
PROGRAM LOGICS AND THEIR APPLICATIONS

ANDREI ARUSOAIE, �TEFAN CIOBÂC�, DOREL LUCANU, GRIGORE RO�U,
VLAD RUSU and TRAIAN-FLORIN �ERB�NU��

Communicated by Marius Iosifescu

The semantics of programming languages is being studied for a long time, but it
is still lacking a uni�ed framework where this can be easily formally speci�ed and
then the formal de�nition is used for experimenting (e.g. in the design process),
language analysis (to check language properties), program veri�cation, analysis,
and automated testing, and for (correct) implementation. This paper surveys a
part of the results obtained by the joint e�ort made for �nding such a framework
by the research groups Formal System Laboratory (FSL) from the University of
Illinois in Urbana-Champaign (USA), Formal Methods in Software Engineer-
ing (FMSE) from the Alexandru Ioan Cuza University of Ia³i (Romania), and
Dreampal from INRIA Lille Nord Europe (France).

AMS 2010 Subject Classi�cation: 68N30.

Key words: matching logic, reachability logic, program logics, formal reasoning,
program veri�cation, symbolic execution, program equivalence.

1. INTRODUCTION

In this paper, we present a uni�ed framework of logics suitable for for-
mally de�ning programming languages and for reasoning about programs. We
discuss Reachability Logic (RL) [14, 20], which is employed in formally speci-
fying programming languages semantics and program properties. RL formulae
are pairs of Matching Logic (ML) formulae [13,16]. ML is a logic for reasoning
statically about the structure of program con�gurations and RL captures the
dynamic evolution of such con�guration over time. Both logics, ML and RL, are
endowed with sound and complete deductive systems. We use such deductive
systems in the program analyses that we develop in a language-independent
setting: symbolic execution, program veri�cation, and program equivalence ve-
ri�cation. The various deductive systems often have a circular (or coinductive)
nature: a set of formulas under proof can use each other during the proof pro-
cess; a formula may even use itself in its own proof, of course, in a restricted
manner in order to avoid vicious-circle reasoning.

Our running example language is the WH language (because its basic
construct is WHile loop), which includes simple arithmetic expressions and the

REV. ROUMAINE MATH. PURES APPL. 62 (2017), 1, 137�154

138 A. Arusoaie, �. Ciobâc , D. Lucanu, G. Ro³u, V. Rusu and T-F. �erb nuµ 2

assignment, while, and sequential composition statements. The syntax of WH
is given in Fig. 1. We illustrate the use of RL in de�ning the operational
semantics of WH and in specifying WH programs. We then illustrate symbolic
execution and veri�cation of WH programs based on the RL semantics of the
language.

AExp ::=
Int

| Id
| AExp "+" AExp
> AExp "/" AExp
| (AExp) [bracket]

BExp ::=
Bool

| AExp "<" AExp
| AExp "==" AExp
| (BExp) [bracket]

Stmt ::=
Id "=" AExp ";"

| "while" "(" BExp ")" Stmt
| "{" Stmt "}"
| Stmt Stmt [right]

Fig. 1. The syntax of WH.

The structure of the paper is as follows. In Section 2 we introduce Ma-
tching Logic and in Section 3, we introduce Reachability Logic formulas as
pairs of Matching Logic formulas. Together, the two logics are used in a ge-
neric formal notion of programming language de�nition. The next section is
dedicated to the all-paths version of Reachability Logic, a logic suitable for
non-deterministic programs. Sound and relative complete deductive systems
are given for this logic. Section 5 presents the symbolic execution of programs
and shows how a two-rule deductive system can formalise it in a language-
independent manner. A third rule makes the proof system circular and enables
the veri�cation of Reachability-Logic formulas based on symbolic execution as
de�ned. Next, Section 6 shows an approach that we proposed for proving a
certain notion of program equivalence: programs in di�erent languages can be
proved equivalent, using a dedicated proof system that also has a circular na-
ture, and that operates on programs from a programming that �aggregates�
the two languages of interest. In Section 7 we present the K framework, in
which most of our language semantics and program analysis approaches are
implemented. Concluding remarks are given in Section 8.

2. MATCHING LOGIC

The underlying logic of our framework is Matching Logic (ML) [13]. ML is
a static logic of con�gurations, the main ingredient for the operational semantics

3 Program logics and their applications 139

of the program languages. ML uniformly generalises several logics that were
intensively used for programming language semantics and/or program analysis,
e.g., propositional logic, algebraic speci�cation, and separation logic. For the
sake of presentation, we include in this paper only a simpli�ed version of ML,
namely the topmost fragment of ML.

Since topmost ML is a methodological (many-sorted) variant of the �rst-
order logic (FOL), we brie�y recall the syntax and the semantics of FOL.

De�nition 1 (Many-Sorted First-Order Logic (FOL)). Given a set S of
sorts, a �rst-order signature (Σ,Π) consists of a S∗×S-sorted set Σ of function
symbols (i.e., a many-sorted signature), and a S∗-sorted set Π of predicate
symbols. A (Σ,Π)-model consists of a Σ-algebra T and a subset Tp ⊆ Ts1 ×
· · · × Tsn for each p ∈ Πs1...sn . Let Var denote a S-sorted set of variables. The
set of (Σ,Π)-formulas is de�ned by

φ ::= > | p(t1, . . . , tn) | ¬φ | φ ∧ φ | (∃X)φ

where p ranges over predicate symbols Π, ti range over Σ(Var)-terms, and X
over �nite subsets of Var . Given a (Σ,Π)-formula φ, a (Σ,Π)-model model T ,
and ρ : Var → T , the satisfaction relation ρ |= φ is de�ned as follows:

1. ρ |= >;
2. ρ |= p(t1, . . . , tn) i� (t1ρ, . . . , tnρ) ∈ Tp;
3. ρ |= ¬φ i� ρ 6|= φ;

4. ρ |= φ1 ∧ φ2 i� ρ |= φ1 and ρ |= φ2; and

5. ρ |= (∃X)φ i� there is ρ′ with xρ′ = xρ, for all x 6∈ X, such that ρ′ |= φ

A formula φ is valid (in T), denoted by |= φ, if it is satis�ed by all valuations.

