
ALGORITHMIC PROBLEMS IN LOGICS OF KNOWLEDGE

AND TIME

C�AT�ALIN DIMA

Communicated by Marius Iosifescu

We present some recent results on the satis�ability and model-checking problems
for combinations of temporal and epistemic logics.

AMS 2010 Subject Classi�cation: 68Q60, 03B70, 03B42.

Key words: temporal epistemic logic, coalition logic, model-checking, satis�-
ability.

Epistemic logics are modal logics designed for modeling multi-agent sys-
tems in which agents have incomplete observation capacities of the system state
(including the state of the other agents), but are endowed with the ability to
make deductions about properties of the system state, based on their observa-
tions. One of the key features of epistemic logics is the possibility to specify
and model not only system properties that are observable for an agent, but also
properties like the knowledge that agent a has about the system state, or the
knowledge that agent a has about the knowledge that agent b has about the
system state, etc.

Epistemic logics were initially designed for representing reasoning capabi-
lities of intelligent agents in multi-agent systems. They have become of interest
in veri�cation when combined with temporal logics, due to their combined
ability to express properties of interest in security, like various types of non-
interference, con�dentiality or authentication, or to model some protocols in
which agent knowledge is essential for protocol correctness [22,34,52,56,65,66].
These applications were accompanied with the development of model-checking
tools [27, 47, 55] that which utilize classical model-checking techniques, and
hence are based on theoretical results connecting automata with temporal and
monadic logics.

However, contrary to the classical satis�ability and model-checking case,
the decidability frontier is much lower in combinations of temporal and epis-

REV. ROUMAINE MATH. PURES APPL. 62 (2017), 1, 83�112

84 C�at�alin Dima 2

temic logics than in temporal logics. First, the above-mentioned tools are mos-
tly based on a state-based interpretation of the epistemic modalities, which
means that agents may forget what they have observed during their interaction
with other agents. Perfect recall variants of the semantics of epistemic modali-
ties in temporal epistemic logics are much harder to model-check and sometimes
have undecidable satis�ability properties [63]. Secondly, if agent capabilities are
taken into account in epistemic variants of alternating temporal logics � which
are logics for specifying what coalitions may enforce � then in the presence
of perfect recall, a decidable model-checking problem could be achieved only
for single-agent coalition logics or when coalitions behave like a single agent,
in that agents exchange their information and compose what is called distri-
buted knowledge in order to �nd their winning strategies [20, 31]. (Note that
the status of the decidability of the satis�ability problem remains open). Thi-
rdly, two-agent coalitions without information exchange and with very simple
safety winning conditions may be able to simulate Turing machines, and hence
the model-checking problem for alternating temporal logics with at least two
agents is undecidable [11]. The same holds when one considers coalitions that
cooperate by constructing their strategies based on their common knowledge.
And �nally, when one combines continuous time and epistemic operators, then
even the simplest logic with perfect recall becomes undecidable [16].

The organization of this paper is the following: in the next section, we
give a brief introduction into epistemic logics (without temporal dimensions).
Section 2 presents results reported in [17, 19] on the non-axiomatizability of
a linear temporal epistemic logic having only an individual knowledge opera-
tor, some related results for a branching temporal logic, and results from [17]
concerning a model-checking technique for CTL enriched with individual kno-
wledge operators. In Section 3, we give a brief overview of existing results on
Alternating Temporal Logic (ATL) with incomplete information, then report on
our self-contained proof of the undecidability of the model-checking problem for
this logic [11] and on the result from [16] on the undecidability of ATL with co-
alitions constructing strategies based on common knowledge, and further then
give an alternative semantics for which ATL has a decidable model-checking
problem (even if we allow both individual and distributed knowledge opera-
tors), results from [20, 30]. In Section 4, we present a variant of a continuous-
time temporal epistemic logic and some (positive and negative) results on the
decidability of the model-checking problem for this logic, results from [18]. We
end with a section with conclusions and directions for further work.

The results on ATL with partial information are the fruit of collaborations
with Rodica Bozianu, Raluca Diaconu, Constantin Enea, Dimitar Guelev and
Ferucio �Tiplea. This paper is based on the papers [11, 16�20,30�32].

3 Algorithmic problems in logics of knowledge and time 85

1. BASICS ON PROPOSITIONAL EPISTEMIC LOGIC

Epistemic logics are modal logics in which the modal operators model vari-
ous types of knowledge that agents may have about the system state, and about
the other agents' knowledge of this system state, etc. These logics manipulate
the following operators:

1. Individual knowledge operators Ka, indexed by the name of an agent
a belonging to a �xed set of agents Ag. The dual of each individual
knowledge operator, denoting the fact that an agent a considers possible
some fact, is denoted Pa.

2. Distributed knowledge operators KA, indexed by a set of agents A ⊆ Ag,
operator also denoted DA.

3. Operators denoting the fact that �everybody in a group knows� some fact,
denoted EA, for A ⊆ Ag.

4. The common knowledge operators CA, for groups of agents A ⊆ Ag, deno-
ting the fact that each agent in A knows some fact, and that each agent
knows that each agent knows the fact, etc.

The simplest framework for giving a semantics to the epistemic moda-
lities is the possible worlds semantics, common for modal logic. For-
mally, a Kripke structure for a �nite set of agents Ag is a tuple M =

(S,Π, π, (Ka)a∈Ag) where

� S is the set of global states. It is usual to consider that S =∏a∈Ag La with
La designating the set of local states for agent a.

� Π is a set of atomic propositions.

� π ∶ S → 2Π is the truth value assigned to the atomic propositions in each
state.

� Ka is the indistinguishability relation (also called the possibility relation).
(s, s′) ∈ Ka denotes the fact that, for agent a, states s and s′ cannot be
distinguished by a's observations.

In most of the literature, Ka is de�ned by the local states, in the sense
that (s, s′) ∈ Ka if s

a
= s′

a
, that is, the local state visible to agent a in

both states s and s′ is the same.

� Very often Ka are equivalence relations.

From the indistinguishability relations, we may then build also the distri-
buted knowledge relation and the common knowledge relation, as follows:

KA = ⋂
a∈A

Ka CA = (⋃
a∈A

Ka)
∗

where (⋅)∗ denotes the re�exive-transitive closure of a binary relation.

The semantics of the knowledge operators is then de�ned as follows:

86 C�at�alin Dima 4

� (M,s) ⊧Kaφ if (M,s′) ⊧ φ for all s′ with (s, s′) ∈ Ka.
� (M,s) ⊧KAφ if (M,s′) ⊧ φ for all s′ with (s, s′) ∈ KA.
� (M,s) ⊧ EAφ if (M,s′) ⊧ φ for all s′ with (s, s′) ∈ ⋃a∈AKa.
� (M,s) ⊧ CAφ if (M,s′) ⊧ φ for all s′ with (s, s′) ∈ CA.

with (M,s) ⊧ p being de�ned as p ∈ π(s) for atomic propositions, relation
extended straightforwardly to the Boolean operators.

One of the main meta-properties of this framework is that knowledge
acquisition is modeled as observation, which has the e�ect that everything
that can be deduced from a given observation is deduced �instantaneously�.
This framework is very useful in analyzing systems in which the amount of
information about the system state is �nite, and hence this ability of any agent
to immediately �know� all properties which can be deduced from observations
is a reasonable abstraction. However, this strong ability may be considered
unrealistic in other situations, and is referred to as the omniscience problem.
Several solutions to the omniscience problem have been proposed, see again [26].
We will not explore them here, but we mention them as they can be related
with attacker capabilities in the analysis of security protocols.

2. LOGICS OF KNOWLEDGE AND TIME

The Kripke semantics from the previous section o�ers only limited possi-
bilities for the analysis of systems whose states may evolve over the time and in
which agents have the ability to incorporate an apriori knowledge about system
evolution in their deduction about the system properties. Frameworks that are
more appropriate for handling such aspects are combinations of temporal and
epistemic logics. Such combinations have been studied since the mid-eighties,
starting with [36,37], identifying 96 di�erent logics, distinguished by semantics
and/or the presence of common knowledge operators, and presenting decida-
bility and undecidability results for the satis�ability problem in the presented
logics. Such logics have recently proved useful in the formal veri�cation app-
lied to various distributed systems in which the knowledge of the participants
is essential for the correctness of the system speci�cation. Examples include
the veri�cation of con�dentiality [66, 67], authentication [22, 49, 56], mutual
agreement [52], various types of anonymity [34,40,52,65] or privacy [12].

If we stick to the classical dichotomy between linear and branching time
[50], epistemic logics can be combined either with the linear temporal logic,
or with branching temporal logics like CTL or CTL∗. The syntax of CTL∗

endowed with epistemic modalities, which subsumes both linear and branching
time, is given by the following grammar:

φ ∶∶= p ∣ φ ∧ φ ∣ ¬φ ∣◯φ ∣ φU φ ∣ Eφ ∣Kaφ.

5 Algorithmic problems in logics of knowledge and time 87

Here ◯ is the nexttime operator, U the until operator and E is the existential
path quanti�er. Distributed knowledge and common knowledge operators can
be added to this logic, with the usual notation.

It is common to consider that observability relations are given by so-
called local states of each agent, which gives what is called the interpreted
systems semantics [33]. Hence, a global state is a tuple of local states, and
system evolutions are presented as runs in a transition system � that is, by
combining the usual Kripke semantics for time with the Kripke semantics for
the epistemic operators. As usual, the semantics of the temporal operators is
interpreted over positions along runs in the transition system. These tuples
are also called points by the epistemic logic community [26], and represent
(instantaneous) local states in the epistemic Kripke structure.

Formally, a multi-agent transition system with agents in Ag is a tuple

M = (S, (La)a∈Ag,→, S0, (∼a)a∈Ag,Π, π)

whose components satisfy the following properties:

1. Ag is a �nite set of agents.

2. La is the local state, which itself is the component of the global state that
agent a ∈ Ag can observe.

3. S is the set of global states, and is de�ned as: S =∏a∈Ag La. For a global
state s = (la)a∈Ag we denote s

a
= la, the element indexed a from the

tuple s.

