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We study driven �nite quantum systems in contact with a thermal reservoir in
the regime where the system changes slowly in comparison to the equilibration
time. The associated isothermal adiabatic theorem allows us to control the full
statistics of energy transfers in quasi-static processes. With this approach, we
extend Landauer's Principle on the energetic cost of erasure processes to the
level of the full statistics and elucidate the nature of the �uctuations breaking
Landauer's bound.
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1. INTRODUCTION

Statistical �uctuations of physical quantities around their mean values
are ubiquitous phenomena in microscopic systems driven out of thermal equi-
librium. Obtaining the full statistics (i.e., the probability distribution) of phy-
sically relevant quantities is essential for a complete understanding of work
extraction, heat exchanges, and other processes pertaining to these systems.
The dominant theoretical and experimental focus in this respect is on clas-
sical [21, 28, 33, 36] and quantum [47, 67] universal �uctuation relations. In
our opinion, a task of equal importance is to derive from �rst principles and
experimentally verify the Full Statistics of energy transfers in paradigmatic
non-equilibrium processes.

In this note, we contribute to this task by investigating the Full Sta-
tistics of the heat dissipated during an erasure process [25] in the adiaba-
tic limit. While the expected value of this quantity is bounded below by
the celebrated Landauer Principle, we show that its Full Statistics posses-
ses extreme outliers: albeit with a small probability, a large heat current
breaking Landauer's bound might be observed. The signature of this phe-
nomena is a singularity of the cumulant generating function of the dissipa-
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ted heat. Our �ndings give an additional theoretical prediction to look for
in experiments [57, 66] investigating the Landauer bound. The core tool in
deriving our results, which is of theoretical interest on its own, is a Full Statistics
adiabatic theorem.

Thermodynamics and Information. Thermodynamics and statistical
mechanics are intimately linked with information theory through an intriguing
world of infernal creatures, thought experiments and analogies. In this world,
Maxwell's demon is e�ortlessly decreasing the Boltzmann entropy of an ideal
gas [73], and the Szilard engine is converting the internal energy of a single heat
bath into work [72]. Both processes are in apparent violation of the second law
of thermodynamics. This fundamental law is, however, restored by considering
the Shannon entropy of the information acquired by the beings of this world
during these processes.

Landauer's thesis that information is physical [48] provides a guiding prin-
ciple for exploring the paradoxes of the aforementioned world. Together with
Bennett [10] they argue that information is stored on physical devices and hence
its processing has to obey the laws of physics. A bit, an abstract binary va-
riable with values 0/1, can be implemented by a charge in a capacitor, or a
colloidal particle trapped in a double-well. A two level quantum system, called
a qubit, can be physically realized by the two energy levels in a quantum dot
or in a trapped atom. Irrespective of the realization, the laws of mechanics and
thermodynamics apply to these devices.

Conservation of the phase space, in particular, implies that reversible
operations (such as the gate mapping 0 → 1 and vice versa) can be produced
with an arbitrary small energy cost, while any irreversible operation would
dissipate a certain minimal amount of heat. A paradigmatic example of the
latter, invoked when erasing the memory of Maxwell's demon [10], is the erasure
process (see Fig. 1).

In this process the entire phase space is mapped into a single point. The
minimal amount of heat dissipated during this operation is described by the
following principle, due to Landauer.

Landauer's Principle. Specializing to quantum mechanics, we consider
the transformation of an initial state ρi of a qudit

1 S into a �nal state ρf . If the
initial/�nal entropies Si/f = −tr(ρi/f log ρi/f) are distinct, then the transition
ρi → ρf is irreversible: it can only be realized by coupling the system S to
a reservoir R. The Landauer principle gives a lower bound for the energetic
cost of such a transformation in cases when the reservoir is a thermal bath
in equilibrium at a given temperature T = 1/kBβ. The average heat 〈∆Q〉

1A quantum system described by a d-dimensional Hilbert space.
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Fig. 1. An erasure process maps the Bloch ball, the phase space of a qubit, into a single
pure state, e.g., the point |0〉. A measurement of the qubit after erasure would not provide
any information about the initial state. Since a general quantum operation transforms the
Bloch ball into a (possibly degenerate) ellipsoid centered at the image of I/2, a process is an

erasure process if and only if it maps the completely mixed state I/2 into a pure state.

dissipated in the reservoir by an arbitrary process which instigates the transition
ρi → ρf is bounded from below as

(1) β〈∆Q〉 ≥ ∆S,

where ∆S = Si − Sf is the entropy di�erence. If ρi is the completely mixed
state, and ρf a pure state, the above process is called erasure. For system with
d-dimensional Hilbert space, we then have Si = log d, Sf = 0, and the Landauer
bound takes the simple form

(2) β〈∆Q〉 ≥ log d.

The Landauer principle is a reformulation of the second law of quantum ther-
modynamics for qudits [44, 62]. This can be immediately deduced from the
entropy balance equation of the process

(3) ∆S + 〈σ〉 = β〈∆Q〉.
In one direction, the second law stipulates that the entropy production 〈σ〉 is
non-negative, implying Eq. (1), and, in the opposite direction, Inequality (1)
implies that 〈σ〉 ≥ 0. A microscopic derivation of the Landauer Principle was
recently given in [62] for �nite dimensional reservoirs and in [44] for in�nitely
extended reservoirs. Both works use an appropriate, rigorously justi�ed version
of the entropy balance equation (3).2 Landauer's Principle was also experimen-

2In a recent work [32], the entropy balance equation has been used for study of Landauer's
principle in repeated interaction systems.



262 T. Benoist, M. Fraas, V. Jak²i¢ and C.-A. Pillet 4

tally con�rmed in several classical systems [9, 58,59, 64,71]; see also the recent
reviews [49,56].

Processes involving only �nite-volume reservoirs cannot saturate Inequa-
lity (1). In fact, tighter lower bounds can be derived in these cases: see [62]
and [34]. In the thermodynamic limit, however, equality is reached by some
reversible quasi�static processes [44]. Such a process is realized by a slowly
varying Hamiltonian

[0, T ] 3 t 7→ HS(t/T ) +HR + λ(t/T )V

along any trajectory in the parameter space such that λ(0/1) = 0 and

(4) HS(0/1) = −β−1 log ρi/f + Fi/fI.

Here, HR denotes the Hamiltonian of the reservoir and V its coupling to the
system S, while Fi/f are arbitrary constants. In the adiabatic limit T → ∞,
the unitary evolution generated by the corresponding Schrödinger equation on
the time interval [0, T ] transforms the initial state ρi of the system S to its �nal
state ρf , and the equality holds in (1). The quantity ∆F = Ff − Fi is endowed
with the meaning of a free energy di�erence.

Heat Full Statistics. In this work we study the �ne balance between
heat ∆Q and entropy ∆S in such quasi�static transitions, beyond the average

value 〈∆Q〉. To saturate Landauer's bound, we have to work with in�nitely
extended reservoirs and in�nitely slow driving forces, so the de�nition of ∆Q
is subtle.

The notion of Full Statistics (FS) was introduced in the study of quantum
transport [50�52,65] (see also [1,40] for more mathematically oriented approa-
ches) in order to characterize the charge �uctuations in mesoscopic conductors
in terms of higher cumulants of their statistical distribution. The later ex-
tension of FS to a more general setting, including energy transfers, led to the
formulation of �uctuation relations in quantum physics [47, 67]. In this appro-
ach, energy variations are not associated to a single observable [70] but to a
two-time measurement protocol.

Following the works of Kurchan and Tasaki [47, 67] we identify the FS of
the dissipated heat ∆Q with that of the variation in the reservoir energy during
the process. This variation is de�ned as the di�erence between the outcomes
of two energy measurements: one at the initial time 0 and another one at
the �nal time T . The FS of ∆Q is the probability distribution (pdf) of the
resulting classical random variable. The detailed derivation of this FS is given
in Section 1.1.

We want to emphasize that the extended reservoir has in�nite energy and
a continuum of modes. Consequently, to obtain the FS of ∆Q one has to start
with �nite reservoirs and perform the thermodynamic limit of the measurement
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protocol. In this limit, and for generic processes, the random variable ∆Q
acquires a continuous range.

