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Crystals are colored directed graphs encoding information about Lie algebra
representations. Kirillov-Reshetikhin (KR) crystals correspond to certain �nite-
dimensional representations of a�ne Lie algebras. We present a combinatorial
model which realizes tensor products of (column shape) KR crystals uniformly
across untwisted a�ne types. A corollary states that the Macdonald polynomi-
als (which generalize the irreducible characters of simple Lie algebras), upon a
certain specialization, coincide with the graded characters of tensor products of
KR modules. Some computational applications, as well as related work based
on the present one, are also discussed.
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1. INTRODUCTION

Kashiwara's crystals [18] are colored directed graphs encoding the struc-
ture of certain bases (called crystal bases) for certain representations of quan-
tum groups Uq(g) as q goes to zero; more precisely, the edges of the crystal,
given by the so-called crystal operators, encode the action of the Chevalley gene-
rators of Uq(g) on the crystal basis. The �rst author and A. Postnikov [31, 32]
de�ned the so-called alcove model for highest weight crystals associated to a
semisimple Lie algebra g (in fact, the model was de�ned more generally, for
symmetrizable Kac-Moody algebras g). This model can be viewed as a discrete
counterpart of the celebrated Littelmann path model [34, 35].

We present a brief survey of our work [28, 29, 30]. One of the main ob-
jectives of this work is to show that a generalization of the alcove model, con-
structed in [26] and called the quantum alcove model, uniformly describes tensor
products of column shape Kirillov-Reshetikhin (KR) crystals [21], for all unt-
wisted a�ne Lie types. (KR crystals correspond to certain �nite-dimensional
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representations of a�ne algebras.) More precisely, the model realizes the crystal
operators on the mentioned tensor product, and also gives an e�cient formula
for the corresponding energy function [14]. (The energy comes from solvable
lattice models in statistical mechanics, and can be viewed as an a�ne grading on
a tensor product of KR crystals, as explained below.) Furthermore, in [27] the
quantum alcove model is used to give a uniform realization of the combinatorial
R-matrix (that is, the unique a�ne crystal isomorphism commuting factors in
a tensor product of KR crystals).

The quantum alcove model is based on enumerating paths in the so-called
quantum Bruhat graph of the corresponding �nite Weyl group. This graph
originates in the quantum cohomology theory for �ag varieties [12], and was
�rst studied in [3]. The path enumeration is determined by the choice of a
certain sequence of alcoves (an alcove path or, equivalently, a λ-chain of roots),
like in the classical alcove model. If we restrict to paths in the Hasse diagram
of the Bruhat order, we recover the classical alcove model. In fact, in [29]
we present a second uniform model for tensor products of column shape KR
crystals: the so-called quantum Lakshmibai-Seshadri (LS) path model, which
is based on piecewise-linear paths and the parabolic analogue of the quantum
Bruhat graph. A crystal isomorphism between the two models is also given
in [29].

We note that combinatorial models for all nonexceptional KR crystals
were given in [8] in terms of tableau models; these are type-speci�c, and are
based on certain �llings of Young diagrams. The advantage of the quantum
alcove model lies in the fact that it is a uniform model. Moreover, the tableau
models are more involved beyond A, and certain computations (related to the
energy function and the combinatorial R-matrix) were only worked out in spe-
cial cases, whereas they are now available in the quantum alcove model in full
generality. However, the tableau models have an advantage too: they are more
explicit. Thus, it is important to relate the two types of models, by making
the corresponding crystal isomorphism explicit. In this way, we can translate
certain information (for instance, a statistic expressing the energy function, see
below) from the quantum alcove model to the tableau models. Such isomor-
phisms/translations have been exhibited in types A, C, and B in [4, 25, 26, 33].
Below we describe in detail the specialization of the quantum alcove model to
type A, and the construction of the a�ne crystal isomorphism between this
specialization and the corresponding tableau model.

Our work has an important application to the theory of symmetric Mac-

donald polynomials Pλ(x; q, t), which are a vast generalization of the irreducible
characters of simple Lie algebras depending on two parameters q, t. More pre-
cisely, we prove that the graded character of a tensor product of column shape
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KR modules, denoted Xλ(x; q), coincides with the specialization Pλ(x; q, t = 0)
of the corresponding Macdonald polynomial. This is a corollary of our reali-
zation of KR crystals in terms of the quantum alcove model and the Ram-Yip
formula for Macdonald polynomials [44]. An extension of the P = X result to
the nonsymmetric Macdonald polynomials Eµ(x; q, t) is also presented.

The context of the above P = X result has its origins in Ion's obser-
vation [16] that, when the a�ne simple root α0 is short (which includes the
duals of untwisted a�ne root systems), Pλ(x; q, 0) is the character of a Dema-

zure module for an a�ne Lie algebra. (Demazure modules are submodules of
highest weight ones determined by a Borel subalgebra acting on an extremal
weight vector.) On the other hand, Fourier and Littelmann [7] showed that,
for simply-laced untwisted a�ne Lie algebras, these Demazure characters are
graded characters of tensor products of KR modules. Combining [16] and [7],
one deduces the equality P = X in the simply-laced untwisted cases. While the

extension of both cited results to types B
(1)
n , C

(1)
n , F

(1)
4 , G

(1)
2 is problematic,

we prove the mentioned equality for all untwisted types by di�erent methods.

We also mention interesting connections that our work highlights, as well
as recent developments it has led to. These are related to: q-Whittaker functi-
ons, the quantum K-theory of �ag varieties, various properties of KR crystals,
Weyl modules for current algebras, and a categori�cation of Macdonald poly-
nomials.

