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This survey paper is a structured concise presentation of four of our recent
papers on the stochastic regularity of diffusions that are associated to regular
strongly local (but not necessarily symmetric) Dirichlet forms. Here, by stochas-
tic regularity we mean the question whether a diffusion associated to a Dirichlet
form as mentioned above can be started and identified as a solution to an expli-
cit stochastic differential equation for explicitly given starting points. Beyond
the stochastic regularity, we consider its applications to strong existence and
pathwise uniqueness of singular stochastic differential equations.
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1. INTRODUCTION

This survey paper is a summary of the main results of [28-31], which we
present systematically in concise structured form. Throughout, we consider a
(non-)symmetric, strongly local, regular Dirichlet form £ on L?(E, m) where E
is a locally compact separable metric space and m is a positive Radon measure
on (E,B(E)) with full support. We further assume that the symmetric part
of £ admits a carré du champ. Our main concerns are the construction of a
Hunt process associated to £ that starts from as much as possible explicitly
specified points in F and subsequently the identification of the corresponding
stochastic differential equation (hereafter SDE) for any of these starting points.
Step by step we present methods to arrive at the identification of the corre-
sponding SDE.
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The first step is to find a pointwise heat kernel, i.e. the existence of a
heat kernel pi(x,y) for all z,y € E, associated with £, and in the sequel to
construct a Hunt process with the help of the transition function of p.(+,-). By
association of py(-,-) with £, we mean that the L?(E, m)-semigroup of £ coin-
cides m-a.e. with the transition function of p:(-,-), i.e. the transition function
of py(+,+) induces an L?(FE,m)-semigroup that coincides with the one of £. In
accordance with the symmetric case, we call this association Fukushima’s ab-
solute continuity condition. We explain two ways to obtain a pointwise heat
kernel. In the symmetric case, we adopt the method of [33] to obtain its exis-
tence. If the four conditions of Definition 2.3 are satisfied, then p;(x,y) exists,
is locally Hoélder in (0,00) x E x E and satisfies the heat kernel estimate of
Theorem 2.4. Moreover, the transition function is strong Feller (cf. Propo-
sition 2.5(i)). In the general, possibly non-symmetric case, we consider the
non-symmetric Dirichlet form given by the closure of the bilinear form in (2.5)
below on L?(R%, m), m := pdzx, where the conditions on A, p, B are formulated
in (A1)-(A3) of Subsection 2.3.2. Here, as a toy example we only consider the
case where A = id, the case where A is not the identity matrix can be treated
similarly. We may then apply known elliptic regularity results from [4, Theo-
rem 5.1| and [9, Theorem 1.7.4| (see Propositions 2.7 and 2.8 below) and follow
the main lines of [1] to find a pointwise heat kernel.

The next step is to construct a Hunt process with given pointwise heat
kernel py(-, ). This construction is in general different from the construction of
a Hunt process via the canonical scheme from a regular Dirichlet form which has
only unique distributions for quasi-every starting point. A well-known method
to obtain a pointwise Hunt process is to show that the transition function of
pe(+,+) induces a Feller semigroup. Here the conditions of Lemma 2.16 appear
to be the right ones in our framework since one can use the continuity of the
heat kernel and estimates for it to verify these (see for instance Remark 2.17
below). Another method to obtain a Hunt process with given pointwise heat
kernel p;(+,-) is the Dirichlet form method. It is a refinement of the construction
scheme introduced in [1, Section 4] to the case of symmetric Dirichlet forms on
a locally compact separable metric space that admit a carré du champ. The
method applies to certain non-symmetric cases as well, for instance to our toy
example.

Once having constructed a Hunt process from the pointwise heat kernel,
we aim at identifying it as a pointwise weak solution to a SDE. We explain two
methods for its identification. The first one is the well-known strict Fukushima
decomposition (see Proposition 3.3 here, or [15] from where it originates, or
in the monograph [16, Theorem 5.5.5|) and it applies in the symmetric case.
Proposition 3.3 requires estimates on potentials coming from supersmooth me-
asures that appear in the integration by parts formulas and in the energy for
the Dirichlet form applied to the coordinate projections. Here Proposition 3.4
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in combination with Lemma 3.5 appear as very useful and make it possible
to apply Fukushima’s strict decomposition to a wide range of situations as we
demonstrate by concrete examples in Subsections 3.1.1 and 3.1.2. However,
in some cases the global estimate on the resolvent density which is obtained
by taking the Laplace transform of the global estimate on the transition kernel
density from Theorem 2.4 may not lead to satisfactory results as explained right
after Lemma 3.5. For these cases, we use a localization procedure that stems
from [30, Section 5]), but we formulate it here in more details and in a more
general frame. It applies on open or closed subsets E of the d-dimensional Fu-
clidean space and involves part Dirichlet forms, Nash type inequalities (hence
better local Gaussian heat kernel estimates) on a nice exhaustion up to a ca-
pacity zero set of E by an increasing sequence of relatively compact open sets.
In this localization procedure, described right after the paragraph that fol-
lows Lemma 3.5, the strict Fukushima decomposition is applied only locally.
The second method for the identification of the SDE is classical direct sto-
chastic calculus. It is used in Subsection 3.2. The drift corresponding to the
coordinate projections is determined locally through the generator applied to
smooth functions with compact support and the quadratic variation of the
corresponding local martingale part can, for instance, be determined as in Pro-
position 3.42. For details, we refer to the mentioned subsection.

Section 4 is devoted to applications of stochastic regularity to strong ex-
istence and pathwise uniqueness of SDEs. We show that the weak solutions
constructed in Subsections 3.2 and 3.1.2 coincide with the strong and pathwise
unique solutions that were constructed by probabilistic means up to their explo-
sion times in [19, Theorem 2.1] and [40, Theorem 1.1]. Thus if £ is conservative
and symmetric or if the corresponding transition function is strong Feller in
the non-symmetric case, then the weak solutions obtained by stochastic regu-
larity are non-explosive for any starting point (cf. |16, Theorem 4.5.4(iv)| and
Remark 2.2). In particular, analytic conservativeness criteria that cover the
whole framework of this paper can be found in [17]. In this way, we provide
new analytic non-explosion criteria for the strong and pathwise unique solutions
of [19, Theorem 2.1] and [40, Theorem 1.1] which differ from the probabilistic
non-explosion criteria presented in these papers.

2. PRELIMINARIES AND CONSTRUCTION
OF A HUNT PROCESS SATISFYING FUKUSHIMA'’S
ABSOLUTE CONTINUITY CONDITION

2.1. Notations

As a first general remark on our notations, we shall follow the monographs
[16,24,25] and [21]. Thus should there be a notation that is not defined here,
it can be found in these references.
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For a locally compact separable metric space (E,d) with Borel o-algebra
B(E) we denote the set of all B(F)-measurable f : E — R which are bounded,
or nonnegative by By(E), BT (E), respectively. The usual Li-spaces Li(E, ),
q € [1,00] are equipped with L%-norm || - [|z¢(g ) with respect to the measure
pon Eand L} (E,p) :={f| f-1y € LY(E, ), YU C E, U relatively compact
open}, where 14 denotes the indicator function of a set A C E. If A is a set
of functions f : E — R, we define Ay := {f € A | supp(f) : = supp(|f|dm) is
compact in E} and Ay : = ANB,(E). The inner product on L?(E, ) is denoted
by (+,+)r2(E,u)- As usual, we also denote the set of continuous functions on F,
the set of continuous bounded functions on F, the set of compactly supported
continuous functions in E by C(E), Cy(E), Co(E), respectively. The space
of continuous functions on E which vanish at infinity is denoted by C(E).
For A C E let A denote the closure of A in E, A° := E\ A. We write
B, (y) ={x € E|d(z,y)<r},r>0,yecFE.

Let Vf = (01f,...,0qf) and Af := 29, 0;;f where 0, f is the j-th
weak partial derivative of f on R? and 0;;f = 9;(9;f), i,j = 1,...,d. As
usual dz denotes Lebesgue measure on R? and 8, is the Dirac measure at .
Let U ¢ R% d > 2 be an open set. The Sobolev space HY(U,dx), ¢ > 1is
defined to be the set of all functions f € LY(U,dx) such that 0;f € LY(U,dx),
j=1,...,d, and H (U, dx) := {f| f - € H-(U,dz), Yo € C°(U)}. Here
C3°(U) denotes the set of all infinitely differentiable functions with compact
support in U. We denote the set of all locally Holder continuous functions
of order 1 —a on U by CL *(U), 0 < a < 1. For any F C R% F closed,
let C(F) == {f: F — R|3g € CRY),glpr = f}. If Fis compact, we
also write C*°(F) instead of C§°(F). We equip R? with the Euclidean norm
| - || and the corresponding inner product (-,-). Let fI(z) ==z, j = 1,...,d,
x = (x1,...,2q9) € R% be the coordinate projections.

2.2. The conditions (H1) and (H2)

Throughout this paper, we consider a possibly non-symmetric, strongly
local, regular Dirichlet form (€, D(E)) on L?*(E, m) where E is a locally com-
pact separable metric space and m is a positive Radon measure on (F, B(E))
with full support on E (see [16,24,25] and [21]). As usual we define & (f, g) :=
g(fv ) (f7 )L2 E,m) fOI‘ f9€ D( ) and HfHD(S) = 51(f7f)1/27 fe D(‘S)
Let (T3)i>0 (resp. (T1)i0) and (Ga)aso (resp. (Ga)aso ) be the strongly conti-
nuous contraction L?(E, m)-semigroup (resp. cosemigroup) and resolvent (resp.
coresolvent) associated to (£, D(€)) and (L, D(L)) (vesp. (L, D(L))) be the cor-
responding generator (resp. cogenerator) (see |21, Diagram 3, p. 39]). Then
(T1)1>0 (resp. (T3)is0) and (Ga)aso (resp. (Ga)aso) are sub-Markovian (cf. [21
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L. Section 4]). Here an operator S is called sub-Markovian if 0 < f < 1 implies
0 < Sf < 1. Then (T})i>0 (resp. (Ga)aso0) restricted to LY(E,m) N L¥(E,m)
can be extended to strongly continuous contraction semigroups (resp. con-
traction resolvents) on all L"(E,m), r € [1,00). We denote the corresponding
operator families again by (7})i>0 and (Ga)a>0 and let (L, D(L,)) be the cor-
responding generator on L"(E,m). Furthermore by [21, I. Corollary 2.21|, it
holds that (T});~0 is analytic on L?(E,m) and then by Stein interpolation (cf.
e.g. |2, Lecture 10, Theorem 10.8]) (73)i>0 is also an analytic semigroup on
L"(E,m) for all r € (2,00). Moreover, (T});>0 can be defined as a semigroup
of contractions on L (E,m), which is in general not strongly continuous. We
denote the corresponding semigroup again by (73)¢>o-
We consider the condition

(H1) There exists a B((0,00)) ® B(E) ® B(E) measurable non-negative
map py(z,y) such that

@) Pf@)= [ men) f)md), t>0, 2B, feB(E)

E
is a (temporally homogeneous) sub-Markovian transition function (see [12,
Section 1.2]) and an m-version of Ty f if f € L2(E,m)y.