Our main result is an explicit formula for the probability distribution of
∆Q in the above quasi�static processes which saturate the erasure Landauer
bound (2). We show that for the completely mixed initial state ρi = I/d and a
strictly positive �nal state ρf the cumulant generating function of the dissipated
heat is given by

(5) log〈e−α∆Q〉 = −α
β

log d+ log tr

(
ρ

1−α
β

f

)
.

Assuming for simplicity that ρf has the simple spectrum 0 < p1 < p2 < · · · pd <
1, we can restate our result in terms of pdf: a heat Qk = β−1(log d+ log pk) is
released during the process with probability pk.

We obtained a non-generic atomic probability distribution: ∆Q is a dis-
crete random variable, with each allowed heat quantumQk = β−1(log d+log pk)
corresponding to an eigenvalue pk of the �nal state. According to Eq. (4), the
associated change of the system energy is

Ef − Ei = −β−1 log pk − β−1 log d+ ∆F.

Energy conservation then implies that the work done on the total system S+R
during the transition is equal to the change of the free energy ∆F . A posteriori
the result is hence interpreted as a �ne version of reversibility of the process.

In connection with the erasure process, we further need to consider the
limiting case where ρf becomes a pure state and hence Sf → 0. In this limit,
the probability distribution of ∆Q acquires extreme outliers captured by the
singularity of the cumulant generating function

(6) lim
Sf→0

log〈e−α∆Q〉 =


−α
β log d if α < β,

0 if α = β,

∞ if α > β.

The �rst case corresponds to the cumulant generating function of a determi-
nistic heat dissipation ∆Q = β−1∆S = β−1 log d. In particular, we see that
β〈∆Q〉 = ∆S and all higher cumulants vanish. The discontinuity at α = β
and the value of the moment generating function at that point is enforced by
the fact that log〈e(β−α)∆Q〉 is the cumulant generating function of the heat
dissipated in the reservoir by the time reversed evolution. The blow up of the
moment generating function for α > β is the signature of outliers for ∆Q < 0.

We believe that the extreme outliers of the heat probability distribution
can be experimentally observed. However, to see these bumps one has to look
at the whole moment generating function. Moments themselves have no trace
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of them. A similar phenomena of hidden long tails in an adiabatic limit has
been studied in [20].

We proceed with an extended description of our setup. In particular, we
de�ne the dissipated heat through the Full Statistics of the energy change in
the reservoir. We then state the results that allow us to compute the moment
generating function in details.

1.1. Abstract setup and outline of the heat FS computation

We consider a �nite system S, with d-dimensional Hilbert space, inte-
racting during a time interval [0, T ] with a reservoir R of �nite �size� L. The
dynamics of the joint system S +R is governed by the Hamiltonian

(7) H(L)(t/T ) = HS(t/T ) +H
(L)
R + λ(t/T )V.

The reservoir Hamiltonian H
(L)
R and the interaction V are time independent

while the time dependent coupling strength λ(t/T ) and system Hamiltonian
HS(t/T ) allow us to control the resulting time evolution. In terms of the

rescaled time s = t/T , called epoch, the propagator U
(T,L)
s associated to (7)

satis�es the Schrödinger equation3

(8)
1

T
i∂sU

(T,L)
s = H(L)(s)U (T,L)

s , U
(T,L)
0 = I.

In the following we assume that the controls λ(s) and HS(s) together with their
�rst derivatives are continuous functions of s ∈ [0, 1]. More importantly, we
impose the following boundary conditions:

(9) λ(0) = λ(1) = 0,

which ensure that the system decouples from the environment at the initial and
the �nal time, and

(10) HS(0) = β−1 log d+ Fi, HS(1) = −β−1 log ρf + Ff ,

where Fi/f are arbitrary constants.
The instantaneous thermal equilibrium state at epoch s and inverse tem-

perature β is

η(L)
s =

e−βH
(L)(s)

tr(e−βH
(L)(s))

,

which, taking our boundary conditions into account, reduces to

η
(L)
i = η

(L)
0 =

I

d
⊗ e−βH

(L)
R

tr(e−βH
(L)
R )

, η
(L)
f = η

(L)
1 = ρf ⊗

e−βH
(L)
R

tr(e−βH
(L)
R )

,

3In the whole article we choose the time units such that ~ = 1.
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at the initial/�nal epoch s = 0/1. The initial state of the joint system is η
(L)
i ,

so that its state at epoch s is given by

ρ(T,L)
s = U (T,L)

s η
(L)
i U (T,L)∗

s .

�Local observables� of the joint system S +R are operators on H(L) which, for
large enough L, do not depend on L4. We de�ne the thermodynamic limit of
the instantaneous equilibrium states on local observables by

η(∞)
s (A) = lim

L→∞
tr(η(L)

s A),

provided the limit on the right hand side exists.

For large T , the system's drive is slow: during the long time interval [0, T ],
the variation of the Hamiltonian H(L)(t/T ) stays of order T 0. The adiabatic
evolution is obtained by taking the limit T → ∞. The adiabatic theorem
for isothermal processes [7, 8, 44] states that for any s ∈ [0, 1] and any local
observable A,

(11) lim
T→∞

lim
L→∞

tr(ρ(T,L)
s A) = η(∞)

s (A).

We will discuss this relation in more details and give precise conditions for its
validity in Section 2.3. Here we just note that the order of limits is important:
one �rst takes the thermodynamic limit L → ∞ and then the adiabatic limit
T →∞.

We identify the dissipated heat ∆Q with the change of energy in the re-

servoir as follows. Let P
(L)
e denote the orthogonal projection on the eigenspace

associated to the eigenvalue e of H
(L)
R . The measurement of H

(L)
R at the initial

epoch s = 0 gives e with a probability tr(P
(L)
e η

(L)
i ). After this measurement

the system is in the projected state

P
(L)
e η

(L)
i P

(L)
e

tr
(
P

(L)
e η

(L)
i

) .
The second measurement of H

(L)
R at the �nal epoch s = 1, after the system

undergoes the transformation described by the propagator U
(T,L)
1 , gives e′ with

the probability

tr
(
P

(L)
e′ U

(T,L)
1 P

(L)
e η

(L)
i P

(L)
e U

(T,L)∗
1

)
tr
(
P

(L)
e η

(L)
i

) .

4We will give a precise de�nition of local observables in Section 2.3.
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It follows that, in this measurement protocol, the probability of observing an
amount of heat ∆Q dissipated in the reservoir is

P(T,L)(∆Q) =
∑

e′−e=∆Q

tr
(
P

(L)
e′ U

(T,L)
1 P (L)

e η
(L)
i P (L)

e U
(T,L)∗
1

)
.

This distribution is the Full Statistics of the heat dissipation. Its cumulant
generating function is

χ(T,L)(α)=log
∑
∆Q

P(T,L)(∆Q)e−α∆Q=log tr
(

e−αH
(L)
R U

(T,L)
1 eαH

(L)
R η

(L)
i U

(T,L)∗
1

)
.

In view of the boundary conditions (9) and (10) at the epoch s = 0, the reservoir

Hamiltonian H
(L)
R and the full initial Hamiltonian H(L)(0) di�er by a constant.

Thus, we can replace the former by the latter in the above relation. Since the
relative Rényi α-entropy of two states ρ, σ is de�ned by

Sα(ρ|σ) = log tr(ρασ1−α),

a simple calculation leads to the identi�cation

(12) χ(T,L)(α) = Sα
β

(η
(L)
i |ρ

(T,L)
1 ).

The existence of the thermodynamic limit of Renyi's entropy [40] implies that
of the FS. Using the adiabatic limit (11) we obtain

lim
T→∞

lim
L→∞

χ(T,L)(α) = Sα
β

(η
(∞)
i |η(∞)

f ) = Sα
β

(ρi|ρf).

The second equality follows from the boundary condition (9): the states η
(∞)
i/f

factorize and their relative entropy is the sum of the relative entropies of each
factor. Since the initial and the �nal state of the reservoir are identical, their
relative entropy vanishes and we are left with the relative entropy between the
initial and �nal states of the system S alone. Substituting ρi = I/d we recover
Eq. (5).