4. The tuple (S,→, S0) is the underlying transition system forM, and hence
→⊆ S × S and S0 ⊆ S.

Runs in S are �nite or in�nite sequences of states connected by transi-
tions, (si)i∈I with (si, si+1) ∈→. Furthermore, the set of points of this
transition system is the set:

Points(M) = {(ρ, i) ∣ ρ is an in�nite run inM and i ∈ N}.

5. ∼a is the observability relation (also called the indistinguishability rela-
tion) for agent a, and is de�ned on the set of points ofM, ∼a⊆ Points(M)

× Points(M).

6. π is the interpretation of atomic propositions, π ∶ S → 2Π.

In the most general presentation, the observability relations are simply
relations on Points(M), without any further constraint. But this framework
is of limited interest in applications of temporal logics of knowledge. Instead,
supplementary constraints are imposed on the indistinguishability relations,
constraints related with the possibility that agents have to remember their
observations along the time, to foresee the future behavior of the system and/or
to have access to a global clock.

88 C�at�alin Dima 6

The �rst property of interest is perfect recall (also called non-forgetting),
and models the situation in which an agent is able to memorize changes in
local states upto the current moment, and to tell apart two runs which do not
have the same history of changes in the local state. The second property is the
dual of perfect recall and is called no learning, and models situations in which
agents are provided, from the very beginning the sequence of observations that
they will make during system behavior. The third property is synchrony, and
models situations in which agents know the exact absolute time of each point
(that is, the i component of the point). These properties can be combined in
any way, giving further constraints to the observability relations.

The formal introduction of these properties requires some further notati-
ons on transition systems. The set of �nite runs is denoted FinRuns(T), and
the set of in�nite runs is denoted ωRuns(T). The i-th state in the run ρ is
denoted ρ[i]. Also, given a run ρ = (si)0≤i<k of length k (k ∈ N ∪ {∞}), and
some k′ ≤ k, the pre�x of length k′ of ρ is the run denoted ρ[0..k′] = (si)0≤i<k′ .
The su�x of ρ starting at k′ is denoted ρ[k′..].

Furthermore, given a transition system T = (S,→, S0) and a surjective
mapping f ∶ S → S′, the set S′ can be endowed with a transition system struc-
ture as usual, T ′ = (S′,→f , S′0) with S

′
0 = f(S0) and u→f u

′ if there exists s, s′ ∈
S with f(s) = u, f(s′) = u and s → s′. We then say that T ′ is the projection
of T by f . In the same setting, given a run ρ = (si)1≤i<η ∈ Runs(T), the pro-

jection of ρ is the following run of T ′: f(ρ) = (f(si))1≤i<η. Here we will have

situations in which T and T ′ are such that S = 2T and S′ = 2V for some sets T
and V ⊆ T , and the projection is de�ned by f(X) =X ∩V . In these situations,
the projection f is also denoted ⋅

V
, notation which is also employed for the

projection of a run ρ by f : we denote ρ
V
instead of f(ρ).

Given a run ρ = (si)1≤i<η ⊆ Runs(T), the removal of suttering steps from ρ,

denoted stut(ρ), is the sequence of states sij resulting by removing any succes-
sive states that are identical in ρ. For example, for ρ = (s1s2s2s2s3s2s3s1s1s1),
then stut(ρ) = (s1s2s3s2s3s1). Note that stut(ρ) is also a run of T .

We are now in position to de�ne formally the various observability relati-
ons:

De�nition 1. 1. The perfect recall observability (pr -observability)
relation for agent a ∈ Ag is the relation de�ned as following:

∼
pr
a ⊆ Points(M) × Points(M), (ρ, i) ∼pra (ρ′, i′) if stut(ρ[0..i]

La
)

= stut(ρ′[0..i′]
La

)

2. The non-learning observability (nl -observability) relation for agent

7 Algorithmic problems in logics of knowledge and time 89

a ∈ Ag is the relation de�ned as following:

∼
nl
a ⊆ Points(M) × Points(M), (ρ, i) ∼nla (ρ′, i′) if stut(ρ[i..]

La
)

= stut(ρ′[i′..]
La

)

3. The synchronous observability (s-observability) relation for agent a ∈
Ag is the relation de�ned as following:

∼
s
a⊆ Points(M) × Points(M), (ρ, i) ∼sa (ρ′, i′) if i = i′

4. The perfect recall and synchronous observability (prs-observability)
relation for agent a ∈ Ag, which is the relation de�ned as following:

∼
prs
a ⊆ Points(M) × Points(M), (ρ, i) ∼prsa (ρ′, i′) if i = i′

and ρ[0..i]
La

= ρ′[0..i]
La

Note that agents that have s-observability can always distinguish two
�nite runs having di�erent lengths.

The semantics of CTL∗ with epistemic modalities is given by the following
rules, parameterized by the type of observability relation rel ∈ {pr, nl, s, prs}
and in which (ρ, i) ∈ Points(M):

(M, ρ, i) ⊧rel p if p ∈ π(ρ[i])

(M, ρ, i) ⊧rel φ1 ∧ φ2 if (M, ρ, i) ⊧rel φ1 and (M, ρ, i) ⊧rel φ2

(M, ρ, i) ⊧rel ¬φ if (M, ρ, i)/⊧relφ

(M, ρ, i) ⊧rel ◯φ if (M, ρ, i + 1) ⊧rel φ

(M, ρ, i) ⊧rel φ1 U φ2 if ∃j ≥ i with (M, ρ, j) ⊧rel φ2 and ∀i ≤ k < j,

(M, ρ, i) ⊧rel φ1

(M, ρ, j) ⊧rel Eφ if ∃ρ′ ∈ Points(M) such that ρ′[0..i] = ρ[0..i]
and (M, ρ′, i) ⊧rel φ

(M, ρ, i) ⊧rel Kaφ if ∀ρ′ ∈ Points(M) and ∀j ∈ N with (ρ, i) ∼rela (ρ′, j)
we have (M, ρ′, j) ⊧rel φ.

Subclasses of CTL∗ with epistemic modalities have been identi�ed since
[36, 37], di�erentiated either by the type of observability relation, or by using
linear or branching time, or even by the inclusion or the exclusion of common
knowledge operators. The linear-time variants were denoted with KL and the
branching-time variants with KB, with subscripts identifying the number of
agents. Hence, the notation KLn refers to the linear-time epistemic logic wit-
hout common knowledge operators with n agents, while CKB1 refers to the
branching-time logic with common knowledge operators with only one agent.
All these logics are then interpreted over classes of interpreted systems denoted

90 C�at�alin Dima 8

C with subscripts denoting the type of observability. Hence Csync,nf denotes the
class of interpreted systems with synchronous and non-forgetting observability.

The axiomatizability of these logics has been addressed in [35], and the
decidability of their satis�ability problem in [36]. Most notably, the undecidabi-
lity results have been related with undecidability results for temporal logics on
bidimensional structures, observing that especially the presence of the common
knowledge operator makes it possible to encode grid-like structures.

On the other hand, there has been some interest in relating the interpreted
systems semantics with general Kripke semantics, in which the indistinguisha-
bility relations are de�ned on global states [48]. We will come back to this
problem in the following subsection.

2.1. A concrete observability relation

In many of the above-mentioned applications of temporal epistemic lo-
gics, the observability relations are intimately related with the truth values for
atomic propositions. For instance, in [45, 49, 57, 65], the local states for each
agent incorporate items describing what agents sent/received and what they
possess during the protocol behavior, and there are atomic formulas encoding
exactly the possession, the reception or the issue of items during the protocol
run. It is therefore quite natural to consider a �concrete� observability relation,
in which local states for an agent a are characterized by truth values for some
�xed subset of atomic propositions Πa.

Formally, such observability relations can be stated as follows:

De�nition 2. A multi-agent systemM has concrete observability for
agent a ∈ Ag if there exists a subset of atomic propositions Πa ⊆ Π such that
for each s, s′ ∈ L, s

a
= s′

a
if and only if ν(s) ∩Πa = ν(s

′) ∩Πa.

The set Πa is the set of atomic propositions whose truth values can be
observed by the agent a in any state of the system. It is essential to note the
equivalence, required by this de�nition, between the state-based observability
and the observability of a speci�c set of atomic propositions, Πa.

In such contexts, we may rede�ne the observability relations discussed in
the previous section as follows:

De�nition 3 ([19]). A multi-agent system in which all agents have con-
crete perfect recall observability (cpr -observability) is a systemM = (S,→

, S0, (∼
cpr
a)a∈Ag,Π, (Πa)a∈Ag, π) in which Πa ⊆ Π for all agents a ∈ Ag and

(1) (ρ, i) ∼cpra (ρ′, i′) if and only if stut(π(ρ[0..i])
Πa

) = stut(π(ρ′[0..i′])
Πa

).

A multi-agent system in which all agents have concrete non-learning
observability (cnl -observability) is a system M = (S,→, S0, (∼

cnl
a)a∈Ag,Π,

9 Algorithmic problems in logics of knowledge and time 91

(Πa)a∈Ag, π) in which Πa ⊆ Π for all agents a ∈ Ag and

(2) (ρ, i) ∼cnla (ρ′, i′) if and only if stut(π(ρ[i..])
Πa

) = stut(π(ρ′[i′..])
Πa

)

A multi-agent system in which all agents have concrete perfect recall
and synchronous observability (cprs-observability): is a systemM = (S,→

, S0, (∼
cprs
a)a∈Ag,Π, (Πa)a∈Ag, π) with

(3) (ρ, i) ∼cprsa (ρ′, i′) if and only if i = i′ and π(ρ[0..i])
Πa

= π(ρ′[0..i])
Πa

At a �rst sight, it may look that the semantics is just a particular case
of the semantics based on interpreted systems: on one hand, in the interpreted
systems semantics, one may include the local states in the set of atomic pro-
positions and declare the set of atomic propositions corresponding to the local
states for agent a as the set of observable atoms for a. For the reverse, one
might try to axiomatize the correspondence between local states and validity
of Πa, by considering axioms ⊢ p → Kap and ⊢ ¬p → Ka¬p for each atomic
proposition p ∈ Πa.