The other �rst-order formulas (including disjunction, implication, equi-
valence, universal quanti�er, . . .) are de�ned as syntactic sugar over existing
formulae in the usual way.

Example 1. The BNF grammar given by Fig. 1 de�nes a FOL signature
(Σ(WH),Π(WH)), where: S = {Id, Int, Bool, AExp, BExp, Stmt} is the set of
non-terminals; each grammar production of sort AExp or Stmt de�nes an ope-
ration in Σ(WH), e.g., AExp ::= AExp “+” AExp de�nes the operation _+_ :
AExp AExp→ AExp; each operation of sort BExp de�nes a predicate in Π(WH),
e.g., BExp ::= AExp “<” AExp de�nes the predicate _<_ : AExp AExp.

The (Σ(WH),Π(WH))-model we consider in this paper interprets Id as
the set of identi�ers (alphanumeric strings starting with a letter), Int as the
set of integers Z, Bool as the set of boolean values B, and the function and
predicate symbols in the usual way.

De�nition 2 (ML signature). An ML signature is a triple Φ = (Σ,Π,Cfg),
where (Σ,Π) is a �rst-order signature and Cfg is a distinguished sort in Σ for

140 A. Arusoaie, �. Ciobâc , D. Lucanu, G. Ro³u, V. Rusu and T-F. �erb nuµ 4

con�gurations. The set of ML formulas over Φ and the variables Var is de�ned
by

ϕ ::= π | > | p(t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | (∃V)ϕ,

where π ranges over TΣ,Cfg(Var), p ranges over predicate symbols Π, each ti
ranges over TΣ(Var) of appropriate sorts, and V over �nite subsets of variables.

Example 2. A possible con�guration for WH is represented by an opera-
tion 〈_〉〈_〉 : Stmt State → Cfg , where State is the sort of �nite sets of pairs
variable-name 7→ value. An example of ML-formula is

〈while(x < 7){y = y + x; x = x + 1; }〉〈x 7→ a, y 7→ b〉 ∧ b <Int a,

where a and b are variables of sort Int. Its intended meaning is that the while
statement is executed in a state where the program variable x has the value a, y
has the value b, and the two values satisfy the constraint b <Int a. By _ <Int _
we denote the predicate �less than� over integers, which is a part of the FOL
model we consider. This convention is used for all predicates and operations
over integers.

De�nition 3 (ML Model). A model for ML signature Φ = (Σ,Π,Cfg) is a
(Σ,Π) �rst-order model T . Concrete con�gurations (or simply con�gurations)
are elements of TCfg , i.e., T -interpretations of ground terms of sort Cfg .

Example 3. An example of concrete con�guration in T (WH), the model
we consider for WH, is

〈while(x < 7){y = y + x; x = x + 1; }〉〈x 7→ 2, y 7→ 0〉

From here on we �x an ML signature Φ = (Σ,Π,Cfg) and a model T for
it.

De�nition 4 (ML Satisfaction). The satisfaction relation |= relates pairs
(γ, ρ), where γ ∈ TCfg and ρ : Var → T , with Φ-formulas ϕ. For basic patterns
π, (γ, ρ) |= π i� γ = πρ. For the remaining ML constructions satisfaction is
de�ned as expected, e.g., (γ, ρ) |= ∃Xϕ i� (γ, ρ′) |= ϕ for some ρ′ : Var → T
such that xρ = xρ′ for all x ∈ Var \X. If ϕ is an ML formula then JϕK denotes
the set of concrete con�gurations {γ | (γ, ρ) |= ϕ for some ρ}.

Example 4. If γ is the con�guration in Example 3 and ρ is s.t. aρ = 2
and bρ = 0, then (γ, ρ) |= ϕ, where ϕ is the ML formula in Example 2. On
the other hand, if ρ′ is such that aρ = 2 and bρ = 7 then (γ, ρ) 6|= ϕ because
7 6<Int 2. If γ′ = 〈y = y + x; x = x + 1;〉〈x 7→ 2, y 7→ 0〉, then (γ′, ρ) 6|= ϕ
because 〈while(x < 7){y = y + x; x = x + 1; }〉〈x 7→ a, y 7→ b〉ρ 6= γ′.

5 Program logics and their applications 141

3. PROGRAMMING LANGUAGE SPECIFICATIONS

Programming languages can be speci�ed using ML in a natural way: ML
signatures include the syntax of the programming language and the additional
operations and predicates needed to de�ne semantical ingredients; ML models
give interpretations to the primitive data types like integers, booleans, and syn-
tactically the language constructs; the operational semantics of the statements
is given by a set of pairs of ML formulas specifying a transition relation.

De�nition 5 (Programming Language Speci�cation, PLS). A language de-
�nition is a triple L = (Φ, T ,S), where

� Φ is an ML signature (Σ,Π,Cfg) giving syntax to the language's execution
infrastructure (called con�guration). Cfg is the sort for con�gurations.