2. BACKGROUND

2.1. Root systems

Let g be a complex semisimple Lie algebra, and h a Cartan subalgebra,
whose rank is r. Let Φ ⊂ h∗ be the corresponding irreducible root system,
h∗R ⊂ h the real span of the roots, and Φ+ ⊂ Φ the set of positive roots. Let
Φ− := Φ\Φ+. For α ∈ Φ we will say that α > 0 if α ∈ Φ+, and α < 0 if α ∈ Φ−.
The sign of the root α, denoted sgn(α), is de�ned to be 1 if α ∈ Φ+, and −1
otherwise. Let |α| = sgn(α)α. Let ρ := 1

2(
∑

α∈Φ+ α). Let α1, . . . , αr ∈ Φ+

be the corresponding simple roots, and si := sαi the corresponding simple
re�ections. We denote 〈·, ·〉 the nondegenerate scalar product on h∗R induced
by the Killing form. Given a root α, we consider the corresponding coroot

α∨ := 2α/〈α, α〉 and re�ection sα. If α =
∑

i ciαi, then the height of α,
denoted by ht(α), is given by ht(α) :=

∑
i ci. We denote by α̃ the highest root

in Φ+; we let θ = α0 := −α̃ and s0 := sα̃.

Let W be the corresponding Weyl group and w◦ its longest element. The
length function on W is denoted by `(·). The Bruhat order on W is de�ned
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by its covers w l wsα, for α ∈ Φ+, if `(wsα) = `(w) + 1. De�ne w � wsα, for
α ∈ Φ+, if `(wsα) = `(w)− 2ht(α∨) + 1. The quantum Bruhat graph [12] is the
directed graph on W with edges labeled by positive roots

(1) w
α−→ wsα for w l wsα or w � wsα ;

see Example 5.2.
The weight lattice Λ is given by

(2) Λ :=
{
λ ∈ h∗R : 〈λ, α∨〉 ∈ Z for any α ∈ Φ

}
.

The weight lattice Λ is generated by the fundamental weights ω1, . . . ωr, which
form the dual basis to the basis of simple coroots, i.e., 〈ωi, α∨j 〉 = δij . The set
Λ+ of dominant weights is given by

(3) Λ+ :=
{
λ ∈ Λ : 〈λ, α∨〉 ≥ 0 for any α ∈ Φ+

}
.

Let Z[Λ] be the group algebra of Λ. It has a Z-basis of formal exponents
{xλ : λ ∈ Λ} with multiplication xλ·xµ := xλ+µ, i.e., Z[Λ] = Z[x±ω1 , · · · , x±ωr ]
is the algebra of Laurent polynomials in r variables.

Given α ∈ Φ and k ∈ Z, we denote by sα,k the re�ection in the a�ne
hyperplane

(4) Hα,k :=
{
λ ∈ h∗R : 〈λ, α∨〉 = k

}
.

These re�ections generate the a�ne Weyl group Wa� for the dual root system
Φ∨ := {α∨ | α ∈ Φ}. The hyperplanes Hα,k divide the real vector space h

∗
R into

open regions, called alcoves. The fundamental alcove A◦ is given by

(5) A◦ :=
{
λ ∈ h∗R | 0 < 〈λ, α∨〉 < 1 for all α ∈ Φ+

}
.

2.2. Kirillov-Reshetikhin (KR) crystals

A g-crystal (for a symmetrizable Kac-Moody algebra g) is a nonempty set
B together with maps ei, fi : B → B ∪ {0} for i ∈ I (I indexes the simple
roots, as usual, and 0 6∈ B), and wt : B → Λ. We require b′ = fi(b) if and
only if b = ei(b

′), and wt(fi(b)) = wt(b) − αi. The maps ei and fi are called
crystal operators and are represented as arrows b → b′ = fi(b) colored i; thus
they endow B with the structure of a colored directed graph. For b ∈ B, we
set εi(b) := max{k | eki (b) 6= 0}, and ϕi(b) := max{k | fki (b) 6= 0}. Given two
g-crystals B1 and B2, we de�ne their tensor product B1 ⊗B2 as follows. As a
set, B1⊗B2 is the Cartesian product of the two sets. For b = b1⊗b2 ∈ B1⊗B2,
the weight function is simply wt(b) := wt(b1) + wt(b2). The crystal operators
are given by

(6) fi(b1 ⊗ b2) :=

{
fi(b1)⊗ b2 if εi(b1) ≥ ϕi(b2)

b1 ⊗ fi(b2) otherwise,
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and similarly for ei. The highest weight crystal B(λ) of highest weight λ ∈ Λ+ is
a certain crystal with a unique element uλ such that ei(uλ) = 0 for all i ∈ I and
wt(uλ) = λ. It encodes the structure of the crystal basis of the Uq(g)-irreducible
representation with highest weight λ as q goes to 0.

A Kirillov-Reshetikhin (KR) crystal [21] is a �nite crystal Br,s for an a�ne
algebra, associated to a rectangle of height r and width s, where r ∈ I \{0} and
s is any positive integer. We refer, throughout, to the untwisted a�ne types

A
(1)
n−1 −G

(1)
2 , and only consider column shape KR crystals Br,1.

We now describe the tableau model for KR crystals Br,1 of type A
(1)
n−1,

where r ∈ {1, 2, . . . , n − 1}. As a classical type An−1 crystal, the KR crystal
Br,1 is isomorphic to the corresponding B(ωr). Therefore, we can use the
corresponding tableau model, as mentioned below.