Here pi(z,y) is called the transition kernel density or heat kernel. Taking
the Laplace transform of p.(z,y), we see that (H1) implies that there exists a
B(E) ® B(E) measurable non-negative map r,(z,y) such that

R.f(z):= /Era(x,y) flyym(dy), a >0, x € E, f € By(E),

is an m-version of G, f if f € L*(E,m),. Here ro(x,y) is called the resolvent
kernel density. For a signed Radon measure p on E, let us define

meﬁz/#amwumw,a>o,xem
E

whenever this makes sense. Throughout this paper, we set Py := id.
Furthermore, assuming that (H1) holds, we can consider the condition

(H2) There exists a Hunt process with transition function (P})¢>o.

We recall that (H2) means that there exists a Hunt process

M = (Qa f7 (ft)t207 Cv (Xt)t207 (IPJ‘)CEEEA)a
with state space E and the lifetime ¢ := inf{t > 0 | X; = A} such that
P(z,B) := Plp(z) =P,(X; € B) forany x € E, B € B(E), t > 0 (cf. [16]).
Here, A is the cemetery point and as usual any function f : £ — R is extended
to {A} by setting f(A) := 0. Ea := EU{A} is the one-point compactification
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if F is not already compact, if F is compact then A is added to £ as an isolated
point.

By |21, V. 2.12 (ii)], it follows that (£, D(£)) is strictly quasi-regular.
Then, by [21, V.2.13] there exists a Hunt process

(2.2) M = (Q, ﬁ? (ﬁ)tZOﬂ 57 (Xt)tZ()? (EDOC):EEEU{A})

(strictly properly) associated with (€, D(E)). It is here important to note that
the transition function of M will in general satisfy (2.1) only for m-a.e. z € E
(or quasi-every x € E), even if (T})¢>0 is strong Feller, i.e. T;f has a continuous
m-version for any f € By(E), because the Hunt process M is unique only for
quasi-every (hence in particular m-a.e) starting point (see for instance [16,
Theorems 4.2.8 and A.2.8.]). Therefore a Hunt process as in (H2) has to be
explicitly constructed from the transition function in (H1). This will be done
in Subsection 2.4 below.

Definition 2.1. If (H1) and (H2) hold, then we say that M satisfies the
absolute continuity condition (cf. [16, (4.2.9)] and also |25, Theorem 3.5.4 (ii)]).

Remark 2.2. Let M satisfy the absolute continuity condition. Suppose
(€,D(€)) is conservative and (P;)¢>o is strong Feller, i.e. for ¢ > 0 we have
P,(By(E)) C Cp(E). Then, since m has full support, one can easily see that

P,((=00)=1, VxekFE.

2.3. The existence of a transition kernel density

In this subsection, we illustrate two methods to find a transition kernel
density as in (H1). The first method is from [33]. The second method depends
on elliptic regularity results. In the symmetric case in [4] it has been shown
in a nice way how to obtain (H1) (and more) starting from an embedding of
D(L,) for some p > 1 into the space of continuous functions on compact subsets
of E. The latter is naturally implied by elliptic regularity results via Sobolev
embedding. Instead of formalizing the results of [4] to the non-symmetric case
in Subsection 2.3.2 right after Proposition 2.8 below, we follow a toy example
that we continue in course of the subsequent sections.

2.3.1. SYMMETRIC DIRICHLET FORMS REPRESENTED BY A CARRE DU CHAMP

Throughout this subsection, we assume that (€, D(£)) is symmetric. Then
(€,D(E)) can be written as

1
g(fvg)ZQLdM<f,g>v fngD(g)a
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where gy is a positive symmetric bilinear form on D(&) x D(£) with values in

the signed Radon measures on F, called energy measures. The positive measure
s,y can be defined via the formula

/E by gy = 26(F.6F) — E(f%.0),

for every f € D(E), and every ¢ € D(E) N Co(E). Let D(E)ioc be the set of

all measurable functions f on E for which on every relatively compact open
set G C F there exists a function ¢ € D(E) with f = g m-a.e on G. By
an approximation argument we can extend the quadratic form f — s s to
D(E)ioc = {f € L, ,(E,m) ]| s is a Radon measure}. By polarization we

then obtain for f,g € D(E€)ec a signed Radon measure

1
tir.g) = 7 (H(f1g.fra) = H(f—g.f—g))-
1

For these properties of energy measures we refer to [16], |20, Proposition 1.4.1],
and [23| (cf. [33, Appendix]). In this article, whenever £ is symmetric, we will
assume that it admits a carré du champ

I':D(E) x D) — LY(E,m)
as in [10, Definition 4.1.2|. This means
g =T(f9)dm

i.e. [i(f4) is absolutely continuous with respect to m with density I'(f, g) for
any f,g € D(E). The energy measures pr,p) or equivalently the carré du champ
operator, define in an intrinsic way a pseudo metric v on E by

Y(w,y) = sup {f(@) = W) | f € D(E)oe N C(E), T(f.f) < Im-ae. on Ef,
(cf. [5]). We define the balls with respect to the intrinsic metric by
Bi(x)={y € E|~(z,y) <r}, z€BE, r>0.
Definition 2.3. (i) (€, D(E)) is called strongly regular if (-, -) is a metric

on F whose topology coincides with the original one.
(ii) We say the completeness property holds, if for all balls By, () C E, x €

E, r >0, the closed balls B, (x) are complete (or equivalently, compact).
(iii) We say the doubling property holds if there exists a constant N= N(E)
such that for all balls By, (z) C E

m(Ba, () < 2Vm(B,(x)).

(iv) We say the (scaled) weak Poincaré inequality holds, if there exists a con-
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stant C), = C,(E) such that for all balls By,.(z) C E
[ Ar-Rfdm<c,? [ n(f)dm vfeDE),
BT(I) B2’I‘(I)

where fw,r = )fdm.

1 _
m(Br(x)) fBT(:r

Suppose (€, D(E)) satisfies the properties (i)-(iv) of Definition 2.3. Then
by [33, p. 286 A)| with Y = E, there exists a jointly continuous transition
kernel density p¢(z,y), locally Holder continuous in (¢,z,y) € (0,00) x E x E
(see [33, Proposition 3.1)|), such that

(23) Ptf(m) = /L;pt(xay)f(y) m(dy)v t> 03 T,y € Ea f € Bb(E)

is an m-version of T} f if f € L?(E,m)p. In particular, condition (H1) is satis-
fied. Furthermore, we obtain from |33, Corollary 4.2)| the following estimate of
transition kernel density:

THEOREM 2.4. Suppose (€, D(E)) satisfies the properties (i)-(iv) of Defi-
nition 2.8. Then, given any € > 0, for all points x,y € E and all t > 0

1 1 7*(x,y)

A . ~ FOxP C(d+e)t)’
Jm(B @) /m(B )
where C' is a constant depending only on N = N(E) and C, = Cp(E).

Using Theorem 2.4, exactly as in [30, Proposition 3.3|, we can show:

PROPOSITION 2.5. Suppose (€, D(E)) satisfies the properties (i)-(iv) of
Definition 2.3. Then:
(1) (Pr)e>0 and (Ra)a>0) are strong Feller.
(i) (H1) and (H2) (i), (iv) from Subsection 2.4.2 below hold for (P})i>o.
(iii) Suppose E = R? and C~ Y|z —y| < v(z,y) < C|lz —y|| for some constant
C >1 and any z,y € R%. Then P,(L'(R% m)o) C Coo(RY).

According to [32, Theorem 4], [34, Theorems 3.1(i),(ii), and 3.6], we have
the following conservativeness criterion:

THEOREM 2.6. Suppose (£, D(E)) satisfies properties (i) and (i) of Defi-

nition 2.8 and that v(x,y) < oo for all x,y € E. Then (£, D(E)) is conserva-
tive, if

- " dr = 00,
/1 log (m(Br(xO))

where xg € E is arbitrary but fived.
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2.3.2. USING ELLIPTIC REGULARITY

We consider the following conditions (A1)—(A3) in dimension d > 2:
(A1) p=¢2 ¢ ¢ HLQ(R”[7 dz), p>0 dx-a.e. and

loc

LV'OH cl? (]Rd,m), m := pdx,

loc

p = d + ¢ for some ¢ > 0, a;; = aj; € Hll(;f(Rd,dx), 1 <4, <d
and the matrix A = (ai;)1<i j<d is locally strictly elliptic dz-a.e. on R,
i.e. for each compact set K C R? there exists some kg > 0 such that

rill€ll” < (A(2)€,€), V€ € RY, dr-ae. x € K.

By (A1) the symmetric positive definite bilinear form

£(0.9) =5 [ (AVE. Vg dm, f.g € CF(RY
R4

is closable in L?(R%,m) and its closure (€%, D(EY)) is a symmetric, strongly
local, regular Dirichlet form. We further assume
(A2) B:R? = R?, ||B|| € L} (RY, m) where p is the same as in (A1)
and

/ (B,Vf)dm =0, YfeCPRY,
Rd
and

(A3) | [ou(B,Vf) g p da| < coEX(f, )2 EV(g, )2, Vf,g € C&(RY),

where ¢ is some constant (independent of f and g).
Next, we consider the non-symmetric bilinear form

25) Ef9)=j [ (AVAVodm— [ BV gdm. fgeCFRY

in L2(RY,m). Then by (A1)-(A3) (£,C5°(RY)) is closable in L2(R¢,m) and
the closure (£, D(£)) is a non-symmetric Dirichlet form (cf. |21, II. 2.d)]), which
is strongly local and regular.

We now state the elliptic regularity result [4, Theorem 5.1], which is based
on results of [7], [8], but improves them. [4, Theorem 5.1] is formulated for
general open subsets U C R?, but we shall only be concerned with U = R

PROPOSITION 2.7. Let d > 2 and u a locally finite (signed) Borel measure
on R that is absolutely continuous with respect to the Lebesque measure dx on
R?. Suppose A = (a;;)1<ij<a is as in (Al). Let either h;, c € LY (R% dx) or
hi, c€ LY (R%, u) and let f € LF (RY, dx). Assume that

loc
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d d
/Rd ( > aidie + ; hidip + cw) dp = /Rd ofdr, Vo e C(RY),

ij=1
where h;, ¢ are locally p-integrable. Then p has a density in Hllo’f(Rd) that s

locally Holder continuous.

Additionally, we restate Morrey’s estimate in our setting (see [9, Theo-
rem 1.7.4]).

PROPOSITION 2.8. Assume p > d > 2. Let V be a bounded domain in R,
h=(hi,...hq): V = R% and c,e: V — R such that

d
hi € LP(V,dx),1 <i<d, and c,e € LY V,dx) for q:= ﬁ > 1
p
Let a;j = aji, aij € Hllo’f(Rd,d:r) for all 1 < 4,5 < d and 71 ||€]|? <

(A(2)€,€) < K|€]]%, V€ € R, x €V for some k > 1. Assume that u € HYP(V)

1s a solution of
d d
/ Z (&-gp(Zalj@ju + hm)) +o(cu+e)dr =0, VYoeC5V),
Vi=t j=1

Then for every domain V' with V! C V! C V, we obtain the estimate

ullgrevry < colllell Laviaey + lullLr(v,az))s

where co < 00 is some constant independent of e and u.

