorem 1.1] under (HP1) and
(HP4) for given Brownian motion (Wt)t≥0, x ∈ Rd as in (3.23) there exists
a pathwise unique strong solution to (3.23) up to its explosion time. The re-
maining conditions make sure that the unique strong solution is associated to
(EA, D(EA)) and has thus in�nite lifetime. Therefore the (weak) solution in
Theorem 3.34, resp. Theorem 3.37, resp. is strong and pathwise unique. �

Remark 4.4 (cf. [31, Remark 5.2]). Two non-explosion conditions for
strong solutions up to lifetime for a certain class of stochastic di�erential equa-
tions are presented in [40, Theorem 1.1]. For the precise conditions, we refer
to [40]. By Theorem 4.3 and its proof, we know that the solution of (3.23) up
to its lifetime �ts to the frame of [40, Theorem 1.1]. Therefore, the remaining
conditions

(3.21), (HP3) or (3.24), (HP3)′,

provide additional non-explosion conditions in [40, Theorem 1.1] for solutions
of the form (3.23) that satisfy (HP1) and (HP4).

Acknowledgments. The second named author would like to thank Michael R�ockner
for bringing up the idea to him to apply pointwise weak existence results for di�usions
associated with Dirichlet forms to obtain new non-explosion criteria for the pathwise
unique and strong solutions of [19, 40], as it is done in Section 4.
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