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This paper summarizes the de�nitions and the properties of the homotopically
relevant invariants associated to a real or an angle valued map in the framework
of what we call an Alternative to Morse-Novikov theory. These invariants are
con�gurations of points in the complex plane δfr , r ≥ 0, con�gurations of vector
spaces or modules δ̂fr , r ≥ 0 indexed by complex numbers and collections of
Jordan cells Jr(f), r ≥ 0. The �rst are re�nements of Betti numbers, the second
of homology and the third of monodromy. Although not discussed in this paper,
but discussed in works this report is based on, these invariants are computer
friendly (i.e. can be calculated by computer implementable algorithms when
the source of the map is a simplicial complex and the map is simplicial) and
are of relevance for the dynamics of �ows which admit Lyapunov real or angle
valued map.
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1. INTRODUCTION

This paper, except Section 6, is essentially my lecture at The Eighth
Congress of Romanian Mathematicians, 2015, Ia�si, Romania.

Classical Morse theory and Morse-Novikov theory consider a Riemannian
manifold (M, g) and a Morse real valued or a Morse angle valued map, f :
M → R or f : M → S1, and relate the dynamical invariants of the vector �eld
gradg f, namely

� the rest points of gradgf= critical points of f,
� the instantons 1 between two rest points x, y of gradgf,
� the closed trajectories of gradgf (when f is angle valued)

to the algebraic topology of the underlying manifoldM or of the pair (M, ξf ) in
case f is angle valued map. Here ξf denotes the degree one integral cohomology
class represented by f.

1 isolated trajectories between critical points
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The results of the theory can be applied to any vector �eld V onM which
admits a closed di�erential one form ω ∈ Ω1(M) as Lyapunov rather than
gradgf , since the dynamics of such vector �eld V (when generic) is the same
as of gradgf for some Riemannian metric g and some f, angle valued map
cf. [3]. The results of the theory can be used in both ways; knowledge of the
dynamical invariants of gradgf permits to calculate the topological invariants
of M or of (M, ξf ) and the algebraic topological invariants of M or of (M, ξ)
provide signi�cant constraints for dynamics of a vector �eld with Lyapunov
map representing ξ, cf. [3].

The ANM theory associates to a pair (X, f), X a compact ANR, f a
continuous real or angle valued map de�ned on X and κ a �eld, a collection of

invariants: the con�gurations δfr , δ̂
f
r ,

ˆ̂
δfr and the Jordan cells Jr(f), r ≥ 0.

The con�guration δfr is a �nite collection of points with multiplicity loca-
ted in C in case f is real valued and in C \ 0 in case f is angle valued. The

con�guration δ̂fr is given by the same points but instead of natural numbers as
multiplicities have κ-vector spaces or free κ[t−1, t]-modules assigned to, where
κ[t−1, t] denotes the ring of Laurent polynomials with coe�cients in κ. A Jor-
dan cell is a pair (λ, k) with λ a nonzero element in the algebraic closure of the
�eld κ and k a positive integer. The pair (λ, k) is an abbreviation for the k× k
Jordan matrix

T (λ, k) =


λ 1 0 0 · · · 0
0 λ 1 0 · · · 0
· · ·
0 0 · · · 0 λ 1
0 0 · · · 0 0 λ

 .

The con�gurations δfr (as well as their companions, the mixed bar codes

not discussed in this paper) and the collections Jr(f), r ≥ 0 are computer

friendly in the sense that for a simplicial complex and a simplicial map can be
calculated by computer implementable algorithms.

On one side these invariants re�ne basic algebraic topology invariants of
X and (X; ξf ) (Betti numbers or Novikov-Betti numbers, homology or Novikov
homology, monodromy). On the other side, they are closed to the dynamical
elements (rest points, instantons, closed trajectories) of a �ow on X which has
f as a Lyapunov map and permit to detect the presence and get information
about the cardinality of such elements.

The con�guration δfr is a con�guration of points in the complex plane,
each such point corresponding to a pair of critical values of f (i.e. bar codes
in the terminology of [2]) whose multiplicity has homological interpretation.

The con�guration δ̂fr is a con�guration of vector spaces or modules indexed
by complex numbers with the vector space or module δ̂fr (z) of dimension or
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rank equal to δfr (z) and specifying a piece of the homology Hr(X) or Novikov
homology HN

r (X, ξf ). The Jordan cells Jr(f) are pairs (λ, k) each providing a
Jordan matrix which appears in the Jordan decomposition of the r-monodromy
of ξf .

In contrast with the classical Morse-Novikov theory concerned with cri-
tical points of f, instantons and periodic orbits of gradgf for X a smooth

manifold and f a Morse real or angle valued map, the con�gurations δfr , δ̂
f
r and

the Jordan cells Jr, associated to f in AMN-theory,
� are de�ned for spaces X and maps f considerably more general than

manifolds and Morse maps,
� are computable by e�ective algorithms when X is a �nite simplicial

complex and f simplicial map,
� enjoy robustness to C0-perturbation and satisfy Poincar�e duality.
This paper summarizes the de�nitions and the properties of the invariants

δfr , δ̂
f
r ,

ˆ̂
δfr ,Jr(f) in AMN-theory and addresses only the �rst aspect of the theory,

the algebraic topology aspect. It also indicates a few mathematical applications
(Section 6). The results are stated in Section 4. Details for the proofs are
contained in [4�6] and partially in [7] where the computational aspects of these
invariants are also addressed.

A book in preparation with the same title cf. [9] will present these invari-
ants and their additional companions the mixed bar codes and will explain their
relation with Morse-Novikov theory and with Persistence Theory = a collection
of topological concepts of recent interest in Data Analysis.