The elliptic regularity results of Propositions 2.7 and 2.8 have been applied
in the symmetric case, i.e. B =0 in [4] and in particular (H1), (H2), up to
the solution of a corresponding martingale problem have been derived in this
situation. We refer the interested reader to the mentioned article. Propositions
2.7 and 2.8 and the elliptic regularity results of 7], [8], can also be applied in
the non-symmetric case. This has been done in case A = (a;;)i1<ij<d is the
identity matrix in [28] and we will consider this case as a toy example that
we will continue throughout this article. From now on up to the end of this
subsection, we shall hence assume that

where 0;; € {0,1} is the Kronecker symbol, i.e. A is the identity matrix.

Since by (A1), (A2), ||32||, ||B]| € L}, (R%,m), we get C5°(R?) C D(L,)
for any r € [1,p] and
1
(2.7) Lou = 2Au+<pr+B,w>, ue CPRY), rell,pl.
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In particular
/ Ludm =0, ue CPRY).
R4

Thus by Proposition 2.7 and Sobolev embedding:

COROLLARY 2.9. p is in Hl{.’f(Rd,da:) and has hence a continuous dx-
version in Cllozd/p(Rd).

We shall always consider the continuous dz-version of p and denote it
also by p. Under the assumptions (A1)—(A3) we apply Proposition 2.7 and
Proposition 2.8 to

/(aﬁ)u Gagpdx:/ugpda:, Vu € C°(RY),

where ) v
Lu = iAu + <7’0 — B,Vu).

2p
Doing this, we get (cf. [28]):
COROLLARY 2.10. Let « >0, t >0, and r € [p,00). Then:
(i) For g € L"(R%,m), we have
p Gag € Hll’p(Rd,dx)

oc
and for any open balls B' C B' C B C B C {p > 0} there exists cgq €
(0,00), independent of g, such that
28) | p Gag lmnma < cza (1Gagllimm + IglLogsm )-
(ii) For uw € D(L,), we have
p Tou € H'P(RY, dx)

loc
and for any open balls B C B' C B C B C {p > 0} there exists cg €
(0,00) (independent of u and t) such that
(2.9) e Trull vz < e (1Tullprsm) + 1 Te(1 = Lo)ull e (,m))
r—1 r—p
< e (m(B) 7 ull sy + m(B) (1= Lo)ull (g my) -

(iii) Let f € L"(R%, m). Then the above statements still hold with (2.9) repla-
ced by

lp Tif Il (raey < €8 (L 4+t Fll g m)»
where ¢p € (0,00) (independent of f, t).
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Remark 2.11. By (2.9) and Sobolev imbedding, for r € [p,00), R > 0 the
set

{Thw [t >0, we D(Ly), |[ullpr@am) + [1Lrull prga,m) < R}
is equicontinuous on {p > 0}.

Now by Corollaries 2.9, 2.10, and Remark 2.11, exactly as in [1, section 3]
(cf. [28]), we obtain:

THEOREM 2.12. (i) There exists a transition kernel density pi(-,-) on the
open set
E:={p>0}
such that

Pf@)i= [ f@nay)midy. w€ B, t>0
R
is a (temporally homogeneous) sub-Markovian transition function and an
m-version of Tyf for any f € Uy, L7 (R, m).
(ii) (Py)¢so is a semigroup of kernels on E which is L"(R® m)-strong Feller
for all r € [p,00), i.e.
P.f € C(E), VYf€Us,L"(RYm), Vt>0.

(iii)
lim Piyof(z) = Pif(z), V¥s>0, z€E, feCPRY.
%
(iv) (P))e=0 is a measurable semigroup on E, i.e. for f € BT (RY) the map
(t,z) — Pif(z) is B(]0,00) x E)-measurable.
(v) There exists a resolvent kernel density ro(-,-) defined on E such that

Rof(x) == / () ralz, y)m(dy), ©€E, a>0,

satisfies Rof=Gof m-a.e for any f €U,>pL"(RY m) and aRy1(z) < 1.
(vi) (Ra)a>0 is a resolvent of kernels on E and (Ry)a>o0 s L"(RY, m)-strong
Feller for all v € [p,00), i.e. Rof € Cy(E) for all f € By(RY), and
Rof € C(E) for all f € Uy, L™ (R, m).
(vii) Let a > 0. Then for all f € By(RY) UB*T(RY) and allz € E

Rof(z) = /0 T emotp f(x) dt.

(viii) For all u € C§°(R?)
lim aRyu(z) =u(z) Vo€ E.

a—r0o0

Note that applying Corollary 2.10, we obtain in Theorem 2.12 a locally
Hoélder continuous m-version Pif of Tif only on E = {p > 0}, because the
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product pT;f has a locally Hélder continuous m-version and p is Holder con-
tinuous. The same holds for the locally Holder continuous m-version Ry f of
Gof.

In order to show that condition (H1) holds (on E = {p > 0}) we still need
some preparations. Consider the strict capacity Capg of the non-symimetric
Dirichlet form (€, D(E)) as defined in [21, V.2.1] and [38, Definition 1], i.e.

Capg = cap; &,

for some fixed ¢ € L'(R%, m) N By(R?), 0 < ¢ < 1. Let Cap be the capacity re-
lated to the symmetric Dirichlet form (£, D(E°)) as defined in [16, Section 2.1].
It is known from [14, Theorem 2| that Cap({p = 0}) = 0. Then the following
has been shown in |28, Lemma 2.10]:

LEMMA 2.13. Let N C R%. Then
Cap(N) = 0= Capg(N) = 0.
In particular Capg({p = 0}) = 0.

The result of Lemma 2.13 is intuitively clear by [16, Lemma 2.2.7(ii)| and
condition (A2). In particular, it implies that for the Hunt process (2.2) it
holds P, (5ge < oo) = 0 for m-a.e. z € R? (actually for E-q.e. z, see [21, IV.
Proposition 5.30]), where G := inf{t > 0| X; € E°}.

Let (€%, D(£F)) denote the part Dirichlet form on E of (£, D(£)) given by
(2.5) with A = (a4j)1<ij<q satisfying (2.6). Let (TtEN)t>0 denote its L2(E,m)-

semigroup. By [25, Theorem 3.5.7] the part process (X );>0 of the Hunt process
(2.2) is associated to (£F, D(EF)). Hence for any f € By(E)p and m-a.e. x € E

(2.10) TtEf(:U) = I~Ex[f()~(tE), t < ope] = Em[f(f(t), t < ope] = I~Ex[f()~(t)]
— Tyf(x) = / £ () pele,y) m(dy),
E

where the second equality follows from the definition of part process, the third
since Capg (E€) = 0 and the last since f is in particular in LP(E, m). Extending

Pf(z) = /E f@pela,y)m(dy), z€E, t>0

to f € LY(E,py(z,-)dm) D L?(E,m)y, we see that condition (H1) holds for
the part Dirichlet form (€%, D(EF)).

Remark 2.14. By using elliptic regularity results we do not necessarily
obtain condition (H1) for the original Dirichlet form (£, D(E)) on R?. Instead,
we have to exclude a capacity zero set from the state space. The new state
space £ = R4\ {p = 0} will then be an invariant set for the corresponding sto-
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chastic process that will be constructed and identified below in subsections 2.4
(see Theorem 2.21) and 3.2.1, i.e. we will be able to start and identify the
corresponding SDE for every point in £ and the process will remain in F until
its lifetime. This is in contrast to the construction via the Feller method which
can allow entrance boundaries, i.e. capacity zero sets from which the process
can be started and identified but to which it will never return. As an example,
we mention for instance Proposition 3.13(i). Here we can start and identify the
SDE (3.8) for every starting point = € R?, o € (—d + 1,1), but by [16, Exam-
ple 3.3.2] Cap({0}) =0, if and only if &« € [-d + 2,d). Thus in the situation of
Proposition 3.13(i), 0 is an entrance boundary for any a € [—d + 2, 1).

2.4. Construction of a Hunt process
with given transition kernel density

In this subsection, we illustrate two methods to obtain M as in Definition
2.1 starting from assumption (H1). Concerning the second method in Sub-
section 2.4.2, we continue our toy example from Subsection 2.3.2 to explain the
non-symmetric case.

2.4.1. THE FELLER METHOD

Assuming (H1), a Hunt process as in (H2) can be constructed by means
of a Feller semigroup. For the definition of Feller semigroup, we refer to [12,
Section 2.2].
Remark 2.15. Under (H1), (P)¢>0 is a Feller semigroup, if
(i) Vf € Cxo(F), limyo P, f = f uniformly on E,
(ii) P,Cx(FE) C Cx(F) for each ¢t > 0.

It is well known that the condition of uniform convergence in Remark
2.15 (i) can be relaxed to pointwise convergence (see for instance [12, Section
2.2 Exercise 4.]). The conditions of Remark 2.15 can be further relaxed to the
conditions of the following lemma which are suitable for us.

LEMMA 2.16. Suppose (H1) and that
(1) im0 P,f(z) = f(x) for each x € E and f € Cy(E),
(ii) PCy(E) C Coo(E) for each t > 0.
Then (Py)i>o0 is a Feller semigroup. In particular (H2) holds (cf. [6, (9.4)
Theorem]/).

Remark 2.17. One can use heat kernel estimates for p;(z,y) to check
the assumptions of Lemma 2.16(i), (ii) (see [30, proofs of Proposition 3.3(iii)
and Lemma 3.6(i)] and the corresponding statement here in Lemma 3.12(i) in
Section 3.1 below).
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2.4.2. THE DIRICHLET FORM METHOD

The second method to obtain a Hunt process as in Definition 2.1 starting
from assumption (H1) is by a method that we call the Dirichlet form method.

2.4.2.1. The symmetric case. Throughout this subsection let (£, D(£))
be symmetric. We assume further that £ admits a carré du champ I" : D(&) x
D(&) — LY(E,m) as in Subsection 2.3.1.
Consider the condition
(H2)' We can find {u, | n > 1} € D(L) N Cy(F) satisfying:
(i) For alle € QN (0,1) and y € D, where D is any given countable

dense set in E, there exists n € N such that u,(z) > 1, for all
z € Be(y) and u, =0 on E'\ Be(y).

(i) Ri([(1 = Lyun]), Ra([(1 = L)un] ™), Ba([(1 = La)u]™), Ra([(1 -
Ly)u2]™) are continuous on E for all n > 1.

(iii) Rlco(E) C C(E)

(iv) For any f € Cy(E) and = € E, the map t — P,f(x) is right-
continuous on (0, 00).

Note that Liu2, n > 1, in (H2)/(i1) is well-defined, since D(L1), is an
algebra by [10, I. Theorem 4.2.1] and D(L)o, C D(L1)p by [30, Lemma 2.5(ii)].
The following is the main result of [30, Section 2.1.2]. It is a refinement of the
results obtained in a concrete symmetric situation in [1, Section 4] to the case of

strongly local regular symmetric Dirichlet forms that admit a carré du champ:

PROPOSITION 2.18. Assume (H1) holds. Then (H2)' implies (H2).

By an obvious application of Proposition 2.18, we obtain:

Remark 2.19. If (T});>¢ is strong Feller and (H2)'(i)-(ii) and (H2)'(iv)
hold for the corresponding transition function (P;)¢>0 and resolvent (Ra)a>0,
then (H1) and (H2) hold.

