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We study algebras associated to N -body type Hamiltonians with interactions
that are asymptotically homogeneous at in�nity on a Euclidean space X. More
precisely, let Y ⊂ X be a linear subspace and vY be a continuous function on
X/Y that has uniform homogeneous radial limits at in�nity. We consider in
this paper Hamiltonians of the form H = −∆ +

∑
Y ∈S vY , where the subspaces

Y ⊂ X belong to some given, semi-lattice S of subspaces of X. Georgescu
and Nistor have considered the case when S consists of all subspaces Y ⊂ X
(in a paper to appear in Journal of Operator Theory). As in that paper, we
also consider more general Hamiltonians a�liated to a suitable cross-product
algebra ES(X) o X. A �rst goal of this note is to see which results of that
paper carry through to the case S �nite and, for the ones that do not, what
is their suitable modi�cation. While the results on the essential spectra of the
resulting Hamiltonians and the a�liation criteria carry through, the spectra of
the corresponding algebras are quite di�erent. Identifying these spectra may
have implications for regularity of eigenvalues and numerical methods. Our
results also shed some new light on the results of Georgescu and Nistor in the
aforementioned paper and, in general, on the theory developed by Georgescu
and his collaborators. For instance, we show that, in our case, the closure is
not needed in the union of the spectra of the limit operators. We also give
a quotient topology description of the topology on the spectrum of the graded

N -body C∗-algebras introduced by Georgescu.
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1. INTRODUCTION

We continue the study begun by Georgescu and Nistor [11] of Hamilto-
nians of N -body type with interactions that are asymptotically homogeneous
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at in�nity on a �nite dimensional Euclidean space X. The Hamiltonians con-
sidered in that paper were obtained by a procedure (described below) that was
employing all subspaces Y ⊂ X, whereas in this paper, we only consider those
subspaces Y that belong to a suitable semi-lattice S of subspaces ofX satisfying
X ∈ S. (Thus Z1 ∩ Z2 ∈ S if Z1, Z2 ∈ S.) Whenever possible, we follow the
broad lines of [11]. Eventually, we shall assume that S is �nite, but we begin
with the general case.

To �x ideas, let us mention right away an important example of a semi-
lattice that arises in the study of quantum N -body problems. Namely, it is the
semi-lattice SN of subspaces of X := R3N generated by the subspaces X and

(1)
Pj := {(x1, x2, . . . , xN ) ∈ R3N | xj = 0 ∈ R3} , 1 ≤ j ≤ N , and

Pij := {(x1, x2, . . . , xN ) ∈ R3N | xi = xj ∈ R3} , 1 ≤ i < j ≤ N .

Thus, in addition to the spaces X, Pj , and Pij , the lattice SN (the N -body

semi-lattice) contains also all intersections of the subspaces Pj and Pij .
Let us �x a semi-lattice S with X ∈ S. It turns out that the results in [11]

on essential spectra and on the a�liation of operators carry through to this
arbitrary semi-lattice S. This is easy to see and is explained in this introduction.
However, some important intermediate results on the representations of the
cross-product algebras ES(X) o X that control the Fredholm property, are
di�erent in the general case. (See Equation (3) for the de�nition of the algebra
ES(X).) A careful study of the representations of these algebras also allows us
to sharpen the results on the essential spectra by removing the closure in the
union of the spectra of the limit operators when S is �nite. (See Theorem 1.1.)

Possible applications of the extensions presented in this paper are to re-
gularity results and hence to numerical methods for the resulting Hamiltonians
and the study of the �ne structure of their spectrum. Some of the applica-
tions and proofs will be included in a forthcoming paper, concentrating here
instead on the global picture. Nevertheless, we include the proofs of some re-
sults that we are not planing to discus anywhere else, such as the topology on
the spectrum of Georgescu's graded algebras. We also include complete details
of the proof that we can remove the closure in the union of the spectra in
Theorem 1.1. The proof of this result may also be useful for other applications.

Let us now discuss the settings of the paper and state our �rst result on
essential spectra, Theorem 1.1.

For any real vector space Z, we let Z denote its spherical compacti�cation
(this standard notion is discussed in great detail in [11]). A function in C(Z) is
thus a continuous function on Z that has uniform radial limits at in�nity. For
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any subspace Y ⊂ X, πY : X → X/Y denotes the canonical projection. Let

(2) H := −∆ +
∑
Y ∈S

vY ,

where vY ∈ C(X/Y ) is regarded also as a function on X via the projection
πY : X → X/Y . The sum is over all subspaces Y ⊂ X, Y ∈ S, but is assumed
to be convergent. One of the main result of [11] describes, in particular, the
essential spectrum of H on L2(X) when S consists of all subspaces of X as
σess(H) = ∪α∈SXσ(τα(H)), with the notation being the one used in Theorem
1.1. This result directly extends the celebrated HVZ theorem [3,21,24]. A �rst
goal of this paper is to explain how the results and methods of [11] are a�ected
by assuming that S is �nite. We include also some extensions of the results
in [11].

On a technical level, we obtain smaller algebras than the ones in [11], so
the results on the a�liation of operators and on their essential spectra do not
change. We will thus review just a small sample of results of this kind. On
the other hand, for a possible further study of Hamiltonians of the form (2), it
may be useful to have an explicit description of the spectra of the intermediate
algebras involved (the algebras ES(X) and ES(X)oX introduced next). These
spectra change dramatically in the case S �nite. Concretely, let

(3) ES(X) := 〈C(X/Y )〉 , Y ∈ S .

In other words, ES(X) is the closure in norm of the algebra of functions on X
generated by all functions of the form u ◦ πY , where Y ∈ S and u ∈ C(X/Y ).
Since X acts continuously by translations on ES(X), we can de�ne the cros-
sed product C∗-algebra ES(X) o X, which can be regarded as an algebra of
operators on L2(X). It is the algebra generated by operators of multiplication
by functions in ES(X) and operators of convolution, that is, by operators of
the form mfCφ, where mf is the operator of multiplication by f ∈ ES(X) and
Cφu(x) :=

∫
X φ(y)u(x − y)dy is the operator of convolution by φ ∈ C∞c (X).

Let V ∈ ES(X) (for instance, we could take V :=
∑

Y ∈S vY , as in Equation
(2)). We then obtain

(4) (H+i)−1=
[
(−∆+i)+V

]−1
= (−∆+i)−1[1+V (−∆+i)−1

]−1∈ ES(X)oX .

This means that the operator H of Equation (2) is a�liated to ES(X) o X.
(Let A be a C∗-algebra. Recall that a self-adjoint operator P a�liated to
A is an operator P with the property that (P + i)−1 ∈ A [5].) This is, in
fact, one of the starting points of the theory developed by Georgescu and his
collaborators [4, 5, 9, 10].
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For each x ∈ X, we let (Txf)(y) := f(y − x) denote the translation on
L2(X). Let SX be the set of half-lines in X, that is

(5) SX := { â, a ∈ X, a 6= 0 } ,

where â := {ra| r > 0}. For any operator P on L2(X), we let

(6) τα(P ) := s-lim
r→+∞

T ∗raPTra , if α = â ∈ SX ,

whenever the strong limit exists. We identify SZ = Z r Z for any real vector
space Z.

Theorem 1.1. The operator H of Equation (2) is self-adjoint and a�li-

ated to ES(X) oX. Let H be any self-adjoint operator a�liated to ES(X) oX
and α = â ∈ SX . Then the limit τα(H) := s-limr→+∞ T

∗
raHTra exists and, if S

is �nite, and 0 ∈ S, then

σess(H) = ∪α∈SXσ(τα(H)) .