2. PRELIMINARY DEFINITIONS

2.1. Con�gurations

Let X be a topological space and κ a �xed �eld. A con�guration of points
in X is a map δ : X → Z≥0 with �nite support and a con�guration of κ-vector
spaces or of free κ[t−1, t]-modules indexed by the points in X is a map δ̂ de�ned
on X with values κ-vector spaces or free κ[t−1, t]-modules with �nite support.
A point x ∈ X is in the support of δ if δ(x) 6= 0 and in the support of δ̂
if δ̂(x) is of dimension or of rank di�erent from 0. The non-negative integer∑

x∈X δ(x) is referred to as the cardinality of δ. One denotes by CN (X) the set
of con�gurations of cardinality N.

One says that the con�guration δ̂ re�nes the con�guration δ if dim δ̂(x)
= δ(x).

If κ = C one can consider also con�gurations with values in Hilbert modu-
les of �nite type over a von Neumann algebra, in our discussion always L∞(S1),
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the �nite von Neumann algebra obtained by the von Neumann completion of
the group ring C[Z] which is exactly C[t−1, t].

Let V be a �nite dimensional vector space over κ a �eld or a free f.g.
κ[t−1, t]-module or a �nite type Hilbert module over L∞(S1). Consider the set
P(V ) of subspaces of V, split free submodules of V, closed Hilbert submodules
of V respectively.

One denotes by CV (X) the set of con�gurations with values in P(V ) which
satisfy the property that the induced map Iδ̂ : ⊕x∈X δ̂(x) → V is an isomor-

phism. An element of CV (X) will be denoted by
ˆ̂
δ rather than δ̂ to emphasize

the additional properties.

The sets CN (X) and CV (X) carry natural topologies, referred to as the
collision topology. One way to describe these topologies is to specify for each δ
or δ̂ a system of fundamental neighborhoods.

If δ has as support the set of points {x1, x2, · · ·xk}, a fundamental neig-
hborhood U of δ is speci�ed by a collection of k disjoint open neighborhoods
U1, U2, · · · , Uk of x1, · · ·xk, and consists of {δ′ ∈ CN (X) |

∑
x∈Ui δ

′(x) = δ(xi)}.

Similarly if
ˆ̂
δ has as support the set of points {x1, x2, · · ·xk} with

ˆ̂
δ(xi) = Vi ⊆

V }, a fundamental neighborhood U of
ˆ̂
δ is speci�ed by a collection of k disjoint

open neighborhoods U1, U2, · · ·Uk of x1, · · ·xk, and consists of con�guration
ˆ̂
δ′

which satisfy the following:

a) for any x ∈ Ui one has ˆ̂
δ′(x) ⊂ Vi,

b) the map Iˆ̂
δ
(⊕x∈Ui

ˆ̂
δ′(x)) = Vi.

Note that

Observation 2.1.

1. CN (X) identi�es to the N -fold symmetric product XN/ΣN
2 of X and

if X is a metric space with distance D then the collision topology is the
same as the topology de�ned by the metric D on XN/ΣN induced from
the distance D. This induced metric is referred to as the canonical metric

on CN (X).

2. If X = C then CN (X) identi�es to the degree N -monic polynomials with
complex coe�cients and if X = C \ 0 to the degree N -monic polynomi-
als with non zero free coe�cient. To the con�guration δ whose support
consists of the points z1, z2, · · · zk with δ(zi) = ni one associates the mo-
nic polynomial P δ(z) =

∏
i(z − zi)ni . Then as topological spaces CN (C)

identi�es to CN and CN (C \ 0) to CN−1 × (C \ 0).

2 ΣN is the group of permutations of N elements.
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3. If X = T := R2/Z is the quotient of R2 by the action µ(n, (a, b)) =
(a+ 2πn, b+ 2πn), then the space T can be identi�ed to C \ 0 by 〈a, b〉 →
eia+(b−a) and CN (T) and CN (C\0) are homeomorphic. Here 〈a, b〉 denotes
the µ-orbit of (a, b).

4. The canonical metrics D on CN (R2) or CN (T) refer to the metrics derived
from the complete Euclidean metric D on R2 or R2/Z. Both these metrics
are complete.

2.2. Tame maps

A space X is an ANR if any closed subset A of a metrizable space B
homeomorphic to X has a neighborhood U which retracts to A, cf. [16, Chap-
ter 3]. Any space homeomorphic to a locally �nite simplicial complex or to a
�nite dimensional topological manifold or an in�nite dimensional manifold (i.e.
a paracompact separable Hausdor� space locally homeomorphic to the in�nite
dimensional separable Hilbert space or to the Hilbert cube [0, 1]∞ 3) is an ANR.

1. A continuous proper map f : X → R, X an ANR 4 is weakly tame if
for any t ∈ R, the level f−1(t) is an ANR. Therefore for any bounded or
unbounded closed interval I the space f−1(I) is an ANR.

2. The number t ∈ R is a regular value if there exists ε > 0 small s.t. for any
t′ ∈ (t − ε, t + ε) the inclusion f−1(t′) ⊂ f−1(t − ε, t + ε) is a homotopy
equivalence. A number t which is not regular value is a critical value. In
di�erent words the homotopy type of the t−level does not change in the
neighborhood of a regular value and does change in any neighborhood of
a critical value. One denotes by Cr(f) the collection of critical values
of f.

3. The map f is called tame if weakly tame and in addition:

i) The set of critical values Cr(f) ⊂ R is discrete,

ii) The number ε(f) := inf{|c−c′| | c, c′ ∈ Cr(f), c 6= c′} satis�es ε(f) > 0.

If X is compact then (i) implies (ii).