2.4.2.2. The non-symmetric case. This subsection is a continuation
of Subsection 2.3.2 where we considered the Dirichlet form (€, D(E)) of (2.5)
with A = (d;5). We consider again the strict capacity Capg and the Hunt
process (2.2). Due to the properties of smooth measures with respect to Capg
in [38, Section 3] it is possible to consider the work [36] with cap, (as defined
in [36]) replaced by Capg. In particular [36, Theorem 3.10 and Proposition 4.2]
apply with respect to the strict capacity Capg and therefore the paths of M are
continuous Py-a.s. for strictly £-q.e. € R? on the one-point-compactification
]RdA of R? with A as point at infinity. We may hence assume that

(2.11) Q= {w=(Wt)zo € C([0,00),RA) | w(t) = AVt > ((w)}
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and )
Xi(w)=w(t), t>0.
Since Capg({p = 0}) = 0 by Lemma 2.13, we obtain (cf. [28]):

LEMMA 2.20. Let (Fy)r>1 be an increasing sequence of compact subsets
of E := {p > 0} with Up>1F = E and such that F}, C Fiy1, k > 1(here F
denotes the interior of F). Then

P.(Q) = 1 for strictly E-q.e. x € E,

where ~
Qo= QN {w [w(0) € EU{A} and lim op\p (@) = (W)}
—00

Given the transition function (FP;)¢>o we can construct M with continuous
sample paths in Ea following the line of arguments in [1, Section 4] using
in particular Lemma 2.20 and our further previous preparations (cf. [28] for
details).

THEOREM 2.21. There exists a Hunt process
M = (Q,F, (F)1>0: ¢, (Xt)1>0, (Pa)zeBa )

with state space E, having the transition function (P;)i>0 as transition semi-
group. In particular (H2) holds and M satisfies the absolute continuity condi-
tion with respect to the part Dirichlet form (£F, D(EF)), since by (2.10)

TEf=Pf m-ae Yt>0, f€L*(E,m)y.

Moreover, M has continuous sample paths in the one point compactification Ea
of E with the cemetery A as point at infinity.

3. POINTWISE WEAK EXISTENCE OF SINGULAR SDES
ASSOCIATED TO DIRICHLET FORMS

Once having constructed (for instance through the steps (H1) and (H2))
a Hunt process M that satisfies the absolute continuity condition with respect
0 (€,D(€)), we want to identify the corresponding stochastic differential equa-
tion. We present two ways for the identification. The first is the well-known
strict Fukushima decomposition. The second is realized by direct stochastic
calculus.

3.1. The strict Fukushima decomposition

This subsection refers to the monograph [16], hence some of its standard
notations may be adopted below without definition. Throughout this sub-
section, we assume that (£, D(€)) is symmetric and that (H1) and (H2) hold.
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In some cases, we will apply the strict Fukushima decomposition (i.e.
Proposition 3.3 below) on an open subset B C E. Therefore, we need first to
state some definitions and properties in a local setting.

Definition 3.1. Let B be an open set in E. For x € B,t > 0,a > 0 and
€ [1,00) let
ope :=inf{t > 0| X; € B}, Dpc := inf{t > 0| X; € B},
PP f(x) == E,[f(Xy);t < o] , f € By(B),
REf(w) =B, | 7% e o f(X,) ds| , f € By(B),
D(EB) :=={u e D()|u=0 E&-q.eon B°Y}.
EP =€ |peryxp(en).
L*(B,m) :={u € L*(E,m) | u =0, m-a.e. on B°}.
o [|f1lp5 = JplfIP dm.
Hf”oo,B := inf {C > 0‘ fB 1{\f|>c} dm = 0}.
EP(f.9) =EP(f,9)+ [ fgdm, f,gec D(EP).
I f lpem) = EP(f, Y2, f e DEP).
(EB,D(EP)) is called the part Dirichlet form of (£, D(€)) on B. Tt is
a regular Dirichlet form on L2(B,m) (cf. [16, Section 4.4]). Let (T);~o and
(GB) =0 be the L2(B, m)-semigroup and resolvent associated to (8, D(EP)).
Then PP f, RB f are m-versions of TP f, GB f, respectively for any f €L?(B,m)y.
Since PP14(x) < P;14(x) for any A € B(B), z € B and m has full support on
E, A PP1a(z), A € B(B) is absolutely continuous with respect to 15 - m.

Hence there exists a (measurable) transition kernel density p?(z,y), =,y € B,
such that

(3.1) PP f(z) = / PP(x,y) fly)m(dy), t >0, z€B
B

for f € By(B). Correspondingly, there exists a (measurable) resolvent kernel
density r5(z,y), such that

REf@) = [ B0 f)m(dy), >0, v B
B
for f € By(B). For a signed Radon measure p on B, let us define
RE2u(w) = [ rB(e)uldy), a>0, ze B
B

whenever this makes sense. The process defined by

XP(w) = {Xt(w), 0<t< Dpec(w)
A, tZ DBc((.U)
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is called the part process corresponding to £2 and is denoted by M|p. M|p is
a Hunt process on B (see [16, p.174 and Theorem A.2.10]). In particular, by
(3.1) M| p satisfies the absolute continuity condition on B.

A positive Radon measure p on B is said to be of finite energy integral if

AfmmmM@§C75ﬂﬁf%f6D@%ﬂCuB%

where C' is some constant independent of f. A positive Radon measure p on B
is of finite energy integral (on B) if and only if there exists a unique function
UP 1 € D(EB) such that

5ﬂ@mﬂ=éﬂﬂwm,

for all f € D(EB) N Co(B). UP i is called 1-potential of u. In particular,
RBu is a version of UPp (see e.g. [16, Exercise 4.2.2]). The measures of finite
energy integral are denoted by S&. We further define the supersmooth measures
S8 = {ue SP| u(B) < oo, ||Uulleo,p < 0o}. A positive Borel measure y on
B is said to be smooth in the strict sense if there exists a sequence (Ej)g>1 of
Borel sets increasing to B such that 1g, - u € SE for each k and

P.(lim op\p, >(¢) =1, Vz € B.
k—o00

The totality of the smooth measures in the strict sense is denoted by SP (see
[16]). If u € SP, then there exists a unique A € A:,iB with = pa, i.e. pis
the Revuz measure of A (see [16, Theorem 5.1.7]), such that

Ex[/ e’tdAt} = RPua(z), Vx € B.
0

Here, A:’lB denotes the positive continuous additive functionals on B in the
strict sense. If B = F, we omit the superscript B and simply write Uy, So, Soo,
51, and AZl

For later purpose we state some auxiliary result (see [30, Lemma 2.12]).

LEMMA 3.2. Fork € Z, let jiq, pia € SP be the Revuz measures associated
with A, A € AP respectively. Suppose that pg = > .y piar. Then A =

c,l 7
ZkEZ AF,

Now we restate the strict Fukushima decomposition for continuous functi-
ons (cf. [16, Theorem 5.5.5]) which holds under our present assumptions on

(€, D(£)):

PROPOSITION 3.3. Suppose that a function [ satisfies the following con-
ditions:
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(i) f € D(E)bioc, [ is continuous on E

(i) 1¢g - oty € Soo for any relatively compact open set G C E

(iii) Jv = v® — @ with 15 - vW 15 - v@ € Soy for any relatively compact
open set G C E and

€<f,g>=/gdv, Vg e,
E

for some special standard core € of .
Let AV A and B be the positive continuous additive functional in the
strict sense with Revuz measures vV, v and Ko rlf)s, Tespectively.
Then,
F(X) = f(Xo) = M + NP Pyoas. VzeE.
Here,
N =AW 4 4@ P, as VzeE,

and MU is a local additive functional in the strict sense such that, for any
relatively compact open set G € E,

E,(M{l,,.) = 0, VzeG,
E ((Mt[i}o'gc)Q) = ECE(Bt/\G'Gc); V$ S G

Applied to concrete situations Proposition 3.3(iii) will serve for the iden-
tification of the drift of the corresponding SDE, since v can be interpreted
as —Lfdm at least if f € D(L), so that Nf] fo Lf(Xs)ds since hdm is
uniquely associated to ( fg h(Xs)ds)i>o via the Revuz correspondence for any
h € L .(E,m). But of course Proposition 3.3(iii) identifies the drift also if it is
not absolutely continuous with respect to ds, for instance if it is a local time.

In order to handle quadratic variations and general drifts described through
signed supersmooth measures by verifying Proposition 3.3(ii) and (iii), we use
the following key observation:

PROPOSITION 3.4. Let p be a positive Radon measure on ¥, G C E some
relatively compact open set, and TlG € C(E). Suppose that

(3.2) /G r1 () (dy) < 9

m-a.e. on E and that additionally at least one of the following conditions is
satisﬁed'
1) [ori(y) u(dy) € D(E), ie. 1g-p € So,
( i) (3.2) holds p-a.e. on G,
(iit) fm1(y) p(dy) € LY(G,p), ice. Ri(lg-p) € LY(G,p).
Then 1g - € Soo- In particular, if this holds for any relatively compact open
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set G, then p € Sy with respect to a sequence of open sets (Eg)g>1.

Proof. Obviously (ii) implies (iii). The rest is just a reformulation of [30,
Proposition 2.13]. O

Next, we need to find a dominating continuous function 7 as in (3.2).
For this, let

1
(3.3) Vag(x) == /Rd EEEa gly) dy, weR?, >0,

whenever it makes sense. The following result is from [22, Chapter 4, Theorem
2.2].

LEMMA 3.5. Let n € (0,d), 0 <n— % <1 and g € LP(R?, dx) with

L@+l ol dy < .

d

Then V,g is Hélder continuous of order n — b

In the case of existence of a nice resolvent kernel density estimate, we may
find a continuous function r{" as in Proposition 3.4 by using Lemma 3.5. Such
a function is typically given as a linear combination of functions V;g (cf. for
instance [30, proof of Lemma 3.6(iii)]). However, in some cases such as Propo-
sition 3.13(ii), Theorem 3.15(ii), Remark 3.19, Subsection 3.1.1 and Subsection
3.1.2, the global resolvent density estimate (cf. e.g. Lemma 3.12(ii)) obtained
from the heat kernel estimate in Theorem 2.4 is not sufficient for the applica-
tion of Proposition 3.4 via Lemma 3.5. Or we simply do not know whether
a global resolvent density estimate exists. In these cases, we use a method to
obtain better Gaussian estimates for local resolvent kernel densities and com-
bine it with a localization method. In this localization method, Proposition 3.3
is applied locally on a nice exhaustion up to a capacity zero set of the state
space which is typically Euclidean. Thus from now on up to the end of this
subsection, we assume that £ C R9.

Let ¢ > 0 dr-a.e. on E C R, ¢ € L} (F,dz) and A = (a;;)1<ij<d be
a symmetric d x d matrix such that a;; € Li, (E,m) with m := ¢dx and for
dx-a.e. t € E

0 < (A(z)€,8), Ve eRL

Suppose (£,D(€)) is conservative and given as the closure in L?(E,m) of
% Js(AV f,Vg)dm, f,g € C§°(E), where E is either closed or open. We assume
that
(L) There exists an increasing sequence of bounded relatively open Lipschitz
domains {By}reny C E, with Cap(E \ B) =0, B := U>1 By, and for any
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kE > 1 there exists some constant kp, > 1 such that
kg lIEN? < (A(@)6, &) < kg, lI€]%, V6 € RY, da-ae. @ € By,

and ¢(z) € (d, !, dy,) for dz-a.e. x € By, where dy / 0o as k — <.