Most of this theorem is (essentially) contained in [11], however, in that
paper, only the relation σess(H) = ∪α∈SXσ(τα(H)) was proven, but without
restrictions on S. This amounts to the fact that the family {τα} is a faithful

family of representations of ES(X) o X. Our stronger result is obtained by
showing that the family {τα} is actually an exhausting family of representations
of ES(X) o X (Theorem 6.6). We notice that if 0 /∈ S, then the part of the
above theorem on the essential spectrum simply states that σess(H) = σ(H),
as H is among the operators τα(H), since H is invariant with respect to a
non-trivial subgroup of X.

One of the main points of Theorem 1.1 is that the operators τα(H) are
generally simpler than H (if 0 ∈ S) and (often) easy to identify. The operators
τα(H) are sometimes called limit operators.

Here is a typical example. If u : X → C, we shall write av-limα u = c ∈ C
if lima→α

∫
a+Λ |u(x)−c|dx = 0 for some (hence any!) bounded neighborhood of

Λ of 0 ∈ X. Here a ∈ X ⊂ X := X∪SX , α ∈ SX , and the convergence is in the
natural topology of the spherical compacti�cation X of X. For instance, let us
assume that we are given real valued functions vY , Y ∈ S, such that av-limα vY
exists for all α ∈ SX/Y and vY = 0 except for �nitely many subspaces Y . Let
V :=

∑
Y vY . If α 6⊂ Y then πY (α) ∈ SX/Y is a well de�ned half-line in the

quotient and we may de�ne vY (α) := av-limπY (α) vY . Then Proposition 1.3
of [11] gives that

(7) τα(H) = −∆ +
∑
Y⊃α

vY +
∑
Y 6⊃α

vY (α) .



5 A re�ned HVZ-theorem for asymptotically homogeneous interactions 291

For the usual N -body type Hamiltonians, we have that vY : X/Y → R vanish
at in�nity. In that case τα(H) = −∆+

∑
Y⊃α vY , which is the usual version of

the HVZ theorem. This calculation remains valid for operators of the form (8).
For the result of Theorem 1.1 to be e�ective, we need some concrete

examples of self-adjoint operators on L2(X) a�liated to ES(X) o X. Let us
brie�y recall the a�liation criteria of [11] and see that they work in our setting
as well.

Let B(X) be the set of functions u ∈ L∞(X) such that the �averaged

limits� av-limα u (de�ned earlier) exist for any α ∈ SX and let E]S(X) ⊂ L∞(X)

be the norm closed subalgebra of L∞(X) generated by the algebras B(X/Y ),
when Y ∈ S. Let h be a proper real function h : X∗ → [0,∞) (i.e. |h(k)| → ∞
for k → ∞). Also, let F : L2(X) → L2(X∗) be the Fourier transform and
h(p) := F−1mhF be the associated convolution operator. We consider then

v ∈ L1
loc(X) a real valued function such that there exists a sequence vn ∈ E]S(X)

of real valued functions with the property that (1 + h(p))−1vn is convergent in
norm to (1 + h(p))−1v. Then

(8) H := h(p) + v

is a�liated to ES(X)oX. This allows us to consider potentials v with Coulomb
type singularities (in particular, unbounded).

A second example of a�liated operators is obtained by considering sym-
metric, uniformly strongly elliptic operators

∑
|α|+|β|≤m ∂

αgαβ∂
β with coe�-

cients gαβ ∈ E]S(X), as in [11].
See [1, 3, 6, 21] for a general introduction to the basics of the problems

studied here and [11] for some more speci�c references. In addition to the works
of Georgescu and his collaborators mentioned above, essential spectra have been
studied using algebraic methods by many people, including [13, 18�20, 22, 23].
We also note the similar approach to magnetic Schr�odinger operators [14,15].

We now brie�y describe the contents of the paper. In Section 2, we recall
the theory developed by Georgescu and his collaborators on the localizations
at in�nity for C∗-sub-algebras of Cbu(X). In Section 3, we introduce the basic
algebras ES(X) and study radial limits at in�nity for functions in these algebras.
In order to describe the spectrum of ES(X), we introduce the concept of an S-
chain. Section 4 contains some results on the topology on the spectrum of
ES(X). In Section 5, we use the result of Section 3 and 4 to give a description
of the spectrum of Georgescu's algebra introduced in his study of the N -body
problem. The �nal Section 6 studies the crossed product algebra ES(X) oX.
We use result of [26] in order to describe its primitive ideals space and to show
that localizations at in�nity provide an exhausting family of representations,
which leads to the more precise result on the essential spectrum in Theorem 1.1.
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2. CROSSED PRODUCTS AND LOCALIZATIONS AT INFINITY

We now review some basic constructions and results. Most of them are
due to Georgescu and its collaborators.

Let Cu
b(X) denote the subalgebra of bounded uniformly continuous functi-

ons on X and let C0(X) denote its ideal of functions vanishing at in�nity. They
act naturally on L2(X) by multiplication. We also let K(X) := K(L2(X)) be
the ideal of compact operators on the same space.

Consider a commutative C∗-algebra A with (character) spectrum Â. It
consists of the non-zero algebra morphisms χ : A → C (all morphisms of C∗-
algebras considered in this paper will be ∗-morphisms). If A is unital, then Â
is a compact topological space for the weak topology. In general, it is locally
compact and the Gelfand transform ΓA : A → C0(Â), ΓA(u)(χ) := χ(u),
de�nes an isometric algebra isomorphism. If A ⊂ Cu

b(X) is invariant for the

action of X, then X will act continuously on Â and we shall denote by AoX
the resulting crossed product algebra, see [17,26]. Here the real vector space X
is regarded as a locally compact, abelian group in the obvious way. Recall [9]
that if A is a translation invariant C∗-subalgebra of Cu

b(X), then an isomorphic
realization of the cross-product algebra AoX is the norm closed subalgebra of
B(L2(X)) generated by the operators of the form u(q)v(p), where u ∈ A and
v ∈ C0(X∗). This is an important feature that we now pause to brie�y discuss.

More precisely, we have a natural morphism π0 : A o X → B(L2(X))
obtained from the canonical actions of A and X on L2(X), since they form a
covariant representation of (A, X, τ) [8, 26]. Let us call this representation the
spatial representation of AoX. The result in [9] is that π0 is injective. Indeed,
sinceX is amenable, we can consider the reduced cross-productAorX ' AoX,
which is de�ned as the completion of the algebra generated by m̃fh(p) acting on
B(L2(X)⊗ L2(X)) (two copies!), where m̃f , f ∈ A, acts on L2(X)⊗ L2(X) '
L2(X×X) as the multiplication with the function (x, y)→ f(x−y) and h(p) is
the convolution operator in the second variable X of X ×X. Given the special
feature of this construction, we can rearrange our action, up to an isomorphism,
to become independent of the �rst variable, and hence simply a large multiple
of the spatial representation π0, which is hence also injective, and therefore an
isometry onto its image. For simplicity, we shall identify the abstract algebra
AoX with its (isometric) image trough π0 in B(L2(X)).