� A Φ-Model T . Recall that Ts denote the elements of the model T that
have the sort s, in particular, the elements of TCfg are called con�gurati-
ons.

� A set S of pairs ϕ⇒ ϕ′ of ML formulas, de�ning the operational seman-
tics of the language.

A pair ϕ⇒ ϕ′ of matching logic formulae ϕ and ϕ′ is also called reacha-
bility rule.

Example 5. The set S(WH) of the rules that describe the operational se-
mantics of WH is that given in Fig. 2. The operation J_K(_) : Exp State → Val
is the evaluation of a given expression in a given state, where Exp ::= AExp
| BExp and Val = Z ∪ B. This function is equationally speci�ed by structural
induction on the de�nition of expressions. A con�guration is represented as
a pair 〈_〉〈_〉, where the �rst component is the code to be executed and the
second one is the current state. The �rst rule speci�es the semantics of the as-
signment: the expression E from the right-hand side is evaluated in the current
state σ and the obtained result will be the new value of the variable X in the
next state. The second and the third rules specify the semantics of the while
statement: if the evaluation of the condition E in the current state is false,
then the execution of the statement terminates; otherwise the execution is the
same with that of the while body followed by the same statement while. The
last rule speci�es the semantics for the block statement and is straightforward.
We further consider the empty program · that plays the role of right neutral
element for the sequential composition, i.e. S · = S. This allows the rules to
be applied to programs consisting of a single statement.

De�nition 6 (Transition System De�ned by a PLS). Let L = (Φ,Cfg ,
T ,S) be a programming language speci�cation. The transition system de�ned

142 A. Arusoaie, �. Ciobâc , D. Lucanu, G. Ro³u, V. Rusu and T-F. �erb nuµ 6

JV K(σ)=V

JXK(σ)=σ[X]

JE1+E2K(σ)=JE1K(σ) +Int JE2K(σ)

JE1/E2K(σ)=JE1K(σ)/IntJE2K(σ) if JE2K(σ)6=Int0

JE1<E2K(σ)=JE1K(σ) <Int JE2K(σ)

JE1==E2K(σ)=JE1K(σ) ==Int JE2K(σ)

〈X = E; S〉〈σ〉 ⇒ 〈S〉〈σ[X ← JEK(σ)]〉
〈while(E) S S′〉〈σ〉 ∧ JEK(σ) ==Bool false ⇒ 〈S′〉〈σ〉
〈while(E) S S′〉〈σ〉 ∧ JEK(σ) ==Bool true ⇒ 〈S while(E) S S′〉〈σ〉
〈{ S } S′〉〈σ〉 ⇒ 〈S S′〉〈σ〉

Fig. 2. The semantics of WH.

by L is (MCfg ,→S), where →S = {(γ, γ′) | (∃ϕ ⇒ ϕ′ ∈ S)(∃ρ)(γ, ρ) |= ϕ ∧
(γ′, ρ) |= ϕ′}. We write γ →S γ′ for (γ, γ′) ∈ →S . An execution path is a
(possibly in�nite) sequence of transitions

τ , γ0 →S γ1 →S · · ·
A �nite execution path is complete i� it is not a strict pre�x of another execution
path.

Example 6. Here is an example of �nite execution path:

〈while(x < 7){y = y + x; x = x+1;}〉〈x 7→ 6, y 7→ 14〉 →S
〈{y=y+x; x=x + 1; } while(x<7){y=y+x; x=x+1; }〉〈x 7→ 6, y 7→ 14〉 →S
〈y=y+x; x=x+1; while(x<7){y=y+x; x=x+1;}〉〈x 7→ 6, y 7→ 14〉 →S
〈x = x + 1; while(x < 7){y = y + x; x = x + 1; }〉〈x 7→ 6, y 7→ 20〉 →S
〈while(x < 7){y = y + x; x = x + 1; }〉〈x 7→ 7, y 7→ 14〉 →S
〈·〉〈x 7→ 7, y 7→ 14〉

Remark 1. The set of execution paths can be speci�ed as the largest set
de�ned by the following set of rules:

γ

τ

γ0 →S τ
(∃ϕ⇒ ϕ′ ∈ S)(∃ρ)(γ,ρ) |= ϕ ∧ (hd(τ), ρ) |= ϕ′

where hd is coinductively de�ned by

hd(γ) = γ hd(γ0 →Sτ) = γ0

4. ALL-PATH REACHABILITY LOGIC

All-Path Reachability Logic (APRL) is a logic suitable to express rea-
chability properties of programs written in non-deterministic (e.g. concurrent)

7 Program logics and their applications 143

languages. There is also One-Path Reachability Logic [14] only for determinis-
tic languages, but this is not included in this paper. In this section, we present
a deductive system for APRL, deductive system that is parametric in the PLS
of the language.

De�nition 7. An all-path reachability rule is a pair ϕ ⇒∀ ϕ′ of mat-
ching logic formulae ϕ and ϕ′.