In type A
(1)
n−1, an element b ∈ Br,1 is represented by a strictly increasing

�lling of a height r column, with entries in [n] := {1, . . . , n}. We will now

describe the crystal operators on a tensor product of type A
(1)
n−1 KR crystals Br,1

in terms of the so-called signature rule, which is just a translation of the tensor
product rule (6). To apply fi (or ei) on b := b1⊗ · · · ⊗ bk in Bi1,1⊗ · · · ⊗Bik,1,
consider the word with letters i and i + 1, if 1 ≤ i ≤ n − 1 (resp., the letters
n and 1, if i = 0) formed by recording these letters in b1, . . . , bk, which are
scanned from left to right and bottom to top; we make the convention that if
i = 0 and a column contains both 1 and n, then we discard this column. We
replace the letter i with the symbol + and the letter i+1 with − (resp., n with
+ and 1 with −, if i = 0). Then, we remove from our binary word adjacent
pairs −+, as long as this is possible. At the end of this process, we are left
with a word

(7) ρi(b) = + + . . .+︸ ︷︷ ︸
x

−− . . .−︸ ︷︷ ︸
y

,

called the i-signature of b.

De�nition 2.1. (1) If y > 0, then ei(b) is obtained by replacing in b the
letter i+ 1 which corresponds to the leftmost − in ρi(b) with the letter i (resp.,
the letter 1 with n, after which we sort the column, if i = 0). If y = 0, then
ei(b) = 0.

(2) If x > 0, then fi(b) is obtained by replacing in b the letter i which
corresponds to the rightmost + in ρi(b) with the letter i + 1 (resp., the letter
n with 1, after which we sort the column, if i = 0). If x = 0, then fi(b) = 0.

Example 2.2. Let n = 3, b = 2 1 1
3 2

7→ 2
3
⊗ 1

2
⊗ 1 , and has + − − as

its 0-signature. So we have f0

(
2 1 1
3 2

)
=

1 1 1
2 2

.
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We refer again to (column shape) KR crystals of arbitrary (untwisted)
type. Given a composition p = (p1, . . . , pk), we de�ne the tensor product of
KR crystals

(8) B = B⊗p :=
k⊗
i=1

Bpi,1 .

Remark 2.3. (1) It is known that B is connected as an a�ne crystal,
but disconnected as a classical crystal (i.e., with the 0-arrows removed); see
Example 2.8.

(2) Let p′ be a composition obtained from p by permuting its parts. There
is an a�ne crystal isomorphism between B⊗p and B⊗p

′
, which is unique by

the previous remark. This isomorphism is called the combinatorial R-matrix.

We need to distinguish certain arrows in B, which are related to a�ne
Demazure crystals, as we shall explain.

De�nition 2.4. An arrow b → fi(b) in B is called a Demazure arrow if
i 6= 0, or i = 0 and ε0(b) ≥ 1. An arrow b → fi(b) in B is called a dual

Demazure arrow if i 6= 0, or i = 0 and ϕi(b) ≥ 2.

Remark 2.5. (1) By Fourier-Littelmann [7], in simply-laced types, the ten-
sor product of KR crystals B is isomorphic, as a classical crystal (discard the
a�ne 0-arrows) with a certain Demazure crystal for the corresponding a�ne
algebra. (Recall that Demazure modules are submodules of highest weight ones
determined by a Borel subalgebra acting on an extremal weight vector.) More-
over, by [10], the 0-arrows in the latter correspond precisely to the Demazure
arrows in B.

(2) In the case when all of the tensor factors in B are perfect crystals
[15], B remains connected upon removal of the non-Demazure (resp. non-dual
Demazure) 0-arrows.

(3) In classical types, Bk,1 is perfect as follows: in types A
(1)
n−1 and D

(1)
n

for all k, in type B
(1)
n only for k 6= n, and in type C

(1)
n only for k = n (using the

standard indexing of the Dynkin diagram); in other words, for all the Dynkin
nodes in simply-laced types, and only for the nodes corresponding to the long
roots in non-simply-laced types, see [9]. It was conjectured in [14] that the

same is true in the exceptional types. In type G
(1)
2 this was con�rmed in [47].

For the other exceptional types, see Section 7.

The energy function D = DB is a function from B to the integers, de�ned
by summing the so-called local energies of all pairs of tensor factors; it is used
to express one-dimensional con�guration sums in statistical mechanics [13, 14].
We will only refer here to the so-called left energy [29], so we will not make
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this speci�cation. (There are two conventions in de�ning the local energy of
a pair of tensor factors: commuting the right one towards the head of the
tensor product, or the left one towards the tail; the left energy corresponds to
the second choice, and the right energy to the �rst.) We will only need the
following property of the energy function, which de�nes it as an a�ne grading
on B.

Theorem 2.6 ([41, 46]). The energy is preserved by the classical crystal

operators fi, i.e., i 6= 0. If b→ f0(b) is a dual Demazure arrow, then D(f0(b)) =
D(b)− 1.

Remark 2.7. Theorem 2.6 shows that the energy is determined up to a
constant on the connected components of the subgraph of the a�ne crystal B
containing only the dual Demazure arrows. See also Remark 2.5 (2).

Example 2.8. The crystal B⊗(1,1,1) = (B1,1)⊗3 in type A
(1)
2 is plotted in

Fig. 1, using the tableau model. All the arrows labeled 1 and 2 are displayed,
but only some arrows labeled 0; the dotted arrows are non-dual Demazure
arrows, as they are at the end of a 0-string. One can see that the 33 = 27
vertices of the crystal are divided into four classical components, in which the
energy is 0, −1, −2, and −3, by Theorem 2.6.

3. THE QUANTUM ALCOVE MODEL

In this section, we recall from [26] the construction of the quantum alcove
model and its main properties.

3.1. λ-chains and admissible subsets

We say that two alcoves are adjacent if they are distinct and have a

common wall. Given a pair of adjacent alcoves A and B, we write A
β−→ B if

the common wall is of the form Hβ,k and the root β ∈ Φ points in the direction
from A to B.