Note that (L) implies that EBk(f 9) =53 fB (AVf,Vg)dm, f,g€ C>®(By),
is closable in L?(Bg,m) = L?(Bg,m), k > 1. We denote the closure by
(EBx, D(EBK)).

Given the strict global ellipticity of A = (a;;) on each By and that ¢ is
bounded above and below away from zero by a strictly positive constant on
each By, we obtain exactly as in [30, Lemma 5.4] the following lemma.

LeEMMA 3.6 (Nash type inequality). Under (L) it holds for any k > 1:
(i) If d > 3, then for f € D(EPx)

o4 4
155 < e [EP%(£.9)
(ii) If d = 2, then for f € D(EBk) and any § > 0

£ < i [P CF. 1) + £ | 11T,

Here c;, > 0 is a constant which goes to infinity as k — oo.

2 o) 111, -

By [11, (3.25)], the Nash type inequalities imply (upper) Gaussian heat
kernel estimates for the heat kernel p2* (z, y) associated to (€Br, D(EBr)) which
exists uniquely for m-a.e. x,55 € By (cf. [30, Proposition 5.5]). Since (B,
D(EPB)) is the part Dirichlet form of (B, D(EB*)), it is easy to see that

ptBk (xay) < ptgk($7y> for m-a.e. T,y € Bk
Thus the heat kernel estimate also holds for pf’“ (z,y). By taking the Lap-

lace transform of p.B’“(ac,y) and using the heat kernel estimate, we obtain the
following resolvent kernel density estimates (cf. [30, Corollary 5.6]).

COROLLARY 3.7. Under (L) we have for m-a.e. x,y € By,

(i) if d > 3, then
Ck

Tz =yl

ok (@, y) <

(i) if d = 2, then for any 6 >0

B Kz, y) < L
= |l — yljdto—2

Here Cy, > 0 is a constant which goes to infinity as k — oo.
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Note that the part Dirichlet forms (EB% D(EBr)) of (£, D(E)) on By,
k > 1, as well as the part Dirichlet form (£8,D(£P)) of (£,D(€)) on B,
inherit the properties (H1) and (H2) from (&£, D(£)) by considering the part
processes. Moreover, since (£, D(E)) is conservative and Cap(E \ B) = 0, we
can use (2.10) to see that its part Dirichlet form (€8, D(EP)) on B is also
conservative. In particular P, (JBC = Dpc = c0) = 1 for any = € B and exactly
as in [30, Lemma 5.10], we show:

LEMMA 3.8. Py (limg o0 Dpe = limy 00 0pe = 00) = 1 for all x € B.

We may then apply Proposition 3.3 to the part Dirichlet forms (B,
D(EPk)) by using the resolvent kernel density estimate of Corollary 3.7, Pro-
position 3.4 and Lemma 3.5. Suppose that this is possible and that for each
k > 1, we get according to Proposition 3.3 for the coordinate projections f7,
1 < j < d (obviously continuous and in D(EBk)y 1, for any k > 1)

(34) X} =a;+ ML NI < ope Poeas. forall @ € By,

where NIk = — AWk 4 A@)F and AWk A@)E are the positive continuous
additive functionals in the strict sense of M|p, with Revuz measures 1p, -
v, 1p, - v e Sé%’“, v (2 being smooth measures on B with respect to
(B, D(EB)), MIPI* is a MAF in the strict sense of M|p, with covariations

i . tAo e
(MU MUY, = "k 4i5(X4)ds, 1 < i,j < d. Suppose further that

),k+1

we can show consistency, in the sense that Al(f)’k = Agi , Vt < ope Pg-as.

for all @ € By, i = 1,2, and MY = M v < ope Preas. for all

x € Bj. Then Mt[fj] = limy_ oo Mt[fj]’]€ is a well-defined local MAF in the
strict sense of M|p and AEZ) = limy o Agl)’k, 1 = 1,2, are well-defined positive
continuous additive functionals in the strict sense of M|p with Revuz measures

v 12 By letting k — oo in (3.4)
Xg =+ Mt[fj] + Nt[fj], t>0, Pgas. forall x € B,

with NIl = —A® 4 A®@ and (MU' MY = [°a;;(X;)ds.

We will refer to this as localization procedure. For explicit examples where
it is performed in detail, we refer to [30, Section 5| and [31, Section 3.2] and also
here below (see Proposition 3.13(ii), Theorem 3.15(ii), Remark 3.19, Subsection
3.1.1 and Subsection 3.1.2), where we indicate at least why (L) is satisfied. In
the examples below, ANk A@E | > 1 that appear in the localization proce-
dure are sometimes given as infinite sums of strict PCAF’s and we additionally
have to make use of Lemma 3.2.
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3.1.1. SYMMETRIC DISTORTED BROWNIAN MOTION

We assume throughout this subsection that £ = R?, with d > 3 (except
in Lemma 3.12(vi), Proposition 3.13(ii), and Remark 3.19 where the state space
is RY\ {0} with d > 2). We consider a weight function v in the Muckenhoupt
Ag class, in notation ¢ € Ay (cf. [39]), which is the product of two functions,
i.e. P = po. Precisely, we assume the following:

(a) ¢:R% = [0,00) is a B(R%)-measurable function and ¢ > 0 dz-a.e.,
(B) pp € Aa, p€ Hllo’cl(Rd,da:), p >0 dz-a.e.,
and consider

35 &fg)=; [ VF-Vgdm [geCRRY, mim poda

in L2(R4, m).

Remark 3.9. Let ¢ > 1. If ¢ is measurable with ¢! < ¢ < ¢ and p € Ay,
then p¢ € As.

Since pp € Ag, we have p%]ﬁ € L}OC(Rd,d:B), and the latter implies that
(3.5) is closable in L2(R%,m) (see [21, I1.2 a)]). The closure (£, D(E)) of (3.5)
is a strongly local, regular, conservative, symmetric Dirichlet form (cf. e.g. [33,
p. 274]). Furthermore (£, D(&)) satisfies properties (i)-(iv) of Definition 2.3 (cf.
[33, 5.B]). Therefore there exists a jointly continuous transition kernel density
pe(z,7y) as stated in (2.3) with F = R?. Note that in our case v(z,y) = ||z —y|,
z,y € R? Moreover, Proposition 2.5 applies, so that (Pt)>0 is in particular
strong Feller. Next, we assume that
(7) the transition function (P;);>o satisfies (H2) with E = R

We will use the Feller method and the Dirichlet form method for some
typical Muckenhoupt Ay weights to verify () later. Since p¢ € Aq, (€, D(E))
is conservative, i.e. Til(z) = 1 for m-a.e. € R% and all t > 0 (see [29,
Proposition 2.4]). It follows

P.(( =o0) =1, VzeRY,
by [16, Theorem 4.5.4(iv)| (or Remark 2.2 since (P;)¢>0 is strong Feller) and
P, (t — X is continuous on [0, oo)) =1, VzeRY,

by [16, Theorem 4.5.4(ii)|. In order to be explicit, we further assume the follo-
wing integration by parts formula

(IBP) for f € {f',..., f%}, g € CF(RY)

—-&(f,9) :/Rd (Vf~¥>gdm+/wgdvf,



240 Jiyong Shin and Gerald Trutnau 24

where v/ =", , Vk, and vf I/k,k‘ € Z are signed Radon measures (locally of
bounded total variation).

For a signed Radon measure p we denote by pu* and pu~ the positive and
negative parts in the Hahn decomposition for p, i.e. p = p™—pu~. Additionally,
we assume that

(6) for any G C R? relatively compact open, k € Z and f € {f!,..., f%}, we
have that 14 - Vf+, lag - vi= , g - I/,iUr 1q - I/]fi, 1g - HVPHm € So and the
corresponding 1-potentials are all bounded by continuous functions.

THEOREM 3.10. Suppose (a)) — (§) and (IBP). Then

Vp
(3.6) Xt—x+Wt+/ Jds+> LF, t>0,
0 kEZ

P.-a.s. for any x €R* where W is a standard d-dimensional Brownian motion
starting from zero, LF=(LY*, ... L4*) and L7* j=1,...,d, is the difference of
positive continuous additive functionals of X in the strict sense associated with
1 :l/,fj’(l)—vgj’@) defined in (IBP) (cf. [16, Theorem 5.1.3]).

Revuz measure vj,

Proof. Given that (a)) — (6) and (IBP) hold, the assertion follows from [16,
Theorem 5.1.3|, Lemma 3.2, and Propositions 3.3, 2.5 and 3.4. O

Remark 3.11. The heat kernel estimate (2.4) is not explicit, since the
volumes of the m-balls in it are unknown. Therefore its use is in a sense
limited. While it was possible to obtain already good information about the
transition function in Proposition 2.5, the last ingredient to obtain (H2)'(i),
(ii) or the Feller property of the transition function is missing. Assuming an
explicit estimate on the weight of m is the main additional ingredient for the
proof of the following lemma (cf. [30, Lemma 3.6]). For other weights the proof
of the lemma can serve as a toy model to show how the full information can be
obtained.

LEMMA 3.12. Let ¢t z||* < po(z) < é||z||* for some a € (—d,d), ¢ > 1.
Then («) and (B) are satisfied and
(i) limyjo Pif(z) = f(x), Vo € RY, Vf € Co(R?), ie. (H1) and (H2) hold
(¢f. Proposition 2.5(i),(ii) and Lemma 2.16) and (Pi)i>o is a Feller
SEMIGroup.

33 R 1 R 1
(i) Let ®(x,y) := gz and ¥(x,y) = T2l Then

Cil((b(ly y)‘f'\I/(l', y)l{ae[o,d)}) < 7“1(11}, y) <c (q)(wv y)—i—\I/(aj’ y)l{ae(fd,o)})-

(iii) Let a € (—d+1,2) and G C R? any relatively compact open set. Suppose
lg- f |lo|* € LP(RY,dz), p> 1 with0 <2—a -9 <landlg-f €



25

On singular stochastic differential equations and Dirichlet forms 241

LY(RY dz) with 0 < 2—% < 1. Then Ri(1g-|f|m) is bounded everywhere

(hence clearly also bounded m-a.e. onR? and Ry(1¢|f|lm) € LY(G, |f|m))
by the continuous function [ |f(y)| (®(-,y)+ ¥(,y)) m(dy). In parti-
cular, Proposition 3.4 applies and 1¢ - |flm € Spo.

Let « € (—=d + 1,2). Then Ry (IG : @m) 15 pointwise bounded by

a continuous function for any relatively compact open set G C R In
particular 1g - I pp”m € Soo for any relatively compact open set G C R,

Let a € (—d+1,1). Let D C R? be a bounded Lipschitz domain with
surface measure ocgp. Suppose that p is bounded on 0D (more precisely the
trace of p on 0D, which exists since p € Hlloc1 (R%)). Then Ri(1g - posp)
is pointwise bounded by a continuous function for any relatively compact
open set G C R%. In particular 1¢ - pogp € Soo for any relatively compact
open G C R<.