Step∃ :
|= ϕ→ ∃FreeVars(left).left
|= ∃c (ϕ[c/�] ∧ left[c/�]) ∧ right→ ϕ′ for some left⇒ right ∈ S

S,A `C ϕ⇒∃ ϕ′

Step∀ :
|= ϕ→

∨
left⇒right ∈ S ∃FreeVars(left).left

|= ∃c (ϕ[c/�] ∧ left[c/�]) ∧ right→ ϕ′ for each left⇒ right ∈ S
S,A `C ϕ⇒∀ ϕ′

Axiom :

ϕ⇒Q ϕ′ ∈ A
S,A `C ϕ⇒Q ϕ′

Transitivity :

S,A `C ϕ1 ⇒Q ϕ2 S,A ∪ C ` ϕ2 ⇒Q ϕ3

S,A `C ϕ1 ⇒Q ϕ3

Re�exivity :
·

S,A ` ϕ⇒Q ϕ

Consequence :

|= ϕ1 → ϕ1
′ S,A `C ϕ1

′ ⇒Q ϕ2
′ |= ϕ2

′ → ϕ2

S,A `C ϕ1 ⇒Q ϕ2

Circularity :

S,A `C∪{ϕ⇒Qϕ′} ϕ⇒Q ϕ′

S,A `C ϕ⇒Q ϕ′

Case Analysis :

S,A `C ϕ1 ⇒Q ϕ S,A `C ϕ2 ⇒Q ϕ

S,A `C ϕ1 ∨ ϕ2 ⇒Q ϕ

Abstraction :

S,A `C ϕ⇒Q ϕ′ X ∩ FreeVars(ϕ′) = ∅
S,A `C ∃X ϕ⇒Q ϕ′

Fig. 3. Proof system for reachability. We make the standard assumption that the free
variables of left ⇒ right in the Step proof rule are fresh (in particular disjoint from

those of ϕV ϕ′). The variable Q ranges over quanti�ers ∀ and ∃.

The intuitive semantics of such a rule is that any con�guration γ matching
ϕ advances, in one or more steps, into a con�guration γ′ matching ϕ′ along
any execution path that starts in γ, assuming that γ is a con�guration which
terminates.

144 A. Arusoaie, �. Ciobâc , D. Lucanu, G. Ro³u, V. Rusu and T-F. �erb nuµ 8

In order to have a uniform notation, we use the notation ϕ⇒∃ ϕ′ for the
usual reachability rules ϕ ⇒ ϕ′, whose semantics is intuitively existential: if
a con�guration γ matches ϕ and γ terminates, then there exists an execution
path starting in γ which reaches a con�guration γ′ matching ϕ′. We call such
reachability formulae one-path reachability formulae.

The following de�nition captures the semantics of all-path reachability
rules:

De�nition 8. Assuming that S is a set of reachability rules in a PLS L =
(Φ,Cfg , T ,S), we write S |= ϕ⇒∀ ϕ′ i� for all complete �S-paths τ starting
with γ ∈ TCfg and for all ρ : Var → T such that (γ, ρ) |= ϕ, there exists some
γ′ ∈ τ such that (γ′, ρ) |= ϕ′.

We have shown [20] that there exists a sound and relatively complete proof
system (given in Fig. 3) which derives all-path and one-path reachability rules
from a PLS.

The system derives more general sequents of the form S,A `C ϕ⇒Q ϕ′,
where Q ∈ {∀, ∃} denotes the type of reachability rule derived, C is a set of
all-path and one-path reachability rules called circularities and A is a set of
reachability rules which can be used as axioms. Circularities are similar to
axioms, but their use is guarded: they can be used only after a step has been
performed in order to guarantee soundness.

Circularities are introduced by the Circularity rule. This rule allows us to
prove all repetitive constructs such as loops or recursive calls. When C is empty,
we write S,A ` ϕ ⇒Q ϕ′ instead of S,A `C ϕ ⇒Q ϕ′. The circularities are
�unleashed� as axioms in the Transitivity rule, after at least one step is taken
from ϕ1 to ϕ2.

As a simple example, we consider the following program (which we abbre-
viate SUM):

while (n > 0) {
s = s + n;
n = n - 1;

}

The proof system allows us to derive the following sequent:
(1)
∃s .S, ∅ ` 〈SUM〉〈s 7→ s, n 7→ n〉 ∧ n ≥ 0⇒∀ 〈·〉〈s 7→ s+ n(n+ 1)/2, n 7→ 0〉

which captures the partial correctness property of the SUM program. Recall
that · denotes the empty program. In proving the sequent, it is necessary to
use the following circularity, which captures the invariant of the program:

9 Program logics and their applications 145

(2)
∃(s, n′) . (〈SUM ~> somecode〉〈s 7→ s+ (n− n′)(n+ n′ + 1)/2, n 7→ n′〉) ∧ n′≥0
⇒∀ 〈somecode〉〈s 7→ s+ n(n+ 1)/2, n 7→ 0〉.

The CaseAnalysis rule is used to distinguish between the termination of
the while instruction and the unrolling of its loop. The fact that (2) is preserved
by the while loop is deduced using the rules Axiom, Step, and Transitivity. Due
to the Circularity rule, (2) can be deduced by unrolling just once the while loop.
It is easy to see that (1) can be obtained from (2) by applying the Consequence
rule.

Note that all-path reachability rules encode invariants, pre-conditions and
post-conditions in a uniform way captured by circularities.

5. SYMBOLIC EXECUTION AND CIRCULAR COINDUCTION

Symbolic execution is a static program analysis technique introduced in
1976 by James C. King [9]. It consists in executing programs with symbolic
inputs instead of concrete ones, and involves the processing of expressions con-
taining symbolic values [12]. The symbolic execution can be expressed very
naturally in our framework. A program con�guration where the variables have
symbolic values, i.e. a symbolic con�guration, is just a particular ML formula.
Hence the symbolic con�guration together with the path condition can be ex-
pressed as the conjunction of ML formulas. It follows that a symbolic execution
step ϕ ⇒s

S ϕ
′ shows how a new ML formula ϕ′, specifying the next con�gura-

tions, is derived from the formula ϕ, specifying the current con�guration, by
applying the rules from the language de�nition.