De�nition 3.1 ([31]). An alcove path is a sequence of alcoves (A0, A1, . . . ,
Am) such that Aj−1 and Aj are adjacent, for j = 1, . . .m.We say that an alcove
path is reduced if it has minimal length among all alcove paths from A0 to Am.

Let Aλ = A◦ + λ be the translation of the fundamental alcove A◦ by the
weight λ.
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Fig. 1. The crystal B⊗(1,1,1).

De�nition 3.2 ([31]). The sequence of roots (β1, β2, . . . , βm) is called a
λ-chain if

A0 = A◦
−β1−→ A1

−β2−→ · · · −βm−→ Am = A−λ

is a reduced alcove path.

We now �x a dominant weight λ and an alcove path Π = (A0, . . . , Am)
from A0 = A◦ to Am = A−λ. Note that Π is determined by the corresponding
λ-chain Γ := (β1, . . . , βm), which consists of positive roots. A speci�c choice
of a λ-chain, called a lex λ-chain, is given in [32, Proposition 4.2]; this choice
depends on a total order on the simple roots. We let ri := sβi , and let r̂i be the
a�ne re�ection in the hyperplane containing the common face of Ai−1 and Ai,
for i = 1, . . . ,m; in other words, r̂i := sβi,−li , where li := | {j < i ; βj = βi} |.
We de�ne l̃i := 〈λ, β∨i 〉 − li = | {j ≥ i ; βj = βi} |.
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Example 3.3. Consider the dominant weight λ = 3ε1 + 2ε2 in the root sy-
stemA2 (cf. Section 5 and the notation therein). A λ-chain is Γ = (α23, α13, α23,
α13, α12, α13). The corresponding li are (0, 0, 1, 1, 0, 2) and l̃i are {2, 3, 1, 2, 1, 1}.
The alcove path is shown in Fig. 2a; here A◦ is shaded, and A−λ is the alcove
at the end of the path.

(a) Γ for λ = 3ε1 + 2ε2 (b) Γ(J) for J = {1, 2, 3, 5}

Fig. 2. Unfolded and folded λ-chain.

Let J = {j1 < j2 < · · · < js} be a subset of [m]. The elements of J
are called folding positions. We fold Π in the hyperplanes corresponding to
these positions and obtain a folded path, see Example 3.6 and Fig. 2b. Like
Π, the folded path can be recorded by a sequence of roots, namely Γ(J) =
(γ1, γ2, . . . , γm), where

(9) γk := rj1rj2 . . . rjp(βk) ,

with jp the largest folding position less than k. We de�ne γ∞ := rj1rj2 . . . rjs(ρ).
Upon folding, the hyperplane separating the alcoves Ak−1 and Ak in Π is map-
ped to

(10) H|γk|,−lJk
= r̂j1 r̂j2 . . . r̂jp(Hβk,−lk) ,

for some lJk , which is de�ned by this relation.

Given i ∈ J , we say that i is a positive folding position if γi > 0, and
a negative folding position if γi < 0. We denote the positive folding positions
by J+, and the negative ones by J−. We call wt(J) := −r̂j1 r̂j2 . . . r̂js(−λ) the
weight of J . We de�ne the height and coheight of J by

(11) ht(J) :=
∑
j∈J−

l̃j , cht(J) :=
∑
j∈J−

lj .
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De�nition 3.4. A subset J = {j1 < j2 < · · · < js} ⊆ [m] (possibly empty)
is an admissible subset if we have the following path in the quantum Bruhat
graph on W :

(12) 1
βj1−→ rj1

βj2−→ rj1rj2
βj3−→ · · ·

βjs−→ rj1rj2 · · · rjs =: φ(J) .

We call Γ(J) an admissible folding, and φ(J) its �nal direction. We let A(Γ)
be the collection of admissible subsets.

Remark 3.5. (1) Positive and negative folding positions correspond to up
and down steps (in Bruhat order) in the chain (12), respectively.

(2) If we restrict to admissible subsets for which the path (12) has no
down steps, we recover the classical alcove model in [31, 32].

Example 3.6. We continue Example 3.3. Let J = {1, 2, 3, 5}, then Γ(J) =
(α23, α12, α31, α23, α21, α13). The folded path is shown in Fig. 2b. We have
J+ = {1, 2}, J− = {3, 5}, wt(J) = −ε3, ht(J) = l̃3 + l̃5 = 1 + 1 = 2, and
cht(J) = l3 + l5 = 1 + 0 = 1. In Section 5, we will describe an easy way to
verify that J is admissible.

3.2. Crystal operators

In this section, we de�ne the crystal operators on A(Γ). Given J ⊆ [m]
and α ∈ Φ, we will use the following notation:

Iα = Iα(J) := {i ∈ [m] | γi = ±α} , Îα = Îα(J) := Iα ∪ {∞} ,

and l∞α := 〈wt(J), sgn(α)α∨〉. The following graphical representation of the
heights lJi for i ∈ Iα and l∞α is useful for de�ning the crystal operators. Let

Îα = {i1 < i2 < · · · < in < in+1 =∞} and εi :=

{
1 if i 6∈ J
−1 if i ∈ J

.

If α > 0, we de�ne the continuous piecewise linear function gα : [0, n+ 1
2 ]→ R

by
(13)

gα(0) = −1

2
, g′α(x) =


sgn(γik) if x ∈ (k − 1, k − 1

2), k = 1, . . . , n

εiksgn(γik) if x ∈ (k − 1
2 , k), k = 1, . . . , n

sgn(〈γ∞, α∨〉) if x ∈ (n, n+ 1
2).