Let a € [-d + 2,d), d > 2. Then Cap({0}) = 0 and the part Dirichlet
form (EB,D(EP)) on B := R\ {0} satisfies (H1), (H2) with transition
kernel density pP = pi|pxp. Moreover (€8, D(EP)) is conservative.

3.1.1.1. Skew reflection on spheres. Let mg € (0,00) and (Iy)rez C

(0,m0), 0 < I < lpy1 < mg, be a sequence converging to 0 as k — —oo and
converging to mg as k — 00, (1x)kez C (Mo, 00), mo < 1 < T4 < 00, be a
sequence converging to mg as k — —oo and tending to infinity as k£ — oo, and

set

(3.7)

¢5=Z(7k-1Ak+%'1Ak),

kEZ

where 7y, , ¥, € (0,00), Ag == By, \ By,_, , Ay = By \By,_,, k€.

PROPOSITION 3.13. Let ¢ be as in (3.7). Suppose that

Z|7k+177k|+2]7k+177k|<00 and &1 < <E for someé> 1.

keZ

k<0

(1) Let p(z) = ||z||*, o € (=d+1,2). If p = ¢ dx-a.e. (i.e. belowin (3.8) and

(8.9) it holdsn £0) or ¢ % ¢ dx-a.e. and o € (—d+1,1). Then the pro-
cesses ((X¢)i>0,Pz) and ((||X¢||)ez0,Pz) are continuous semimartingales
and

t
(3.8) Xt:l'—l—Wt—F(;/ Xl Xs |72 ds

/ / ve(Xs) dO (| X)) n(da), t >0, Py-a.s.
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for any © € R, where W is a standard d-dimensional Brownian motion

starting from zero, v, = (v} vd), a > 0 is the unit outward normal

PN Vs
vector on 0Bg, ({(||X]) is the symmetric semimartingale local time of
| X|| at a € (0,00) as defined in [27, VI.(1.25)], v := limk—00 Yk, 7 =

limg_y o0 ), and

Vi+1 — V& Vi+1 — Vi ¥
k% Yer1 + Y © Fra1 + Tk " v

(i) Let p(x) = ||z||*, o € [1,d), d > 2. Then (3.8) holds for any x € R\ {0}.

Proof. (i) («), (8) hold by Remark 3.9 since p(z) = ||z||%, « € (—d,d) is
an As-weight (see [39, Example 1.2.5]). () follows from Lemma 3.12(i) by the
Feller method, i.e. the corresponding transition semigroup is Feller. (IBP)
follows as in [29, Proposition 3.1] and () follows from Lemma 3.12(iv) and (v).
Thus Theorem 3.10 applies. The identification of the drift part in (3.6) as sum
of local times then follows as in [29, Section 5| using the integration by parts
formula |29, Proposition 3.1].

(ii) By Lemma 3.12(vi) (B, D(EP)), B := R?\ {0} satisfies (H1), (H2),
is conservative, and Cap({0}) = 0. Fix a € [1,d). Let

I 1+ 1 g
2

Tk+1 + Tk

Bk::{xeRd‘ 5

<zl < } k> 1.

Then
by, = E—l(l—kﬂ + Lk)“ < pp< i (Tk+1 +7°k)a .
2 2

on By. Set dj, := max(blzl, ex), k > 1. Then (By)r>1 is an increasing sequence
of relatively compact open sets with smooth boundary such that | J,~, By = B
and p¢ € (d;l,dk) on By where dp — oo as k — oo. Moreover ||Vp| €
L*°(By,dx) for any k > 1. We can now apply the localization procedure
as explained after Lemma 3.5, since one easily verifies that condition (L) is
satisfied. We only repeat here once again that the Nash type inequality of
Lemma 3.6 allows for local resolvent kernel density estimates as in Corollary
3.7 and these local estimates are usable in contrast to the global ones of Lemma
3.12(ii), which do not lead to any result. O

Remark 3.14. For an interpretation of the drift part in (3.8), we refer
to |29, Remark 2.7|.

3.1.1.2. Skew reflection on a Lipschitz domain. Let

(3.10)  ¢(x) :=Blge(x) + (1= B)lalz), plr) = [=% e (-d+1,d),
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where 8 € (0,1) and G C R? is a bounded Lipschitz domain. Consider the
Dirichlet form determined by (3.5) with ¢ and p as in (3.10). Then the following
integration by parts formula holds for f € {f,..., f4}, g € C§°(RY)

(3.11) =&(f,9) = /Rd <Vf~Z§> gdm+ (28 —1) -

where v denotes the unit outward normal on dG (cf. [35] and [37]). The exis-
tence of a Hunt process associated to £ that satisfies the absolute continuity
condition follows from Lemma 3.12 (i). Furthermore:

Vf-l/gda,

THEOREM 3.15. Let ¢, p be as in (3.10). Then we have:
(1) Let o € (—d+1,1). Then

t t
(3.12) Xt::c+Wt—|—(;/ XS||XS||_2ds+(2B—1)/ W(Xa)dly >0
0 0

P,-a.s. forallz € Rd, where (Wy)i>0 is a d-dimensional Brownian motion
starting from zero and ({t)i>0 € Ajl s uniquely associated to the surface
measure & on OG wvia the Revuz correspondence.

(ii) Let 0 ¢ OG and « € [1,d), d > 2. Then (3.12) holds Py-a.s. for any
r € R\ {0}.

Proof. (i) Exactly as in the proof of Proposition 3.13(i) (a)—(d) are satis-
fied and (IBP) holds by (3.11). Then the assertion immediately follows from
Theorem 3.10.

(ii) Fix a € [1,d). We have either 0 € G or 0 € G*. If 0 € G, then choose
ko > 1 such that 0G C {z € R? | k' < ||z]| < ko} and let

Br:={z R | (kg + k) < |zl <ko+k}, Ek>1.
Then
by :=min(B,1 — B)(ko + k)™ < pp < max(B,1 — B)(ko + k) =: ex

and we let dj = max(bgl,ek), k> 1. (If 0 € G then similarly, we can
find suitable (By)g>1 and (dg)g>1.) One easily checks that assumption (L) is
satisfied with respect to the sequences (By)r>1 and (dj)k>1. Then we proceed
as in the proof of Proposition 3.13(ii). O

Remark 3.16. Theorem 3.15 extends a result obtained by Portenko in |26,
111, §3 and §4].

3.1.1.3. Skew reflection on hyperplanes. Let (Ix)kez C (—00,0),
—00 <l < k41 < 0 be a sequence converging to 0 as k — oo and tending to
—o0 as k = —oo. Let (rg)rez C (0,00), 0 < rp < 111 < 00 be a sequence
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converging to 0 as k — —oo and tending to infinity as k — oco. Set
(3.13) d(za) == ('7k:+1 Lty ) (Td) + Figr - 1(Tk,rk+1)(l'd))
kEZ
where v, 7, € (0,00). Note that ¢ only depends on the d-th coordinate and
that ¢ has discontinuities along the hyperplanes
Hy:={zeR¥ zq=s5}, s€{0,lxri;kecZ).

Consider the assumptions

(a) po € Ay and p(z) = a]®, o € (=d +1,1),

(b) Zkzo [ Vo1 — v | + Zkgo | V1 — Vi | < 00 and v = limg o0 W, 7 =

limg_, o 7}, are strictly positive.

PROPOSITION 3.17. Let ¢ be as in (3.13) and assume that (a), (b) hold.
Then (a)-(v) hold.

Proof. The assumptions (a), (b) imply («), (8). Therefore, the closure
(€,D(E)) of (3.5) is a symmetric, regular and strongly local Dirichlet form.
Using the integration by parts formula [30, Proposition 3.11] one can see that
the functions f € C§°(R?) satisfying

adf(i lg) = adf(f r) = 0qf(2,0) =0 forall k€ Z
(3.14) and fAerVf % 2P e [2RY, m)

are in D(L) where ¥ = (z1,...,74_1) € R¥1. For given r € (0,00), define S,
to be the set of functions h € C5°(R?) such that
(3.15) Vh(z) =0, Vxe€ By, Ogh(T,xq) =0 if —r<ag<r

and h satisfies (3.14). Note that if h € S, then h? is also in S, since h? satisfies
(3.14) and (3.15). Furthermore for h € S, h? € D(L;) since D(L1), is an
algebra. Let S = Sy. Since for h € S

r€(0,00)

Lh € L(R%,m)o,

Rl([(l — L)h]Jr), Rl([(l — L)h]f), Rl([(l — Ll)h2] ), and Rl([(l — L1 h2] )
are continuous on R? by Proposition 2.5(i). Furthermore for all y € Qd, €€
QN (0,1) we can find h € S such that A > 1 on BZ( ), h=0on Rd\B%(y)

(if).

Therefore, we can find a countable subset S C S satisfying (H2)'(i) and
Therefore, by Propositions 2.5(ii) and 2.18, () holds. O

Consider assumption
(c) ¢! < ¢ < éfor some ¢ > 1.
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THEOREM 3.18. Let ¢ be as in (3.13) and suppose (a)-(c). Let § = %,

v
Ykt o kg .
B = ST and By, = ST k € Z. Then the process M satisfies

Xg:xj+wg+‘;/xg||xs||—2ds, i1, d-1,
0

t
(3.16) Xg:xd+wtd+‘;/ Xj||Xs!_2d3+/€§(Xd)u(da), t>0,
0 R

P, -a.s. for any x € R, where (W?',..., W% is a standard d-dimensional

Brownian motion starting from zero, (3(X?) is the symmetric semimartingale
local time of X% at a € (—o0,00) as defined in [27, VI.(1.25)] and

ni=3" ((wk — 1) 4y, + (2B, — 1) 5Tk) + (268 - 1) .
kEZ
Proof. By Proposition 3.17, (a)-(vy) hold. Assumption (c) then implies
(0), thus («)-(d) hold. (IBP) follows from [30, Proposition 3.11]. Thus The-
orem 3.10 applies. The identification of the drift part in (3.16) as sum of
semimartingale local times then follows as in [30, proof of Theorem 3.14]. O

Remark 3.19. Similarly to the proof of Proposition 3.13(ii) and Theorem
3.15(ii), we can also obtain Theorem 3.18 for « € [1,d), d > 2, but then only
for all starting points in R?\ {0}.

3.1.1.4. Normal reflection. This subsection is another example for
the application of elliptic regularity results as in Subsection 2.3.2 and a further
example for the localization procedure of Subsection 3.1. For details, we refer
to [30, Section 5.