We shall need some more speci�c consequences for the algebra A o X.
Recall that an ideal of a C∗-algebra B is called primitive if it is the kernel of an
irreducible representation. Then the primitive ideal spectrum Prim(B) of B is
the set of primitive ideals of B [7]. For each closed two-sided ideal I of B, we
denote by PrimI(B) the set of all primitive ideals of B containing I. The sets
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of the form PrimI(B) are the closed subsets in a topology on Prim(B), called
the Jacobson topology. If B is commutative, then Prim(B) ∼= B̂ are naturally
homeomorphic, so we may occasionally identify these spaces in what follows.

De�nition 2.1. A two sided ideal J of A is essential in A if aJ = 0 implies
a = 0.

Let us assume from now on that C0(X) ⊂ A. Then π0(C0(X) o X)
consists of the ideal K(X) of compact operators on L2(X). In particular, the
spatial representation π0 is actually an irreducible representation π0 : AoX →
B(L2(X)). A consequence of the injectivity of the spatial representation π0 is
that

Lemma 2.2. The ideal C0(X)oX ⊂ AoX is an essential ideal of AoX.

Proof. Let a ∈ A o X be such that aC0(X) o X = 0. We notice that if
T ∈ B(L2(X)) is a bounded operator such that TK(X) = 0, then T = 0. Then
we use this observation for T = π0(a) conclude that π0(a) = 0 and hence a = 0
by the injectivity of π0. �

We shall need the following remark in the last section.

Remark 2.3. Since the vector representation π0 : A o X → B(L2(X)) is
irreducible, the zero ideal, that is, the kernel of π0, is a primitive ideal of AoX.
That is 0 ∈ Prim(AoX). Moreover, {0} is also an open subset of Prim(AoX)
that corresponds to the ideal K(X) of compact operators on L2(X). To prove
this, it is enough, by de�nition, to show that every non-zero primitive ideal of
AoX contains K(X). Indeed, looking at irreducible representations, we have
that if π : AoX → B(Hπ) is an irreducible representation of AoX that is non-
zero in K(X), then π(K(X)) = K(Hπ), the ideal of compact operators on Hπ,
and the restriction of π to K(X) is unique up to a unitary equivalence. (This
follows from the fact that the algebra of compact operators has a unique unitary
equivalence class of irreducible representations [7].) This completely identi�es
the restriction of π to K(X) and hence π, by standard results [7], which means
that π is unitarily equivalent to π0, and hence they have the same kernel,
namely 0. Thus the only primitive ideal that does not contain K(X) is 0. (The
fact that π is uniquely determined by its non-zero restriction to K(X) is seen
elementary as follows. If π : A oX → B(Hπ) is an irreducible representation
with π(K(X)) 6= 0, we have already seen that π(K(X)) = K(Hπ). Let ξ ∈ Hπ
and a ∈ A o X. We can �nd p ∈ K(X) such that π(p)ξ = ξ. Then π(a)ξ =
π(ap)ξ is determined by π|K(X).)

Let τa the action of a ∈ X by translations on our algebras of functions.
If P is an operator on L2(X), then its translation by x ∈ X is de�ned by the
relation τx(P ) := T ∗xPTx, as in the introduction.
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Consider a character χ ∈ Â and de�ne, for u ∈ A, the function τχ(u) :
X → C by

(9) τχ(u)(y) := χ(τy(u)) .

Then τχ : A → Cu
b(X) and, if we denote by χx : A → C the evaluation at x,

then τχx = τx, as is seen from the relation τx(u)(y) = u(x + y) = χx(τy(u)).
We denote by τχ oX : AoX → Cu

b(X) oX the induced morphism. We have
then the following basic result from [10].

Theorem 2.4. Assume that C0(X) ⊂ A ⊂ Cu
b(X). Then the induced

morphism

(10)
∏
χ∈ÂrX τχ oX : AoX −→

∏
χ∈ÂrX C

u
b(X) oX.

has kernel K(X), the ideal of compact operators on L2(X).

In particular, an operator P ∈ A o X is compact if, and only if, τχ o
X(P ) = 0, for all χ ∈ ÂrX. Here we have used the fact that every character
of a closed, two-sided ideal of a C∗-algebra extends uniquely to the algebra. In

particular, we have that X ∼= Ĉ0(X) ⊂ Â. This explains the notation Â rX.
This theorem gives right away the following corollary. For any P , we de�ne
its essential spectrum σess(P ) as the set of those λ ∈ C such that P − λ is not
Fredholm. In case P is unbounded, we regard it as a bounded operator on its
domain endowed with the graph norm.

Corollary 2.5. If P is in A o X or is a�liated to it, then σess(P ) =
∪
χ∈ÂrXσ(τχ(P )).

To successfully use these results, we thus need to identify the spectrum Â
of A.

3. CHARACTER SPECTRUM AND CHAINS OF SUBSPACES

In this section, we determine the spectrum of ES(X) as a set. The topo-
logy will be discussed in the next section.

Recall that in this paper S denotes a (non empty) semi-lattice of sub-
spaces of X, that is, Z1 ∩ Z2 ∈ S if Z1, Z2 ∈ S. If X /∈ S, then S ′ = S ∪ {X}
is a semi-lattice of subspaces of X with ES′(X) = ES(X). There is thus no loss
of generality to assume that X ∈ S, which we shall do from now on.

Remark 3.1. The algebras ES(X) make sense for any non empty family
S of sub-spaces of X. It is convenient however for us to assume that S is a
semi-lattice since then S has a least element Y0 and then ES(X) is isomorphic
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to ES′(X/Y0), where S ′ is the induced semi-lattice on X/Y0. We have 0 ∈ S ′,
which may not be the case for S. Also note that C0(X) ⊂ ES(X) if, and only
if, 0 ∈ S. In order to apply the results of Section 2, we thus need to assume
that 0 ∈ S. In the important example of the semi-lattice SN mentioned in
the Introduction, we do have that 0 ∈ SN , but that is not true for the semi-
lattice generated just by the subspaces Pij . If 0 /∈ S, then H is among the
operators τα(H), so Theorem 1.1 simply asserts that σess(H) = σ(H), which is
clear anyway, since H is invariant with respect to the minimal element of the
semi-lattice S, which is non-zero if 0 /∈ S.

3.1. Translation to in�nity

The natural projection πY : X → X/Y extends by continuity to a map
π̃Y : X r SY → X/Y satisfying π̃Y (SX r SY ) ⊂ SX/Y . More precisely, if
α ∈ SX r SY , then it is a half-line R+a in X, with a ∈ X r Y . Then π̃Y (α)
correspond at the half-line R∗+πY (a) in X/Y . We note, however, that πY will

not have a limit at α ∈ SY . Indeed, for each vector in y ∈ X/Y , we can �nd a
sequence (xn) ∈ X such that lim

n→+∞
xn = α and lim

n→+∞
πY (xn) = y.

Let α = â ∈ SX (so a 6= 0). As in [11], if u ∈ C(X/Y ), x ∈ X, then

(11) τα(u)(x) := lim
r→+∞

u(ra+ x) =

{
u(x) if α ⊂ Y (i.e., a ∈ Y )
u(π̃Y (α)) ∈ C otherwise

exists, and hence the limit τα(u) exists for all u ∈ Eall(X) (the algebra obtained
by considering the case of all subspaces of X, as in [11]). In particular, we have
that τα(u) ∈ ES(X), if u ∈ ES(X), and hence τα de�nes an endomorphism of
the algebra ES(X). Note that the limit de�ning τα is both in pointwise sense
for functions and in strong sense for operators on L2(X).