De�nition 9 (Derivatives for ML and RL Formulas). If ϕ is an ML formula
then

∆S(ϕ) , {(∃var(ϕl, ϕr))(ϕl ∧ ϕ)=? ∧ ϕr | ϕl ⇒ ϕr ∈ S}
where ϕ=? is the FOL formula (∃z)ϕ′ with ϕ′ obtained from ϕ by replacing

each basic pattern occurrence π with z = π, and with z a variable that does
not occur in ϕ. If ϕ⇒ ϕ′ is an RL formula then

∆S(ϕ⇒ ϕ′) , {ϕ1 ⇒ ϕ′ | ϕ1 ∈ ∆S(ϕ)}.
An ML formula ϕ is S-derivable if ∆S(ϕ) is satis�able. An RL formula ϕ⇒ ϕ′

is S-derivable if ϕ is S-derivable.

The symbolic execution paths can be coinductively de�ned using the de-
rivatives in a similar way to the coinductive speci�cations of the concrete exe-
cution paths.

146 A. Arusoaie, �. Ciobâc , D. Lucanu, G. Ro³u, V. Rusu and T-F. �erb nuµ 10

De�nition 10 (Symbolic Execution Path). The set of symbolic execution
paths is coinductively de�ned by the following set of rules:

ϕ
ϕ satis�able

τ s

ϕ0 ⇒s
S τ

s
hd(τ s) ∈ ∆S(ϕ0) ∧ hd(τ s) derivable

where hd is coinductively de�ned by

hd(ϕ) = ϕ hd(ϕ0 ⇒s
S τ

s) = ϕ0.

The symbolic execution thus de�ned is related with concrete execution via
coverage and precision properties [2,10]. Brie�y, this means that the transition
system generated by symbolic execution forward-simulates the one generated by
concrete execution, and that the transition system generated by concrete exe-
cution backward-simulates the one generated by symbolic execution (restricted
to satis�able patterns). Moreover, we may automatically obtain a language de-
�nition Ls whose concrete executions are symbolic executions of L [2,18]. The
symbolic execution can be used to prove reachability formulas with all-path
semantics using the following proof system consisting only of two rules:

De�nition 11 (SYSTEP).

[impl]
ϕ⇒ ϕ′

T |= ϕ =⇒ ϕ′ [der]
∆S(ϕ⇒ ϕ′)

ϕ⇒ ϕ′
ϕ is S-derivable

Let ν SYSTEP denote the largest set de�ned by the system SYSTEP
(see [10] for details.)

De�nition 12 (Totality). A set S of RL formulas is total i� for each S-
derivable ϕ and each (γ, ρ) such that (γ, ρ) |= ϕ, there is γ1 such that γ →S γ1.

The following theorem states the soundness of this simple proof system:

Theorem 1. If S is total then S |= ν SYSTEP.

Speci�cally, if one can construct a �nite proof tree under SYSTEP for a
given RL formula then the formula belongs to ν SYSTEP. Theorem 1 then
says that the formula holds in the semantics S. An RL formula also holds if a
in�nite proof tree under SYSTEP can be built. We give below an example of
an in�nite proof tree, which we reuse in order to show how circular coinduction
can �fold� in�nite proof trees into �nite ones in a stronger proof system.

Example 7. A proof tree for

〈while (x!=0) {s=s+x; x=x-1;} S〉〈x 7→ a s 7→ 0〉 ⇒

(∃b)〈S〉〈x 7→ 0 s 7→ b〉 ∧ b =Int
a(a+Int 1)

2

11 Program logics and their applications 147

is represented in Fig. 4. T1 corresponds to the case when the while condition
is false. One can see that T2 is in�nite and corresponds to the in�nitely many
unfoldings of the while loop.

T2

. . .[der]
〈while (x != 0) {s=s+x; x=x-1;} S〉
〈x 7→ a−Int 1 s 7→ a〉 ∧ a 6=Int 0

⇒

(∃b)〈S〉〈x 7→ 0 s 7→ b〉 ∧ b =Int
a(a+Int 1)

2[der]
〈x=x-1;while (x != 0) {s=s+x; x=x-1;} S〉
〈x 7→ a s 7→ a〉 ∧ a 6=Int 0

⇒

(∃b)〈S〉〈x 7→ 0 s 7→ b〉 ∧ b =Int
a(a+Int 1)

2[der]
〈s=s+x; x=x-1;while (x != 0) {s=s+x; x=x-1;} S〉
〈x 7→ a s 7→ 0〉 ∧ a 6=Int 0

⇒

(∃b)〈S〉〈x 7→ 0 s 7→ b〉 ∧ b =Int
a(a+Int 1)

2

T1

[impl]
〈S〉〈x 7→ a s 7→ 0〉 ∧ a =Int 0⇒

(∃b)〈S〉〈x 7→ 0 s 7→ b〉 ∧ b =Int
a(a+Int 1)

2

T1 T2

〈while (x!=0) {s=s+x; x=x-1;} S〉〈x 7→ a s 7→ 0〉 ⇒

(∃b)〈S〉〈x 7→ 0 s 7→ b〉 ∧ b =Int
a(a+Int 1)

2

Fig. 4. An in�nite proof tree under SYSTEP.

We show how to reduce in�nite proof trees to �nite ones in a stronger
proof system, which adds to SYSTEP a circularity rule. The rule is thus called
because it allows one to use conclusions, i.e., formulas to be proved (from a set
G of goals) as hypotheses during proofs of formulas from the set G.