If α < 0, we de�ne gα to be the graph obtained by re�ecting g−α in the x-axis.

By [32, Propositions 5.3 and 5.5], for any α we have
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(14) sgn(α)lJik = gα

(
k − 1

2

)
, k = 1, . . . , n,

and sgn(α)l∞α := 〈wt(J), α∨〉 = gα

(
n+

1

2

)
.

Example 3.7. We continue Example 3.6. The graphs of gα2 and gθ are
given in Fig. 3.

Fig. 3

Let J be an admissible subset. Let δi,j be the Kronecker delta function.
Fix p in {0, . . . , r}, so αp is a simple root if p > 0, or θ if p = 0. Let M be

the maximum of gαp . Let m be the minimum index i in Îαp for which we have
sgn(αp)l

J
i = M . It turns out that, if M ≥ δp,0, then we have either m ∈ J or

m = ∞; furthermore, if M > δp,0, then m has a predecessor k in Îαp , and we
have k 6∈ J . We de�ne

(15) fp(J) :=

{
(J\ {m}) ∪ {k} if M > δp,0

0 otherwise .

Now we de�ne ep. Again let M := max gαp . Assuming that M > 〈wt(J), α∨p 〉,
let k be the maximum index i in Iαp for which we have sgn(αp)l

J
i = M , and

let m be the successor of k in Îαp . Assuming also that M ≥ δp,0, it turns out
that we have k ∈ J , and either m 6∈ J or m =∞. De�ne

(16) ep(J) :=

{
(J\ {k}) ∪ {m} if M > 〈wt(J), α∨p 〉 and M ≥ δp,0
0 otherwise.

In the above de�nitions, we use the convention that J\ {∞} = J ∪ {∞} = J .

Example 3.8. We continue Example 3.7. We �nd f2(J) by noting that
Îα2 = {1, 4,∞}. From gα2 in Fig. 3 we can see that the heights lJi and l∞α2

corresponding to these positions are 0, 0, 1, so k = 4, m = ∞, and f2(J) =
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J ∪ {4} = {1, 2, 3, 4, 5}. We can see from Fig. 3 that the maximum of gθ = 1,
hence f0(J) = 0. To compute e0(J) observe that Îθ = {3, 6} with k = 3 and
m = 6. So e0(J) = (J\{k}) ∪ {m} = {1, 2, 5, 6}.

The following theorem is the main result of [26].

Theorem 3.9 ([26]).

(1) If J is an admissible subset and if fp(J) 6= 0, then fp(J) is also an

admissible subset. Similarly for ep(J). Moreover, fp(J) = J ′ if and only

if ep(J
′) = J .

(2) We have wt(fp(J)) = wt(J)− αp. Moreover, if M ≥ δp,0, then

ϕp(J) = M − δp,0 , εp(J) = M − 〈wt(J), α∨p 〉 ,

while otherwise ϕp(J) = εp(J) = 0.

4. MAIN RESULTS

We summarize the main results in [29], cf. also [27, 28]. The setup is that
of untwisted a�ne root systems.

Theorem 4.1 ([27, 29]). Consider a composition p = (p1, . . . , pk) and the
corresponding crystal B :=

⊗k
i=1B

pi,1. Let λ := ωp1 + . . . + ωpk , and let Γ be

any λ-chain (see Section 3).

(1) The (combinatorial) crystal A(Γ) is isomorphic to the subgraph of B
consisting of the dual Demazure arrows, via a speci�c bijection which preserves

the weights of the vertices.

(2) If the vertex b of B corresponds to J under the isomorphism in part

(1), then the energy is given by DB(b)−Dext
B = −ht(J), where Dext

B is a global

constant.

The proof proceeds as follows. Based on earlier work of Naito and Sagaki
[39, 40, 41] on crystal bases for tensor products of column-shape KR modules
(also called level-zero fundamental representations), we �rst derive a combi-
natorial model for the entire crystal B above (including the dual Demazure
arrows), in terms of so-called quantum Lakshmibai-Seshadri (LS) paths; these
are piecewise-linear paths constructed in terms of the parabolic analogue of the
quantum Bruhat graph. In order to achieve this, we also rely on the results in
[28] related to the quantum Bruhat graph and its parabolic analogue. Then we
exhibit a crystal isomorphism from the quantum alcove model to the quantum
LS path model based on the lex λ-chain. In fact, this map is a very natural
one, as it is the �forgetful map� on the quantum alcove model (whose structure
is richer than that of quantum LS paths). The passage between the quantum
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alcove models based on the lex λ-chain and an arbitrary λ-chain is investigated
in [27], and is discussed below.

Remark 4.2. (1) Based on the above crystal isomorphism between the
quantum LS path model and the quantum alcove model, we can construct
the non-dual Demazure arrows in the latter. However, this construction is
considerably more involved than (15)�(16).

(2) Although the quantum alcove model so far misses the non-dual De-
mazure arrows, it has the advantage of being a discrete model. Therefore,
combinatorial methods are applicable, for instance in the realization of the
combinatorial R-matrix, see below. This should be compared with the continu-
ous arguments used for the similar purpose in the Littelmann path model [35].

(3) In a similar way to Theorem 4.1 (2), the right energy (see Section 2.2)
is given by the coheight statistic. These two expressions have the advantage
of using only the local combinatorial data indexing a crystal vertex, whereas
the recursive calculation of energy in Theorem 2.6 is less e�cient, especially for
large crystals.