Unfortunately, this set of axioms does not completely characterize obser-
vability for agent a by means of observability of truth values for Πa. In fact,
as we prove in [19], the concrete semantics is not axiomatizable. We prove
this result for both the perfect recall semantics, and for the perfect recall and
synchronous case.

Theorem 1 ([17,19]). 1. Satis�ability of LTLK or CTLK formulas
w.r.t. the cprs-observability semantics is undecidable.

2. The semantics of LTLK or CTLK based on cprs-observability or on cpr-
observability do not have a recursively enumerable axiomatization.

The reason for these results is that there is no possibility to impose, ax-
iomatically, the identical observability of two histories, on the basis of the ob-
servability of truth values for some given subset of atomic propositions. To
compare with the classical framework of interpreted systems, note that [35]
gives complete axiom systems for both cases, and their satis�ability problem is
shown decidable in [36].

The interest in studying this concrete observability semantics is twofold.
First, it is related with the problem of �nding the exact relationship between
interpreted systems semantics and general Kripke semantics. In [48], for special
types of interpreted systems, called hypercube systems, the two semantics are
shown to be equivalent, and the authors suggest that �further research could be
undertaken [..] to have a general methodology for translating interesting classes
of interpreted systems into classes of Kripke models�. The results from our
paper [19] show that this equivalence does not hold in general.

92 C�at�alin Dima 10

The second reason defending this research is related with the possibility to
compare the expressive power of temporal epistemic logics with the expressive
power of fragments of monadic logics over tree structures with some auxiliary
interpreted predicates. As known, epistemic temporal logics are interpreted
over transition systems endowed with some additional relations. If we have in
mind that unfoldings of transition systems are in�nite trees, and that MSO,
the monadic second order logic of trees [59], accounts as the reference logic
for specifying system behaviors as it is as expressive as the mu-calculus, tree
automata or quanti�ed propositional temporal logics, one may ask the question
how combinations of temporal and epistemic logics compare, in expressivity,
with MSO. The concrete observability semantics gives a natural setting for
exploring this question, because the propositional symbols can be interpreted
as 2nd order monadic variables in MSO, (i.e. as sets of positions in a tree).

One of the sources of inspiration for the concrete semantics is the Logic
of Local Propositions from [25]. The atomic propositions in the sets Πa are
interpreted as local propositions for agent a, in the sense of [25]. But, contrary
to [25], in the concrete semantics there is no quanti�cations over atomic propo-
sitions, and, as such, our logical framework is strictly less expressive than the
Logic of Local Propositions.

The result from [19] is based on a proof of the undecidability of the satis-
�ability problem for the Linear Temporal Logic of Knowledge, with either the
perfect recall semantics or the perfect recall and symmetric semantics � that
is, the logic KLn interpreted in the concrete variant of the class Csync,nf , if we
are to stick to the acronyms used in [36]. This proof of the undecidability of
satis�ability works by coding the con�gurations and transitions along the com-
putation of a Turing machine as runs in a multi-agent system. This proof idea
was utilized many times in the literature for proving undecidability of various
epistemic temporal logics, starting from [36] where it is proved that CKLn,
which is LTL with common knowledge operators, has an undecidable satis�abi-
lity problem. But recall that KLn interpreted over Cnf , resp. Cnf,sync, is proved
to have a decidable satis�ability problem in [36]. We also cite the undecidabi-
lity result of [63] for LTL with common knowledge too, which utilizes the same
type of argument. Another paper which utilizes this argument is [60], in which
it is shown that several variants of branching-time logics with common know-
ledge operators have an undecidable satis�ability problem. Contrary to these
results, our undecidability result holds without a common knowledge operator.
To complete the �gure, recall that the only undecidable cases of temporal logics
without common knowledge studied in [36] concern only non-learning variants
of observability, based on previous results from [43]. But the coding technique
used in [43] heavily relies on asynchrony, and on the non-learning character of

11 Algorithmic problems in logics of knowledge and time 93

the semantics. Our proof uses a di�erent technique, which relies on synchrony
and the possibility to manipulate, in the logic, formulas which exactly identify
observations (by means of the atomic propositions which are observable for each
agent).

A similar undecidability result is proved in our paper [17] for the branching-
time epistemic logic with concrete perfect recall and synchronous observability,
that is, for KBn interpreted in the concrete variant of Csync,nf . The technique
used in [19] for transferring this result to observability relations which are not
synchronous (but have perfect recall) can be applied with no di�culty to the
branching case.

2.2. Model-checking for logics of knowledge and time

The model-checking problem is one of the central problems in veri�cation
[15]. In its most general presentation, it can be stated as follows:

Problem 1. Given a class of models C and a class of formulas F into some
logic L, does there exist an algorithm that, given as inputs a modelM ∈ C and
a formula φ ∈ F , can check whetherM ⊧ φ?

The model-checking problem for temporal logics of knowledge has started
receiving attention in relation with the veri�cation of communication protocols
in which the knowledge of the participants is important for ensuring proto-
col correctness, like in the Alternating Bit Protocol [67], the Chaum's Dining
Cryptographers Protocol [41,65], or in security-related protocols [45].

The model-checking problem for perfect recall and/or synchronous seman-
tics for temporal logics of knowledge has been studied in [17, 54, 63, 64]. The
approach of [54, 63], called model-checking at a run, is to consider a restricted
problem which binds also the run on which the formula is to be checked. The
approach proposed in the latter paper is to code the model-checking problem
as a satis�ability problem in Chain Logic [24, 58].

Some decidable cases of the general problem for linear temporal logics
with individual knowledge and perfect recall and synchronous semantics are
presented in [64], where the complexity of the model-checking problem is shown
to be nonelementary. The approach proceeds by state splitting of the model,
embodying su�cient information that is needed for checking subformulas with
nested knowledge operators. This requires a subset construction for each know-
ledge operator, and hence, for formulas containing at most k nested knowledge
operators, the state splitting leads a state explosion which in the worst case is
a tower of k exponentials in the size of the initial model. This technique has
been implemented in the model-checker MCK [27].

94 C�at�alin Dima 12

On the negative side, the inclusion of the common knowledge operators,
in conjunction with perfect recall semantics was shown to make undecidable
the model-checking problem [63,64].

The model-checking problem for state-based observability relations has
been extensively studied by A. Lomuscio and his collaborators, leading to a now
well-developed tool and methodology [47]. State-based observability is de�ned
as the relation on points in interpreted systems which is only based of the
�current� state of the point. More precisely, for any two points (ρ, i), (ρ′, i′) ∈
Points(M) and agent a,

(ρ, i) ∼a (ρ′, i′) i� ρ[i] ∼a ρ′[i′],

where ρ[i] is the i-th global state in the run ρ, and ∼a is the usual observability
relation based on the local-state decomposition of global states. State-based
observability may show useful in systems where the information available to
each agent at each time point can be encoded in the system states � that is,
agents only need a �nite amount of memory for remembering the information
they can ever see about the system behavior.

In [17] we take a direct approach for the model-checking problem for KBn,
the combination of CTL with individual knowledge operators. Our approach is
to adapt the classical model-checking algorithm of [14], with the aid of an extra
procedure. This extra procedure is a state labeling with knowledge formulas
which involves a subset construction on the given model, since one needs to
identify all histories which may be identically observed by agent i, when one
wants to label states with formulas involving the Ki modality. Note also that
the subset construction is also essential in the model-checking algorithm for
LTL with knowledge from [64].

This approach does not improve the worst-case complexity of the algo-
rithm, since each nesting of knowledge operators induces an exponential ex-
plosion, thus leading to a nonelementary complexity. But we believe that our
approach could be more practical for formulas with low nesting of knowledge
operators. In the approach of [54], the system is �rst translated into the Chain
Logic, which needs then to be coded into Monadic Second Order Logic [58], and
then an MSO-based tool like Mona [23] has to be applied. In such an approach,
since the system coding creates some formula with quanti�er alternation, some
unnecessary determinization steps for the resulting B�uchi automata are then
needed. Our approach avoids this, as each non-knowledge operator requires
only state relabeling, and no state explosion.

Another technique that was proposed in [55] is the encoding of instances
of the model-checking problem into the above-cited Logic of Local Propositions.
For state-based observability, which is subsumed by the approach of [47], this

13 Algorithmic problems in logics of knowledge and time 95

leads to encodings of instances of the model-checking problems for temporal
epistemic logics into instances of the model-checking problems for purely tem-
poral logics. But, as noted in [27], this approach leads to an �explosion in the
number of temporal formulas that need to be checked when there are negative
occurrences� (of the knowledge operators).

3. COALITIONS AND KNOWLEDGE

Alternating-time Temporal Logic (ATL) [5, 6] is a generalization of the
Computational Tree Logic (CTL) in which path quanti�ers �E� and �A� are
replaced by cooperation modalities ⟪A⟫ in which A denotes a set of agents who
act as a coalition. A formula ⟪A⟫φ expresses the fact that the agents in coalition
A can cooperate to ensure that φ holds in an appropriate type of multiplayer
game.

The precise semantics of the cooperation modalities varies depending on
whether the knowledge that each agent has of the current state of the game
is complete or not, and whether agents can use their knowledge of the past
game states when deciding on their next move or not. These alternatives are
known as complete, resp. incomplete information, and perfect, resp. imperfect
recall. In the case of imperfect recall further subdivisions depend on how much
memory an agent is allowed for storing information on the past in addition to
its possibly incomplete view of the current state. In the extreme case agents
and, consequently, the strategies they can carry out, are memoryless.