A condition regarding the stability of thermal equilibrium states is the
main assumption required for the validity of Eq. (11) and our analysis in general
(see Section 2.3). Although this condition is expected to hold in a wide class of
systems, it is notoriously di�cult to prove from basic principles. Spin networks,
and generic spin-fermion models are among the relevant systems for which the
condition has been rigorously established although most often with a large
temperature�weak coupling assumption. We specialize our discussion to one of
these models, in which the thermal states are known to be stable for a weak
enough interaction. It describes a one dimensional fermionic chain with an
impurity. We would like to stress that this choice of model is not central to the
results presented here. They hold for any model exhibiting the same stability
behaviour at equilibrium.
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1.2. A fermionic impurity model

We describe a concrete realization of the abstract setup of the previous
section. A 2-level quantum system S interacts with a reservoir R, a gas of
spinless fermions on a one dimensional lattice of size L (see Fig. 2). The sy-
stem and the reservoir are coupled by a dipolar rotating-wave type interaction
between S and the fermions on the �rst site of the lattice. When uncoupled,
the reservoir is a free Fermi gas in thermal equilibrium at inverse temperature
β. The thermodynamic limit is obtained by taking the size L of the lattice to
in�nity. The details are as follows.

R
λ(s)V

HS(s)

H
(L)
RS

Fig. 2. A 2�level quantum system S interacts with a gas of fermions R on a one
dimensional lattice of size L. The epoch-dependent interaction λ(s)V couples S

to the fermions on the �rst site of this lattice.

The lattice sites are labeled by x ∈ Λ(L) = {1, 2, . . . , L}. The one-particle
Hilbert space of the reservoir is `2(Λ(L)) and we denote by δx the delta-function
at site x. The reservoir is thus described by the antisymmetric Fock space

H(L)
R = Γ(`2(Λ(L))), a 2L-dimensional Hilbert space. The creation/annihilation

operator for a fermion at site x ∈ Λ(L) is c∗(x)/c(x). These operators obey the
canonical anti-commutation relation

{c(x), c∗(x′)} = c(x)c∗(x′) + c∗(x′)c(x) = δx,x′ .

The reservoir Hamiltonian

H
(L)
R = κ

∑
x,y∈Λ(L)

|x−y|=1

c∗(x)c(y)

is the second quantization of κ∆(L), where ∆(L) is the discrete Laplacian on
Λ(L) with Dirichlet boundary conditions,

(∆(L)f)(x) =


f(2) for x = 1,

f(x+ 1) + f(x− 1) for 1 < x < L,

f(L− 1) for x = L.
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Thus, H
(L)
R corresponds to homogeneous hopping between neighboring lattice

sites with a hopping constant κ > 0.
The Hilbert space of the system S is HS = C2. We denote by σx, σy and

σz the usual Pauli matrices on HS . In view of the initial condition ρi = I/2
and boundary conditions (10), we can assume, without loss of generality, that
its Hamiltonian is given by

(13) HS(s) = ε(s)I + γ(s)σz.

The total Hilbert space is H(L) = HS ⊗ H(L)
R . The coupling is achieved by a

rotating-wave type interaction between S and the fermion on the �rst lattice
site

V = σ− ⊗ c∗(1) + σ+ ⊗ c(1),

where σ± = 1
2(σx± iσy). Note that V is a local observable: it does not depend

on the lattice size L. This restriction is not strictly necessary but we will not
elaborate on this point here.

The Jordan-Wigner transformation maps the fermionic impurity model to
a free Fermi gas with one-particle Hilbert space C ⊕ `2(Λ(L)) and one-particle
Hamiltonian of the Friedrich's type

(14) h(s) = (ε(s) + γ(s))I − 2γ(s)|1〉〈1| − λ(s)(|1〉〈δ1|+ |δ1〉〈1|) + κ∆(L),

where |1〉 denotes the basis vector of C. This allows for a detailed study of the
mathematical and physical aspects of this model; see [4, 37].

2. ADIABATIC LIMITS FOR THERMAL STATES

This section starts with a discussion of the relevant time-scales of the
fermionic impurity model of Section 1.2. Then, we investigate the various
adiabatic regimes that can be reached by appropriate separations of these time-
scales. In particular, we explain why the order of limits in Eq. (11) is relevant
for the realization of a quasi-static erasure protocol.

2.1. Time-scales in the impurity model

Adiabatic theory provides a tool to study the dynamics of systems which
feature separation of some relevant physical time-scales. To elucidate its me-
aning in our setup we compare the adiabatic time T with the three relevant
dynamical time-scales of our model. We discuss the three adiabatic theorems
corresponding to di�erent ordering of T with respect to these time-scales.

For each �xed epoch s we consider the time-scales associated to the dyn-
amics generated by the instantaneous Hamiltonian H(L)(s) = HS(s)+λ(s)V +
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H
(L)
R . In the following discussion we assume that for s ∈]0, 1[ the s-dependence

of these time-scales is negligible and we omit the variable s from our notation.
We reinstate the s-dependence in the last paragraph of this subsection.

TS : the recurrence time of S. This is the quantum analogue of the
Poincaré recurrence time, the time after which the isolated (λ = 0) system S
returns to nearly its initial state; see [16,22]. For typical initial states, this time
is inversely proportional to the mean level spacing of the system Hamiltonian
HS . For the fermionic impurity model described in the previous section one
has

TS ∼
1

γ
.

We recall that we use physical units in which energy is the inverse of time, and
hence TS is indeed a time-scale.

TS+R: the recurrence time of S + R. The same as TS , but for the
coupled (λ 6= 0) system S +R. The eigenvalues of the discrete Laplacian ∆(L)

are

εk = 2 cos

(
kπ

L+ 1

)
(k = 1, . . . , L),

and those H
(L)
R are

κ

L∑
k=1

nkεk (nk = 0, 1, 2).

It follows that the diameter of the spectrum of H
(L)
R is O(L) for large L. The

same is true for the full Hamiltonian H(L), while dim(H(L)) = 2L+1. Thus, the
mean level spacing of H(L) is O(L2−(L+1)) and we conclude that

TS+R =
1

O(L 2−(L+1))

diverges in the thermodynamic limit L→∞.

Tm: the equilibration time. This is the time needed for the coupled
system S + R to return to thermal (quasi�)equilibrium after a localized per-
turbation. In the thermodynamic limit L =∞, the system remains in thermal
equilibrium after this time which, in this case, coincides with the mixing time.
However, for �nite L, recurrences appear for times of order TS+R which is much
larger than Tm. In Section 2.3 we shall argue that for small enough λ > 0, Tm
stays �nite as L→∞.

In the weak coupling regime, Fermi's golden rule gives the dependence
Tm(λ) = O(λ−2) on the interaction strength λ. Note in particular that Tm(0) =
∞. Equilibration is not possible without interaction between S and R.
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In the physical systems we have in mind, these time-scales are naturally
ordered as

TS � Tm � TS+R.

Three physically relevant regimes and one unphysical adiabatic regime are con-
sistent with this ordering (see Fig. 3):

1. TS � T � Tm � TS+R (Fig. 3(a)). The adiabatic regime is reached
by taking �rst L → ∞, then λ → 0, and �nally T → ∞. After the
λ → 0 limit, the system S decouples from the reservoir and the T → ∞
limit yields the standard adiabatic theorem of quantum mechanics [11,46]
applied to the isolated system S.

2. TS � T ∼ Tm � TS+R (Fig. 3(b)). The ordering is the same as in the
previous case, but T and Tm remain comparable. To reach this regime,
one �rst take L→∞, and then simultaneously λ→ 0 and T ∼ λ−2 →∞.
This procedure yields the weak coupling adiabatic theorem of Davies and
Spohn [27,68].

3. TS < Tm � T � TS+R (Fig. 3(c)). This regime corresponds to �rst
taking L → ∞, and then T → ∞ keeping λ ∼ O(1). It is controlled by
the adiabatic theorem for isothermal processes [7,8,44]. After tracing out
the degrees of freedom of the reservoir this regime should be equivalent
to the Markovian adiabatic theory [3, 41,63].

4. TS+R � T (Fig. 3(d)). This unphysical regime is reached by �rst taking
T →∞. The standard adiabatic theorem applies again, but this time to
the joint system S+R. The subsequent thermodynamic limit L→∞ en-
forces an in�nitely slow driving. We devote the following section to show
that the superhero5 adiabatic theorem associated to this regime gives very
di�erent predictions compared to the isothermal adiabatic theorem.