4. An ANR for which the set of tame maps is dense in the space of all maps
w.r. to the �ne-C0 topology is called a good ANR.

There exist compact ANR's (actually compact homological n-manifolds,
cf. [13]) with no co-dimension one subsets which are ANR's, hence com-
pact ANR's which are not good.

The reader should be aware of the following rather obvious facts.

3 product of countable many copies of the interval [0, 1]
4 The properness of f rules out in�nite dimensional Hilbert manifolds but not Hilbert

cube manifolds.
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Observation 2.2.

1. If f is a weakly tame map then the compact ANR f−1([a, b]) has the
homotopy type of a �nite simplicial complex (cf. [19]) and therefore has
�nite dimensional homology w.r. to any �eld κ.

2. If X is a locally �nite simplicial complex and f is linear on each simplex
then f is weakly tame with the set of critical values discrete. Critical
values are among the values f takes on vertices. If in addition X is
compact then f is tame. If M is a smooth manifold and f is proper
smooth map with all critical points of �nite codimension, in particular
f is a Morse map, then f is weakly tame and when M is compact f is
tame.

3. If X is homeomorphic to a compact simplicial complex or to a compact
topological manifold then the set of tame maps is dense in the set of
all continuous maps equipped with the C0-topology (= compact open
topology). The same remains true ifX is a compact Hilbert cube manifold
de�ned in the next section. In particular, all these spaces are good ANR's.

4. On a smooth manifold the Morse functions are dense in the space of all
continuous function w.r. to the �ne C0-topology and are generic in any
Cr-topology, r ≥ 2.

2.3. Algebraic topology

Let κ be a �eld. For an ANR X denote by Hr(X) the (singular) homology
with coe�cients in κ; this is a κ-vector space which when X is compact, it is
�nite dimensional by [19].

Denote by βr(X) := βr(X;κ) = dimHr(X) r ≥ 0 referred below as
the r-th Betti number and by χ(X) = χ(X;κ) =

∑
r(−1)rβr(X) the Euler

characteristic with coe�cients in κ.
For a pair (X, ξ ∈ H1(X;Z)), X a compact ANR and ξ a degree one in-

tegral cohomology class, consider π : X̃ → X an in�nite cyclic cover associated
to ξ (unique up to isomorphism), and let τ : X̃ → X̃ be the generator of the
group of deck transformations (the in�nite cyclic group Z).

The space X̃ is a locally compact ANR and the κ-vector space Hr(X̃)
is a �nitely generated κ[t−1, t]-module with the multiplication by t given by
the isomorphism Tr : H(X̃)→ Hr(X̃) induced by the homeomorphism τ. The
submodule of torsion elements ofHr(X̃), denoted by Vr(X; ξ), when regarded as
a κ-vector space is �nite dimensional and the κ[t−1, t]-module Hr(X̃)/Vr(X; ξ)
is free of �nite rank.

The isomorphism class of the κ[t−1, t]-module Vr(X; ξ), equivalently of the
pair (Vr(X; ξ), Tr) with Vr(X; ξ) viewed as a κ-vector space with a linear auto-



7 New invariants for a real valued and angle valued map 69

morphism Tr, is referred to as the r-th monodromy. The free κ[t−1, t]-module
HN
r (X : ξ) := Hr(X̃)/Vr(X; ξ) is referred below as the Novikov homology

in dimension r, and its rank as the r-Novikov�Betti number and denoted by
βNr (X; ξ).

If κ = C is the �eld of complex numbers then the ring C[t−1, t], equi-
valently the group algebra C[Z], has a canonical completion to the �nite von-
Neumann algebra L∞(S1) and the module HN

r (X; ξ) to a �nite type L∞(S1)-
Hilbert module, of von-Neumann dimension βBr (X; ξ). The completion of
HN
r (X; ξ) is exactly the L2-homology HL2

r (X̃), cf. [5]. The completion of
HN
r (X; ξ) is referred to as the von Neumann completion, and depends a priory

on additional data such as: a Riemannian metric when X a compact smooth
manifold, a triangulation when X is a �nite simplicial complex or more alge-
braically, an inner C[t−1, t]-product on HN

r (X; ξ), but all types of such di�erent
data lead to isomorphic L∞(S1)-Hilbert modules, cf. [5].

3. THE CONFIGURATIONS δfr , δ̂
f
r ,

ˆ̂
δfr

AND THE SET OF JORDAN CELLS Jr(f)

Let f : X → R be a a proper continuous map, X an ANR and κ be a
�xed �eld. Denote by:

� Xa, the sub level Xa := f−1(−∞, a]),

� Xb, the super level Xb := f−1([b,∞)),

� Ifa(r) := img(Hr(Xa)→ Hr(X)) ⊆ Hr(X),

� Ibf (r) := img(Hr(X
b)→ Hr(X)) ⊆ Hr(X),

� Ffr (a, b) := Ifa(r) ∩ Ibf (r) ⊆ Hr(X), F fr (a, b) = dimFfr (a, b).

Observation 3.1.

1. If a′ ≤ a and b ≤ b′ then Ffr (a′, b′) ⊆ Ffr (a, b).

2. If a′ ≤ a and b ≤ b′ then Ffr (a′, b) ∩ Ffr (a, b′) = Ffr (a′, b′).

3. dimFr(a, b) <∞ (cf. [4] Proposition 3.4).

4. supx∈X |f(x)− g(x)| < ε implies Fg(a− ε, b+ ε) ⊆ Ffr (a, b).

5. If f is weakly tame and number a ∈ R is a regular value then there
exists ε > 0 so that for any 0 ≤ t, t′ < ε the inclusions If(a−t)(r) ⊆ If(a+t′)(r) and

I(a−t
′)

f (r) ⊇ I(a+t)f (r) are isomorphisms for all r.