The formal analysis of multi-agent systems has generated some interest
in the study of combinations of ATL with modal logics of knowledge [39, 62].
Such combinations can be viewed as related to temporal logics of knowledge (cf.
e.g. [26]) in the way ATL is related to computational tree logic CTL. Epistemic
goals make it essential to study strategic ability with incomplete information.
Variants of the cooperation modalities which correspond to di�erent forms of
coordination within coalitions were proposed in [39]. [38] proposes a combina-
tion of ATL with the epistemic modalities for collective knowledge. In that
system formulas are interpreted at sets of states and the existence of strategies
which are winning for all the epistemically indiscernible states can be expressed
by combining epistemic and cooperation modalities. Such strategies are called
uniform with respect to the corresponding form of collective knowledge. The
survey [9] gives an overview of the variants of the semantics of ATL in the
presence of perfect as well as imperfect information.

Along with the alternating transition systems proposed in [6], ATL has
been given semantics on interpreted systems, which are known from the study
of knowledge-based programs [26], and other structures, some of which have

96 C�at�alin Dima 14

been shown to be equivalent [28]. Most of the proposed extensions of ATL and
other temporal logics by epistemic modalities include only the future temporal
operators and the observability relations which are needed for the semantics of
the S5 epistemic modalities are either de�ned as the equality of current local
states of the corresponding agents or assumed to be given explicitly in the
respective structures and required to respect equality of local state [46, 61].

Formally, the syntax of ATL is given by the following grammar:

φ ∶∶= p ∣ φ ∧ φ ∣ ¬φ ∣ ⟪A⟫#φ ∣ ⟪A⟫φU φ ∣ ⟪A⟫φ1W φ2 ∣KAφ,

where p ranges over the set Π of atomic propositions, and A ranges over the
set of subsets of Ag. According to [10, 44], the weak-until operator must be
included in order to fully capture all the temporal operators in the scope of the
coalition operators.

The semantics is given in terms of transitions systems with actions, named
game arenas.

De�nition 4. A game arena is a tuple Γ = (Ag,Q, (Acta)a∈Ag,→,Q0,
(∼a)a∈Ag,Π, λ), where

� Ag is a set of agents.

� Q is a set of states.

� Acta is a �nite set of actions available to agent a. We write ActA for

∏a∈AActa and Act for ActAg.
� Q0 ⊆ Q is the set of initial states.

� ∼a is the indistinguishability relation for agent a, which is supposed to be
an equivalence relation.

� Π, is a set of atomic propositions.

� λ ∶ Q→ 2Π is the state-labeling function.

� (Q,C,→,Q0, λ) is a labeled transition system, in the sense that →⊆ Q ×

C ×Q, with the further requirement that for any q ∈ Q and c ∈ C, there
exists some q′ ∈ Q with q

c
Ð→ q′.

An element c ∈ C will be called an action tuple. We write q
c
Ð→ r for

transitions (q, c, r) ∈ δ.

Given a run ρ = q0
c1
Ð→ q1

c2
Ð→ . . ., we denote qi by ρ[i], i = 0, . . . , ∣ρ∣, and ci+1

by act(ρ, i), i = 0, . . . , ∣ρ∣−1. We write ρ[0..i] for the pre�x q0
c1
Ð→ q1

c1
Ð→ . . .

ci
Ð→ qi

of ρ of length i.

A coalition is a subset of Ag. Given a coalition A ⊆ Ag, the distributed
indistinguishability relation for A is the relation ∼A= ⋂a∈A ∼a. This is the
same de�nition of distributed indistinguishability from Kripke structures for
epistemic temporal logics. Also the common knowledge indistinguishability

15 Algorithmic problems in logics of knowledge and time 97

can be de�ned as ∼CA
= (⋃a∈A ∼a)

∗
, with (⋅)∗ denoting re�exive-transitive

closure, similar to the temporal epistemic framework.
Runs ρ and ρ′ are indistinguishable (observationally equivalent) to coali-

tion A, denoted ρ ∼A ρ
′, if ∣ρ∣ = ∣ρ′∣, act(ρ, i)

A
= act(ρ′, i)

A
for all i < ∣ρ∣, and

ρ[i] ∼A ρ
′[i] for all i ≤ ∣ρ∣. Again, this is the straightforward generalization of

the synchronous and perfect recall observability relations to the multi-player
games setting presented here.

De�nition 5 ([16, 20]). A strategy for an agent a is any mapping σ ∶

(Q/ ∼a)
∗ → Acta. The set of strategies for agent a in the game arena Γ is

denoted Σ(a,Γ).
A strategy for a coalition A is a tuple of strategies with incomplete

information for each member of the coalition. The set of strategies for coalition
A in the game arena Γ is denoted Σcoal(A,Γ).

A cooperative strategy for a coalition A is any mapping σ ∶ (Q/ ∼A

)∗ → ActA. The set of cooperative strategies for coalition A in the game arena
Γ is denoted Σcoop(A,Γ).

A strategy based on common knowledge for a coalition A is any
mapping σ ∶ (Q/ ∼CA

)∗ → ActA. The set of strategies based on common know-
ledge for coalition A in the game arena Γ is denoted Σcl(A,Γ).

A strategy σ of any of the above type is memoryless if for any sequence
of items w ∈ dom(σ), if last(w) = last(w′) then σ(w) = σ(w′).

All the above de�nitions introduce strategies with incomplete information.
Strategies with complete information for an agent a or for a coalition A are
de�ned as mappings σ ∶ Q∗ → Acta, resp σ ∶ Q

∗ → ActA.

An individual strategy σ for agent a is compatible with a run ρ = q0
c1
Ð→

q1
c2
Ð→ . . . if

σ([ρ[0]]∼a⋯[ρ[i]]∼a) = ci+1 a
for all i ≤ ∣ρ∣.

A cooperative strategy σ for coalition A is compatible with a run ρ = q0
c1
Ð→

q1
c2
Ð→ . . . if

σ([ρ[0]]∼A⋯[ρ[i]]∼A) = ci+1 A
for all i ≤ ∣ρ∣. The compatibility relation for strategies with common knowledge
can be de�ned similarly.

Obviously if σ is compatible with run ρ then it is compatible with any run
that is indistinguishable from ρ to a (resp. A if it's a cooperative strategy).

Cooperating strategies for coalitions are introduced in [20, 30]. In such
strategies, coalition members have a communication mechanism which enables
the coalitions to carry out strategies that are based on their distributed know-
ledge. (Recall that a coalition has distributed knowledge of fact φ i� φ is a logical

98 C�at�alin Dima 16

consequence of the combined knowledge of the coalition members.) We assume
that a coalition has a strategy to achieve a goal φ only if the same strategy can
be used in all the cases which are indistinguishable from the actual one with
respect to the distributed knowledge of the coalition. This choice is known as
de re strategies [38], and rules out the possibility for a coalition to be able to
achieve φ by taking chances, or to be able to achieve φ in some of the cases which
are consistent with its knowledge and not in others. This variant of ATL which
is obtained by adopting these conventions is called Alternating Time Logic with
Knowledge and Communicating Coalitions, and denoted ATLiR indicate distri-
buted knowledge, incomplete information and perfect recall characteristics of
this logic.

On the other hand, cooperating strategies based on common knowledge
are introduced in [16]. In this setting, the agents identify their abilities to
achieve a common goal only based on their common knowledge of the current
state of the system. This setting could be interpreted as the minimal scenario
requiring communication between agents when establishing a coalition: practi-
cally, the agents need only agree on their common goal, no other information
exchange is needed concerning the local state of each agent.

Satisfaction of ATLiR formulas is de�ned with respect to a given arena Γ,
a run ρ ∈ Runsω(Γ), a position i in ρ by the clauses and depends on the type
of coalitions used for interpreting the coalition operators, which is used as a
subscript of the modeling relation ⊧X with X ∈ {coal, coop, cnl}:

� (Γ, ρ, i) ⊧X p if p ∈ λ(ρ[i]).

� (Γ, ρ, i) ⊧X φ1 ∧ φ2, if (Γ, ρ, i) ⊧X φ1 and (Γ, ρ, i) ⊧X φ2.

� (Γ, ρ, i) ⊧X ¬φ if (Γ, ρ, i) /⊧X φ.

� (Γ, ρ, i) ⊧X ⟪A⟫#φ if there exists a strategy σ ∈ ΣX(A,Γ) such that
(Γ, ρ′, i + 1) ⊧X φ for all runs ρ′ ∈ Runsω(Γ) which are compatible with σ
and satisfy ρ′[0..i] ∼A ρ[0..i].

� (Γ, ρ, i) ⊧X ⟪A⟫φ1 U φ2 i� there exists a strategy σ ∈ ΣX(A,Γ) such
that for every run ρ′ ∈ Runsω(Γ) which is compatible with σ and satis-
�es ρ′[0..i] ∼A ρ[0..i] there exists j ≥ i such that (Γ, ρ′, j) ⊧X φ2 and
(Γ, ρ′, k) ⊧X φ1 for all i ≤ k ≤ j − 1.

� (Γ, ρ, i) ⊧X ⟪A⟫φ1W φ2 i� there exists a strategy σ ∈ ΣX(A,Γ) such
that for every run ρ′ ∈ Runsω(Γ) which is compatible with σ and satis�es
ρ′[0..i] ∼A ρ[0..i] one of the two situations occur:

1. Either there exists j ≥ i such that (Γ, ρ′, j) ⊧X φ2 and (Γ, ρ′, k) ⊧X
φ1 for all k = i, . . . , j − 1.

2. Or (Γ, ρ′, k) ⊧X φ1 for all k ≥ i.

17 Algorithmic problems in logics of knowledge and time 99

� (Γ, ρ, i) ⊧X KAφ i� (Γ, ρ′, i) ⊧X φ, for all runs ρ′ ∈ Runsω(Γ) which satisfy
ρ′[0..i] ∼A ρ[0..i].
The semantics for logics in which strategies have complete information

can be de�ned similarly, by removing any reference to runs that give identical
observations.