Let G € R d > 2 be a relatively compact open set with Lipschitz
boundary 0G. Suppose

(n) p=¢&2% €€ HY}(G,dr)NC(G) and p > 0 dr-a.e. on G

Then by [35, Lemma 1.1(ii)]

&(f.0) =5 [ V- Vgdm, g€ (@)

is closable in L?(G,m). The closure (€, D(£)) is a regular, strongly local and
conservative Dirichlet form (cf. [35]). We further assume
(0) there exists an open set E C G with Cap(G \ E) = 0 such that (£, D(E))
satisfies the absolute continuity condition on F.
By (), we mean that there exists a Hunt process

M = (Qa JT") (]:t)tZOv (Xt)tZ()v (Px>mEEU{A})
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with transition kernel pi(z,dy) (from E to E) and transition kernel density
pi(-,+) € B(E x E), i.e. pi(x,dy) = pi(x,y) m(dy), such that

Pif(x /f ) pe(@,y)m(dy), t>0, z€FE, febBy(E)

with trivial extension to G is an m-version of TtG f for any f € By(F), and

(TF)i=0 denotes the semigroup associated to (£, D(E)). In particular M is
a conservative diffusion on E (see [16, Theorem 4.5.4]). We rely on elliptic
regularity results from [3] which are applicable in our situation because of [30,
Lemma 5.1(ii)] (cf. [30, Remark 5.2]:

Remark 3.20. In [3] also unbounded Lipschitz domains are considered and
according to [3, Theorem 1.14] (¢) holds with E' = (GUI'2)N{p > 0} where I'y is
an open subset of G that is locally C?-smooth, provided ”Vp” € LfOC(Gﬂ {p>
0},m) for some p > 2 with p > ¢ and Cap(G \ E) = 0.

Since E is open in G, we can consider the part Dirichlet form (€%, D(EF))
of (£,D(£)) on E.

LeEMMA 3.21. Let f € By(E). Then P.f is an m-version of TF f.

By Lemma 3.21 the Hunt process M is associated with (€, D(£F)) and
satisfies the absolute continuity condition. In addition to (n) and (6), we

assume

(¢) there exists an increasing sequence of relatively compact open sets
{Bi}ren C E such that 0By, k € N is Lipschitz, (J,~; Br = E and
pE (d,;17dk) on By where dj, — o0 as k — oc.

Considering the part Dirichlet forms on each By, we obtain the following inte-
gration by parts formula (cf. [35, proof of Theorem 5.4]):

LEMMA 3.22. For f € {f',..., f} and g € C5°(By,), it holds

1 Vp
~emifa) =y [ (903 )gamr [ Vfgpan
By P BpNoG

where 1 is a unit inward normal vector on ByNOG and o is the surface measure

on 0G.
According to [35] the closure of
B (f? g) =5
2 /B,

in L?(Bg,m) = L*(By,m), k > 1, denoted by (EE’C,D(SE’“)), is a regular
conservative Dirichlet form on B, and moreover, it satisfies Nash type inequa-
lities as in Lemma 3.6 (cf. [30, Lemma 5.4]). Therefore, we obatain estimates

vaQdma fﬂgeCOO(Ek)v



31 On singular stochastic differential equations and Dirichlet forms 247

for Tf’“(-, -) as in Corollary 3.7. Using these estimates, Proposition 3.4 and
Lemma 3.5, we obtain the following:

LEMMA 3.23. (i) 1g,n0¢ - po € SaF.
(i) Let f € L%+E(Bk7d:1c) for some ¢ > 0. Then

1Bk . ]f|m € S(%k

In particular 1, - |Vpllde € SZ¢ for d = 2,3 and for d > 4, if |Vp| €
L2¢(By, dx) for some & > 0.

In view of Lemma 3.23 (ii), we assume from now on

(k) fd>4and k > 1, then ||[Vp| € L¢%(By, dz) for some &), > 0.

Applying Proposition 3.3 to the part Dirichlet form (£B%, D(EB%)), we get:

PROPOSITION 3.24. The process M satisfies
t Vp t
(3.17) thx—f—Wt—l-/O 2p<Xs)d8+/0 77()(s)d€]sg t<DBli

Py-a.s. for any x € By, where W is a standard d-dimensional Brownian motion
starting from zero and (% is the positive continuous additive functional of X Bk
in the strict sense associated via the Revuz correspondence (cf. [16, Theorem
5.1.3]) with the weighted surface measure $po on By, N 0G.

The proofs of the following two lemmas can be found in [30, Section 5].

LEMMA 3.25. P, (lim o Dpe = 00) = Py (limg o0 0pe = 00) = 1 for
allz e E.

LEMMA 3.26. ﬂf = Ef“, Vi < oB¢ Py-a.s. for all x € By where Kf is the
positive continuous additive functional of X Bk in the strict sense associated to
g, - &7 € S’é%’“. In particular £y = limy_,o0 £F, t > 0, is well defined in AZ’IE,

and related to & via the Revuz correspondence.

Letting k — oo in (3.17), we finally obtain (cf. the localization procedure
of Section 3.1):

THEOREM 3.27. The process M satisfies

tvp t
Xt:l'+Wt+/ 2[0<XS)dS+/ H(Xs)dgs, tZO
0 0

Py-a.s. for all x € E where W is a standard d-dimensional Brownian motion
starting from zero and £ is the positive continuous additive functional of X in the
strict sense associated via the Revuz correspondence (cf. [16, Theorem 5.1.3])
with the weighted surface measure %pa on ENOG.
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3.1.2. DEGENERATE ELLIPTIC FORMS AND 2-ADMISSIBLE WEIGHTS

In this subsection, we consider a 2-admissible weight p (see [18, Sec-
tion 1.1]) which is strictly positive, i.e. p > 0 dx-a.e. and we let m = pdzx.
We assume:

(HP1) A = (aij)1<i j<d is a (possibly) degenerate symmetric d x d matrix

of functions a;; € L} _(RY, dx) and there exists a constant A > 1 such that

loc
for dr-a.e. z € R?

(3.18) A p(@) [IEl]® < (A(2)€,€) < X p(a) |1€])?, VEeR™

By (3.18) and the properties of 2-admissible weights, the symmetric bili-
near form

ENf.9) = 5 [ ALV dr, f.ge CFRY
R4

is closable in L2(R?,m) and the closure (4, D(£4)) is a strongly local, regular,
symmetric Dirichlet form. Note that (€4, D(£4)) can be written as

1

eMfg) =5 [ T ) dm. fug e DEY,

where I?"'4 is a carré du champ (cf. Section 2.3.1). We assume from now on
(HP2) either /p € H2(R%, dx) or p~' € L} (R?, dx).

Then the following holds:
LEMMA 3.28. For any x,y € R?

(3.19) % le = yll < v(2,y) < VX Iz — gl

where \ € [1,00) is as in (3.18).

Remark 3.29. (i) Assumption (HP2) is only used to show that the in-
trinsic metric of £4 with A = (pdij)i<ij<d is the BEuclidean metric, so that the
second inequality in (3.19) can be obtained (see [31, proof of Lemma 2.2]). It
can hence be replaced by any other assumption that implies the fact mentioned
above.

(ii) By (3.19), the intrinsic balls B,(z), € R%, 7 > 0, are all bounded
and open in the Euclidean topology, i.e. they have compact closure.

Since p is 2-admissible, it satisfies by definition the doubling property and
the scaled weak Poincaré inequality with respect to the Fuclidean metric. With
the help of (3.19) one can then show that these properties are also satisfied with
respect to the intrinsic metric y(-,-) (cf. [31, Lemmas 2.4 and 2.8|). Therefore,
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the properties of Definition 2.3(i)-(iv) are satisfied on R?. In particular, we
obtain the existence of a transition semigroup (F;)¢~o with Holder continuous
heat kernel (see Subsection 2.3.1) and Theorems 2.4 and 2.6 apply. By the latter
and (3.19), one can easily see that £4 is conservative and as in the Subsection
3.1.1, Proposition 2.5 applies, so that (P;)¢>0 is in particular strong Feller.
2-admissible weights arise typically as in the following example:

Ezample 3.30. (cf. 18, Chapter 15])

(i) If p € Ay, then p is a 2-admissible weight.

(i) If p(z) = |detF'(x)|*~2/? where F is a quasi-conformal mapping in R?,
then p is a 2-admissible weight (for the definition see [13, Section 3]).

Remark 3.31. Since £4 is given by the carré du champ "4 and by the
Example 3.30 we see that compared to Subsection 3.1.1 the improvement is
that we can consider a uniformly strictly globally elliptic diffusion matrix p~1A
and more general weights p.

According to Remark 3.11, we will now choose an explicit 2-admissible
weight. By Example 3.30 a concrete 2-admissible weight that satisfies (HP2)
is given by

(3.20) p(x) = ||z||*, «a€(—d,0), d>2.

Indeed, if o € (—d, d), then p € Ay and if @ € (—d+2,00), then p = |detF’|~=2/¢
for some quasi-conformal mapping F' (cf. [13, Section 3]).
Up to this end we fix p as in (3.20). Then, similarly to Lemma 3.12(i),

(P;)¢=0 is seen to be a Feller semigroup, in particular also in the case a > d.
Thus (H1) and (H2) are satisfied.

Remark 3.32. Let ¢ : R? — R be a measurable function such that ¢=! <
¢(z) < ¢ dz-a.e. for some constant ¢ > 1. Then by verifying the properties (I)-
(IV) of [31], we see that ¢p is a 2-admissible weight if p is a 2-admissible weight.
Moreover choosing A = (a;5) satisfying (HP1) for p = 1 we see that A := ppA
satisfies (3.18) with respect to the 2-admissible weight ¢p. In particular, the

framework of this subsection also includes Dirichlet forms given as the closure of
1

2/Rd<AVf, Vg)ppdz, f,g€ Ce(RY)

on L*(R?, ¢ppdz).

3.1.2.1. Concrete Muckenhoupt As-weights with polynomial
growth. We first consider the case where

(3.21) p(x) = ||z||*, «a€(—d,2), d>3.
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Then the explicit heat kernel estimate that we obtain by Theorem 2.4 is by
(3.19) comparable to the one that we obtain with v being the Euclidean me-
tric. Thus, we obtain the same resolvent kernel estimate as in Lemma 3.12(ii).
Consider the following assumption

(HP3) For each i,j =1,...,d:

(i) if a € (~d, —d+2], 222 € L} (R?,m)NLY, (R, dx), 0 <2—4 <1,

(ii) if @ € (—d +2,0), djay; € L}, (R?,dz) with 0 <2 —a — 4 < 1 and
0ii ¢ 1 (RY dx) with 0 <2 — ¢ <1,
(iii) if @ € [0,2), 9jai; € L}, (R?,dz) with0 <2 —a -9 < 1.
As in Lemma 3.12(ii), (iii), we then obtain (cf. [31]):

LEMMA 3.33. Let p be as in (3.21) and G C R? any relatively compact
open set. Assume (HP1) and (HP3). Then for each i,j=1,...,d

1G |] Z]|

is
1g-£m6500, m € Syg.
p

The following integration by parts formula is easily derived for any g €
Ce°(RY):

d
4 1 O
B2 e =y [ |2 ) gdm 1<i<a
2 Rd = 1%
Now using Lemma 3.33, (3.22), Proposition 3.3 and the conservativeness, we
get:

THEOREM 3.34. Assume (HP1), (3.21) (which in particular implies
(HP2)), and (HP3). Then it holds Py-a.s. for any x € R, i=1,....,d

; 1t (<= 00
(3.23) Xt—w+§ /Uf dWJ+2/ ) %%\ (x.yds, >0,
0\ P
J=1

where (045)1<ij<d = VA is the positive square root of the matriz A, W =
Wi, ..., Wd) is a standard d-dimensional Brownian motion on RY.

3.1.2.2. Concrete weights with polynomial growth induced by
quasi-conformal mappings. Here, we consider

(3.24) p(x) = ||z||*, «a€l2,00), d>2.