Remark. The family of Hamiltonians {H(L)(s)}s∈[0,1] might possess ex-
ceptional points at which one or more of the above time-scales diverge. In the
standard adiabatic theory these exceptional points correspond to eigenvalue
crossings, i.e., accidental degeneracies. The zeroth order adiabatic approxima-
tion still holds in the presence of �nitely many such exceptional points. In
the isothermal adiabatic theory, exceptional points occur whenever λ(s) = 0.
Similar to the standard theory, the adiabatic approximation holds also in the
presence of �nitely many such points. Note in particular that the erasure pro-
cess has exceptional points at the initial/�nal epoch s = 0/1.

5We heard a rumor that in the upcoming X-men movie there would be a new character
with a superpower that allows her to wait in�nitely long.
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Fig. 3. The di�erent time-scale orderings of the adiabatic theorems. In the ordering (a)
of the standard adiabatic theorem, the relevant evolution is that of the system S

with its associated time-scale TS . The ordering (c) is associated to the isothermal adiabatic
theorem. The ordering for the weak coupling adiabatic theorem (b) is similar with the
constraint T ∼ λ−2. In both cases the relevant time-scale is the thermalization time Tm.

The ordering (d) corresponds to the unphysical limit where T is taken to in�nity before the
thermodynamic limit.

2.2. The adiabatic limit for thermal states at �nite L

Let us apply the standard adiabatic theorem [11, 46] to the full Ha-
miltonian H(L)(s) for �nite L. For simplicity, we assume that the family
{H(L)(s)}s∈]0,1[ has no exceptional points and admits the representation

H(L)(s) =
∑
k

ek(s)Pk(s),

where the projections Pk(s) are continuously di�erentiable functions of s. Then
the adiabatic theorem states that

lim
T→∞

U (T,L)
s Pk(0)U (T,L)∗

s = Pk(s).

Hence, given the initial state

η
(L)
i =

e−βH
(L)(0)

tr(e−βH
(L)(0))

=
1

Z
(L)
0

∑
k

e−βek(0)Pk(0),

the �nal state ρ
(T,L)
1 satis�es

lim
T→∞

ρ
(T,L)
1 = lim

T→∞
U

(T,L)
1 η

(L)
i U

(T,L)∗
1 =

1

Z
(L)
0

∑
k

e−βek(0)Pk(1),

which only coincides with η
(L)
f if Z

(L)
0 e−βek(1) = Z

(L)
1 e−βek(0) for all k. This

is of course a very strong constraint which, in particular, is not satis�ed in an
erasure protocol.
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2.3. The isothermal adiabatic theorem

The main purpose of this section is to formulate a precise statement of
the isothermal adiabatic theorem, which is the main technical ingredient of our
analysis of quasi-static erasure processes. This requires some preparation and
we will start by discussing the thermodynamic limit L→∞, and in particular
the fate of families {ρ(L)}L≥0 of �nite volume states in this limit. Then we will
introduce the notion of ergodicity which is the main dynamical assumption of
the isothermal adiabatic theorem.

The thermodynamic limit. To avoid technically involved algebraic
techniques, we will only work with a potential in�nity, i.e., all in�nite volume
objects will be de�ned as limits of their �nite volume counterparts. A draw-
back of this approach is that we cannot explain the proof of the isothermal
adiabatic theorem, Eq.(11), in details. This proof, which requires the algebraic
machinery of quantum statistical mechanics is, however, available in the exis-
ting literature [7,8,44] and it is also given in the companion paper [14]. In the
following, we denote all in�nite volume quantities with the superscript (∞).

A central role in the de�nition of the thermodynamic limit is played by
the set A of so-called local observables of the in�nite volume system S+R. For
our purposes, it will su�ce to consider A = ∪L≥0A(L), where A(L) is the set of
operators which are �nite sums of monomials of the form

D ⊗ c∗(x1) · · · c∗(xn)c(y1) · · · c(ym), xi, yi ∈ Λ(L),

where D is an operator on HS . Note that A(L) ⊂ A(L′) whenever L ≤ L′.
By de�nition, operators in A involve only a �nite number of lattice sites of
the Fermi gas R and hence remain well de�ned as operators on H(L) for large
enough but �nite L. In fact, A(L) coincides with the set of all operators onH(L).
In particular, sums and products of elements of A are themselves elements of
A (i.e., A is an algebra).

Assume that for each L ≥ 0, ρ(L) is a density matrix on H(L). Given a
local observable A ∈ A, the expectation ρ(L)(A) = tr(ρ(L)A) is well de�ned for
large enough L. We say that the sequence {ρ(L)}L≥0 has the thermodynamic
limit ρ(∞) whenever, for each A ∈ A, the limit

ρ(∞)(A) = lim
L→∞

tr(ρ(L)A)

exists. We remark that there may be no density matrix on H(∞) such that
ρ(∞)(A) = tr(ρ(∞)A). Nevertheless, the in�nite volume state ρ(∞) de�ned in
this way provides an expectation functional onA with the properties ρ(∞)(I)=1
and 0 ≤ ρ(∞)(A∗A) ≤ ‖A‖2 for all A ∈ A.
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We also note that H
(∞)
R , the energy of the in�nite reservoir, is not a local

observable and therefore need not have a �nite expectation in a thermodynamic
limit state ρ(∞). This is physically consistent with the fact that ρ(∞) may
describe a state of the in�nite system with in�nite energy (this will indeed
be the case for all the thermodynamic limit states relevant to our analysis of
erasure processes). On the contrary, HS is a local observable and the energy of
the system S has �nite expectation in any thermodynamic limit state.

Assume now that for each L ≥ 0, besides the state ρ(L), we also have a uni-

tary propagator U
(L)
t for the �nite system S+R. Since U (L)

t ∈ A(L), for any A ∈
A we have U

(L)∗
t AU

(L)
t ∈ A(L) for large enough L so that tr(ρ(L)U

(L)∗
t AU

(L)
t )

is well de�ned. We shall say that the sequence {U (L)
t }L≥0 de�nes a dynamics

for ρ(∞) on the time interval I if

ρ
(∞)
t (A) = lim

L→∞
tr
(
ρ(L)U

(L)∗
t AU

(L)
t

)
exists for all A ∈ A and all t ∈ I. Note that the existence of this limiting
dynamics depends not only on the sequence of �nite volume propagators, but
also on the sequence of �nite volume states.

Decades of e�ort were devoted by the theoretical and mathematical phy-
sics communities to the construction and characterization of thermodynamic
limit states of quantum systems and their dynamics. We refer the reader
to [17,18,61] for detailed expositions of the resulting theory.

Specializing to our impurity model, for each epoch s, the instantaneous

thermal state η
(L)
s admits a thermodynamic limit η

(∞)
s . Equally importantly

for our problem, the propagators U
(T,L)
s de�ne a dynamics for these states and

in particular

ρ(T,∞)
s (A) = lim

L→∞
tr
(
ρ(T,L)
s A

)
= lim

L→∞
tr
(
η

(L)
i U (T,L)∗

s AU (T,L)
s

)
exists for all A ∈ A and s ∈ [0, 1].

Ergodicity. As already mentioned in Section 2.1, the adiabatic theory of
isothermal processes requires the instantaneous dynamics at each �xed epoch
s (with the possible exception of �nitely many of them) to have the property
that a local perturbations of the instantaneous thermal equilibrium state should
relax to this equilibrium state. We now give a more precise statement of this
requirement in terms of the ergodic property of the instantaneous dynamics.

Let {ρ(L)}L≥0 be a sequence of �nite volume states with thermodynamic
limit ρ(∞). For any non-zero B ∈ A, the perturbed states

ρ
(L)
B =

B∗ρ(L)B

tr(B∗ρ(L)B)
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are well de�ned for large enough L. Using the cyclic property of the trace, one
easily shows that ∣∣∣tr(ρ(L)BAB∗

)∣∣∣ ≤ ‖A‖tr(B∗ρ(L)B
)
.