A set B ⊂ R2 of the form B = (a′, a] × [b, b′) with a′ < a, b < b′ is
called box, cf. Fig. 1. For (a, b) ∈ R2 and ε > 0 denote by B(a, b; ε) the box
B(a, b; ε) := (a− ε, a]× [b, b+ ε). To the box B we assign the vector space

Ffr (B) := Ffr (a, b)/Ffr (a′, b) + Ffr (a, b′)
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y-axis

x-axis

(a',b) (a,b)

(a,b')(a',b')

Fig. 1. The box B := (a′, a]× [b, b′) ⊂ R2.

of dimension
F fr (B) := dimFfr (B).

In view of Observation 3.1 item 3 F fr (B) <∞ and in view of Observation 3.1
item 2

F fr (B) := F fr (a, b) + F f (a′, b′)− F fr (a′, b)− F f (a, b′).

For a′′ < a′ < a, b < b′ < b′′ and B” := (a”, a]×[b, b”), B′ := (a′, a]×[b, b),

the inclusion of vector spaces (Ffr (a′′, b) + Ffr (a, b′′)) ⊆ (Ffr (a′, b) + Ffr (a, b′))

induces the canonical surjective linear map πB
′

B′′,r : Ffr (B′′)→ Ffr (B′).
For 0 < ε′ < ε consider B(a, b; ε′) ⊂ (a− ε, a]× [b, b+ ε′) = B1 ⊂ B(a, b; ε)

and B(a, b; ε′) ⊂ (a− ε′, a]× [b, b+ ε) = B2 ⊂ B(a, b; ε). One has

πε
′
ε,r = π

B(a,b;ε′)
B1,r

· πB1

B(a,b;ε),r = π
B(a,b;ε′)
B2,r

· πB2

B(a,b;ε),r.

Consider the diagram Ffr (a, b)
πε
(a,b),r

xx

πε
′

(a,b),r

&&

Ffr (B(a, b; ε))
πε
′
ε // Ffr (B(a, b; ε′))

and denote by δ̂fr (a, b) and πr(a, b) the vector space

δ̂r(a, b) = lim−→
ε→0

Ffr (B(a, b; ε))

and the surjective linear map

πr(a, b) : Ffr (a, b)→ δ̂r(a, b) = lim−→
ε→0

πε(a,b) .
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The space δ̂r(a, b) is of �nite dimension since Ffr (a, b) is and denote this dimen-
sion by

δfr (a, b) = dim δ̂fr (a, b) .

In view of Observation 3.1 item 4 one proposes the following de�nition.

De�nition 3.2. A real number t is a homologically regular value (w.r.
to the �eld κ) if there exists ε(t) > 0 s.t. for any 0 < ε < ε(t) the inclusions
It−ε(r) ⊆ It(r) ⊆ It+ε(r) and It−ε(r) ⊇ It(r) ⊇ It+ε(r) are equalities and
homologically critical value if not a homological regular value and let
CR(f) be the set of homological critical values.

By Observation 3.1 item 5, f weakly tame implies CR(f) ⊆ Cr(f).

Observation 3.3 (cf. [4]).
If X is an ANR and f is a continuous proper map then CR(f) is a discrete

set.
If δfr (a, b) 6= 0 then a, b ∈ CR(f).

If f is tame and δfr (a, b) 6= 0 then δ̂fr (a, b) = Ffr (B(a, b; ε)) for any
ε < ε(f).5

The con�gurations in the case of a real valued map

Suppose f : X → R with X compact ANR and f continuous. The
assignment R2 3 (a, b)  δfr (a, b) de�ned above is a con�guration of points in

R2 ≡ C, which determines and is determined by a monic polynomial P fr (z)

whose roots are the points in the support of δfr with multiplicities the values of
δfr , and the assignment δ̂fr is a con�guration of vector spaces which re�nes δfr .

If κ = R or C and Hr(X) is equipped with a scalar product then the

canonical splitting sr(a, b) : δ̂fr (a, b) → Fr(a, b) of πr(a, b) : Fr(a, b) → δ̂fr (a, b)

given by the orthogonal complement of kerπr(a, b) realizes δ̂
f
r (a, b) as a subspace

ˆ̂
δfr (a, b) := sr(a, b)(δ̂

f
r (a, b)) ⊆ Fr(a, b) ⊆ Hr(X) .

It turns out that the points (a, b) ∈ supp δfr with a ≤ b are exactly the
closed r-bar codes [a, b] and with a > b are exactly the (r− 1)−open bar codes
(b, a) de�ned in [10] and [2] for the level persistence of f.

Note: One can view the con�gurations δfr and
ˆ̂
δfr in analogy with the

con�guration δT of eigenvalues with multiplicity, and the con�guration
ˆ̂
δT of

corresponding generalized eigenspaces, associated to a linear map T : V →
5 This observation holds also for f continuous with the appropriate de�nition of ε(f).
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V, V a �nite dimensional complex vector space. The comparison provides
remarkable similarities which deserve to be inspected in case of a compact
smooth Riemannian manifold and of a Morse function.

The con�gurations in the case of an angle valued map

Suppose f : X → S1 with X compact. Let f̃ : X̃ → R be an in�nite
cyclic cover of f, and consider the homeomorphism τ : X̃ → X̃ provided by the
positive generator of the group of deck transformation Z; hence f̃ · τ = f̃ + 2π.
The map τ induces the isomorphism Tr : Hr(X̃) → Hr(X̃) which restricts to

Tr : Ff̃r (a, b)→ Ff̃r (a+ 2π, b+ 2π) and induces the isomorphism Tr : δ̂fr (a, b)→
δ̂fr (a+ 2π, b+ 2π).