For α ∈ SX , we shall denote by χα(f) := f(α), the evaluation character
at α for f ∈ C(X). We have the following lemma [11]

Lemma 3.2. Let Y ⊂ X be a subspace, let B be the C∗�algebra generated

by C(X) and C(X/Y ) in Cbu(X), and let α ∈ SX r SY . Then the character χα
of C(X) extends to a unique character of B. This extension is the restriction

of τα to B.

We shall need the following notation. Let α ∈ SX and

(12) Sα := {Y ∈ S| α ⊂ Y }, Z(α) :=
⋂
Y ∈Sα

Y, S/α := {Y/Z(α)| Y ∈ Sα}.

Then Sα is again a semi-lattice. Therefore Z(α) ∈ Sα since dim(X) <∞, and
hence it is the smallest element of Sα. Similarly, S/α is the induced semi-lattice
of subspaces of X/Z(α).
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The semi-lattices Sα and S/α will play a fundamental role in what follows.
For instance

(13) τα(ES(X)) = ESα(X)

and ESα(X) is naturally isomorphic to ES/α(X/Z(α)) via πZ(α) : X → X/Z(α).
We note that, unlike in the case of all sub-spaces of X, the semi-lattices Sα and
S/α depend on S, and not just on α ∈ SX . We identify ES/α(X/Z(α)) with
the sub-algebra ESα(X) of ES(X) using the projection πY : X → X/Y .

Lemma 3.3. The morphism τα descends to a surjective morphism

τ̃α : ES(X)→ ES/α (X/Z(α)) .

Let α ∈ SX , regarded as a half line in X. Let Z(α) be the smallest
subspace in S containing α, as before. Also, let X ′ := X/Z(α) and S ′ := S/α.
(Recall that S/α := {Y/Z(α) ⊂ X ′| Z(α) ⊂ Y ∈ S}.) Then we consider

(14) τ∗α : ̂ES′(X ′) ∼= Prim(ES/α(X/Z(α))) → ÊS(X) ,

the map dual to τ̃α, that is, τ
∗
α(χ) := χ ◦ τ̃α. The above lemma gives that τ∗α is

continuous and a homeomorphism onto its image, which is a closed, compact

subset of ÊS(X). The following lemma identi�es the image of τ∗α with the set
of characters of ES(X) that restrict to χα on C(X) when C(X) ⊂ ES(X), that
is when 0 ∈ S. In view of Remark 3.1, we assume from now that 0 ∈ S.

Lemma 3.4. Let α ∈ SX and Ωα := {χ ∈ ÊS(X)| χ|C(X) = χα} (recall

that 0 ∈ S). Then
Ωα = Im(τ∗α) ∼= Prim(ES/α(X/Z(α))) .

In other words, we have that a character χ ∈ ÊS(X) restricts to the
character χα on C(X) if, and only if, it is of the form χ = χ′ ◦ τ̃α, for some
character χ′ of ES/α(X/Z(α)).

Conversely, given a character χ of ES(X), let us consider its restriction
to a character of C(X) ⊂ ES(X). Hence there exists α ∈ X such that χ = χα
on C(X). If α ∈ X ⊂ X, then, in fact, χ is uniquely determined by α, since

X ∼= Ĉ0(X) and every character of an ideal extends uniquely to the algebra. In

particular, we obtain that X identi�es with an open subset of ÊS(X). We shall

write X ⊂ ÊS(X), by abuse of notation. If α /∈ X, we have that α ∈ SX , and
hence χ ∈ Ωα

∼= Prim(ES/α(X/Z(α))).

Lemma 3.5. Assume 0 ∈ S, as before. The restriction map R : ÊS(X)→
X associated to the inclusion C(X) ⊂ C(ES(X)) gives rise to a disjoint union

decomposition

ÊS(X) = R−1(X) ∪α∈SX R
−1({α}) =: X ∪α∈SX Ωα .
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This allows us an inductive determination of the spectrum of ES(X) since
Ωα identi�es with the spectrum of ES/α(X/Z(α)). This inductive determination
is conveniently formulated in terms of �chains,� which we introduce next. We
note that the subsets X and {α} in the above lemma are exactly the orbits of
X acting on X. A similar chain structure has appeared also in [2, 11].

3.2. S-chains

The spectrum of the algebra ES(X) is conveniently described in terms
of S-chains −→α := (α1, α2, . . . , αk), in a manner similar, but di�erent to the
one in [11]. To introduce the concept of S-chains, we shall use the notation
introduced in 12. An S-chain −→α := (α1, α2, . . . , αk), 0 ≤ k ≤ dim(X), is
required to satisfy the following recursive conditions, which involves also a
sequence Zj that is de�ned recursively as follows:

1. Z0 = 0;

2. αj ∈ SX/Zj−1
, (a half-line in X/Zj−1), j = 1, 2, . . . , k;

3. Zj ∈ S is the least subspace containing Zj−1 and αj , for j ≤ k.
In (3) above, we have used that αj ∈ X/Zj−1 is a point in X/Zj−1 or a

half line in X/Zj−1 and hence, in turn, a subset of X. In particular, we obtain
α1 ∈ SX and Z1 = Z(α1), the least subspace of S containing α1. We say that
the S-chain −→α := (α1, α2, . . . , αk) has length k. There is only one S-chain of
length zero: the empty set ∅.

The S-chain −→α := (α1, α2, . . . , αk) determines the spaces Zj , 0 ≤ j ≤ k
as follows. Let α′j be a representative in X of αj ∈ SX/Zj−1

. That is, αj =
R∗+α′j + Zj−1 ⊂ Zj ∈ S. The subspace [α′1, α

′
2, . . . , α

′
j ] ⊂ X linearly generated

by the α′1, α
′
2, . . . , α

′
j may depend on the choices of the α′j , but the least subspace

Z ⊂ S containing it will not depend on the choices of the representatives and
Zj = Z. We shall occasionally also use the more complete notation

(15) Z(α1, α2, . . . , αj) := Zj

and Z(−→α ) := Z(α1, α2, . . . , αk) if
−→α has length k. If −→α = ∅ (that is, if k = 0),

we let Z(−→α ) = 0. The symbol Ξ̃
(k)
X will denote the set of S-chains of length k.

A sequence 0 6= Z1 $ Z2 $ . . . $ Zk of subspaces in S will be called
an S-�ag (of length k). Each S-�ags of length k corresponds to at least one
S-chains of length k.

An augmented S-chain is a pair (a,−→α ), where −→α is an S-chain and a ∈
X/Z(−→α ). By Ξ

(k)
X we shall denote the set of augmented S-chains of length k:

(16) Ξ
(k)
X := {(a,−→α )| −→α = (α1, α2, . . . , αk) ∈ Ξ̃

(k)
X , a ∈ X/Z(−→α )} .

We let ΞX := ∪kΞ
(k)
X denote the set of all augmented S-chains.
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Assume (a,−→α ) = (a, α1, α2, . . . , αk) ∈ ΞX and let Sj := {Y/Zj | Zj ⊂
Y, Y ∈ S} be the induced semi-lattice of subspaces of X/Zj , as before, see
Equation (15). We obtain for each j (so αj ∈ X/Zj−1) a morphism

(17) τ̃αj : ESj−1(X/Zj−1) → ESj (X/Zj) .

Recall that if a ∈ X, the character χa : ES(X)→ C is the evaluation at a.

De�nition 3.6. For each augmented S-chain (a, α1, α2, . . . , αk) ∈ Ξ
(k)
X , we

de�ne

τ−→α := τ̃αk τ̃αk−1
. . . τ̃α1 : ES(X)→ ESk(X/Zk) and χa,−→α := χaτ−→α : ES(X)→ C.