Thus, the thermodynamic limit

ρ
(∞)
B (A) = lim

L→∞
tr
(
ρ

(L)
B A

)
= lim

L→∞

tr
(
ρ(L)BAB∗

)
tr(ρ(L)BB∗)

=
ρ(∞)(BAB∗)

ρ(∞)(BB∗)

also exists and de�nes a local perturbation ρ
(∞)
B of the state ρ(∞). Assume that

the sequence of Hamiltonians {H(L)}L≥0 de�nes a dynamics

ρ
(∞)
B,t (A) = lim

L→∞

(
ρ

(L)
B eitH(L)

Ae−itH(L)
)

on these states. The state ρ(∞) is said to be ergodic with respect to this
dynamics if, for all A,B ∈ A, we have

lim
t→∞

1

2t

∫ t

−t
ρ

(∞)
B,u (A) du = ρ(∞)(A).

Note that it follows from this relation that ρ(∞) is invariant under the dynamics,
i.e., that

ρ
(∞)
t (A) = lim

L→∞
tr
(
ρ(L)eitH(L)

Ae−itH(L)
)

= ρ(∞)(A)

for all t ∈ R and A ∈ A.
Ergodicity, i.e., return to equilibrium for autonomous dynamics, has been

proven for a large number of physically relevant models [4�6, 12, 15, 24, 26, 29�
31, 38, 39, 42, 43, 54, 55]. In the case of our impurity model, ergodicity of the

instantaneous thermal state ρ
(∞)
s with respect to the instantaneous dynamics

generated by the Hamiltonians H
(L)
s holds for small enough λ(s) 6= 0 assuming

that the coupling between S and R is e�ective, i.e.,

2γ(s) ∈]− 2κ, 2κ[,

where [−2κ, 2κ] = sp(κ∆), ∆ = limL→∞∆(L) being the half-line discrete Lap-
lacian, see [4, 37].

We are now ready to state the adiabatic theorem that leads to our results.
By the discussion above the assumptions of the theorem can be satis�ed in our
impurity model by an appropriate choice of κ and the coupling strength λ(s).
The same applies to the choice of the boundary conditions (10), since one may
assume from the outset that the �nal state ρf is described by a diagonal density
matrices on HS = C2.
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Theorem 2.1. Assume that at any epochs 0 < s < 1, the thermal state

η
(∞)
s is ergodic with respect to the dynamics generated by the sequence of Ha-

miltonian {H(L)(s)}L≥0. Assume also that HS(s) and λ(s) are continuously

di�erentiable in s on [0, 1]. Then, in the limit T → ∞, the state η
(∞)
i evolves

along the path of instantaneous thermal equilibrium states at the �xed inverse

temperature β,

(15) lim
T→∞

sup
A∈A,‖A‖=1

∣∣ρ(T,∞)
s (A)− η(∞)

s (A)
∣∣ = 0,

for every s ∈ [0, 1]. In the adiabatic limit, the evolution is hence a quasi�static

isothermal process.

The theorem has been proved in [7, 8, 44]. The proof uses Araki's per-
turbation theory and the adiabatic theorem without gap condition [2,69]. The
crucial result of the former is that all the instantaneous thermal equilibrium

states η
(∞)
s are mutually quasi�equivalent, and can be represented as vectors in

the same GNS representation (i.e., in the same Hilbert space). In this represen-
tation, the dynamics is governed by a time-dependent standard Liouvilian Ls.
If the instantaneous dynamics at a given epoch s is ergodic, then 0 is a simple

eigenvalue of Ls and the vector representative of η
(∞)
s is the corresponding ei-

genvector. Since Ls inherits the di�erentiability properties of the �nite volume
Hamiltonians H(L)(s), the adiabatic theorem without gap condition implies the
above theorem. We now move on to discuss its consequences.

Remark. Our analysis of erasure processes can easily be generalized to a
wider class of models. However, these generalizations are restricted to ther-
mal states of the joint system S +R describing pure thermodynamic phases.
We particularly emphasize that our results do not apply to adiabatic phase
transition crossing.

3. HEAT FULL STATISTICS IN THE ADIABATIC LIMIT

The purpose of this section is to derive the Full Statistics of the heat
dissipated into the reservoir during the quasi-static process described in the
introduction. We start the section with a detailed discussion of the energy
balance and its thermodynamic limit. Then, starting with Relation (12), we
study the thermodynamic limit of the heat FS and, invoking Theorem 2.1, its
adiabatic limit.

For �nite L and T , the expected value of the work done on the joint system

S +R during the state transition ρ
(T,L)
0 → ρ

(T,L)
1 mediated by the propagator
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U
(T,L)
1 is given by

(16) W (T,L) = tr
(
ρ

(T,L)
1 H(L)(1)

)
− tr

(
ρ

(T,L)
0 H(L)(0)

)
.

We have

W (T,L) =

∫ 1

0
∂str

(
ρ(T,L)
s H(L)(s)

)
ds

=

∫ 1

0
∂str

(
η

(L)
i U (T,L)∗

s H(L)(s)U (T,L)
s

)
ds

=

∫ 1

0
tr
(
η

(L)
i U (T,L)∗

s

(
iT [H(L)(s), H(L)(s)] + ∂sH

(L)(s)
)
U (T,L)
s

)
ds

=

∫ 1

0
tr
(
ρ(T,L)
s (ḢS(s) + λ̇(s)V )

)
ds,

where we have used the evolution equation (8).
The expected value of the change in the energy of the system S is

(17) 〈∆E(T,L)
S 〉 = tr

(
ρ

(T,L)
1 HS(1)

)
− tr

(
ρ

(T,L)
0 HS(0)

)
.

Finally, the expected value of the change in the reservoir energy is

〈∆Q(T,L)〉 = tr
(
ρ

(T,L)
1 H

(L)
R

)
− tr

(
ρ

(T,L)
0 H

(L)
R

)
.

Although the individual terms on the right hand side of the last identity do not
admit a thermodynamic limit, their di�erences remain well de�ned in the limit
L→∞. This becomes clear when writing the �rst law

〈∆Q(T,L)〉 = W (T,L) − 〈∆E(T,L)
S 〉,

which obviously follows from (16), (17) and the boundary condition (9). Indeed,
both

W (T,∞) = lim
L→∞

W (T,L) =

∫ 1

0
ρ(T,∞)
s

(
ḢS(s) + λ̇(s)V

)
ds,

and

〈∆E(T,∞)
S 〉 = lim

L→∞
〈∆E(T,L)

S 〉 = ρ
(T,∞)
1 (HS(1))− ρ(T,∞)

0 (HS(0)) ,

are well de�ned.
In the adiabatic limit T →∞, the work done on the joint system coincides

with the increase of its free energy: Duhamel's formula and Theorem 2.1 yield

lim
T→∞

W (T,∞) =

∫ 1

0
η(∞)
s (ḢS(s) + λ̇(s)V )ds

= lim
L→∞

∫ 1

0

tr(e−βH
(L)
s (ḢS(s) + λ̇(s)V ))

tr(e−βH
(L)
s )

ds
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= − lim
L→∞

1

β

∫ 1

0
∂s log tr(e−βH

(L)
s )ds

= − 1

β
log tr(e−βHS(1)) +

1

β
log tr(e−βHS(0))

= Ff − Fi = ∆F.

The equality between work and free energy is the signature of a reversible
process: the work done can be recovered from the system by reversing the tra-
jectory. Recalling from classical thermodynamics that for isothermal processes
we have

∆F − 〈∆Q〉 = W − β−1∆S,
the equality between work and free energy leads to saturation in the Landauer
bound:

β lim
T→∞

lim
L→∞

〈∆Q(T,L)〉 = ∆S.

As already mentioned in the introduction, a mathematical proof of this satu-
ration can be obtained using an appropriate microscopic version of the entropy
balance equation [44].

Using standard algebraic techniques of quantum statistical mechanics, it
is fairly easy to show that the thermodynamic limit of Renyi's relative entropy
for the fermionic impurity model

Sα(η
(∞)
i |ρ(T,∞)

1 ) = lim
L→∞

Sα(η
(L)
i |ρ

(T,L)
1 )

exists. The left hand side of this identity can be expressed in terms of rela-

tive modular operators in the GNS Hilbert space associated to the state η
(L)
i

(see [40], a detailed proof can be found in [14]). This representation shows in

particular that, as a function of α, the entropy Sα(η
(∞)
i |ρ(T,∞)

1 ) is analytic in
the strip 0 < Reα < 1 and continuous on its closure.