De�nition 13 (Symbolic Circular Coinduction). Let G be a �nite set of S-
derivable RL formulas. Then the set of rules SCC(G) is SYSTEP together with

148 A. Arusoaie, �. Ciobâc , D. Lucanu, G. Ro³u, V. Rusu and T-F. �erb nuµ 12

[circ]
∆ϕc⇒ϕ′

c(ϕ⇒ ϕ′)

ϕ⇒ ϕ′
T |= ϕ =⇒ (∃var(ϕc))ϕc, ϕc ⇒ ϕ′c ∈ G

The following theorem, which we call circularity principle, states when
the addition of the circularity rule (and the circular reasoning that it allows)
to SYSTEP does not compromise soundness. The main reason is to start not
with G, but with ∆S(G), i.e., with the S-derivatives of the formulas in G.

We shall be using the notation S |= G for S |= ϕ⇒ ϕ′ for all ϕ⇒ ϕ′ ∈ G.

Theorem 2 (Circularity Principle). Assume S total and that for each
ϕc ⇒ ϕ′c ∈ G, var(ϕ′c) ⊆ var(ϕc). If ∆S(G) ⊆ ν SCC(G) then S |= G.

Note that S 6|= ν SCC(G) in general. For instance, for any arbitrary set
of RL formulas G, each ϕ⇒ ϕ′ ∈ G is in ν SCC(G) by applying the rule [circ].
Theorem 2 identi�es a subset of proof trees under SCC(G) that are sound w.r.t.
S |= _ (a proof tree for ϕ ⇒ ϕ′ under SCC(G) is sound w.r.t. S |= _ if
S |= ϕ⇒ ϕ′): those for which the root is derived using the rule [der].

[impl]

(∃b)〈S〉〈x 7→ 0 s 7→ b〉 ∧ b =Int
(a−Int 1)a

2
+Int (s0 +Int a)

⇒

(∃b)〈S〉〈x 7→ 0 s 7→ b〉 ∧ b =Int
a(a+Int 1)

2
+Int s0

[circ]
〈while (x!=0) {s=s+x; x=x-1;} S〉
〈x 7→ a−Int 1 s 7→ s0 +Int a〉

∧ a 6=Int 0

⇒

(∃b)〈S〉〈x 7→ 0 s 7→ b〉 ∧ b =Int
a(a+Int 1)

2
+Int s0

. . .
[der]

〈s=s+x; x=x-1;while (x!=0) {s=s+x; x=x-1;} S〉
〈x 7→ a s 7→ s0〉

∧ a 6=Int 0

⇒

(∃b)〈S〉〈x 7→ 0 s 7→ b〉 ∧ b =Int
a(a+Int 1)

2
+Int s0

Fig. 5. The �nite proof tree under SCC corresponding to the in�nite proof tree T2 in Fig. 4.

Example 8. The �nite proof tree under SCC that corresponds to the in�-
nite proof tree T2 under SYSTEP is represented in Fig. 5.

13 Program logics and their applications 149

6. PROGRAM EQUIVALENCE

Can matching logic be used to reason about program equivalence? In this
section, we summarize work showing that it can. We �rst show that, given two
(deterministic) programming languages speci�ed using matching logic, their
de�nitions can be aggregated into a single de�nition such that programs in
the resulting language are pairs of programs from the initial languages. Fig. 6
shows how the syntax of the two languages can be aggregated.

(S0,Σ0) (S2,Σ2)

(S1,Σ1) (S′,Σ′)

h2

h1
h′1

h′2

Fig. 6. Pushout diagram for the syntax of two programming languages.

The pushout theorem states that if the two signatures (S1,Σ1) and (S2,Σ2)
have some commonalities identi�ed by the signature (S0,Σ0), then the aggre-
gated signature (S′,Σ′) exists and is unique up to certain assumptions. In the
aggregated signature, it is possible to express programs from both programming
languages.

By the amalgamation theorem, if models of (S1,Σ1) and (S2,Σ2) exist
which agree on (S0,Σ0), then a model of the aggregated syntax exists as well.
In the aggregated signature, we add an additional constructor 〈_,_〉 for ag-
gregated con�gurations. Fig. 7 summarizes this construction.

(S0,Σ0)M0

M2(S1,Σ1)M1 (S2,Σ2)

(S′,Σ′)M ′

(S,Σ)M

h2h1

h1
′ h2

′

add new sort s and 〈_,_〉

h1 h2

h1
′h2

′

Fig. 7. Construction of the aggregated model M of (S,Σ).

150 A. Arusoaie, �. Ciobâc , D. Lucanu, G. Ro³u, V. Rusu and T-F. �erb nuµ 14

Once the aggregated language is constructed, it can be used to prove
various equivalences between programs. Two programs are partially equivalent
if, for all inputs on which they both terminate, they produce the same output.
Two programs are fully equivalent if they terminate on exactly the same set of
inputs and furthermore they produce the same results.

Depending on how the reachability rules of the aggregated language are
speci�ed, it is possible to reduce constructively partial equivalence of two pro-
grams to partial correctness [6] in the aggregated language or it is possible to
prove full equivalence [5] using a dedicated proof system shown in Fig. 8.