Consider the quotient space T := R2/Z identi�ed to C \ 0 by 〈a, b〉 →
eia+(b−a), cf. Subsection 2.1 and de�ne

δfr (〈a, b〉) = δfr (z) := δf̃r (a, b) ,

δ̂fr (〈a, b〉) = δ̂fr (z) := ⊕n∈Zδ̂f̃r (a+ 2nπ, b+ 2nπ)

and

Tr(〈a, b〉) = ⊕n∈ZTr(a+ 2nπ, b+ 2nπ) : δ̂fr (〈a, b〉)→ δ̂fr (〈a, b〉).

The pair (δ̂fr (〈a, b〉), Tr(〈a, b〉) de�nes a κ[t−1, t]−module which is free

It turns out that the points z = eia+(b−a) ∈ suppδfr with a ≤ b, a ∈ [0, 2π)
are exactly the closed r-bar codes [a, b] and with a > b, a ∈ [0, 2π) are exactly
the the (r − 1)−open bar codes (b, a) de�ned in [2].

As already pointed out in Subsection 2.3, when κ = C the algebra C[t−1, t]
can be canonically completed to the �nite von-Neumann algebra L∞(S1). Ad-
ditional data (for example a C[t−1, t]−inner product on HN

r (X; ξ), or a Rie-
mannian metric on X when X is a Riemannian manifold, or a triangulation of
X when X is a simplicial complex) lead to a completion of HN

r (X; ξ) as Hilbert

L∞(S1)-module, the L2-homology HL2(X̃), and of δ̂fr (〈a, b〉)as a closed Hilbert
submodule of HL2(X̃). The procedure of such completions is described in [5,
Section 2] and called the von-Neumann completion.

The assignments δfr , δ̂
f
r , and

ˆ̂
δfr are con�gurations of points with multi-

plicities, free κ[t−1, t]-modules and L∞(S1)-Hilbert modules respectively.

The Jordan cells for an angle valued map

For f : X → S1 tame and θ ∈ S1 denote by Xθ := f−1(θ) and by Xθ the
two sided compacti�cation of f−1(S1 \ θ) by f−1(θ), called in [6] the cut of f
at θ. The space Xθ is homeomorphic to the compact space f̃−1[t, t + 2π] for
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any t ∈ R with p(t) = θ. The inclusions

Xθ = f̃−1(t)
⊂ // Xθ = f−1([t, t+ 2π] Xθ = f−1(t+ 2π)

⊃oo

induce in homology the linear map

Hr(Xθ)
a // Hr(Xθ) Hr(Xθ)

boo

which can be regarded as a linear relation, cf. [6,7], or as a graph representation
of the oriented graph G2.

The oriented graph G2 has two vertices v, w and two oriented edges from
v to w denoted by α and β as indicated below

v
α

++

β

33 w .

A linear representation ρ of G2 is provided by two vector spaces of �nite
dimension V and W associated to v and w and two linear maps a, b : V → W
associated to the edges α, β. The concept of isomorphism of representations
direct sum of representations and indecomposable representations are obvious
and, as in the case of an arbitrary �nite oriented graph, each representation
has a decomposition as sum of a unique collection (up to permutation) of inde-
composables; the decomposition is not unique. If κ is algebraically closed the
list of indecomposables can be recovered from an old theorem of Kronecker (a
proof of Kronecker theorem can be found in [1]) and is provided below.

1. Representation denoted by ρ+(r) has V = κr,W = κr+1, a =

[
Idr
0

]
,

b =

[
0
Idr

]
.

2. Representation denoted by ρ−(r) has V = κr+1,W = κr, a =
[
Idr 0

]
,

b =
[
0 Idr

]
.

3. Representation denoted by (λ, k) called Jordan cells, has V = κr,W = κr,

a = T (λ, k), b =

[
Idk
0

]
.

One de�nes the set Jr(f, θ) the collection of the Jordan cells associated
to the G2 representation given by

Hr(Xθ)
a // Hr(Xθ) Hr(Xθ)

boo .

4. THE RESULTS

As noticed in Section 2 the con�guration δfr de�ned in Section 3 can be
equally regarded as a monic polynomial P fr (z) whose zeros are the complex
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numbers z ∈ supp δfr with multiplicities equal to δfr (s).

Results about real valued maps

Theorem 4.1 (Topological results). Suppose X compact ANR and f :
X → R continuous. Then the following holds.

1. If P fr (z) = 0, equivalently δfr (z) 6= 0 with z = (a+ ib), then a, b ∈ CR(f).

2. The con�guration δfr ∈ CdimHr(X)(C), the con�guration δ̂fr satis�es

⊕z∈Cδ̂fr(z) ' Hr(X) and if κ = R or C and Hr(X) is equipped with

a Hilbert space structure (i.e. a scalar product) then the con�guration
ˆ̂
δf (r) ∈ CHr(X)(C) and satis�es

ˆ̂
δfr (z) ⊥ ˆ̂

δfr (z) for z 6= z′.

3. For f in an open and dense subset of the space of continuous real valued

maps equipped with the compact open topology one has δfr (z) = 0 or 1.

Theorem 4.2 (Stability). Suppose X is a compact ANR.

1. The assignment f  δfr provides a continuous map from the space

of real valued maps equipped with the compact open topology to the space of

con�gurations Cbr(R2) = Cbr(C) ' Cbr , br = dimHr(X), equipped with the

collision topology, equivalently to the space of monic polynomials of degree br.

Moreover, with respect to the canonical metric D (cf. Observation 2.1)

on the space of con�gurations Cbr(R2), and the metric D(f, g) := ||f − g||∞ =
supx∈X |f(x)− g(x)| on the space of continuous maps one has

D(δf , δg) < 2D(f, g).