In [27] we enhance the quantum alcove model in order to give a uniform
realization of the combinatorial R-matrix. The construction is based on certain
combinatorial moves called quantum Yang-Baxter moves, which generalize their
alcove model versions de�ned in [23]. These moves are explicitly described in all
Lie types by reduction to rank 2 root subsystems. Note that, as far as existing
realizations of the combinatorial R-matrix are concerned, they are limited in
scope and type-speci�c. For instance, in terms of the tableau model, there
is a construction in type A based on Sch�utzenberger's jeu de taquin (sliding
algorithm) on two columns [11], whereas the extensions of this procedure to
types B and C are involved and not transparent. By contrast, our construction
is easy to formulate, and is related to more general concepts (especially the
shellability property of the quantum Bruhat graph [3]). We also show that, like
the alcove model, its quantum generalization does not depend on the choice of
a λ-chain, cf. Theorem 4.1 (1); in fact, we identify A(Γ) and A(Γ′) for two
λ-chains Γ and Γ′ based on quantum Yang-Baxter moves.

5. THE QUANTUM ALCOVE MODEL IN TYPE A

In this section, we specialize the quantum alcove model to type A, and con-
struct an a�ne crystal isomorphism between this specialization and the usual
tableau model for the tensor products of type A KR crystals (see Section 2.2).

We start with the basic facts about the root system of type An−1. We can
identify the space h∗R with the quotient V := Rn/R(1, . . . , 1), where R(1, . . . , 1)
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denotes the subspace in Rn spanned by the vector (1, . . . , 1). Let ε1, . . . , εn ∈
V be the images of the coordinate vectors in Rn. The root system is Φ =
{αij := εi − εj : i 6= j, 1 ≤ i, j ≤ n}. The simple roots are αi = αi,i+1, for
i = 1, . . . , n− 1. The highest root α̃ = α1n. We let α0 = θ = αn1. The weight
lattice is Λ = Zn/Z(1, . . . , 1). The fundamental weights are ωi = ε1 + . . .+ εi,
for i = 1, . . . , n− 1. A dominant weight λ = λ1ε1 + . . .+λn−1εn−1 is identi�ed
with the partition (λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ λn = 0) having at most n − 1
parts. Note that ρ = (n − 1, n − 2, . . . , 0). Considering the Young diagram
of the dominant weight λ as a concatenation of columns, whose heights are
λ′1, λ

′
2, . . ., corresponds to expressing λ as ωλ′1 + ωλ′2 + . . . (as usual, λ′ is the

conjugate partition to λ).

The Weyl group W is the symmetric group Sn, which acts on V by per-
muting the coordinate vectors ε1, . . . , εn. Permutations w ∈ Sn are written in
one-line notation w = w(1) . . . w(n). For simplicity, we use the same notation
(i, j) with 1 ≤ i < j ≤ n for the root αij and the re�ection sαij , which is the
transposition tij of i and j. We recall a criterion for the edges of the type A
quantum Bruhat graph. We need the circular order ≺i on [n] starting at i,
namely i ≺i i+ 1 ≺i . . . ≺i n ≺i 1 ≺i . . . ≺i i− 1. It is convenient to think of
this order in terms of the numbers 1, . . . , n arranged on a circle clockwise. We
make the convention that, whenever we write a ≺ b ≺ c ≺ . . ., we refer to the
circular order ≺=≺a.

Proposition 5.1 ([25]). For 1 ≤ i < j ≤ n, we have an edge w
(i,j)−→

w(i, j) if and only if there is no k such that i < k < j and w(i) ≺ w(k) ≺ w(j).

Example 5.2. The quantum Bruhat graph of type A2, i.e., on the symme-
tric group S3, is indicated in Fig. 4.

We now consider the specialization of the quantum alcove model to type
A. For any k = 1, . . . , n− 1, we have the following ωk-chain, from A◦ to A−ωk ,
denoted by Γ(k) [31]:

(17)

((k, k + 1), (k, k + 2) , . . . , (k, n),
(k − 1, k + 1), (k − 1, k + 2) , . . . , (k − 1, n),
...

...
...

(1, k + 1), (1, k + 2) , . . . , (1, n)) .

Example 5.3. We specialize (17) to n = 4 and k = 1, 2, 3. It is best to
visualize Γ(k) based on a column of height n broken into two pieces, with the
top part of height k and the bottom one of height n− k; then Γ(k) is obtained
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Fig. 4. The quantum Bruhat graph for S3.

by pairing row numbers in the top and bottom parts, in the prescribed order.

1

2
3
4

, Γ(1) = ((1, 2), (1, 3), (1, 4)) ;

1
2
3

4

, Γ(3) = ((3, 4), (2, 4), (1, 4)) ;

1
2

3
4

, Γ(2) = ((2, 3), (2, 4), (1, 3), (1, 4)) .

Fix a dominant weight/partition λ for the remainder of this section. We
construct a λ-chain Γ = (β1, β2, . . . , βm) as the concatenation Γ := Γ1 . . .Γλ1 ,
where Γj = Γ(λ′j). Let J = {j1 < · · · < js} be a set of folding positions in Γ,
not necessarily admissible, and let T be the corresponding list of roots of Γ, also
viewed as transpositions. The factorization of Γ induces a factorization of T as
T = T 1T 2 . . . T λ1 , and of ∆ = Γ(J) as ∆ = ∆1 . . .∆λ1 . Recalling that the roots
in ∆ were denoted γk, we use the notation γk ∈ ∆q to indicate that the kth
root in ∆ falls in the segment ∆q (rather than the fact that ∆q contains a root
equal to γk). We denote by T 1 . . . T j the permutation obtained by composing
the transpositions in T 1, . . . , T j left to right. For w ∈W , let wi = w(i). For w
written in one-line notation as w = w1w2 . . . wn, let w[i, j] = wi . . . wj .
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We now recall from [25] the construction of the correspondence between
the type A quantum alcove model and tableau model.