The rest of the combinations between the temporal connectives and the
cooperation modalities ⟪A⟫ and ⟦A⟧ are de�ned as follows:

PAφ = ¬KA¬φ ⟦A⟧#φ = ¬⟪A⟫#¬φ

⟦A⟧φU ψ = ¬⟪A⟫(¬ψW ¬ψ ∧ ¬ϕ) ⟦A⟧φW ψ = ¬⟪A⟫(¬ψU ¬ψ ∧ ¬ϕ)

⟪A⟫◇ φ = ⟪A⟫trueU φ ⟪A⟫◻ φ = ⟪A⟫φW false

⟦A⟧◇ φ = ⟦A⟧trueU φ ⟦A⟧◻ φ = ⟦A⟧φW false .

A formula φ is valid in a game arena Γ, written Γ ⊧ φ, if (Γ, ρ,0) ⊧ φ for
all ρ ∈ Runsω(Γ). The model-checking problem for ATLiR is to decide whether
Γ ⊧ φ for a given formula φ and arena Γ.

Implementing strategies which rely on distributed knowledge requires some
care. For instance, simply supplying coalition members with a mechanism to
share their observations with each other would have the side e�ect of enhan-
cing the knowledge at each agent's disposal upon considering the reachability
of subsequent goals as part of possibly di�erent coalitions, whereas we assume
that each agent's knowledge is just what follows from its personal experience
at all times. One may therefore assume that coalition activities are carried
out through the guidance of corresponding virtual supervisors who receive the
coalition members' observations and previously accumulated knowledge and in
return direct their actions for as long as the coalition exists without making
any additional information available.

3.1. Results on model-checking variants of ATL

with incomplete information

It is known that the model-checking problem for the case of complete
information is decidable in polynomial time [5]. In the case of incomplete
information and perfect recall the following theorem is stated without proof
in [5], (attributed to an unpublished paper of M. Yannakakis):

Theorem 2. The model-checking problem for ATL with incomplete infor-
mation and perfect recall is undecidable.

In [11], we give a self-contained proof of this result. Our proof is based
on a direct simulation of Turing machines by concurrent game structures under

100 C�at�alin Dima 18

imperfect information and perfect recall, which allows for a reduction of the non-
halting problem for Turing machines to the model checking problem for ATL
under imperfect information and perfect recall semantics. The con�gurations
of a given Turing machine are encoded horizontally in the levels of the tree
which represents the outcome of the desired winning strategy.

On the other hand, variants of ATL with memoryless agents have been
shown to have decidable model checking in [1,53,61]. Results on model-checking
ATEL with memoryless strategies can be found in [1, 42, 53, 61]. Other results
on ATL with complete information can be found in [10,28].

In [20] we prove the following result:

Theorem 3. The model-checking problem is decidable for ATLiR (i.e.
with cooperating strategies for coalitions).

We prove our model-checking result by induction on the construction the
formula to be checked, like in model-checking algorithms for ATL or CTL, with
two signi�cant di�erences. Firstly, the implicit distributed knowledge operator
hidden in the coalition operator is handled by means of a �subset construction�
for identifying states with indistinguishable histories, a technique used e.g. [13]
for transforming games with imperfect observation to games with perfect obser-
vation. Secondly, checking whether in a given set of indistinguishable states the
coalition has a strategy to achieve goal φ involves building a tree automaton,
which can be seen as a game between the coalition (supervisor) and the rest of
the agents. This game resembles the two-player games with one player having
imperfect information from [13], but also has a notable di�erence: the goal of
the player with imperfect information is not fully observable. Such a goal can
be achieved at di�erent times along di�erent yet indistinguishable runs. The-
refore, we have a bookkeeping mechanism for the time of achieving the goal
along each run.

The tree automata we use employs only �occurrence� accepting conditions:
the set of states occurring along each run of the tree is required to belong to
some given set of sets of states. No Muller conditions, i.e., no restrictions on
the set of states occurring in�nitely often, are involved.

The model-checking algorithm proceeds by constructing re�nements of
the given game arena Γ, unlike in CTL and ATL model-checking where the
only modi�cations of the given arena are the insertion of new propositional
variables (corresponding to subformulas of the formula to model-check). This
re�nement enables telling apart classes of histories which are indistinguishable
to coalition members.

Preliminary results are reported in [30], where the knowledge modalities
are required to have only argument formulas from the past subset of LTL.

19 Algorithmic problems in logics of knowledge and time 101

In [20], ATLiR has only future operators, but past LTL operators can be added
to ATLiR at no technical cost. Also, the model-checking algorithm for ATLiR
is based on tree-automata and not on the syntactical transformation of past
formulas as in [30].

We also note the following result from [16]:

Theorem 4. The model checking problem for ATLiR with strategies based
on common knowledge is undecidable.

The proof of this theorem is inspired from the proof of the undecidability
of the model-checking problem for CTLK with common knowledge operators
from [63].

4. A REAL-TIME EPISTEMIC LOGIC

The whole theory presented above on combinations of temporal and epis-
temic logics only considers discrete linear or branching time. It is natural to
consider also extensions to the case of continuous time, and to study the possi-
bility to combine the techniques used for model-checking continuous-time logics
like TCTL [2], or MITL [4] with epistemic logics.

In [18] we investigate one possibility to extend these results to the conti-
nuous case. We present a logic, called TCTLK, which is based on an epistemic
extension of the Timed Computational Tree Logic, with the addition of freeze
operators and clock variables for capturing continuous-time passage. The epis-
temic operators are interpreted using a synchronous and perfect recall semantics
which relies on timed automata [3]. The observability relations used for de�ning
the epistemic operators include the ability of agents to observe truth values of
some atomic propositions (and the inability to observe some others), as well as
their ability to observe clock values, as a generalization of the ability to observe
only time passage.

We show that model-checking for this continuous-time version of epistemic
CTL with synchrony and perfect recall is undecidable, a result which is somew-
hat expectable as the discrete time model-checking algorithm needs a subset
construction for both CTL and LTL endowed with epistemic operators [17,64],
construction which is known not to be available for timed automata [3]. Our re-
sult is even stronger: model-checking for TCTLK is undecidable even without
the freeze quanti�ers from TCTL, and the result shows that only one unob-
servable clock su�ces for undecidability. This also means that undecidability
holds even if the agents are only able to observe time passage. The source of
this strong result comes more from the expressive power of the models than
from the logic itself, and is strongly related with the impossibility to generalize
the subset construction for timed automata.

102 C�at�alin Dima 20

On the other hand, we show that if agents are able to fully observe clock
values � and this includes the observability of the values for the freeze clocks of
TCTL � then model-checking becomes decidable. The proof goes by a straight-
forward adaptation of the classical algorithm for TCTL model-checking [2], and
is based on the fact that, with full clock observability, the subset construction
only concerns the �untimed� part of the model.

Previous work on combining epistemic and continuous time expressivity
includes [68]. There, a continuous time variant of CTL with knowledge ope-
rators is also presented, with a state-based semantics that includes state and
clock observability, but does not allow agents to memorize the whole history of
observations or to observe the absolute time. Therefore, the logic in [68] has a
decidable model-checking problem. However our logic is more expressive, due
to its perfect recall semantics.

The semantics of timed automata is given in [18] in a weakly-monotonic
setting which draws some similarities with the work of [51]. In this setting,
the time domain is divided into a sequence of closed intervals I1, I2, . . . with
Ii ∩ Ii+1 = α for some α ∈ R≥0. A w-point (weakly-monotonic point) is then
a tuple (k, β) consisting of an interval index k and an element of the interval
Ik.

This semantics avoids problems related to the density of real numbers,
that lead sometimes authors to consider a �nonstrict� variant of the until ope-
rator, as in [7]. We introduce a weakly-monotonic presentation for both trajec-
tories and runs. Trajectories are, in some sense, annotations of timed words [3]
with clock information, and, as such, are a generalization of the concept of word
in �nite automata. Runs are continuous presentations of behaviors of timed
automata, embodying the possibility to have, in a model, some �nite control
(locations) which is not captured by formulas. The observability relation is
then introduced using projection and equivalence on trajectories. Equivalence
is needed as there may be several trajectories representing the same behavior,
due to the possibility to have silent transitions in a timed automaton. Also
projection cannot be de�ned directly on runs, as it models �forgetting� some
part of the observable state of a system.

The following subsections give the formalization of the above, and are
taken from [18].

4.1. Trajectories over continuous time

De�nition 6. A trajectory over X and a set of state symbols Π is a pair
T = (I, θ), where I is a (�nite or in�nite) sequence of pairs of sets of state
symbols and intervals

21 Algorithmic problems in logics of knowledge and time 103

� I = (Si, [αi−1, αi])1≤i<η with η ∈ N ∪ {∞}, Si ⊆ Π, αi−1, αi ∈ R≥0, αi−1 ≤ αi
and α0 = 0.

and θ is a continuous mapping of clock intervals:

� θ = (θi)1≤i<η with θi ∶ [αi−1, αi] ×X → R≥0

subject to the following properties.

1. For all i < η and all t, t′ ∈ [αi−1, αi], t < t
′, and for all x ∈ X , θi(t

′, x) =

θ(t, x) + t′ − t.
2. For all i < η−1 there exists a (possibly empty) set of clocks X ⊆X such

that θi+1(αi, ⋅)=θi(αi, ⋅)[X ∶=0].

Remark 1. Note that for two successive elements of I, (Si, [αi−1, αi]),
(Si+1, [αi, αi+1]), intervals are adjacent.

The weakly-monotonic time domain of a trajectory T = (I, θ) is the set
Iintv = ⋃1≤i<η{i}× [αi−1, αi]. Elements of Iintv will be called weakly-monotonic
time points (or w-points for short). Iintv can be totally-ordered as usual: given
(n, t), (n′, t′) ∈ Iintv, we say that (n, t) precedes (n′, t′) and denote (n, t) ≺

(n′, t′) if either n < n′ or n = n′ and t < t′.