Lemma 3.7. The map τ−→α of De�nition 3.6 is a surjective morphism

ES(X) → ESk(X/Zk) = ES/−→α (X/Z(−→α )). Consequently, χa,−→α de�nes a cha-

racter of ES(X).

It will be convenient to use also the more complete notation S/(α1, α2, . . . ,
αj) := {Y/Z(α1, α2, . . . αj)| [α′1, α

′
2 . . . α

′
j ] ⊂ Y ∈ S} = Sj .

Proof. The �rst assertion is a successive application of lemma 3.3. More
precisely, we have the following sequence of surjective maps:

ES(X)
τα1
−−→ ES/α1

(X/Z(α1))
τα2
−−→ ES/(α1,α2)(X/Z(α1, α2))

τα3
−−→

. . .
ταk
−−→ ES/−→α (X/Z(−→α ))

Then the second assertion is direct consequence of the �rst one because, if
a ∈ X/Z(−→α ), then χa is a character of ES/−→α (X/Z(−→α )). �

Remark 3.8. We distinguish two special cases:

• If −→α = ∅, we have τ−→α = Id, and hence χa,∅ := χa (a ∈ X).

• If Z(−→α ) = X, we have χa,−→α := τ−→α , since there is only one a ∈ X/X = 0.

We obtain that the spectrum of our algebra ES(X) identi�es naturally
with the set ΞX of augmented S-chains.

Theorem 3.9. Assume that 0 ∈ S, then we have a bijective map Θ :

ΞX → ÊS(X),
Θ(a,−→α ) := χa,−→α := χaτ−→α .

Proof. This is obtained by induction on dim(X), using Lemmas 3.3
and 3.4. �

Let us explain now how the characters χa,−→α act on ES(X). If Z ⊂ Y ⊂ X,
we shall use the similar notation πY/Z : X/Z → X/Y for the linear projection,

which we extend by continuity to π̃Y/Z : X/Z \ SY/Z → X/Y .
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Remark 3.10. Let (a,−→α ) ∈ ΞX .

1. If −→α = ∅, then (a,−→α ) = a and

χ(a,∅)(f) = χa(f) = f(a) .

2. If −→α 6= ∅ has length k ≥ 1 and f ∈ C(X/Y ), with Y ∈ S, we have

(18) χ(a,−→α )(f) =

{
f(πY/Z(−→α )(a)) if Z(−→α ) ⊂ Y
f(π̃Y/Zp−1

(αp)) if Zp−1 ⊂ Y, but Zp 6⊂ Y .

In the �rst case of Equation (18), πY/Z(−→α )(a) ∈ X/Y is well de�ned since
a ∈ X/Z(−→a ) and Z(−→a ) ⊂ Y . In the second case, the index 0 < p ≤ k
is determined to be the largest satisfying Zp−1 := Z(α1, . . . , αp−1) ⊂ Y , (so
Zp := Z(α1, . . . , αp) 6⊂ Y ). This follows by repeatedly using Equation (11).
We also notice that the relation Zp 6⊂ Y is equivalent to αp /∈ Y/Zp−1. Again,
π̃Y/Z(−→α )(αp) ∈ SX/Y is de�ned since αp ∈ SX/Zp−1

, Zp−1 ⊂ Y , and αp /∈
SY/Zp−1

. See the de�nition of the extensions π̃Y at the beginning of this section.

From this remark, it follows that the induced action of X on the set of
augmented S-chains ΞX is by translation on the �rst component:

(19) x · (a,−→α ) = (πZ(−→α )(x) + a,−→α ) , x ∈ X, and (a,−→α ) ∈ ΞX .

In particular, if Z(−→α ) = X, then −→α is invariant for the action of X.

We would like next to study the topology on the space ÊS(X) of characters

of ES(X) and the topology that it induces on ΞX := ∪0≤k≤dim(X)Ξ
(k)
X , since this

will be useful in proving that the family of morphisms {τα| α ∈ SX} is exhaustive
(the notion of exhausting families was introduced in [16] and will be recalled in
the last section (see De�nition 6.3).

4. THE TOPOLOGY ON THE SPECTRUM OF ES(X)

We now give a �rst description of the topology on the spectrum of ES(X)
by identifying it with a closed subset of the product

∏
Y ∈S X/Y . We continue

to assume in this section and thereafter, for simplicity, that 0, X ∈ S, even if
some results hold in greater generality.

For each closed two-sided ideal I of A, we denote by PrimI(A) := Prim(A)
r PrimI(A) the set of primitive ideals of A that do not contain I. (The sets
of the form PrimI(A) are thus the open subsets of Prim(A) in the Jacobson
topology). Recall the de�nition of an essential ideal (De�nition 2.1). We have:

Proposition 4.1. If J is an essential ideal of A then PrimJ(A) is dense
in Prim(A).
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The converse is obviously true.

Remark 4.2. We shall use this result for ES(X) and C0(X) and for their
cross-products by X. In the �rst case, that is, for A = ES(X) and J = C0(X), it
follows from the de�nition that C0(X) is essential in ES(X) (since it is essential

in Cu
b(X)), and hence that X ∼= Ĉ0(X) (or rather that its image) is dense in

ÊS(X). In the second case, that is for J := K(X) ∼= C0(X)oX ⊂ ES(X)oX =:
A, we have already seen in Remark 2.3 that PrimJ = {0}. Indeed, this follows
by taking A := ES(X) in that remark. It thus follows that 0 is a dense point
in the primitive ideal spectrum of ES(X) oX: {0} = Prim(AoX).

Let us projectX onto eachX/Y and combine all these maps intoGS(x) :=
(πY (x))Y ∈S :

(20) GS :=
∏
Y ∈S

πY : X →
∏
Y ∈S

X/Y .

Let us similarly consider all the restrictions ÊS(X) → ̂C(X/Y ) ∼= X/Y . Com-

bining all these restrictions, we obtain the map Φ : ÊS(X)→
∏
Y ∈S

X/Y

(21) Φ(χ) = (xY )∈
∏
Y ∈S

X/Y , where χ(f)=f(xY ) , f ∈ C(X/Y ), Y ∈S .

Lemma 4.3. The map Φ of Equation (21) is continuous and a homeomor-

phism onto its image.

Proof. The continuity of Φ is due to the fact that the dual map de�ned
by restriction for characters is continuous. The injectivity comes from the fact
that the algebras C(X/Y ) generate ES(X). The proof is completed by recalling
that a continuous bijection of compact spaces is a homeomorphism. �

Let j : X → ÊS(X) be the inclusion de�ned by C0(X) ⊂ ES(X). Also,
recall the map Φ de�ned in Equation (21) and GS de�ned in Equation (20).

The following theorem describes the topology on ÊS(X).

Theorem 4.4. The following diagram is commutative

(22) ÊS(X)
Φ //

∏
Y ∈S

X/Y

X

j

``

GS

<<

In particular, Φ induces a homeomorphism of ÊS(X) onto GS(X) that is func-

torial in S.
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Proof. Each component of the composition Φ ◦ j is obtained by extending
a character χx of C0(X/Y ) to ES(X) and then restricting to C(X/Y ). This
extension is unique and corresponds to the evaluation at x, that is, to χx.

Since C0(X) is an essential ideal in ES(X), X is dense in ÊS(X). By continuity

Φ(ÊS(X)) ⊂ Φ(j(X)) = GS(X) .