De�nition 5.4. Let πj = πj(T ) := T 1 . . . T j . We de�ne the �lling map,
which associates with each J ⊆ [m] a �lling of the Young diagram λ, by

(18) fill(J) = fill(T ) := C1 . . . Cλ1 , where Ci := πi[1, λ
′
i] ,

see the notation above. We de�ne the sorted �lling map sfill(J) by sorting
ascendingly the columns of fill(J).

In other words, the ith column Ci of fill(J) consists of the �rst λ′i entries
of the permutation πi, written in one-line notation; see Example 5.5.

Example 5.5. Let n = 3 and λ = (4, 3, 0), which is identi�ed with 4ε1 +

3ε2 = 3ω2 + ω1, and corresponds to the Young diagram . We have

Γ = Γ1Γ2Γ3Γ4 = Γ(2)Γ(2)Γ(2)Γ(1)

= ((2, 3), (1, 3) | (2, 3), (1, 3) | (2, 3), (1, 3) | (1, 2), (1, 3)),

where we underlined the roots in positions J = {1, 2, 3, 5, 7}. Then

T = ((2, 3), (1, 3) | (2, 3) | (2, 3) | (1, 2)) , and

(19)
Γ(J)=∆=∆1∆2∆3∆4 =((2, 3), (1, 2) | (3, 1), (2, 3) | (1, 3), (2, 1) | (2, 3), (3, 1)),

where we again underlined the folding positions, and indicated the factoriza-
tions of T and ∆ by vertical lines. It is easy to check that J is admissible;
indeed, the sequence of permutations (12) corresponding to J is a path in the
quantum Bruaht graph, cf. Proposition 5.1 and Example 5.2:

(20)

1
2

3

l
1
3

2

l
2
3

1

|
2
3

1

�

2
1

3

|
2
1

3

l
2
3

1

|
2

3
1

l
3

2
1

|.

Here each permutation in (12) is written vertically in one-line notation, with the
entries in bold to be transposed; moreover, if the transposition to be applied lies
in Γi, then the corresponding permutation is represented as a broken column
with the top part of height λ′i; see the structure of Γi in (17) and Example 5.3.
By considering the top part of the last column in each segment and by conca-

tenating these columns left to right, we obtain fill(J), i.e., fill(J) = 2 2 2 3
3 1 3

.

We now state the main result of this section.
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Theorem 5.6 ([26]). The map sfill is an a�ne crystal isomorphism bet-

ween A(Γ) and the subgraph of B⊗λ
′
consisting of the dual Demazure arrows.

In other words, given sfill(J) = b, there is a dual Demazure arrow b→ fp(b) if
and only if fp(J) 6= 0, and we have fi(b) = sfill(fi(J)).

Remark 5.7. (1) The a�ne crystal isomorphism in Theorem 5.6 is unique,
by Remarks 2.5 (2), (3).

(2) In [24] it was proved that the map sfill preserves weights. Furt-
hermore, in [25] it was shown this map translates the height statistic to the
Lascoux-Sch�utzenberger charge statistic [22], which is known to express the
energy function in the tableau model. This should be compared with Theorem
4.1 (2), where the constant Dext

B is 0 in this case.

(3) A similar a�ne crystal isomorphism in type C (between the quan-
tum alcove model and the corresponding tableau model, based on Kashiwara-

Nakashima columns [19]) is also given in [26]. The height statistic is translated
to a type C analogue of the charge statistic in [25, 33]. Type B is under
investigation in [4].

6. MACDONALD POLYNOMIALS

The Macdonald polynomials [36, 37] are a remarkable family of orthogonal
polynomials associated to a �nite root system, which depend on two parame-
ters q, t; more precisely, they are polynomials in the group algebra of the weight
lattice whose coe�cients are rational functions in q, t. There are two families
of Macdonald polynomials: the symmetric ones (under the Weyl group action)
Pλ(x; q, t), and the nonsymmetric ones Eµ(x; q, t); here λ is a dominant weight
(i.e., a partition in type A), and µ is an arbitrary weight (i.e., a composition
in type A) − a convention we adopt for the rest of this paper. The symmetric
Macdonald polynomials specialize to the Hall-Littlewood polynomials (or sp-
herical functions for a Chevalley group over a p-adic �eld) upon setting q = 0.
They further specialize to the corresponding irreducible characters upon setting
q = t = 0. By contrast, the nonsymmetric Macdonald polynomials become the
characters of Demazure modules when q = t = 0.

The importance of Macdonald polynomials is due to their deep connecti-
ons to many areas of mathematics, such as: p-adic and real reductive groups,
Kac-Moody algebras, double a�ne Hecke algebras, Hilbert schemes, integrable
quantum systems, conformal �eld theory, harmonic analysis, special functions,
multivariate statistics etc.

Ram and Yip [44] gave a combinatorial formula for both the symmetric
and the nonsymmetric Macdonald polynomials in terms of alcove walks. The
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specialization of this formula upon setting t = 0 was worked out in [25] and
[43], in the symmetric and nonsymmetric cases, respectively. More precisely,
in the symmetric case we have the following formula in terms of the quantum
alcove model, where Γ is any λ-chain for a dominant weight λ.

Theorem 6.1 ([25, 44]). We have

Pλ(x; q, 0) =
∑

J∈A(Γ)

qht(J)xwt(J) .

Note also that, for t = 0, the symmetric Macdonald polynomial coincides
with a particular nonsymmetric one (see [29]):

(21) Pλ(x; q, 0) = Ew◦λ(x; q, 0) .

Now de�ne the graded character corresponding to the KR crystal B in
(8) (see for example [13, 14]) by

(22) Xλ(x; q) :=
∑
b∈B

qDB(b)−Dext
B xwt(b),

where wt(b) is the weight of the crystal element b. From Theorems 4.1 and 6.1,
we immediately derive one of our main results.