Axiom
ϕ ∈ E
` ϕ ⇓∞ E

Conseq
|= ϕ→ ∃x̃.ϕ′ ` ϕ′ ⇓∞ E

` ϕ ⇓∞ E

Case Analysis
` ϕ ⇓∞ E ` ϕ′ ⇓∞ E

` ϕ ∨ ϕ′ ⇓∞ E

Step
|= ϕ1 ⇒∗1 ϕ1

′ |= ϕ2 ⇒∗2 ϕ2
′ ` 〈ϕ1

′, ϕ2
′〉 ⇓∞ E

` 〈ϕ1, ϕ2〉 ⇓∞ E

Circularity
|= ϕ1 ⇒+

1 ϕ1
′ |= ϕ2 ⇒+

2 ϕ2
′ ` 〈ϕ1

′, ϕ2
′〉 ⇓∞ E ∪ {〈ϕ1, ϕ2〉}

` 〈ϕ1, ϕ2〉 ⇓∞ E

Fig. 8. Full Equivalence Proof System.

The main proof rule of the system is Circularity, which allows to pos-
tulate synchronization points in the two programs. The proof system has been
used [5] to prove that two programs computing the Collatz sequence are equi-
valent, even if it is not known whether they terminate or not.

7. THE K FRAMEWORK

K (http://kframework.org [15, 17]) is a RL-based semantic framework
for the de�nition of programming languages, type systems, and analysis tools.
In addition to paradigmatic programming languages that are used for teaching,
several real-life programming languages have been completely de�ned in K,
including C11 [7, 8], Java 1.4 [4], and Javascript ES5 [11].

The K syntax for programming languages is a BNF-like notation enriched
with (optional) semantic annotations attached to syntactic productions. For
example, the syntax of arithmetic expressions in WH (shown in Fig. 1) can be
given in K as follows:

http://kframework.org

15 Program logics and their applications 151

syntax AExp ::= Int
| Id
| AExp "/" AExp [left, strict]
> AExp "+" AExp [left, strict]
| (AExp) [bracket]

The meta-connective > is used to express the fact that division has higher prece-
dence than addition. Besides the annotations needed for parsing purposes (e.g.
left � for left associativity, bracket � for removing the production from the
parse tree), the semantic annotation strict is used to instruct the K tool that
the arguments of the corresponding syntactical construct (e.g., the arguments
of + and /) must be evaluated before the entire construct is evaluated. Under
the hood, this is done by generating the so-called heating/cooling rules. This
allows to write the evaluation of each arithmetic operator by a single rule:

I1 + I2 => I1 +Int I2
I1 / I2 => I1 /Int I2 requires I2 =/=Int 0,

where +Int, /Int, and =/=Int are the addition, division, and dis-equality test,
respectively, in the model. I1 and I2 are variables of sort Int. The rule for
division is equivalent to the ML formula

I1 / I2 ∧ I2 =/=Int 0 => I1 /Int I2

In K, con�gurations are nested structures of cells; for our simple language
WH, the K con�guration is similar with the one used in Example 2:

<k> computations </k> <state> state </state>

The cell labelled <k> holds of the code to be executed represented as a sequence
of computation tasks, while the <state> cell holds the state represented as �nite
set of mappings from program variables to their values. An example of concrete
con�guration is

<k> 5 + 2 ~> x = HOLE; ~> y = x / 2; </k>
<state> a -> 5 x |-> -2 y |-> 0 </state>|,

where the content of the cell k can be read as: compute �rst 5 + 2 (using
semantic rules), then put the result instead of the special variable HOLE (using
cooling rules), then compute the assignment x = 5; (using the below rule), after
which compute the assignment y = x / 2; in the same manner. The content
of the cell state is self-contained.

The semantics of a language in K can be de�ned using K rules, which are
reachability rules, where the left-hand side is a topmost ML formula (i.e., a
conjunction between a con�guration term and a side condition) and the right-
hand side is a con�guration term (which is a ML formula as well). The K rules

152 A. Arusoaie, �. Ciobâc , D. Lucanu, G. Ro³u, V. Rusu and T-F. �erb nuµ 16

make it explicit which parts of the con�gurations are locally changed and use
an abstraction mechanism that allows to specify the minimal context needed
for doing the changes. To have a hint how the K rules look, we consider the
rule for assignment:

<k> X = I:Int; =></k>
<state> Sigma:Map => Sigma[I/X] </state>

The above rule actually says the followings: 1) the assignment X = I, where
I is an integer, is the �rst computation task in the <k> cell and in the next
con�guration it is replaced with the empty computation . (the rest of the
cell remains unchanged), and 2) the current state Sigma is replaced in the next
con�guration with the new one where the value of X is updated with I and
in the rest. To understand the abstraction mechanism, we consider the rule
sequential composition

S1 S2 => S1 ~> S2

that is equivalent to

<k> S1 S2 => S1 ~> S2 ...</k>
<state> Sigma:Map </state>

and it actually says that �execute �rst S1 and then S2. As we can already see,
the K de�nition of while is simpler than that given in Fig. 2.

For further details about the features of the K framework and how to
de�ne languages using K the reader is referred to [15,19] and invited to follow
the tutorial (http://www.kframework.org/index.php/K_Tutorial).

The K framework provides a compiler for language de�nitions and a run-
ner for programs. The de�nition compiler generates an interpreter for the
language in question, while the runner calls the interpreter over the program
given as argument, and outputs the �nal con�guration. Below we show how to
compile the K de�nition of WH (stored in a �le wh.k) and how to run the WH
program SUM given in Section 4, where the variable n is initialized with 10:

-$ kompile wh.k
-$ krun sum.wh
<k> .K </k> <state> s |-> 55 n |-> 0 </state>

The basic features of K together with the advanced ones are presented in detail
in [19].