2. If κ = R or C, and Hr(X)'s are equipped with scalar products then the

assignment f  ˆ̂
δfr is also continuous provided that CHr(X)(C) is equipped with

the collision topology described in Subsection 2.1.

Theorem 4.3 (Poincar�e Duality). Suppose X is a closed topological ma-

nifold of dimension n which is κ-orientable 6 and f : X → R is a continuous

map. Then:

1. δfr (a, b) = δfn−r(b, a).

2. If κ = R,C and the vector spaces Hr(X)′s are equipped with scalar

products then the canonical isomorphism induced by the Poincar�e duality and

the scalar products, PDr : Hr(X)→ Hn−r(X), intertwines the con�guration
ˆ̂
δfr

and
ˆ̂
δfn−r · τ where τ(a, b) = (b, a). In particular if X is a closed Riemannian

manifold, hence Hr(X) identi�es to the space of harmonic (n− r)− di�erential

forms, then the Hodge star operator intertwines
ˆ̂
δfr with

ˆ̂
δfn−r · τ.

6 when κ is of characteristic 2 all manifolds are κ-orientable if not of characteristic 2 only
the orientable manifolds are κ-orientable.
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Results about angle valued maps

Let f : X → S1 be a continuous map, X compact ANR, and let ξ := ξf ∈
H1(X;Z) be the integral cohomology class represented by f. Let X̃ → X be an
in�nite cyclic cover associated to ξ. If κ = C let HL2

r (X̃) be the von�Neumann
completion of HN (X; ξ) as described in [5].

Theorem 4.4 (Topological results). Suppose X compact ANR and f :
X → S1 continuous map. Then the following holds.

1. If P fr (z) = 0, equivalently δfr (z) 6= 0 with z = eia+(b−a), then eia, eib are
in CR(f).

2. The con�guration δfr (z) ∈ CβNr (X;ξf )
(C \ 0), the con�guration δ̂fr satis�es

⊕δ̂fr ' HN
r (X; ξ) and if κ = C then the con�guration

ˆ̂
δfr ∈ CHL2 (X̃)(C\0)

and satis�es
ˆ̂
δfr (z) ⊥ ˆ̂

δfr (z′) for z 6= z′.

3. If Cξ(X,S1) denotes the set of continuous maps in the homotopy class

determined by ξ equipped with the compact open topology then for f in an

open and dense set of maps of Cξ(X,S1) one has δf (z) = 0 or 1.

Theorem 4.5 (Stability). Suppose X is a compact ANR and ξ∈H1(X;Z).
Then:

1. The assignment

C(X,S1)ξ 3 f  δfr ∈ CβNr (X;ξ)(C \ 0) ≡ CβNr (X;ξ)(R2)

equivalently

C(X,S1)ξ 3 f  P fr (z) ∈ CβNr (X;ξ) × (C \ 0)

provides a continuous map from Cξ(X,S1), the space of continuous maps in the

homotopy class determined by ξ equipped with the compact open topology, to the

space of con�gurations CβNr (X;ξ)(C \ 0) equivalently CβNr (X;ξ) × (C \ 0).

Moreover, with respect to the canonical metric D on CβNr (X;ξ)(T) and the

complete metric D(f, g) := supx∈Xd(f(x), g(x)) on Cξ(X,S1), d the distance

in S1 = R/2πZ, one has

D(δf , δg) < 2πD(f, g).

2. If κ = C and the space of con�gurations C
H
L2
r (X̃)

(C \ 0) is equipped with the

collision topology then the assignment f  ˆ̂
δfr is continuous.

Theorem 4.6 (Poincar�e Duality). Suppose M is a closed topological ma-

nifold of dimension n which is κ-orientable, f : M → S1 is a continuous map

and M̃ the in�nite cyclic cover de�ned by ξf . Then one has

1. δfr (〈a, b〉) = δfn−r(〈b, a〉), equivalently δ
f
r (z) = δfn−r(τz) with τ(z) = z−1

ei ln |z|. Here 〈a, b〉 denotes the element of T represented by (a, b) ∈ R2.



76 Dan Burghelea 14

2. If κ = C and Mn is a closed Riemannian manifold then the canonical

isomorphism of HL2
r (M̃) to HL2

n−r(M̃) induced by the Riemannian metric

(via L2 harmonic forms and Hodge star operator) intertwines the con�-

guration
ˆ̂
δfr and

ˆ̂
δfn−r · τ when regarded as con�gurations on R2/Z = T.

In Section 3, for a weakly tame map f : X → S1 and an angle θ ∈ S1 we

have de�ned the collection of Jordan cells Jr(f, θ). Our de�nition make them

computable by e�ective computer implementable algorithms. They have the

following properties.

Proposition 4.7.

1. If f : X → S1 is a weakly tame map then the set Jr(f, θ) is independent

on θ, so the notation Jr(f ; θ) can be abbreviated to Jr(f).

2. If f1 : X1 → S1 and f2 : X2 → S1 are two weakly tame maps and

ω : X1 → X2 a homeomorphism s.t. f2 · ω and f1 are homotopic then

Jr(f1) = Jr(f2).

This permits to de�ne for any pair (X, ξ) with X a space homotopy

equivalent to a compact ANR and ξ ∈ H1(X;Z) the invariant Jr(X, ξ) by

Jr(X, ξ) := Jr(f) where f : Y → S1 is a simplicial map de�ned on the

simplicial complex Y homotopy equivalent to X by a homotopy equivalence

ω : X → Y s.t. f · ω represents ξ. In view of the discussion on the topology of

compact Hilbert cube manifolds such pairs (Y, ω) exist. The invariant Jr(X; ξ)

satis�es the following.