Corollary 6.2 ([29]). We have

Pλ(x; q−1, 0) = Xλ(x; q) .

We will now present another result which follows from our work (and
the result in [43] mentioned above), namely a combinatorial formula for the
specialization of a nonsymmetric Macdonald polynomial at t = 0 in terms of
the quantum alcove model. This formula can be viewed as the nonsymmetric
analogue of Theorem 6.1. Furthermore, it generalizes the formula for Demazure
characters in terms of the alcove model in [23, Theorem 6.3].

Let λ be a dominant weight, whose stabilizer is denoted by Wλ. Let
µ = v(λ), where v is assumed to be a lowest coset representative modulo Wλ.
Given a Weyl group element u, we denote by buc the lowest coset representative
of uWλ. Consider also an arbitrary λ-chain Γ, and recall the relevant notation
from Section 3.

Theorem 6.3 ([30]). With the above notation, we have

Eµ(x; q, 0) =
∑

J∈A(Γ)
bφ(J)c≤v

qcht(J)xwt(J) .

A similar formula for Eµ(x; q, 0) in terms of quantum LS paths is also given
in [30]. Furthermore, it is shown that this specialized nonsymmetric Macdonald
polynomial can be interpreted as the graded character of a Demazure-type
submodule of the tensor product of KR modules whose crystal is B in (8).
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7. OTHER APPLICATIONS AND RELATED DEVELOPMENTS

In this section, we summarize other applications of our work, some in-
teresting connections that it highlights, as well as recent developments it has
led to.

Braverman and Finkelberg [2] have recently shown that, for simply-laced
untwisted a�ne root systems, the characters of the duals of certain current alge-
bra modules, called global Weyl modules, coincide with the characters Ψλ(x; q)
of the spaces of global sections of line bundles on quasi-maps spaces; in this
case, it is also shown that the function Ψλ(x; q) is equal to Pλ(x; q, 0) times
an explicit product of geometric series whose ratios are powers of q, and these
functions are called q-Whittaker functions due to their appearance in the quan-
tum group version of the Kostant-Whittaker reduction of Etingof and Sevostya-
nov for the q-Toda integrable system. More precisely, the functions Ψλ(x; q) are
eigenfunctions of the q-Toda di�erence operators, and their generating function
yields the K-theoretic J-function of Givental and Lee [1]. Note, however, that
in the non-simply-laced untwisted cases, the situation di�ers considerably: in-
deed, the proof in [2] of the equality between Ψλ(x; q) and Pλ(x; q, 0) times
the explicit product above does not carry over; this is mainly because Xλ(x; q)
is not a single a�ne Demazure character. Finally, the quantum alcove model
arises in Lenart and Postnikov's conjectural description of the quantum pro-
duct by a divisor in the quantum K-theory of �ag varieties G/B [31] (quantum
K-theory is a K-theory analogue of quantum cohomology). Note that, in prin-
ciple, one can derive the structure constants in the quantum K-theory of G/B
from the K-theoretic J-function mentioned above, although this is hard. In
Fig. 5 we summarize the connections discussed above, as well as the related
work of Ion [16] and Fourier-Littelmann [7] mentioned in Section 1.

The quantum LS path model and the quantum alcove model were imple-
mented in the computer algebra system Sage [45]. Using this implementation,
we veri�ed some conjectures related to KR crystals in the exceptional types (ex-

cept for two Dynkin nodes for type E
(1)
8 ), see [29]; these conjectures, which had

been previously proved only in the classical types in [9], are concerned with
the perfectness property of KR crystals [13], and with their graded classical
decompositions [14].

There have been several developments related to our work. Starting from
our results, a combinatorial realization of the crystal basis of a level 0 extremal
weight module and the corresponding Demazure modules (over a quantum af-
�ne algebra) is exhibited in [17, 42], in terms of so-called semi-in�nite LS paths.
(An extremal weight module is generated by an extremal weight vector of some
a�ne weight λ; while for λ of positive or negative level, this is just the corre-
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Fig. 5. Connections highlighted by our work

sponding integrable highest, respectively lowest weight module, for λ of level
0 its structure is much more complicated.) As a corollary, a crystal-theoretic
interpretation of the relation between local and global Weyl modules is given
in [42].

A formula for the specialized Macdonald polynomial Ew◦λ(x; q, t = ∞)
in terms of quantum LS paths is given in [38], by analogy with the one for
Eµ(x; q, 0) mentioned in Section 6. Furthermore, a representation-theoretic
interpretation of Ew◦λ(x; q,∞) is given in terms of a Demazure submodule of
the level 0 extremal weight module mentioned above. This is again somewhat
similar to the representation-theoretic interpretation of Eµ(x; q, 0) discussed in
Section 6.

On the another hand, our work was used in [6] to provide the character of a

stable level-one Demazure module associated to type B
(1)
n as an explicit combi-

nation of suitably specialized Macdonald polynomials. In addition, our results
were used in a crucial way by Chari and Ion in [5, Theorem 4.2] to show that
Macdonald polynomials at t = 0 are characters of local Weyl modules for cur-
rent algebras. Based on this, they prove a Bernstein-Gelfand-Gelfand (BGG)

reciprocity theorem for the category of representations of a current algebra. In
related work, Khoroshkin [20] exhibits a categori�cation of Macdonald polyno-
mials, by realizing them as the Euler characteristic of bigraded characters for
certain complexes of modules over a current algebra. This realization simpli�es
considerably if BGG reciprocity holds (the mentioned complexes become actual
modules concentrated in homological degree zero).
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