Recalling Relation (12) between Rényi's entropy and cumulant generating
function, we can write

(18) χ(T,∞)(α) = lim
L→∞

χ(T,L)(α) = Sα
β

(η
(∞)
i |ρ(T,∞)

1 )

and conclude that the characteristic function (i.e., the Fourier transform) of
the heat FS

ϕ(T,L)(α) =
∑
∆Q

eiα∆Q P(T,L)(∆Q)

converges pointwise, for all α ∈ R, towards the continuous function

ϕ(T,∞)(α) = e
S−iα

β
(η

(∞)
i |ρ(T,∞)

1 )

as L → ∞. Levy's continuity theorem [13, Section 1.7] allows us to conclude
that for T > 0, there exists a pdf P(T,∞) which is the weak limit of the �nite
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volume pdf P(T,L), i.e.,

lim
L→∞

∑
∆Q

f(∆Q)P(T,L)(∆Q) =

∫
R
f(∆Q)dP(T,∞)(∆Q)

for any bounded continuous function f .
It remains to take the adiabatic limit T → ∞. The uniform convergence

in (15) and the properties of relative modular operators acting on the GNS
Hilbert space imply that

lim
T→∞

Sα(η
(∞)
i |ρ(T,∞)

1 ) = Sα(η
(∞)
i |η(∞)

f ) = −α log d+ log tr(ρ1−α
f ),

the convergence being uniform on any compact subset of the strip 0≤Re (α)<1.
The detailed proof can be found in [14] (see also [45] where a similar argument
has been used). Thus, we have obtained the following expression for the cumu-
lant generating function of the dissipated heat in the adiabatic limit,

(19) χ(α) = lim
T→∞

lim
L→∞

χ(T,L)(α) = Sα
β

(η
(∞)
i |η(∞)

f ) = −α
β

log d+ log tr(ρ
1−α

β

f ),

which is the result (5) stated in the introduction. Since the limiting characte-
ristic function

(20) ϕ(α) = lim
T→∞

ϕ(T,∞)(α) = eχ(−iα) = d
iα
β tr

(
ρ

1+iα
β

f

)
is continuous at α = 0, we can again invoke Levy's continuity theorem: the pdf
P(T,∞) converges weakly, as T →∞, towards a pdf P such that∫

R
eiα∆QdP(∆Q) = ϕ(α).

We note that while P(T,∞) is, in general, a continuous pdf, P is atomic.

Remark. From Eq. (16), we infer that the FS of the work done on the joint
system S +R during the process can be obtained by the successive measure-
ments of H(L)(0) at the epoch s = 0 and H(L)(1) at the epoch s = 1. A simple
modi�cation of the calculation of Section 1.1 yields the cumulant generating
function of the work

χ
(T,L)
work (α) = −α∆F + Sα

β
(η

(L)
f |ρ

(T,L)
1 ).

Proceeding as before, one shows that

lim
T→∞

lim
L→∞

χ
(T,L)
work (α) = −α∆F,

which is the cumulant generating function of a deterministic quantity. Thus,
the work done on the system does not �uctuate in the adiabatic limit and is
equal to the increase of the free energy.
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4. REFINEMENT OF LANDAUER'S PRINCIPLE

We return to our discussion of the Landauer erasure principle. Recall

that we consider the case where λ(0) = λ(1) = 0, that the initial state is

ρi = I/d, and that the �nal state is ρf > 0. The di�erence between the initial

and the �nal entropy of the system is hence ∆S = log d − Sf . The adiabatic

theorem for thermal states implies that the time-evolved state ρ
(T,∞)
1 converges

in the adiabatic limit to the product state η
(∞)
f = ρf ⊗ ρ(∞)

R , realizing the task

of transforming ρi into ρf (here, ρ
(∞)
R denotes the thermal equilibrium state

of R at inverse temperature β). We now consider the energetic cost of this

transformation.

Let pk denote the eigenvalues of ρf and mk their respective multiplicities.

We can rewrite the cumulant generating function (19) as

(21)

log

∫
e−α∆QdP(∆Q) = χ(α) = log

∑
k

mk

d
e(β−α)Qk , Qk =

1

β
(log d+ log pk),

which shows that heat is quantized. A heat quanta Qk is dissipated in the bath

with probability

P(∆Q = Qk) = pkmk =
mk

d
eβQk .

Di�erentiating (21) at α = 0, we immediately obtain the saturation of the

Landauer Principle for the expected heat,

〈∆Q〉 = −∂αχ(α)
∣∣
α=0

= β−1∆S.

The expression for higher cumulants reads

(22) 〈〈∆Qn〉〉 = (−∂α)nχ(α)
∣∣
α=0

= β−n∂nγ log
∑
k

mkp
γ
k

∣∣
γ=1

(n ≥ 2).

Consider now a family of faithful states {ρ(ε)
f }ε∈]0,1/2[ such that ρ

(ε)
f approaches

a pure state |ψ〉〈ψ| as ε ↓ 0. Denote by P(ε)
the corresponding heat FS. Wit-

hout loss of generality, we can assume that 1− ε is an eigenvalue of ρ
(ε)
f (with

eigenvector ψ). Then, this eigenvalue is simple and the rest of the spectrum of

ρ
(ε)
f is contained in the interval ]0, ε[. Eq. (20) yields

lim
ε↓0

ϕ(ε)(α) = lim
ε↓0

d
iα
β tr

(
ρ

(ε)
f

1+iα
β

)
= d

iα
β ,

which, invoking once again Levy's theorem, implies that P(ε)
converges weakly

to the Dirac mass at β−1 log d. Thus, in the perfect erasure limit, the heat does
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not �uctuate either, and takes the value imposed by the Landauer bound with

probability one. However, any practical implementation of the erasure process

will involve some errors and the �nal pure state ψ will only be reached within

some precision ε > 0 (or with some probability 1 − ε). It is therefore worth

paying some attention to the asymptotics ε ↓ 0. In this limit, one easily shows

that

〈∆Q〉 = β−1 log d+O(ε log ε),

while for n ≥ 2, Eq. (22) gives

〈〈∆Qn〉〉 = O(ε(log ε)n).

The presence of powers of log ε in these formulas is the signature of the singu-

larity developed by the cumulant generating function (see Fig. 4)
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Fig. 4. The cumulant generating function χ(ε) as a function of α/β for a qubit (d = 2)
at ε = 10−k for k = 1, 2, 3, 4, 5. The straight line is the limiting function (23).

(23) lim
ε↓0

χ(ε)(α) = lim
ε↓0

log

(
d
−α
β tr

(
ρ

(ε)
f

1−α
β

))
=


−α
β log d if α < β,

0 if α = β,

∞ if α > β.

For small values of ε, d − 1 of the (repeated) eigenvalues of ρ
(ε)
f are cluste-

red near zero and the corresponding heat quanta become strongly negative.

Accordingly, the system S might occasionally absorb large amounts of heat

−Q(ε)
k ∼ −β−1 log ε. Such heat release by the reservoir corresponds to a transi-

tion of S to an eigenstate φk of ρ
(ε)
f such that 〈φk|ρ(ε)

f φk〉 = O(ε)� 1, i.e., to a
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failure of the erasure process to reach the pure state ψ. This transition happens

at a high energy cost. Thus, it is not surprising that the �uctuations breaking

Landauer's Principle have a total probability P(ε)
(∆Q ≤ 0) = ε which is expo-

nentially small w.r.t. the energy scale − log ε involved in the process. Still we

expect these �uctuations might be relevant in the experimental investigation of

the Landauer limit for quantum systems.