Moreover, the image contains X and is closed, since it is compact. Hence we
have equality. The result then follows from Lemma 4.3. �

The functoriality in S refers to the inclusion ES(X) ⊂ ES′(X) if S ⊂ S ′.
The meaning of Theorem 4.4 is that it provides also an elementary geome-

tric construction of the space ÊS(X), which, as we have already mentioned, may

be useful for numerical methods. The description of the topology on ÊS(X) is,
however, not completely satisfactory at this point, since we do not have a good
understanding of GS(X) yet. We have good reasons to believe, however, that
it is a manifold with corners obtained by successively blowing-up the singular
strata and that it coincides with a space introduced by Vasy [25].

A natural question then is to identify the composite map Φ ◦ Θ : ΞX →
GS(X). Recall that πY/Z : X/Z → X/Y is, as usual, the projection, and

that it extends to a continuous map π̃Y/Z : X/Z r SY/Z → X/Y . Given

that Φ : ÊS(X) →
∏
Y ∈S X/Y is de�ned by restrictions to the generating

subalgebras C(X/Y ), see (21), Remark 3.10 tells us that the Y component(
Φ(χ(a,−→α ))

)
Y
∈ X/Y of Φ(χ(a,−→α )) ∈

∏
Y ∈S X/Y is

(23)
(
Φ(χ(a,−→α ))

)
Y

=

{
πY/Z(−→α )(a) if Z(−→α ) ⊂ Y
π̃Y/Zp−1

(αp) if Zp−1 ⊂ Y, but Zp 6⊂ Y ,

where we have used the notation of that remark. Let −→α = (α1, . . . , αk). We
note that the component of Φ(χ(a,−→α )) corresponding to Y = Zj , j = 0, . . . , k−1,
is αj+1, whereas the component of Φ(χ(a,−→α )) corresponding to Y = Zk is a.
Thus all other components of Φ(χ(a,−→α )) = Φ(Θ(a,−→α )) are determined by these
components (a and αj), as explained. More precisely, to determine the Y ∈ S
component of Φ(χ(a,−→α )), we need to �nd the largest p such that Zp−1 ⊂ Y , and
then the component corresponding to Y will be the projection onto X/Y of αp,
if p < k, or of a, if p = k.

Let us consider the augmented S-chains (a,−→α ) ∈ Ξ
(k)
X that have the same

�xed S-�ag Z := (Z1, Z2, ..., Zk), where Zj := Z(α1, α2, . . . , αj) ∈ S, as before,
and hence Z1 ⊂ Z2 ⊂ ... ⊂ Zk. If −→α = (α1, α2, . . . , αk), then α1 ∈ Y1 :=
SZ1 r ∪Y ∈S,Y $Z1

SY , and this set has a natural smooth structure and hence a
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natural topology. Similarly,

αj ∈ Yj := SZj/Zj−1
r ∪Y ∈S,Zj−1⊂Y $ZjSY/Zj−1

,

and hence we can endow the set of S-chains with the given �ag Z with the
induced topology of the product manifold Y1 × Y2 × . . . × Yk and the set of
augmented S-chains with the given �ag Z with the induced topology of the
product manifold

(24) XZ := X/Z(−→α )× Y1 × Y2 × . . .× Yk .

We then see that Φ ◦ Θ restricts to a di�eomorphism from XZ onto its image
in
∏
Y ∈S X/Y . Indeed, it is enough to consider the components of Φ ◦Θ(a,−→α )

corresponding to all Zj , j = 0, . . . , k (with Yj projecting ontoX/Zj−1). Clearly,

all the sets Φ ◦ Θ(XZ) are disjoint and GS(X) = ∪ZΦ ◦ Θ(XZ), since to each
augmented S-chain there corresponds exactly one S-�ag.

We endow the set of S-�ags with the lexicographic order. Namely, let
Z := (Z1, Z2, . . . , Zk) and Z ′ := (Z ′1, Z

′
2, . . . , Z

′
n). Then

(25) Z < Z ′ if Z1 = Z ′1 , Z2 = Z ′2, . . . , Zj−1 = Z ′j−1 , but Zj % Z ′j ,

for some j ≤ min{k, n}. Clearly, if Z ′ < Z ′′ and Z < Z ′, then Z < Z ′′. We
can now look at the relation between the sets Φ ◦Θ(XZ).

Lemma 4.5. Let Z and Z ′ be two S-�ags such that Φ ◦Θ(XZ′) intersects

the closure of Φ ◦Θ(XZ). Then Z < Z ′.

Proof. Let j ≥ 1 be the smallest integer such that Z0 = Z ′0, Z1 = Z ′1,
Z2 = Z ′2, . . . , Zj−1 = Z ′j−1, but Z

′
j 6= Zj . Let (a′,−→α ′) = (a′, α′1, α

′
2, . . . , α

′
n)

be an augmented S-chain with �ag Z ′ that maps to the closure of Φ ◦Θ(XZ).
Then each Y -component of Φ(Θ(a′,−→α ′)) is the limit of Y -components of points
in XZ , Y ∈ S. This is true, in particular, for the Zj−1 component, which is

in X/Zj−1. Then we see that α′j ∈ SZj/Zj−1
⊂ Zj/Zj−1, which gives Z ′j ⊂ Zj ,

since Z ′j is the least subspace of S containing Z ′j−1 = Zj−1 ⊂ Zj and α′j . Hence
Z < Z ′, by de�nition. �

Recall that a set in a topological space is locally closed if it is open in its
closure, or, which is the same thing, if it is the intersection of an open subset
and of a closed subset. We shall need the following corollary.

Corollary 4.6. If S is �nite, then for each S-�ag Z, the set Φ ◦Θ(XZ)
is locally closed in GS(X).

Proof. Let F be the union of all the sets Φ ◦ Θ(XZ′) with Z < Z ′.
Lemma 4.5 shows that the sets F and F ∪ Φ ◦ Θ(XZ) are closed, since �<�
is transitive. �



17 A re�ned HVZ-theorem for asymptotically homogeneous interactions 303

5. GEORGESCU'S ALGEBRA

We now use the results of the previous subsection to identify the topology
on the spectrum of Georgescu's graded algebras [4].

Let us start from the same data: that is, we continue to assume that X is
a �nite dimension vector space and that S is a family of sub vector space of X
with the condition 0, X ∈ S. In the framework of the true N -body problems,
the interactions vanish at in�nity, so it is more natural to consider the following
algebra of interactions (potentials)

(26) GS(X) := 〈C0(X/Y )〉 , Y ∈ S ,
see [4] and the references therein. Notice that X ∈ S implies that 1 ∈ GS(X).

As in the case of the algebra ES(X), we want to describe the spectrum
of the C∗-algebra GS(X). Since the natural map ι : GS(X) ⊂ ES(X) is an
inclusion (injective), we have that the resulting dual map

(27) ι∗ : ÊS(X) → ĜS(X) , ι∗(χ) := χ|GS(X) ,

is continuous and onto. As we already know explicitly ÊS(X), it remains to
determine the equivalence relation induced by ι∗.

Let Y ∈ S and f ∈ C0(X/Y ). Using Equation (18), we obtain

(28) χ(a,−→α )(ι(f)) =

{
f(πY/Z(−→α )(a)) if Z(−→α ) ⊆ Y
0 otherwise

In summary, the spectrum of the Georgescu algebra is then given by the follo-
wing theorem.