Remark 2. Note that, for some 1 ≤ i < η, Iintv might contain only one
element of the form (i, α). The intuition behind this is that the i-th state in
the trajectory is transient, the system must pass through this state but it rests
there for zero amount of time.

Given a trajectory T = (I, θ) and some w-point (n,β) ∈ Iintv, we may
de�ne the su�x of T starting with (n,β), denoted by T [(n,β)..] = (I[(n,β)..],
θ[(n,β)..]), as follows:

1. I[(n,β)..] = (Si+n−1, [α
′
i−1, α

′
i])1≤i<η′ with η

′ = η − n + 1 and α′i = αi+n−1

for all i with 1 ≤ i < η′.
2. θ[(n,β)..] = (θ′i)1≤i<η′ with θ′i(t, x) = θi+n−1(t, x) for all i with 1 ≤ i < η′.

Similarly, the pre�x of T upto (n,β), denoted by T [0..(n,β)]=(I[0..(n,β)],
θ[0..(n,β)]), can be de�ned as follows:

1. I[0..(n,β)] = (Si, [α
′
i−1, α

′
i])1≤i<n+1

with α′i = αi for i < n, and α′n = β.
2. θ[0..(n,β)] = (θ′i)1≤i≤n is de�ned by θ′i(t, x) = θi(t, x) for all 1 ≤ i ≤ n,
t ∈ [0, α′i].
Another useful operation is resetting some clock z at some w-point (k, β):

given a trajectory T = (I, θ) and some w-point (k, β) ∈ Iintv, the trajectory
T [z ∶= 0 at (k, β)] = (I ′, θ′) is de�ned as follows:

� I ′ = (S′i, [α
′
i−1, α

′
i])1≤i<η′ where η′=η+1 and S′i =Si for i≤k, S′i =Si−1 for

k<i<η′ and α′i=αi for i<k, α′k =β and α′i=αi−1 for k<i<η′.

104 C�at�alin Dima 22

� θ′ = (θ′i)1≤i<η′ is de�ned by

θ′i(t, z) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

θi(t, z), for i ≤ k and (i, t) ≺ (k, β)

θi−1(t, z), if k<i<η
′,∃j≤i−1, θj(t, z)=0

θi−1(t, z) − θi−1(β, z), otherwise

and, for x ≠ z, θ′i(t, x) = θ′i(t, x) for i ≤ k and (i, t) ≺ (k, β), and θ′i(t, x) =

θ′i−1(t, x) otherwise.
Figure 1 gives an example of a trajectory T , and of T [x ∶= 0 at (1,1)].
A trajectory is initialized if all the clocks are set to zero at the initial

w-point, i.e.for all x ∈X, α1(0, x) = 0.

Fig. 1. Resetting clock x in T at (1,1).

4.2. Trajectories and observability

In this subsection, we give the observability relation on trajectories, which
represents the essence of the epistemic part of the logic. This requires the
de�nition of a projection operator on trajectories, which tells what are the
clock values and state symbols that are observable by some agent along some
trajectory.

Given a set of clocks X ′, a set of states Π′, and a trajectory T = (I, θ)
with I = (Si, [αi−1, αi])1≤i<η and θ = (θi)1≤i<η, the projection of T de�ned

by (Π,X ′) is the trajectory T
Π,X ′ = (I

Π,X ′ , θ Π,X ′) with I
Π,X ′ = (Si ∩ Π′,

[αi−1, αi])1≤i<η and θ
Π,X ′ = (θ′i)1≤i<η where θ′i(t, x) = θi(t, x) for all i < η, t ∈

[αi−1, αi], and x∈X .
Our presentation of trajectories has the problem that some behavior can

be presented by distinct trajectories: it is what we call the �stuttering� phe-
nomenon. A trajectory is stuttering-free if either two consecutive intervals in

23 Algorithmic problems in logics of knowledge and time 105

I are labeled with distinct state symbols or if some clock is reset in between
the two intervals. Formally, a trajectory T = (I, θ) is stuttering-free if for all
i<η−1, if Si≠Si+1 then there exists x ∈X with θi+1(αi, x)=0 ≠ θi(αi, x).

Stuttering-free trajectories represent �normal forms� for behaviors of ti-
med automata: consider two trajectories Tj = (Ij , θj) (j = 1,2), where Ij =

(Sji , [α
j
i−1, α

j
i])1≤i<ηj and θ

j =(θji)1≤i<ηj . Assume that T2 is stuttering-free. We

say that T2 represents T1 if there exists some surjective increasing function
ϕ ∶ [1..η1−1]→ [1..η2−1] satisfying the following requirements:

� For all i<j<η1, if ϕ(i)=ϕ(j) then S
1
i =S

1
j =S

2
ϕ(i).

� α2
ϕ(i) = max{α1

j ∣ ϕ(j) = ϕ(i)}.

� For all i<η1 and t∈[αi−1, αi], θ
2
ϕ(i)(t, x) = θ

1
i (t, x).

We also say that two (arbitrary) trajectories T1, T2 are identical, denoted
T1 ≡ T2, if there exists a third stuttering-free trajectory T3 which represents
both T1 and T2.

4.3. A weakly-monotonic semantics of timed automata

A simple constraint over X is a constraint of the form x ∈ I, where I is
an interval with nonnegative integer bounds. For a simple constraint C and a
clock valuation v, we denote as usual v ⊧ C if v satis�es the constraint C.

De�nition 7. A timed automaton [3] is a tuple A = (Q,X ,Π, δ, λ,Q0)

where Q is a �nite set of locations, X is a �nite set of clocks, Π is a �nite set
of state labels, λ ∶ Q→ 2Π is the state-labeling function, Q0 ⊆ Q is the set of
initial locations, and δ is a �nite set of tuples called transitions of the form
(q,C,X, q′), where q, q′ ∈Q, X ⊆X , and C is a conjunction of simple constraints
over X .

Our semantics of timed automata will be given in terms of runs, which are
behaviors of timed automata along trajectories. This is just an extension of the
classical notion of a run in a timed automaton, enhanced with the possibility
to have �transient� locations (in which control stays for a zero amount of time)
and adapted such that each time point be associated with the current location.

A run in a timed automaton A = (Q,X ,Σ, δ, λ,Q0) is then a pair R =

(I, ρ), where

� I is a sequence of pairs of locations and intervals, I = (qi, [αi−1, αi])1≤i<η,
where η ∈ N ∪ {∞}, qi ⊆ Q and αi−1, αi ∈ R≥0 with αi−1 ≤ αi, and α0 = 0.

� ρ = (ρi)1≤i<η with ρi ∶ [αi−1, αi] ×X → R≥0.

subject to the following constraints:

106 C�at�alin Dima 24

1. For all 1 ≤ i < η and all t, t′ ∈ [αi−1, αi], t < t
′, and for all x ∈ X , θi(t

′, x) =
θ(t, x) + t′ − t.

2. For all 1 ≤ i < η − 1 there exists some transition (qi,Ci,Xi, qi+1) ∈ δ for
which ρi(αi, ⋅) ⊧ Ci and ρi+1(αi, ⋅) = ρi(αi, ⋅)[Xi ∶= 0].

We say that the run R is unbounded (or has an unbounded domain)
if η=∞ or αη−1=∞.

At second item of the enumeration above, we say that the transition
(qi,Ci,Xi, qi+1) is associated with the w-point (i, αi) � and also associated with
(i + 1, αi), both being w-points in Iintv for the run R.

Pre�x and post�x operators can also be de�ned on runs. Hence, given a
run R = (I, ρ) and some w-point (n,β) ∈ Iintv, the pre�x of R upto (n, t) is
denoted R[0..(n,β)] = (I[0..(n,β)], ρ[0..(n,β)]) and the su�x of R starting

with (n, t) is denoted R[(n,β)..] = (I[(n,β)..], ρ[(n,β)..]).

Resetting some clock along a run, R[z ∶= 0 at (k, β)], can also be de�ned
as for trajectories. However the result might not always be a run: it is a run
only when there exists a loop (qk,C,X, qk) which can be associated with the
w-point (k, β) in the result R[z ∶= 0 at (k, β)].

Given a run R=(I, ρ) with I =(qi, [αi−1, αi])1≤i<η, the trajectory gene-

rated by R is the trajectory
(
↝R)=(I

′, ρ) where I =(λ(qi), [αi−1, αi])1≤i<η.
A run R = (I, ρ) with I = (qi, [αi−1, αi])1≤i<η and ρ = (ρi)1≤i<η is accepting

if the �rst location q0 is an initial location and the initial clock valuation is
α1(0, x) = 0 for all x ∈ X . A trajectory T is accepted if it is associated with an
accepting run. Note that in our timed automata, all locations are �accepting�.

4.4. TCTLK: syntax, semantics, model-checking

The Timed Computational Tree Logic with knowledge operators and with
synchronous and perfect recall semantics, denoted TCTLK, has the following
syntax:

φ ∶∶= p ∣ C ∣ φ ∧ φ ∣ ¬φ ∣ AφU φ ∣ EφU φ ∣ z in φ ∣Kaφ,

where p ∈ Π, the set of atomic propositions, C is a simple constraint over the
set of clocks X , y is some clock in X , and a ∈ Ag an element of the �nite set of
agents Ag.

The operator z in φ is called the freeze operator. We denote CTLK the
logic de�ned by formulas not containing the freeze operator.

The semantics of TCTLK is given in terms of runs in a timed automaton
which is endowed with some partial observability relations, one for each agent
a in a �nite set of agents Ag. Each partial observability relation models what

25 Algorithmic problems in logics of knowledge and time 107

is observable by some agent a and is induced by a subset of symbols Πa ⊆ Π
and a subset of clocks Xa ⊆ X .