As an alternative approach to the analysis of perfect erasure, let us com-

pute the probability distribution of the released heat conditioned on the fact

that a �nal measurement of the system state con�rms the success of the erasure

process. Applying Bayes rule we derive, for �nite L and T ,

P(T,L)
success(∆Q) =

∑
e′−e=∆Q

tr
(
P

(L)
e′ U

(T,L)
1 P

(L)
e η

(L)
i U

(T,L)∗
1 P

(L)
e′ Psuccess

)
tr
(
U

(T,L)
1 η

(L)
i U

(T,L)∗
1 Psuccess

) ,

where Psuccess = |ψ〉〈ψ| ⊗ I denotes the orthogonal projection on the target

pure state ψ. Since this projection commutes with P
(L)
e′ , the corresponding

cumulant generating function reads

χ(T,L)
success(α) = log

tr
(

e−αH
(L)
R U

(T,L)
1 eαH

(L)
R η

(L)
i U

(T,L)∗
1 Psuccess

)
tr
(
U

(T,L)
1 η

(L)
i U

(T,L)∗
1 Psuccess

)
 .

Proceeding as before, we easily obtain the following expression of the conditio-

nal cumulant generating function of heat in the thermodynamic and adiabatic

limits and for the target state ρ
(ε)
f ,

χ(ε)
success(α) = lim

T→∞
lim
L→∞

χ(T,L)
success(α) = −α

β
(log d+ log(1− ε)).

Thus, conditioning on the success of perfect erasure yields a heat distribution

which concentrates on

β∆Q = log (pmaxd) < ∆S,

where pmax = 1− ε denotes the largest eigenvalue of ρ(ε)
f . Again, such a depar-

ture from Landauer principle could in principle be checked experimentally.

5. CONCLUSION

We have studied the statistics of the heat dissipated in a thermal bath

during the quasi-static realization of a Landauer erasure which transforms a
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completely mixed initial state into a faithful �nal state ρf . We have shown that

the dissipated heat is quantized, and interpreted this phenomenon as a �ne

version of reversibility for isothermal processes. In the singular limit, when ρf

is close to a pure state |ψ〉〈ψ|, the heat distribution acquires extreme outliers.

With a small but non-zero probability a large amount of heat can be absorbed

by the system during the erasure process. This singularity can be detected in

the divergence, Eq. (6), of the moment generating function of the heat Full

Statistics and corresponds to a failure of the process to reach the pure state

ψ. Alternatively, conditioning on the success of the perfect erasure process

yields a heat distribution which is concentrated on a value strictly smaller that

Landauer's limit.

We believe this departure could be experimentally detected in a quantum

analog of the experiments con�rming Landauer's Principle [9, 58, 59, 64, 71].

Several interferometry and control protocols to measure the heat Full Statistics

using an ancilla coupled to the joint system S + R were proposed [19, 23, 35,

53,60]. The proposal of Dorner et al. [23] seems to be the most appropriate for

our model since it involves only local interactions between the ancilla and the

reservoir.

Acknowledgments. The research of T.B. was partly supported by ANR project RM-
TQIT (Grant No. ANR-12-IS01-0001-01) and by ANR contract ANR-14-CE25-0003-0.
The research of V.J. was partly supported by NSERC. A part of this work has been
done during a visit of T.B. and M.F. to McGill University partly supported by NSERC.
The work of C.-A.P. has been carried out in the framework of the Labex Archimède
(ANR-11-LABX-0033) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded
by the �Investisements d'Avenir� French Government program managed by the French
National Research Agency (ANR).

REFERENCES

[1] J.E. Avron, S. Bachmann, G.-M. Graf and I. Klich, Fredholm determinants and the

statistics of charge transport. Comm. Math. Phys. 280 (2008), 807�829.
[2] J.E. Avron and A. Elgart, Adiabatic theorem without a gap condition. Comm. Math.

Phys. 203 (1999), 445�463.
[3] J.E. Avron, M. Fraas, G.-M. Graf and P. Grech, Adiabatic theorems for generators of

contracting evolutions. Comm. Math. Phys. 314 (2012), 163�191.
[4] W. Aschbacher, V. Jak²i¢, Y. Pautrat and C.-A. Pillet, Topics in non-equilibrium quan-

tum statistical mechanics. In: S. Attal, A. Joye and C.-A. Pillet (Eds.), Open Quantum

Systems III. Recent Developments. Lecture Notes in Mathematics 1882, Springer,
Berlin, 2006.

[5] W. Aschbacher, V. Jak²i¢, Y. Pautrat and C.-A. Pillet, Transport properties of quasi-free
Fermions. J. Math. Phys. 48 (2007), 032101.



25 Isothermal adiabatic theory and a statistical Landauer principle 283

[6] V.V. Aizenstadt and V.A. Malyshev, Spin interaction with an ideal Fermi gas. J. Stat.
Phys. 48 (1987), 51�68.

[7] W.K. Abou-Salem and J. Fröhlich, Adiabatic theorems and reversible isothermal proces-

ses. Lett. Math. Phys. 72 (2005), 153�163.
[8] W.K. Abou-Salem and J. Fröhlich, Status of the fundamental laws of thermodynamics.

J. Stat. Phys. 126 (2007), 1045�1068.
[9] A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider and E. Lutz, Ex-

perimental veri�cation of Landauer's principle linking information and thermodynamics.

Nature 483 (2012), 187�189.
[10] C.H. Bennett, Demons, engines and the second law. Scienti�c American 257 (1987),

108�116.
[11] M. Born and V. Fock, Beweis des Adiabatensatzes. Z. für Physik 51 (1928), 165�180.
[12] V. Bach, J. Fröhlich and I.M. Sigal, Return to equilibrium. J. Math. Phys. 41 (2000),

3985�4060.
[13] P. Bilingsley, Convergence of Probability Measures. Willey, New York, 1968.
[14] T. Benoist, M. Fraas, V. Jak²i¢ and C.-A. Pillet, Adiabatic theorem in quantum statistical

mechanics. In preparation, 2016.
[15] D.D. Botvich and V.A. Malyshev, Unitary equivalence of temperature dynamics for ideal

and locally perturbed Fermi-gas. Comm. Math. Phys. 91 (1983), 301�312.
[16] K. Bhattacharyya and D. Mukherjee, On estimates of the quantum recurrence time. J.

Chem. Phys. 84 (1986), 3212�3214.
[17] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics

I. Second Edition. Springer, Berlin, 1987.
[18] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics

II. Second Edition. Springer, Berlin, 1997.
[19] M. Campisi, R. Blattmann, S. Kohler, D. Zueco and P. Hänggi, Employing circuit qed

to measure non-equilibrium work �uctuations. New J. Phys. 15 (2013), 105028.
[20] G.E. Crooks and C. Jarzynski, Work distribution for the adiabatic compression of a

dilute and interacting classical gas. Phys. Rev. E 75 (2007), 021116.
[21] G.E. Crooks, Entropy production �uctuation theorem and the nonequilibrium work rela-

tion for free energy di�erences. Phys. Rev. E 60 (1999), 2721.
[22] L. Campos Venuti, The recurrence time in quantum mechanics. Preprint, 2015. arXiv:

1509.04352.
[23] R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold and V. Vedral, Extracting quantum

work statistics and �uctuation theorems by single-qubit interferometry. Phys. Rev. Lett.
110 (2013), 230601.

[24] J. Derezi«ski and V. Jak²i¢, Return to equilibrium for Pauli-Fierz systems. Ann. Henri
Poincaré 4 (2003), 739�793.

[25] R. Dillenschneider and E. Lutz, Memory erasure in small systems. Phys. Rev. Lett.
102 (2009), 210601.

[26] W. de Roeck and A. Kupianien, Return to equilibrium for weakly coupled quantum

systems, A simple polymer expansion. Comm. Math. Phys. 305 (2011), 797�826.
[27] E.B. Davies and H. Spohn, Open quantum systems with time-dependent Hamiltonians

and their linear response. J. Stat. Phys. 19 (1978), 511�523.
[28] D.J. Evans, E.G.D. Cohen and G.P. Morriss, Probability of second law violations in

shearing steady states. Phys. Rev. Lett. 71 (1993), 2401.



284 T. Benoist, M. Fraas, V. Jak²i¢ and C.-A. Pillet 26

[29] J. Fröhlich and M. Merkli, Another return of �Return to Equilibrium�. Comm. Math.
Phys. 251 (2004), 235�262.