Theorem 5.1. Let 0, X ∈ S. The space ĜS(X) has the quotient topology

for the map

(29) ι∗ : ÊS(X) → ĜS(X) , ι∗(χ) := χ|GS(X) ,

Moreover two characters (a,−→α ) and (b,
−→
β ) in ΞX are equal on GS(X) if and

only if Z(−→α ) = Z(
−→
β ) and a = b ∈ X/Z(−→α ) = X/Z(

−→
β ).

It is known that ĜS(X) is in a natural bijection with the disjoint union
of the spaces X/Y , Y ∈ S [12]. The restriction map then becomes ι∗(a,−→α ) =
πY/Z(−→α )(a) ∈ X/Y , where Z(−→α ) = Y .

With our description of the spectrum and the notion of augmented S-
chain, we can then specify the topology of the of spectrum of GS(X). Indeed,
with the preceding result, we see that for Y ∈ S, if we denote by ΞY the set
of augmented S-chains such that the associated S-�ag ends with Y , then the
restriction ι∗|ΞX(Y ) can be viewed as the projection from XZ to X/Y , (see
Equation 24), where Z is a �ag that ends with Zk = Y .
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6. EXHAUSTING FAMILIES AND A PRECISE RESULT

ON THE ESSENTIAL SPECTRUM

In order to apply our results to Hamiltonians such as the one given in
Equation (2), we need to study the cross-product C∗-algebra ES(X)oX. This
C∗algebra is noncommutative, so we will consider exclusively its primitive ideal
spectrum. We assume in this section that S is �nite in order to use Corollary
4.6 and hence to be able to use the results in [26]. In particular, its spectrum

ÊS(X) ∼= Prim(ES(X)) is second countable (i.e. it will have a countable basis

of open subsets). Moreover, as we will see below, the action of X on ÊS(X)
has locally closed orbits. This means that the primitive ideal spectrum of the
cross-product C∗-algebra ES(X) oX can be completely understood using, for
instance, the theory explained in [8, 26].

More precisely, let us consider an arbitrary locally compact, second coun-

table space Ω and assume that a locally compact, second countable, abelian group

G, acts continuously on Ω. For simplicity, we shall assume that the orbits of
G are locally closed in Ω, that is, that each orbit is open in its closure in Ω.
The primitive ideal spectrum of C0(Ω) o G then consists of the set of pairs
(O, ξ), where O is an orbit of G in Ω and ξ is a character of the stabilizer
GO of O. (Recall that the stabilizer of the orbit O := Gω is given by the set
Gω := {g ∈ G| gω = ω}, and this is independent of ω in the orbit O, since G is
commutative.) Moreover, the topology is the quotient topology of Ω× Ĝ with
respect to the quotient map

ΦΩ,G : Ω× Ĝ → Prim(C0(Ω) oG) ,

given by ΦΩ,G(ω, χ) := (Gω,χ|Gω), see Theorem 8.39 in [26] for details. This
map is also natural with respect to restriction morphisms, in the following
sense:

Proposition 6.1. Assume that Ω′ ⊂ Ω is a closed, G-invariant subset,
with Ω and G locally compact, second countable, as above. Then Ω′ also has

locally closed orbits and the inclusion j : Ω′ → Ω induces a surjective morphism

j o G : C0(Ω) o G → C0(Ω′) o G and hence an injective map (j o G)∗ :
Prim(C0(Ω′) oG)→ Prim(C0(Ω) oG) such that

(j oG)∗ ◦ ΦΩ′,G = ΦΩ,G ◦ (j × id) : Ω′ × Ĝ → Prim(C0(Ω) oG) .

A similar statement holds for open inclusions (but with the arrows reversed).

Proof. This follows from the fact that the stabilizer of ω ∈ Ω′ is the same
as that of ω regarded as a point in Ω. See the proof of Theorem 8.39 in [26]. �

We shall need the following corollary.



19 A re�ned HVZ-theorem for asymptotically homogeneous interactions 305

Corollary 6.2. If the space Ω of Proposition 6.1 is a union Ω = ∪α∈IΩα

of closed, invariant subsets (jα : Ωα → Ω the inclusion), then Prim(C0(Ω)oG)
is the disjoint union

Prim(C0(Ω) oG) = ∪α∈I(jα oG)∗(Prim(C0(Ωα) oG)) .

Proof. This follows from Proposition 6.1 using the fact that Ω × Ĝ =
∪α∈IΩα × Ĝ. �

Let φ be a ∗-morphism between two C∗-algebras A and B. The support

supp(φ) = Primker(φ)(A) of φ is the set of primitive ideals containing ker(φ).
If φ is surjective, its support is the image of φ∗ : Prim(B) → Prim(A) (which
is de�ned in this particular case). We shall need the concept of exhausting
families [16].

De�nition 6.3. A set of ∗-morphisms F = {φ : A → Bφ} of a C∗-algebra
A is called exhausting if Prim(A) = ∪φ∈F supp(φ).

We thus obtain the following corollary.

Corollary 6.4. Let us use the notation of Corollary 6.2. Then the family

of morphisms {jα oG| α ∈ I} is exhausting.

Proof. The support of jα o G is the image of Prim(C0(Ωα) o G). The
result then follows from Corollary 6.2. �

Let Ω := ÊS(X) r X. We now proceed to study Prim(ES(X) o X) and
Prim(C(Ω) oX) using the results in [8, 26]. We �rst establish that the orbits
are locally closed, using the results of the previous sections.

First of all, recall that, by Theorem 3.9, the set ÊS(X) identi�es with
the set of augmented S-chains (a,−→α ), with X acting only on a ∈ X/Z(−→α )

by translations, see (19). Hence the set of all orbits of X acting on ÊS(X)
is in bijection with the set of all S-chains. In particular, each of the sets XZ
introduced in Equation (24) is X invariant and has closed orbits. Here, of
course, Z is the S-�ag associated to any augmented S-chain in an orbit of XZ .
Corollary 4.6 then yields the following result.

Lemma 6.5. The orbits of X acting on ÊS(X) and Ω := ÊS(X) rX are

locally closed.

Recalling that the set of all orbits of X acting on ÊS(X) is in natural
bijection with the set of all S-chains, Equation (19), gives that the stabilizer of
the orbit associated to the S-chain −→α is Z(−→α ). Therefore Prim(ES(X) o X)
identi�es the set of pairs (−→α , ζ), where −→α is an S-chain and ζ a character of
Z(−→α ).
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In particular, since X is a single orbit in ÊS(X) (corresponding to the
empty chain) and has stabilizer 0, it will contribute a single point to Prim(ES(X)

oX), by Proposition 6.1 applied to the open inclusion X ⊂ ÊS(X). Moreover,
this point is the spectrum of the algebra C0(X) oX ∼= K(X). The orbits of X

on Ω := ÊS(X) r X will thus correspond to the non-empty S-chains and we
have a canonical isomorphism

(30) ES(X) oX/K(X) ' C(Ω) oX.

(This isomorphism is also simply a consequence of the exact sequence obtained
by taking the crossed product by X of the exact sequence 0 → C0(X) →
ES(X)→ C(Ω)→ 0.) See also Remarks 2.3 and 4.2.

We now study Prim(ES(X) o X), which is our primary interest. Let

α ∈ SX and let Ωα := {χ ∈ ÊS(X)| χ|C(X) = χα} be the set of characters of

ES(X) that restrict to χα on C(X), as in Lemma 3.4. We obtain that

(31) Ω = ∪α∈SXΩα ,

a disjoint union of closed subsets, with Ωα the image of τ∗α acting on the pri-
mitive ideal spectrum of ES/α(X/Z(α)), see Lemma 3.5.