Formally, the semantics is given in terms of a multi-agent timed system,
de�ned as follows:

De�nition 8. A timed system with agents in Ag is a tuple M =

(A,Z, (Πa)a∈Ag, (Xa)a∈Ag) where
� A is a state-labeled timed automaton A = (Q,X ,Π, δ, λ,Q0), that is, with
λ ∶ Q→ 2Π and δ ⊆ Q ×Constr(X) × 2X ×Q.

� Z ⊆ X is a subset of clocks (called freeze clocks).

� For each a ∈ Ag, Πa ⊆ Π, Xa ⊆ X .

It is also assumed that A contains, for each location q ∈ Q and each clock z ∈ Z,
a loop (q, true,{z}, q).

The requirement that each location has a loop resetting a clock in Z does
not represent a strong restriction: we may think that we are given a timed
systemM without the clocks Z, and then we enhanceM by appending clocks
from Z, such that the freeze quanti�ers be interpretable.

For each agent a ∈ Ag, the observability relation for a is the follo-
wing: given two runs R1 and R2 in A, and some w-point (k, β) occurring in
both, we say that R1 and R2 cannot be distinguished by a upto (k, β) if
traj(R1)[0..(k, β)] Πa,Xa

≡ traj(R2)[0..(k, β)] Πa,Xa
.

The semantics of TCTLK formulas is given in terms of tuples (M,R, k, β)
consisting of an n-agent system M, an unbounded run R = (I, ρ) in the un-
derlying timed automaton of M and some w-point (k, β) ∈ Iintv. The rules
de�ning the semantics of TCTLK formulas are the following:

� (M,R, k, β) ⊧ p if p ∈ λ(q), q being the �rst location in R[(k, β)..].

� (M,R, k, β) ⊧ C if v ⊧C where v is the clock valuation at (k, β) in R,
v = ρk(β, ⋅) for R = (I, ρ).

� (M,R, k, β) ⊧ φ1 ∧ φ2 if (M,R, k, β) ⊧ φ1 and (M,R, k, β) ⊧ φ2.

� (M,R, k, β) ⊧ ¬φ if (M,R, k, β) /⊧ φ.

� (M,R, k, β) ⊧ z in φ if (M,R[z ∶=0 at (k, β)], k, β)⊧φ.

� (M,R, k, β) ⊧ Kaφ if for any run R′ and any w-point (k′, β) in R′ with
traj(R′)[0..(k′, β)]

Πa,Xa
≡ traj(R)[0..(k, β)]

Πa,Xa
we have that (M,R′,

k′, β) ⊧ φ.
� (M,R, k, β) ⊧ Eφ1 U φ2 if there exists some run R′ = (I ′, ρ′) for which
R[0..(k, β)] = R′[0..(k, β)] and there exists a w-point (k′,β′) ∈I ′intv with
(k′,β′) ⪰ (k, β), (M,R′, k′, β′) ⊧ φ2 and for all (k′′, β′′) ∈ I ′intv for which
(k′′, β′′)≺(k′, β′), (k′′, β′′)⪰(k, β), we have that (M,R′, k′′, β′′) ⊧ φ1.

� (M,R, k, β) ⊧ Aφ1 U φ2 if for any run R′=(I ′, ρ′) for which R[0..(k, β)]=

108 C�at�alin Dima 26

R′[0..(k, β)], there exists a w-point (k′, β′) ∈ I ′intv with (k′, β′) ⪰ (k, β),
(M,R′, k′, β′)⊧φ2 and for all (k′′, β′′)∈I ′intv for which (k′′, β′′)≺(k′, β′),
(k′′, β′′)⪰(k, β) we have that (M,R′, k′′, β′′) ⊧ φ1.

The usual abbreviations apply here too, in particular

E ◇ φ = E trueU φ A ◻ φ = ¬E ◇¬φ

A◇ φ = A trueU φ E ◻ φ = ¬A◇¬φ

Paφ = ¬Ka¬φ

An example of a TCTLK formula is Paϕ ∧ ¬ϕ, with ϕ = z in E ◇ (z ≤

3∧danger). This might model a situation in which some sensor amight provoke
a false alarm, as its observable state would indicate that it's possible that in
less than 3 time units the system goes into a dangerous state, whereas this
situation cannot occur in the current state.

The following theorems summarize the results from [18]:

Theorem 5. 1. The model-checking problem for TCTLK over conti-
nuous time domains is undecidable.

2. The model-checking problem for TCTLK with full observability of clock
values is decidable.

Here, by full observability of clock values we mean that formulas of TCTLK
are interpreted over multi-agent systems M = (A,Z, (Πa)a∈Ag, (Xa)a∈Ag) in
which Xa = X for all a ∈ Ag.

5. CONCLUSIONS

We have presented a number of results towards identifying the frontier of
decidability for the satis�ability and the model-checking problems for combina-
tions of temporal and epistemic logics. Unlike the classical case, undecidability
occurs even for non-parametric cases, once the epistemic operators are assumed
to be non-forgetting. The �rst interesting result is that a slight change in the
semantics of the simplest combination, CTLK, which is natural in that it con-
siders agent observations are based on subsets of atomic propositions and not
"abstract" local states as considered classically, leads to undecidability. Then
we have seen that most of the interesting cases of alternating temporal logics
with non-forgetting semantics have an undecidable model-checking problem.
And, �nally, CTLK with a continuous time semantics has also an undecidable
model-checking problem.

But all these results do not cover the entire topics related with the import
of the classical duality between logics and automata [29, 59]. In this classi-
cal framework, Monadic Second Order Logic (MSO), B�uchi/Muller/Rabin or

27 Algorithmic problems in logics of knowledge and time 109

tree automata and games are shown to be equally expressive over linear and
branching time domains, and various temporal logics can be characterized with
fragments of MSO and subclasses of automata. The natural question would
then be whether these results could be transferred to the case of temporal
epistemic logics. We mention preliminary results from [21] which shows that
ATLiR expressivity cannot be captured by the µ-calculus of knowledge and time
and the corresponding generalization of jumping tree automata (see also [8] for
some preliminary results concerning the µ-calculus of knowledge and time).
This suggests that expressiveness in temporal epistemic logics is more di�cult
to characterize.

REFERENCES

[1] Th. Agotnes, V. Goranko and W. Jamroga, Alternating-time temporal logics with irre-
vocable strategies. In: D. Samet (Ed.), Proceedings of TARK'07, 2007, pp. 15�24.

[2] R. Alur, C. Courcoubetis and D.L. Dill,Model-checking in dense real-time. Inf. Comput.
104 (1993), 1, 2�34.

[3] R. Alur and D. Dill, A theory of timed automata. Theoret. Comput. Sci. 126 (1994),
183�235.

[4] R. Alur, T. Feder and Th. Henzinger, The bene�ts of relaxing punctuality. Journal of
ACM 43 (1996), 1, 116�146.

[5] R. Alur, Th. Henzinger and O. Kupferman, Alternating-time temporal logic. Proceedings
of COMPOS 1536 of LNCS, 23�60. Springer Verlag, 1998.

[6] R. Alur, Th. Henzinger and O. Kupferman, Alternating-time temporal logic. Journal of
the ACM 49 (2002), 5, 672�713.

[7] Ch. Baier and J.-P. Katoen, Principles of Model Checking. The MIT Press, 2008.

[8] R. Bozianu, C. Dima and C. Enea, Model-checking an epistemic µ-calculus with synchro-
nous and perfect recall semantics. Proceedings of the 14th Conference on Theoretical
Aspects of Rationality and Knowledge (TARK'13), 2013, pp. 176�186.

[9] N. Bulling, J. Dix andW. Jamroga,Model checking logics of strategic ability: Complexity.
In: M. Dastani, K.V. Hindriks and J.-J.C. Meyer (Eds.), Speci�cation and Veri�cation
of Multi-Agent Systems. Springer, 2010, pp. 125�160.

[10] N. Bulling and W. Jamroga, Model checking ATL∗ is harder than it seemed. Technical
Report IfI-09-13, Clausthal University of Technology, 2009.

[11] Dima C and F.L. Tiplea, Model-checking ATL under imperfect information and perfect
recall semantics is undecidable. CoRR, abs/1102.4225, 2011.

[12] R. Chadha, S. Delaune and S. Kremer, Epistemic logic for the applied pi calculus. Pro-
ceedings of FMOODS/FORTE'09, 5522, Lecture Notes in Comput. Sci., Springer, 2009,
pp. 182�197.

[13] K. Chatterjee, L. Doyen, Th. Henzinger and J.-F. Raskin, Algorithms for omega-regular
games with imperfect information. Proceedings of CSL'06, 4207, Lecture Notes in Com-
put. Sci., Springer, 2006, pp. 287�302.

[14] E. Clarke, E. Emerson and A.P. Sistla, Automatic veri�cation of �nite-state concurrent
systems using temporal logic speci�cations. ACM Trans. of Programming Languages
and Systems 8 (1986), 2, 244�263.

110 C�at�alin Dima 28

[15] E. Clarke, O. Grumberg and D. Peled, Model Checking. The MIT Press, 2000.

[16] C. Diaconu and C. Dima, Model-checking alternating-time temporal logic with strategies
based on common knowledge is undecidable. Appl. Arti�cial Intelligence 26 (2012),
331�348.

[17] C. Dima, Revisiting satis�ability and model-checking for CTLK with synchrony and per-
fect recall. Proceedings of the 9th International Workshop on Computational Logic in
Multi-Agent Systems (CLIMA IX) 5405, LNAI, 2008, 117�131.

[18] C. Dima, Positive and negative results on the decidability of the model-checking problem
for an epistemic extension of timed ctl. Proceedings of TIME'09, pp. 29�36. IEEE
Computer Society, 2009.

[19] C. Dima, Non-axiomatizability for linear temporal logic of knowledge with concrete ob-
servability. J. of Logic Comput., 2010. To appear.

[20] C. Dima, C. Enea and D. Guelev, Model-checking an alternating-time temporal logic with
knowledge, imperfect information, perfect recall and communicating coalitions. Electron.
Proceedings in Theoret. Comput. Sci. 25 (2010), 103�117.