[30] J. Fröhlich, M. Merkli, S. Schwarz and D. Ueltschi, Statistical mechanics of thermody-

namic processes. In: J. Arafune, A. Arai, M. Kobayashi, K. Nakamura, T. Nakamura,
I. Ojima, N. Sakai, A. Tonomura and K. Watanabe (Eds.), A Garden of Quanta, Essays

in Honor of Hiroshi Ezawa, World Scienti�c Publishing, Singapore, 2003.
[31] J. Fröhlich, M. Merkli and D. Ueltschi, Dissipative transport, thermal contacts and

tunneling junctions. Ann. Henri Poincaré 4 (2003), 897�945.
[32] E. Hanson, A. Joye, Y. Pautrat and R. Raquépas, Landauer's principle in repeated

interaction systems. Preprint, 2015. arXiv:1510.00533 [math-ph].
[33] G. Gallavotti and E.G.D. Cohen, Dynamical ensembles in nonequilibrium statistical

mechanics. Phys. Rev. Lett. 74 (1995), 2694.
[34] J. Goold, M. Paternostro and K. Modi, Nonequilibrium quantum Landauer principle.

Phys. Rev. Lett. 114 (2015), 060602.
[35] J. Goold, U. Poschinger and K. Modi, Measuring the heat exchange of a quantum process.

Phys. Rev. E 90 (2014), 020101.
[36] C. Jarzynski, Nonequilibrium equality for free energy di�erences. Phys. Rev. Lett. 78

(1997), 2690.
[37] V. Jak²i¢, E. Kritchevski and C.-A. Pillet, Mathematical theory of the Wigner-Weisskopf

atom. Lecture Notes in Phys. 695 (2006), 147�218.
[38] V. Jak²i¢, Y. Ogata and C.-A. Pillet, The Green-Kubo formula for the spin-fermion

system. Comm. Math. Phys. 268 (2006), 369�401.
[39] V. Jak²i¢, Y. Ogata and C.-A. Pillet, The Green-Kubo formula for locally interacting

fermionic open systems. Ann. Henri Poincaré 8 (2007), 1013�1036.
[40] V. Jak²i¢, Y. Ogata, Y. Pautrat and C.-A. Pillet, Entropic �uctuations in quantum

statistical mechanics � an introduction. In: J. Fröhlich, M. Salmhofer, V. Mastropietro,
W. de Roeck and L.F. Cugliandolo (Eds.), Quantum Theory from Small to Large Scales,

Oxford University Press, Oxford, 2012.
[41] A. Joye, General adiabatic evolution with a gap condition. Comm. Math. Phys. 275

(2007), 139�162.
[42] V. Jak²i¢, and C.-A. Pillet, On a model for quantum friction III: Ergodic properties of

the spin-boson system. Comm. Math. Phys. 178 (1996), 627�651.
[43] V. Jak²i¢ and C.-A. Pillet, Non-equilibrium steady states of �nite quantum systems

coupled to thermal reservoirs. Comm. Math. Phys. 226 (2002), 131�162.
[44] V. Jak²i¢ and C.-A. Pillet, A note on the Landauer principle in quantum statistical

mechanics. J. Math. Phys. 55 (2014), 075210.
[45] V. Jak²i¢, J. Panangaden, A. Panati and C.-A. Pillet, Energy conservation, counting

statistics and return to equilibrium. Lett. Math. Phys. 105 (2015), 917�938.
[46] T. Kato, On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Japan 5

(1950), 435�439.
[47] J. Kurchan, A quantum �uctuation theorem. Preprint, 2000. arXiv:cond-mat/0007360
[48] R. Landauer, The physical nature of information. Phys. Lett. A 217 (1996), 188�193.
[49] E. Lutz and S. Ciliberto, Information: From Maxwell's demon to Landauer's eraser.

Physics Today 68 (2015), 30�35.



27 Isothermal adiabatic theory and a statistical Landauer principle 285

[50] L.S. Levitov and G.B. Lesovik, Charge-transport statistics in quantum conductors. JETP
Lett. 55 (1992), 555�559.

[51] L.S. Levitov and G.B. Lesovik, Charge distribution in quantum shot noise. JETP Lett.
58 (1993), 230�235.

[52] H. Lee, L.S. Levitov and A.Yu. Yakovets, Universal statistics of transport in disordered

conductors. Phys. Rev. B 51 (1995), 4079�4083.
[53] L. Mazzola, G. De Chiara and M. Paternostro, Measuring the characteristic function of

the work distribution. Phys. Rev. Lett. 110 (2013), 230602.
[54] M. Merkli, M. Mück and I.M. Sigal, Instability of equilibrium states for coupled heat

reservoirs at di�erent temperatures. J. Funct. Anal. 243 (2007), 87�120.
[55] M. Merkli, M. Mück and I.M. Sigal, Theory of non-equilibrium stationary states as a

theory of resonances. Ann. Henri Poincaré 8 (2007), 1539�1593.
[56] J.P. Pekola, Towards quantum thermodynamics in electronic circuits. Nature Physics

11 (2015), 118�123.
[57] J.P. Pekola, D.S. Golubev and D.V. Averin, Maxwell's demon based on a single qubit.

Phys. Rev. B 93 (2016), 024501.
[58] G.N. Price, S.T. Bannerman, K. Viering, E. Narevicius and M.G. Raizen, Single-photon

atomic cooling. Phys. Rev. Lett. 100 (2008), 093004.
[59] M.G. Raizen, Comprehensive control of atomic motion. Science 324 (2009), 1403�1406.
[60] A.J. Roncaglia, F. Cerisola and J.-P. Paz, Work measurement as a generalized quantum

measurement. Phys. Rev. Lett. 113 (2014), 250601.
[61] D. Ruelle, Statistical Mechanics: Rigorous Results. Benjamin, London, 1977.
[62] D. Reeb and M.M. Wolf, An improved landauer principle with �nite-size corrections.

New J. Phys. 16 (2014), 103011.
[63] M.S. Sarandy and D.A. Lidar, Adiabatic approximation in open quantum systems. Phys.

Rev. A 71 (2005), 012331.
[64] V. Serreli, C.F. Lee, E.R. Kay and D.A. Leigh, A molecular information ratchet. Nature

445 (2007), 523�527.
[65] A. Shimizu and H. Sakaki, Quantum noises in mesoscopic conductors and fundamental

limits of quantum interference devices. Phys. Rev. B 44 (1991), 13136.
[66] J.P.P. Silva, R.S. Sarthour, A.M. Souza, I.S. Oliveira, J. Goold, K. Modi, D.O. Soares-

Pinto and L.C. Céleri, Experimental demonstration of information to energy conversion

in a quantum system at the Landauer limit. Preprint, 2014. arXiv:1412.6490.
[67] H. Tasaki, Jarzynski relations for quantum systems and some applications. Preprint,

2000. arXiv:cond-mat/0009244.
[68] P. Thunström, J. Åberg and E. Sjöqvist, Adiabatic approximation for weakly open

systems. Phys. Rev. A 72 (2005), 022328.
[69] S. Teufel, A note on the adiabatic theorem without gap condition. Lett. Math. Phys.

58 (2001), 261�266.
[70] P. Talkner, E. Lutz and P. Hänggi, Fluctuation theorems: Work is not an observable.

Phys. Rev. E 75 (2007), 050102.
[71] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki and M. Sano, Experimental demonstration

of information-to-energy conversion and validation of the generalized Jarzynski equality.

Nature Physics 6 (2010), 988�992.



286 T. Benoist, M. Fraas, V. Jak²i¢ and C.-A. Pillet 28

[72] *** Entropy in Thermodynamics and Information Theory � Wikipedia, The Free Ency-
clopedia, 2015 [Online; accessed 29-November-2015].

[73] *** Maxwell's Demon � Wikipedia, The Free Encyclopedia, 2015 [Online; accessed
29-November-2015].

Received 1 August 2016 Université de Toulouse,

CNRS, Laboratoire de Physique Théorique,

IRSAMC,

UPS, F-31062 Toulouse, France

Mathematisches Institut der Universität

München

Theresienstr. 39, D-80333 München,

Germany

McGill University,

Department of Mathematics and Statistics

805 Sherbrooke Street West

Montreal, QC, H3A 2K6, Canada

Université de Toulon,

CNRS, CPT, UMR 7332, 83957 La Garde,

France

Aix-Marseille Université,

CNRS, CPT, UMR 7332, Case 907, 13288

Marseille, France

FRUMAM