Theorem 4.8.

1. If ω : X1 → X2 is a homotopy equivalence s.t. ω∗(ξ2) = ξ1, ξ1 ∈
H1(X1,Z), ξ2 ∈ H1(X2,Z) and X1 and X2 have the homotopy type of a

compact ANR then J (X1, ξ1) = Jr(X2, ξ2).

2. If X is a compact ANR then Jr(X, ξ) are exactly the Jordan cells of the

monodromy

Tr(X, ξ) : Vr(X, ξ)→ Vr(X, ξ).

Introduce the set

Jr(X; ξ)(u) := {(λ, k) ∈ Jr(X : ξ) | λ = u}

and for a �nite set S denote by ]S the cardinality of S.

For any �eld κ one has the following relation between Betti numbers,
Novikov Betti numbers and Jordan cells.

Theorem 4.9. βr(X) = βNr (X, ξ) + ]Jr(X, ξ)(1) + ]Jr−1(X, ξ)(1).
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5. ABOUT THE PROOF

The proof of Theorems 4.1, 4.2 , 4.3 is contained partially in [7] and as
stated in [4], of Theorems 4.4, 4.5 , 4.6 partially in [7] and as stated in [5], and
of Proposition 4.7 and Theorem 4.8 in [7] and [6].

The proofs are done �rst for nice spaces (homeomorphic to simplicial com-
plexes) and tame maps and then extended to an arbitrary compact ANR and
arbitrary continuous map based on results on compact Hilbert cube manifolds
as summarized in Theorem 5.4 below.

As far as the �rst step is concerned, the following propositions of various
level of complexity are essential intermediate results whose proofs are contained
in [4].

Proposition 5.1. Let a′ < a < a′′, b < b′′ and B1, B2, and B the boxes

B1 = (a′, a]× [b, b′′), B2 = (a, a′′]× [b, b′′) and B = (a′, a′′]× [b, b′′) (see Fig. 2).

1. The inclusions B1 ⊂ B and B2 ⊂ B induce the linear maps iBB1,r
:

Fr(B1) → Fr(B) and πB2
B,r : Fr(B) → Fr(B2) such that the following sequence

is exact

0 // Fr(B1)
iBB1,r // Fr(B)

π
B2
B,r // Fr(B2) // 0 .

2. If κ = R or C and Hr(X) is equipped with a scalar product then Fr(B)′s
can be canonically realized as subspaces Hr(B) ⊆ Hr(M) with the property

Hr(B1) ⊥ Hr(B2)

and

Hr(B) = Hr(B1) + Hr(B2).

Proposition 5.2. Let a′ < a, b′ < b < b′′ and B1, B2, and B the boxes

B1 = (a′, a]× [b, b′′), B2 = (a, a′′]× [b′, b) and B = (a′, a]× [b′, b′′) (see Fig. 3).

1. The inclusions B1 ⊂ B and B2 ⊂ B induce the linear maps iBB1,r
:

Fr(B1) → Fr(B) and πB2
B,r : Fr(B) → Fr(B2) such that the following sequence

is exact

0 // Fr(B1)
iBB1,r // Fr(B)

π
B2
B,r // Fr(B2) // 0 .

2. If κ = R or C and Hr(X) is equipped with a scalar product then

Hr(B1) ⊥ Hr(B2)

and

Hr(B) = Hr(B1) + Hr(B2).
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B1 B2

Fig. 2

B1

B2

Fig. 3

Proposition 5.3 (cf. Proposition 5.6 [7]). Let f : X → R be a tame map

and ε < ε(f)/3. For any map g : X → R which satis�es ||f − g||∞ < ε and
a, b ∈ Cr(f) critical values one has

(1)
∑

x∈D(a,b;2ε)

δgr (x) = δfr (a, b),

(2) supp δgr ⊂
⋃

(a,b)∈supp δfr

D(a, b; 2ε).

If κ = R or C and in addition Hr(X) is equipped with a scalar product the

above statement can be strengthen to

(3) x ∈ D(a, b; 2ε)⇒ ˆ̂
δgr (x) ⊆ ˆ̂

δfr (a, b) and ⊕x∈D(a,b;2ε) δ̂
g
r (x) = δ̂fr(a, b).

Theorems 4.1 and 4.3 follows essentially from the �rst two propositions
which imply that Fr is a measure on the sigma algebra generated by boxes with
δfr the measure density. Theorems 4.2 and 4.5, in case the source of the map f is
a simplicial complex, uses essentially Proposition 5.3 and Theorems 4.3 and 4.6
use manipulation of Poincar�e duality and alternative de�nition of δ̂fr , cf. [4].
In case of Theorem 4.6 a more elaborated manipulation involving Poincar�e
duality for the open manifold M̃, the in�nite cyclic cover of f : M → S1, and
the description of the torsion of the κ[t−1, t] module Hr(M̃) are needed, cf. [5].
The proof of Theorem 4.8 involves the recognition of what in [7] and [6] is
referred to as the regular part of the linear relation de�ned by the pair of linear
maps

Hr(Xθ)
a // Hr(Xθ) Hr(Xθ)

boo .

Concerning the results about compact Hilbert cube manifolds used in this
work recall that:

The Hilbert cube Q is the in�nite product Q =
∏
i∈Z≥0

Ii with Ii = [0, 1];

its topology is also given by the metric d(u, v) =
∑

i |ui− vi|/2i with u = {ui ∈



17 New invariants for a real valued and angle valued map 79

Ii, i ∈ Z≥0} and v = {vi ∈ Ii, i ∈ Z≥0}. The space Q is a compact ANR and so
is any X ×Q for X any compact ANR.