Theorem 6.6. Let S be a �nite semi-lattice of sub-spaces of X such that

0, X ∈ S. For each α ∈ SX , we consider the map τα o X : ES(X) o X →
ESα(X) oX. Then the family {τα oX}α∈SX is an exhausting family of mor-

phisms of the C∗-algebra ES(X) oX/K(X).

Proof. We have ES(X) o X/K(X) ∼= C(Ω) o X, see Equation 30. The
morphisms τα o X then correspond to jα o X, where jα is the restriction
morphism from C(Ω) to C(Ωα). The result then follows from Corollary 6.4.
(Note that we are in position to use this corollary in view of Lemma 6.5.) �

Let us notice that the morphisms τα oX considered in the previous the-
orem were denoted simply τα before. Reverting to the original notation, for
simplicity, we obtain

σess(P ) := σES(X)/K(X)(P ) = ∪ασ(τα(H)) ,

where the �rst equality is valid by our de�nition of the essential spectrum
and the second one is valid since the family τα is an exhausting family of
representations of ES(X)oX/K(X), which allows us to use the results of [16].
It was proved in [10] (see also [16]) that we can extend this property to a�liated
operators. Therefore

σess(H) = ∪ασ(τα(H))

for H as in Theorem 1.1. This completes the proof of that theorem.



21 A re�ned HVZ-theorem for asymptotically homogeneous interactions 307

Acknowledgments. We thank Marius M�antoiu and Vladimir Georgescu for useful
discussions and comments.

REFERENCES

[1] W. Amrein, A. Boutet de Monvel and V. Georgescu, C0-groups, commutator methods

and spectral theory of N-body Hamiltonians. Modern Birkh�auser Classics. Birkh�auser/
Springer, Basel, 1996. [2013] Reprint of the 1996 edition.

[2] V. Bruneau and N. Popo�, On the negative spectrum of the Robin Laplacian in corner

domains. Anal. PDE 9 (2016), 5, 1259�1283.

[3] H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schr�odinger operators with applica-

tion to quantum mechanics and global geometry. Texts Monogr. in Physics. Springer-
Verlag, Berlin, Study Edition, 1987.

[4] M. Damak and V. Georgescu, C∗-cross products and a generalized mechanical N-body

problem. In: Proceedings of the Symposium on Mathematical Physics and Quantum

Field Theory, Berkeley, CA, 1999. Electron. J. Di�er. Equ. Conf. 4, 51�69. Southwest
Texas State Univ., San Marcos, TX, 2000.

[5] M. Damak and V. Georgescu, Self-adjoint operators a�liated to C∗-algebras. Rev.
Math. Phys. 16 (2004), 2, 257�280.

[6] J. Derezi�nski and C. G�erard, Scattering theory of classical and quantum N-particle

systems. Texts Monogr. in Physics. Springer-Verlag, Berlin, 1997.

[7] J. Dixmier, Les C∗-alg�ebres et leurs repr�esentations. Les Grands Classiques Gauthier-
Villars. [Gauthier-Villars Great Classics]. �Editions Jacques Gabay, Paris, 1996. Reprint
of the Second Edition, 1969.

[8] S. Echterho�, Crossed products, the mackey-rie�el-green machine and applications, 2010.
arXiv:1006.4975

[9] V. Georgescu and A. Iftimovici, Crossed products of C∗-algebras and spectral analysis of

quantum Hamiltonians. Comm. Math. Phys. 228 (2002), 3, 519�560.

[10] V. Georgescu and A. Iftimovici, Localizations at in�nity and essential spectrum of quan-

tum Hamiltonians. I. General theory. Rev. Math. Phys. 18 (2006), 4 417�483.

[11] V. Georgescu and V. Nistor, On the essential spectrum of N-body hamiltonians with

asymptotically homogeneous interactions. J. Operator Theory. To appear. http://arxiv.
org/abs/1506.03267 [math.SP]

[12] A. Mageira, Some examples of graded C∗-algebras. Math. Phys. Anal. Geom. 11

(2008), 3�4, 381�398.

[13] M. M�antoiu, Essential spectrum and Fredholm properties for Operators on Locally Com-

pact Groups. J. Operator Theory. Preprint. http://arxiv.org/abs/1510.05308 [math.SP]

[14] M. M�antoiu, R. Purice and S. Richard, Twisted crossed products and magnetic pseu-

dodi�erential operators. In: Advances in operator algebras and mathematical physics,
Vol. 5 of Theta Ser. Adv. Math. Theta, Bucharest, 2005, pp. 137�172.

[15] M. M�antoiu, R. Purice and S. Richard, Spectral and propagation results for magnetic

Schr�odinger operators; a C∗-algebraic framework. J. Funct. Anal. 250 (2007), 1, 42�67.

[16] V. Nistor and N. Prudhon, Exhausting families of representations and spectra of pseu-

dodi�erential operators. J. Operator Theory. Preprint. http://arxiv.org/abs/1411.7921

[17] G. Pedersen, C∗-algebras and their automorphism groups. London Math. Soc. Monogr.
Ser. 14, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1979.



308 J. Mougel, V. Nistor and N. Prudhon 22

[18] V. Rabinovich and S. Roch, Essential spectrum and exponential decay estimates of

solutions of elliptic systems of partial di�erential equations. Applications to Schr�odinger

and Dirac operators. Georgian Math. J. 15 (2008), 2, 333�351.

[19] V. Rabinovich, S. Roch and B. Silbermann, Limit operators and their applications in

operator theory. Oper. Theory Adv. Appl. 150, Birkh�auser, 2004.

[20] V. Rabinovich, B.-W. Schulze and N. Tarkhanov, C∗-algebras of singular integral opera-
tors in domains with oscillating conical singularities. Manuscripta Math. 108 (2002),
1, 69�90.

[21] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of

operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978.

[22] S. Richard, Spectral and scattering theory for Schr�odinger operators with Cartesian

anisotropy. Publ. Res. Inst. Math. Sci. 41 (2005), 1, 73�111.

[23] S. Roch, P. Santos and B. Silbermann, Non-commutative Gelfand theories. Universitext.
Springer-Verlag, London Ltd., London, 2011.

[24] G. Teschl, Mathematical methods in quantum mechanics. Grad. Stud. Math. 157,
Amer. Math. Soc., Second Edition, Providence, RI, 2014.

[25] A. Vasy, Propagation of singularities in many-body scattering. Ann. Sci. �Ec. Norm.
Sup�er. (4) 34 (2001), 3, 313�402.

[26] D. Williams, Crossed products of C∗-algebras. Math. Surveys Monogr. 134, Amer.
Math. Soc., Providence, RI, 2007.

Received 1 August 2016 Universit�e de Lorraine,

UFR MIM, Ile du Saulcy,

CS 50128 57045 METZ, France

jeremy.mougel@univ-lorraine.fr

Universit�e de Lorraine,

D�epartement de Math�ematiques,

57045 METZ, France

and

Inst. Math. Romanian Acad.

PO BOX 1-764, 014700 Bucharest,

Romania

victor.nistor@univ-lorraine.fr

Universit�e de Lorraine,

UFR MIM, Ile du Saulcy,

CS 50128 57045 METZ, France

nicolas.prudhon@univ-lorraine.fr