In this case, the resolvent kernel estimate of Lemma 3.12(ii) may not be
good enough and moreover, we are able to allow better integrability conditions
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(see (HP3)' below) by using the localization procedure. By [16, Example 3.3.2,
Lemma 2.2.7 (ii)] and (3.18), Cap({0}) = 0. Let

(3.25) By ={zeR| (k+ 1) <|z|<k+1}, k>1

Then condition (L) is immediately verified with kg, =1 and dj, = (k+1)* for
all k > 1 Thus for the part Dirichlet forms of (£4-B% D(E4:Br)) of (£4, D(E4))
on By, we obtain resolvent kernel estimates according to Corollary 3.7. Due to
these improved estimates, we may assume that

d
(HP3)' dja;j € L2+8(Rd, dx) for some e > 0 and each i,j = 1,...,d,

loc

in order to obtain:

LEMMA 3.35. Assume (HP1) and (HP3)'. Let p be as in (3.24). Then
foreachi,j=1,...,d

Qi

B ‘8CL|
1Bk-?m6500’“, 1Bk-M

P

From (3.22), we obtain for the coordinate projections f* € D(SA’Bk)bJOC,
i=1,...,dand g € C§°(By)

mES(J)%’“.

d

(3.26) —EAB(f1 g) = ;/ Zaj% gdm.
By,

=1 P

Then by Lemma 3.35, (3.26) and Proposition 3.3 applied to the part process,
we have:

PROPOSITION 3.36. Assume (HP1), (3.24), and (HP3)'. Then the pro-
cess M satisfies (3.23) up to t < Dpe, Py-a.s. for any x € By,

Since Lemma 3.8 holds, we finally obtain:

THEOREM 3.37. Assume (HP1), (3.24), and (HP3)'. Then the process
M satisfies (3.23) for all x € R%\ {0}.

Remark 3.38. The results of this subsection include the particular case
where ¢ = 1 in Remark 3.32 with

(3.27) aij(z) = ai(@)|[=]|*,  a€(=d,o0), 1<i,j<d

This leads hence to an extension of the results of [30, Section 3.1 and 3.2] with
¢ = 1 there to the (a;j)-case. In particular, even if a;; = 6;; (where J;; we
obtain partial improvements of results of [30, Section 3|. For instance by our
results it is easy to see that in case ¢ = 1 [30, Proposition 3.8 (ii)] also holds
for o € [d,00), d > 2. Moreover, in view of Remark 3.32 and the results of this



252 Jiyong Shin and Gerald Trutnau 36

section, it is also possible to extend the results of [30, Section 3.1 and 3.2] to
the (a;j)-case with discontinuous ¢, (a;;) as in (3.27) satisfying (HP3), resp.
(HP3)'.

3.2. Stochastic calculus for the identification of the SDEs
3.2.1. NON-SYMMETRIC DISTORTED BROWNIAN MOTION

This subsection is a continuation of Subsection 2.4.2, where a Hunt process
M as stated in Theorem 2.21 was constructed under the assumptions (A1)—
(A3) and (2.6) of Subsection 2.3.2. We assume throughout this subsection that
(A1)—(A3) and (2.6) hold. We further consider

(A4) (£,D(€)) is conservative.

Following |1, Proposition 3.8|, we obtain:

PROPOSITION 3.39. If (A4) holds additionally (to (A1)—(A3) and (2.6)),
then:

(1) aRu1(z) =1 forallz € E, a > 0.
(ii) (P)s=0 is strong Feller on E, i.e. P;(By(R?)) C Cy(E) for all t > 0.
(i) Pl(x) =1 forallz € E, t > 0.

Following |1, Lemma 5.1|, we have:

LEMMA 3.40. (i) Let ersE[p,oo)LS(E’ m), f>0, then for allt>0, x€ E,

/tPsf(z) ds < o0,
0

//f ) ds dP, < occ.

(i) Let u € C°(RY), a > 0. Then
Ro((a — L)u)(z) = u(z) Vz € E.
(iii) Let u € C°(RY), t > 0. Then

hence

Pou(z /P (Lu)(z) ds Vz € E.

The following is an immediate consequence of (2.7):
LEMMA 3.41. For u € C°(RY)
Lu® — 2u Lu = ||Vul%
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Using in particular Lemma 3.40 and Lemma 3.41, we obtain:

PROPOSITION 3.42. Let u € Cg°(R?). Then

d
).
M = u(Xy) — u(Xo) — /t Lu(X,)dr, t >0,
0

and

Ko — <u(Xt)—u(X0)—/0tLu ) / IVl 2(X 1> 0.

are continuous (Ft)¢>0-martingales under Py, Vo € E.

Proof. First, one shows that M} := u(X;) — u(Xo) fo Lu(X,)dr, t >0,
is a continuous (F;);>o-martingale under IP’x, Vx € E. Consequently, there
exist stopping times R, /" oo, such that (M{}  )i>0 is a bounded continuous
martingale for any n and exactly as in [28, Appendlx]7 we show that (K p )i>0
is a continuous (F;)¢>o-martingale under P, Vo € E. The assertion then follows
by letting n — oco. U

Proposition 3.42 serves to identify the quadratic variation of M“, u €
Cé’o(Rd), and subsequently the corresponding SDE. The coordinate functions
are smooth functions and hence coincide locally with C$°(R?)-functions. We
will use Proposition 3.42 locally up to a sequence of stopping times. For this,
we need:

LEMMA 3.43. Let (By)r>1 be an increasing sequence of relatively compact
open sets in E with Up>1By = E. Then for all x € E

PI(;E& OE\B), = C) =L

By choosing (By)g>1 as in Lemma 3.43 to satisfy additionally By C Byy1,
k > 1, we can identify (3.28) with the help of Proposition 3.42 for t < op\ p,
P,-a.s. for any x € Bj. Since this holds for any k > 1, we can let kK — co and
obtain (cf. [28, Theorem 3.6]):

THEOREM 3.44. After enlarging the stochastic basis (2, F, (Ft)t>0, Pz) ap-
propriately for every x € E, the process M satisfies

(W+B)(X)ds, t<(
0

2p

Py-a.s. for all x € E where W is a standard d-dimensional (F;)-Brownian
motion on E. If additionally (A4) holds, then we do not need to enlarge the
stochastic basis and ¢ can be replaced by oo (cf. Remark 2.2).
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4. APPLICATIONS TO STRONG UNIQUENESS OF THE SDEs
4.1. (Non)-symmetric distorted Brownian motion

This subsection is a continuation of Subsection 3.2.1. We first recall that
by [19, Theorem 2.1] under the conditions (A1), (A2) and (2.6) of Subsection
2.3.2 ((A3) is not needed), for every stochastic basis and given Brownian mo-
tion (Wi)¢>0 there exists a strong solution to (3.28) which is pathwise unique
among all solutions satisfying

(4.1) /Ot <Vp + B) (X,)

2p
In addition, one has pathwise uniqueness and weak uniqueness in this class.
In the situation of Theorem 3.44 it follows, however immediately from Lemma
3.43 that (4.1) holds for the solution there. Indeed, by Lemma 3.43, (4.1) holds
with op\p, for all & € N. But the latter together with (A1) clearly implies
that (4.1) holds P,-a.s. for all z € S for some S € B(F) with m(E\ S) =0
(by Lemma 2.13 the set S can be chosen such that even Capg(E \ §) = 0).
So, [19, Theorem 2.1], in particular, implies that the law of P, of the strong
solution from that theorem coincides with P, for all z € S. But then Ip’a; =P,
for all x € E, because of the strong Feller property of our Markov process given
by (P.).er and of the one from [19, Theorem 2.1], i.e. P,, z € E, since S
is dense in F. In particular, (4.1) holds for all z € E. Hence we obtain the
following (cf. [28, Theorem 4.1]):

THEOREM 4.1. Assume (A1)—(A3) and (2.6). For every x € E the
solution in Theorem 3.44 is strong, pathwise and weak unique. In particular, it

is adapted to the filtration (FV)i>0 generated by the Brownian motion (Wy)i>o
in (3.28).

Remark 4.2. (i) By Theorem 3.44 and 4.1 we have thus shown that (the
closure of) (2.5) is the Dirichlet form associated to the Markov processes given
by the laws of the (strong) solutions to (3.28). Hence we can use the theory of
Dirichlet forms to show further properties of the solutions.

(ii) In [19] also a new non-explosion criterion was proved (hence one
obtains (A4)), assuming that ZT/)) + B is the (weak) gradient of a function
v which is a kind of Lyapunov function for (3.28). The theory of Dirichlet
forms provides a number of analytic non-explosion, ¢.e. conservativeness crite-
ria (hence implying (A4)) which are completely different from the usual ones
for SDEs and which are checkable in many cases. As stressed in (i) such cri-
teria can now be applied to (3.28). Even the simple case, where m(R%) < oo
and ||B|| € L'(R%, m) which entails (A4), appears to be a new non-explosion

2
ds < oo Pgas. on{t<(}.
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condition for (3.28). For more sophisticated sufficient non-explosion criteria,
we refer to [17] in general and to [28, Lemma 5.4] in a concrete example.
4.2. Diffusions with 2-admissible weights

This subsection is a continuation of Subsection 3.1.2. We consider
(HP4) For each 1 <i,j < d,

(i) C:/% is continuous on RY.

(id) Hv ("7%) H e L2 (R, 4z).

loc

(i) S¢_, %o ¢ 2D (RA gy

P loc

THEOREM 4.3 (cf. [31, Theorem 5.1]). Assume that (HP1), (3.21), (HP3),
and (HP4), resp. (HP1), (3.24) (HP3)', and (HP4) hold. Then the (weak)
solution in Theorem 3.34, resp. Theorem 3.37 is strong and pathwise unique.
In particular, it is adapted to the filtration (.F,fw)tzo generated by the Brownian
motion (We)e>0 as in (3.23) and its lifetime is infinite.

Proof. Assume that (HP1), (3.21), (HP3), and (HP4), or (HP1),
(3.24), (HP3)', and (HP4) hold. By [40, Theorem 1.1] under (HP1) and
(HP4) for given Brownian motion (W;);>0, * € R? as in (3.23) there exists
a pathwise unique strong solution to (3.23) up to its explosion time. The re-
maining conditions make sure that the unique strong solution is associated to
(€4, D(E4)) and has thus infinite lifetime. Therefore the (weak) solution in
Theorem 3.34, resp. Theorem 3.37, resp. is strong and pathwise unique. [J

Remark 4.4 (cf. |31, Remark 5.2]). Two non-explosion conditions for
strong solutions up to lifetime for a certain class of stochastic differential equa-
tions are presented in [40, Theorem 1.1]. For the precise conditions, we refer
to [40]. By Theorem 4.3 and its proof, we know that the solution of (3.23) up
to its lifetime fits to the frame of [40, Theorem 1.1]. Therefore, the remaining
conditions

(3.21),(HP3) or (3.24),(HP3)',

provide additional non-explosion conditions in [40, Theorem 1.1] for solutions
of the form (3.23) that satisfy (HP1) and (HP4).

Acknowledgments. The second named author would like to thank Michael Réckner
for bringing up the idea to him to apply pointwise weak existence results for diffusions
associated with Dirichlet forms to obtain new non-explosion criteria for the pathwise
unique and strong solutions of [19,40], as it is done in Section 4.
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