A compact Hilbert cube manifold is a compact Hausdor� space locally
homeomorphic to the Hilbert cube and is a compact ANR. The following basic
results about Hilbert cube manifolds can be found in [11].

Theorem 5.4.

1. (R Edwards) X is a compact ANR i� X × Q is a compact Hilbert cube

manifold.

2. (T.Chapman) Any compact Hilbert cube manifolds is homeomorphic to

K ×Q for some �nite simplicial complex K.

3. (T Chapman) If ω : X → Y is a simple homotopy equivalence between

two �nite simplicial complexes with Whitehead torsion τ(ω) = 0 then

there exists a homeomorphism ω′ : X ×Q → Y ×Q s.t. ω′ and ω × idQ
are homotopic. If ω is only a homotopy equivalence the same conclusion

holds for Q replaced by Q× S1.7

If we write I∞ = Ik × I∞−k one observes that given ε > 0 for any
continuous real or angle valued map f de�ned on K ×Q, K a �nite simplicial
complex, there exists N large enough such that f is ε−closed to g · π where
π : K×I∞ → K×IN is the canonical projection onK×IN and g is a simplicial
map de�ned on K × IN . In particular any compact Hilbert cube manifold is a
good ANR.

It can be also veri�ed, using the de�nitions, that if f : X → R or S1
is continuous, K a compact ANR and fK = f · πK with πK : X × K → X

the canonical projection on X then δ̂f
K

r (a, b) = ⊕k≥0δ̂fr−k(a, b) ⊗ Hk(K) or

δ̂f
K

r (〈a, b〉) = ⊕k≥0δ̂fr−k(a, b)⊗Hk(K).

6. SOME APPLICATIONS

6.1. Geometric analysis

Theorem 4.1 insures that a generic continuous function provides one di-
mensional subspaces in homology with coe�cients in a �xed �eld; in particular
for κ = R or C for a closed Riemannian manifold (M, g) a generic smooth real
valued function on M provides an orthonormal base (up to sign) in the space
of harmonic forms.

7 Some partial but relevant results on the line of Theorem 5.4 were due to J. West as
indicated in [11].
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We expect (but have not found this result in literature) that the eigen-
forms of the Laplace Beltrami operators for a generic Riemannian metric in any
dimension provides a similar decomposition for the smooth di�erential forms
orthogonal to the harmonic forms. This is indeed the case in view of a result of
Uhlenbeck8 for degree zero forms and for n = 2 for all degree. This shows that a
generic pair, Riemannian metric and smooth function, provides an orthonormal
base (in Fourier sense) up to sign in the space of all di�erential forms; as the
trigonometric functions on S1 provide an orthonormal base (in Fourier sense)
for all smooth functions. Such base can be a useful tool in geometric analysis.

6.2. Topology

Observation 6.1.

1. Theorem (4.3) implies that for a closed orientable manifold of dimension

n the pair of real numbers (c, c′) ∈ suppδfr i� the pair (c′, c) ∈ suppδfn−r and

both pairs appear with equal multiplicity δfr (c, c′) = δfn−r(c
′, c).

2. Theorem 4.6 remains valid with the same proof in case M is a com-
pact manifold with boundary (M,∂M), provided HN

r (∂M ; ξf∂M ) 9 vanishes
for all r. In particular, under the above vanishing hypothesis, HN

r (M ; ξf ) '
HN
n−r(M ; ξf ).

Corollary 6.2. Suppose (M2n, ∂M2n) is a compact orientable manifold

with boundary which has the homotopy type of a simplicial complex of dimension

≤ n and ξ ∈ H1(M ;Z) s.t HN
r (∂M ; ξ∂M ) = 0 for all r. Then for any �eld κ :

1. βNr (X : ξ) =

{
0 if r 6= n

(−1)nχ(Mn) if r = n
, with χ(M) the Euler -Poincar�e

characteristic with coe�cients in κ.

2. βr(X) =

{
αr−1 + αr if r 6= n

αn−1 + αn + (−1)nχ(Mn) if r = n
, where αr denotes

the number of Jordan cells (λ, k) ∈ Jr(M, ξf ), with λ = 1.

3. If V 2n−1 ⊂ M2n is a compact proper sub manifold (i.e. V t ∂M,10

and V ∩∂M = ∂V ) representing the homology class in Hn−1(M,∂M) Poincar�e
dual to ξf and Hr(V ) = 0, then the set of Jordan cells Jr(M, ξ) is empty.

Item 1 follows from Observation (6.1) and the fact that both Betti num-
bers and Novikov�Betti numbers calculate the same Euler�Poincar�e characte-

8 Which claims that for a closed manifold equipped with a generic Riemannian metric the
eigenvalues of the Laplace operator are simple.

9 with f∂M notation for the restriction of f to ∂M
10 t= transversal.
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ristic. Item 2 follows from Theorem 11 item c. in [7], and Item 3 from the
description of Jordan cells in terms of linear relations as provided in [7] or [6].

As pointed out to us by L. Maxim, the complement X = Cn \ V of a
complex hyper surface V ⊂ Cn, V := {(z1, z2, · · · zn) | f(z1, z2, · · · zn) = 0}
regular at in�nity, equipped with the canonical class ξf ∈ H1(X;Z) de�ned
by f : X → C \ 0 is an open manifold with an integral cohomology class
ξ ∈ H1(X;Z) represented by f/|f | : X → S1. This manifold has compacti�-
cations to manifolds with boundary with cohomology class which satis�es the
hypotheses above. Item 1 recovers a calculation of L. Maxim, cf. [17] and [15]11

that the complement of an algebraic hyper surface regular at in�nity has va-
nishing Novikov homologies in all dimension but n.
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