In addition to de�ning the semantics of programming languages, K can
also be used for program analysis and veri�cation. There were already de�ned
or are in progress a prototype for one-path reachability logic used to verify
C-like programs [16], an extension of the framework that allows to perform

http://www.kframework.org/index.php/K_Tutorial

17 Program logics and their applications 153

symbolic execution using directly the K de�nition of a language [18], a circular-
coinduction-based prototype that implements the SCC proof system [1], and
a pushdown model-checker based on [3]. Currently, there is ongoing work on
standardisation of K de�nitions, on developing of a specialised symbolic rewrite
engine, and on its integration with various provers.

8. CONCLUSION

The programming languages must have a standard formal semantics. Now,
the programming language manuals (standards) include only an appendix,
where only the grammar of the syntax is given. We strongly believe that the
same thing should happen with the semantics. We showed that the Matching-
Logic-based approach supplies a theoretical foundation for giving semantics for
programming languages and to use this semantics for program execution, veri-
�cation, and analysis. Within the K Framework project we showed that this
approach is practical and suitable for real-life programming languages like C
and Java.

REFERENCES

[1] A. Arusoaie, D. Lucanu and V. Rusu, A Generic Framework for Symbolic Execution.
Research Report, RR-8189, Inria, Sept. 2015. Available at https://hal.inria.fr/hal-
00766220.

[2] A. Arusoaie, D. Lucanu and V. Rusu, Symbolic execution based on language transforma-
tion. Computer Languages, Systems & Structures 44 (2015), 48�71.

[3] I.M. As voae, F.S. de Boer, M.M. Bonsangue, D. Lucanu and Jurriaan Rot, Model
checking recursive programs interacting via the heap. Sci. Comput. Program. 100

(2015), 61�83.
[4] D. Bogd na³ and G. Ro³u, K-Java: A Complete Semantics of Java. Proceedings of the

42nd Symposium on Principles of Programming Languages (POPL'15), ACM, January
2015, 445-456.

[5] �. Ciobâc , D. Lucanu, V. Rusu and G. Ro³u, A language-independent proof system for
full program equivalence. Form. Asp. Comput. 2016, 1�29.

[6] �. Ciobâc , Reducing Partial Equivalence to Partial Correctness. SYNASC 2014, 164�
171, IEEE, 2014.

[7] C. Ellison and G. Ro³u, An Executable Formal Semantics of C with Applications. Procee-
dings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL'12), ACM, January 2012, 533�544.

[8] C. Hathhorn, C. Ellison and G. Ro³u, De�ning the Unde�nedness of C. Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI'15), ACM, June 2015, 336�345.

[9] J.C. King, Symbolic execution and program testing. Commun. ACM 19 (1976), 7, 385�
394.

154 A. Arusoaie, �. Ciobâc , D. Lucanu, G. Ro³u, V. Rusu and T-F. �erb nuµ 18

[10] D. Lucanu, V. Rusu and A. Arusoaie, A Generic Framework for Symbolic Execution:
Theory and Applications. J. Symbolic Comput. To appear.

[11] D. Park, A. �tef nescu and G. Ro³u, KJS: A Complete Formal Semantics of JavaScript.
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI'15), ACM, June 2015, pp. 346�356.

[12] C.S. P s reanu and Willem Visser, A survey of new trends in symbolic execution for
software testing and analysis. International Journal on Software Tools for Technology
Transfer 11 (2009), 4, 339-353.

[13] G. Ro³u, Matching Logic � Extended Abstract. Proceedings of the 26th International
Conference on Rewriting Techniques and Applications (RTA'15) 36, Leibniz Interna-
tional Proceedings in Informatics (LIPIcs). Dagstuhl, Germany, July 2015. Schloss
Dagstuhl�Leibniz-Zentrum fuer Informatik, pp. 5�21.

[14] G. Ro³u, A. �tef nescu, �. Ciobâc and B.M. Moore, One-Path Reachability Logic. LICS
2013, IEEE 2013, 358-367.

[15] G. Ro³u and T.-F. �erb nuµ , K Overview and SIMPLE Case Study. Proceedings of
International K Workshop (K'11). ENTCS 304, June 2014, pp. 3-56.

[16] G. Ro³u and A. �tef nescu, Checking Reachability using Matching Logic. OOPSLA,
ACM 2012, pp. 555-574.

[17] G. Ro³u and T.-F. �erb nuµ , An overview of the K semantic framework. J. Log. Algebr.
Program. 79 (2010), 6, 397-434.

[18] V. Rusu, D. Lucanu, T.-F. �erb nuµ , A. Arusoaie, A. �tef nescu and G. Ro³u, Language
de�nitions as rewrite theories. J. Log. Algebr. Meth. Program. 85 (2016), 1, 98�120.

[19] T-F �erb nuµ , A. Arusoaie, D. Lazar, C. Ellison, D. Lucanu and G. Ro³u, The Primer
(version 3.3). Electron. Notes Theor. Comput. Sci. 304 (2014), 57�80, Proceedings of
the Second International Workshop on the K Framework and its Applications (K 2011).

[20] A. �tef nescu, �. Ciobâc , R. Mereuµ , B.M. Moore, T.-F. �erb nuµ and G. Ro³u,
All-Path Reachability Logic. RTA-TLCA'14. LNCS 8560, July 2014, pp. 425-440.

Received 1 August 2016 �Alexandru Ioan Cuza� University,
Romania

stefan.ciobaca@info.uaic.ro
dlucanu@info.uaic.ro

University of Illinois
Urbana-Champaign, USA

grosu@illinois.edu

Inria Lille, France
vlad.rusu@inria.fr

University of Bucharest
traian.serbanuta@gmail.com