[21] C. Dima, B. Maubert and S. Pinchinat, Relating paths in transition systems: The fall of
the modal mu-calculus. Proceedings of 40th International Symposium on Mathematical
Foundations of Computer Science 2015 (MFCS), Part I, 9234, Lecture Notes in Comput.
Sci., Springer, 2015, pp. 179�191.

[22] Cl. Dixon, M.C. Fernandez Gago, M. Fisher and W. van der Hoek, Temporal logics of
knowledge and their applications in security. Electron. Notes Theor. Comput. Sci. 186
(2007), 27�42.

[23] J. Elgaard, N. Klarlund and A. Møller, MONA 1.x: New techniques for WS1S and
WS2S. Proceedings of CAV'98, 1427, Lecture Notes in Comput. Sci., Springer, 1998,
pp. 516�520.

[24] C. Elgot and M. Rabin, Decidability and undecidability of extensions of second (�rst)
order theory of (generalized) successor. J. Symbolic Log. 31 (1966), 2, 169�181.

[25] K. Engelhard, R. van der Meyden and Y. Moses, Knowledge and the logic of local pro-
positions. Proceedings of TARK'98, Morgan Kaufman, 1998, pp. 29�41.

[26] R. Fagin, J. Halpem, Y. Moses and M. Vardi, Reasoning about knowledge. The MIT
Press, 2004.

[27] P. Gammie and R. van der Meyden, MCK: Model checking the logic of knowledge.
Proceedings of CAV'04, 3114, Lecture Notes in Comput. Sci., Springer Verlag, 2004,
pp. 479�483.

[28] V. Goranko and W. Jamroga, Comparing semantics of logics for multi-agent systems.
Synthese 139 (2004), 2, 241�280.

[29] E. Gradel, W. Thomas and Th. Wilke, Automata, Logics and In�nite Games.
2500 LNCS. Springer Verlag, 2002.

[30] D. Guelev and C. Dima, Model-checking strategic ability and knowledge of the past of
communicating coalitions. Proceedings of DALT 2008, 5397, Lecture Notes in Comput.
Sci., Springer, 2008, pp. 75�90.

[31] D. Guelev, C. Dima and C. Enea, An alternating-time temporal logic with knowledge,
perfect recall and past: axiomatisation and model-checking. J. Appl. Non-Class. Log.,
2011, pp. 93�131.

[32] D.P. Guelev and C. Dima, Epistemic atl with perfect recall, past and strategy contexts.
Proceedings of the 13th International Workshop Computational Logic in Multi-Agent
Systems (CLIMA'12) 7486, Lecture Notes in Comput. Sci., Springer, 2012, pp. 77�93.

29 Algorithmic problems in logics of knowledge and time 111

[33] J. Halpem and R. Fagin, A formal model of knowledge, action and communication in

distributed systems: Preliminary report. Proceedings of PODC'84, 1985, pp. 224�236.

[34] J. Halpem and K. O'Neill, Anonymity and information hiding in multiagent systems. J.
Comput. Security 13 (2005), 3, 483�512.

[35] J. Halpem, R. van der Meyden and M. Vardi, Complete axiomatizations for reasoning

about knowledge and time. SIAM J. Comput. 33 (2004), 3, 674�703.

[36] J. Halpem and M. Vardi, The complexity of reasoning about knowledge and time: Ex-

tended abstract. Proceedings of STOC, 1986, pp. 304�315.

[37] J. Halpem and M. Vardi, The complexity of reasoning about knowledge and time. I.

Lower bounds. J. Comput. System Sci. 38 (1989), 1, 195�237.

[38] W. Jamroga and Th. �Agotnes, Constructive knowledge: What agents can achieve under

imperfect information. J. Appl. Non-Class. Log. 17 (2007), 4, 423�475.

[39] W. Jamroga and W. van der Hoek, Agents that know how to play. Fund. lnform. 63

(2004), 2�3, 185�219.

[40] H. Jonker and W. Pieters, Receipt-freeness as a special case of anonymity in epistemic

logic, June 2006. LAVoSS Workshop On Trustworthy Elections (WOTE 2006), Cam-
bridge.

[41] M. Kacprzak, A. Lomuscio, A. Niewiadomski, W. Penczek, Fr. Raimondi and M. Sz-
reter, Comparing BDD and SAT based techniques for model checking Chaum's Dining

Cryptographers Protocol. Fund. lnform. 72 (2006), 1�3, 215�234.

[42] M. Kacprzak and W. Penczek, Fully symbolic unbounded model checking for alternating-

time temporal logic. Autonomous Agents and Multi-Agent Systems 11 (2005), 1, 69�89.

[43] R. Ladner and J. Reif, The logic of distributed protocols. Proceedings of TARK, Morgan
Kaufmann, 1986, 207�222.

[44] Fr. Laroussinie, N. Markey and Gh. Oreiby, On the expressiveness and complexity of

ATL. Log. Methods Comput. Sci. 4 (2008), 2.

[45] A. Lomuscio andW. Penczek, LDYIS: A framework for model checking security protocols.
Fund. Inform., 85 (2008), 1�4, 359�375.

[46] A. Lomuscio and Fr. Raimondi, The complexity of model checking concurrent programs

against CTLK speci�cations. Proceedings of DALT'06, 4327, Lecture Notes in Comput.
Sci., Springer, 2006, pp. 29�42.

[47] A. Lomuscio and Fr. Raimondi, Mcmas: A model checker for multi-agent systems.
Proceedings of TACAS'2006, 3920, Lecture Notes in Comput. Sci., Springer, 2006,
pp. 450�454.

[48] A. Lomuscio and M. Ryan, On the relation between interpreted systems and Kripke

models. Proceedings of AAMAS'97, 1441, Lecture Notes in Comput. Sci., Springer,
1998, pp. 46�59.

[49] A. Lomuscio and B. Wozna, A complete and decidable security-specialised logic and its

application to the TESLA protocol. Proceedings of the 5th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS), ACM, 2006, pp. 145�152.

[50] S. Nain and M.Y. Vardi, Branching vs. linear time: Semantical perspective. Proceedings
of ATVA'07, 4762, Lecture Notes in Comput. Sci., Springer Verlag, 2007, pp. 19�34.

[51] P. Pandya and D. V. Hung, Duration calculus of weakly monotonic time. Proceedings
of FTRTFT, 1486, Lecture Notes in Comput. Sci., Springer, 1998, pp. 55�64.

[52] Fr. Raimondi and A. Lomuscio, Automatic veri�cation of multi-agent systems by model

checking via ordered binary decision diagrams. J. Appl. Log. 5 (2005), 2, 235�251.

112 C�at�alin Dima 30

[53] P.-Y. Schobbens, Alternating-lime logic with imperfect recall. Electron. Notes Theor.
Comput. Sci. 85 (2004), 2, 82�93.

[54] N. Shilov and N. Garanina, Model checking knowledge and �xpoints. Proceedings of
FICS, Extended version available as Preprint 98, Ershov Institute of Informatics, Novo-
sibirsk, 2002, pp. 25�39.

[55] K. Su, Model checking temporal logics of knowledge in distributed systems. Proceedings
of AAAI'2004, AAAI Press/The MIT Press, 2004, pp. 98�103.

[56] K. Su, Q. Chen, A. Sattar, W. Yue, G. Lv and X. Zheng, Veri�cation of authentication
protocols for epistemic goals via SAT compilation. J. Comput. Sci. Tech. 21 (2006), 6,
932�943.

[57] K. Su, G. Lv and Q. Chen, Knowledge theoretic approach to formal veri�cation of au-
thentication protocols. Sci. China Inf. Sci. 48 (2006), 4, 513�532.

[58] W. Thomas, In�nite trees and automation-de�nable relations over ω-words. Theoret.
Comput. Sci. 103 (1992), 1, 143�159.

[59] W. Thomas, Languages, automata and logic. In: G. Rozenberg and A. Salomaa (Eds.),
Handbook of Formal Languages 3, Beyond Words, Springer Verlag, 1997, pp. 389�455.

[60] J. van Benthem and E. Pacuit, The tree of knowledge in action: Towards a common
perspective. Proceedings of AiML, College Publications, 2006, pp. 87�106.

[61] W. van der Hoek, A. Lomuscio and M. Wooldridge, On the complexity of practical ATL
model checking. Proceedings of AAMAS, ACM, 2006, pp. 201�208.

[62] W. van der Hoek and M. Wooldridge, Cooperation, knowledge and time: Alternating-
time temporal epistemic logic and its applications. Studia Logica 75 (2003), 1, 125�157.

[63] R. van der Meyden, Common knowledge and update in �nite environments. Inform. and
Comput. 140 (1998), 2, 115�157.

[64] R. van der Meyden and N. Shilov, Model checking knowledge and time in systems with
perfect recall (extended abstract). Proceedings of FSTTCS, 1738, LNCS, 1999, 432�445.

[65] R. van der Meyden and K. Su, Symbolic model checking the knowledge of the dining cryp-
tographers. Proceedings o f the 17th IEEE Computer Security Foundations Workshop,
(CSFW-17), IEEE Computer Society, 2004.

[66] H. van Ditmarsch, W. van der Hoek, R. van der Meyden and Ji Ruan, Model checking
russian cards. Electron. Notes Theor. Comput. Sci. 149 (2006), 2, 105�123.

[67] S. van Otterloo, W. van der Hoek and M. Wooldridge, Model checking a knowledge
exchange scenario. Appl. Arti�cial Intelligence 18 (2004), 9�10, 937�952.

[68] B. Wozna and A. Lomuscio, A logic for knowledge, correctness and real time. Proceedings
of CLIMA V, Lecture Notes in Comput. Sci. 3487, Springer, 2005, pp. 1�15.

Received 1 August 2016 LACL, Universit�e Paris Est-Cr�eteil,
61 av. du G-ral de Gaulle,

94010 Cr�eteil, France
dima@u-pec.fr

