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We consider harmonic Bergman spaces and Toeplitz operators on the ball. In
this note, we deal with radial measures as weight and symbol. For two radial
measures, we introduce an averaging function, to discuss conditions for corre-
sponding Toeplitz operators to be bounded or compact. We also discuss the
boundary behavior of the harmonic Bergman kernels.
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1. INTRODUCTION

Bergman spaces were introduced as function spaces of square integrable
holomorphic functions on the unit disk in the complex plane. By the Cauchy
integral formula, i.e., mean value properties, Bergman spaces are Hilbert spaces
with reproducing kernel. Since mean value properties also hold for harmonic
functions, spaces of harmonic functions have similar properties and are studied
by many mathematicians.

We begin with a brief introduction to harmonic Bergman spaces.

1.1. Harmonic Bergman spaces

Let Ω be a domain in the n-dimensional Euclidean space Rn and put

b2(Ω) := Harm(Ω) ∩ L2(Ω, dV ),

where Harm(Ω) is the totality of (real-valued) harmonic functions on Ω, and
dV denotes the usual n-dimensional Lebesgue measure. We call b2(Ω) the har-
monic Bergman space on Ω. Traditionally, from connections with spaces of
holomorphic functions, complex-valued harmonic functions are usually con-
sidered. Nevertheless, since the Laplacian is a real operator, in this note,
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we assume that harmonic functions are always real-valued. This makes no
di�erence.

First, we remark the following mean value property. Let B be the open
unit ball in the n-dimensional Euclidean space Rn and ρ be a �xed C∞ function
of |x| on Rn such that supp(ρ) ⊂ B and

∫
ρdV = 1.

Lemma 1.1. For τ > 0, we put ρτ (x) := τ−nρ(τ−1x) and Ωτ := {x ∈
Ω|δΩ(x) > τ}, where δΩ(x) is the distance from x to the boundary ∂Ω. Then

we have
u = u ∗ ρτ on Ωτ

for every u ∈ Harm(Ω), where ∗ denotes the convolution on Rn.

From the above mean value property, follows the boundedness of the point
evaluation on harmonic Bergman spaces.

Proposition 1.1. There exists a constant C such that

|u(x)| ≤ CδΩ(x)−n/2‖u‖L2(Ω)

for every u ∈ b2(Ω).

Proof. Let x ∈ Ω. For τ < δΩ(x), by the Schwarz inequality, we have

|u(x)| =
∣∣∣ ∫ u(x− y)ρτ (y)dV (y)

∣∣∣ ≤ ‖u‖L2(Ω)

(∫ (
τ−N |ρ(τ−1y)|

)2
dV (y)

) 1
2

= τ−n/2‖u‖L2(Ω) · ‖ρ‖L2(Ω).

Letting τ → δΩ(x), we have the proposition. �

The above boundedness of the point evaluation implies that:

1. b2(Ω) is a closed subspace of L2(Ω),

2. for each x ∈ Ω, there uniquely exists R(x, ·) ∈ b2(Ω) such that

u(x) =

∫
Ω
R(x, y)u(y)dV (y)

for u ∈ b2(Ω), and

3. the integral operator Q de�ned by the kernel R is the orthogonal pro-
jection from L2(Ω) onto b2(Ω).

In fact, since by Proposition 1.1, L2-convergence implies uniform convergence
on compact sets on b2(Ω), the assertion 1 holds. The assertion 2 follows from
the fundamental Riesz representation theorem for Hilbert spaces. Concerning
the assertion 3, we have only to remark that for f ∈ L2(Ω) in the orthogonal
complement of b2(Ω), Qf(x) = 〈R(x, ·), f〉 = 0.

The kernel R is called the harmonic Bergman kernel. We list some pro-
perties of R, which follow easily from the above.
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1. R(x, y) =
∫
R(y, z)R(x, z)dV (z) = R(y, x),

2. R(x, x) =
∫
R(x, z)R(x, z)dV (z) = ‖R(x, ·)‖2L2Ω) ≥ 0, and

3. R(x, y) =
∑

j ej(x)ej(y), where (ej)j is a complete orthonormal system

in b2(Ω).

We have a simple estimate of the harmonic Bergman kernel.

Proposition 1.2.
R(x, x) ≤ CδΩ(x)−n.

Proof. Since R(x, ·) ∈ b2(Ω), we have

R(x, x) ≤ CδΩ(x)−n/2‖R(x, ·)‖L2(Ω) = CδΩ(x)−n/2R(x, x)1/2,

which shows the proposition. �

We give estimates of derivatives of harmonic Bergman functions.

Proposition 1.3. Let β ∈ Nn0 be a multi-index, where N0 is the set of all

nonnegative integers. Then we have for u ∈ b2(Ω)

1. |∂βu(x)| ≤ CδΩ(x)−n/2−|β|‖u‖L2(Ω),

and

2. ‖δ|β|Ω ∂βu‖L2(Ω) ≤ C‖u‖L2(Ω)

with some constant C.

Proof. We have the assertion 1 in the similar way to Proposition 1.1. To
show the assertion 2, we take the Whitney decomposition Ω = ∪jQj , i.e., Qj are
cubes whose edges are parallel with some axis, the length of edges is comparable
with the distance from the boundary and the intersection of cubes is included
in the boundary of their cubes. Take any j, and put τj = dist(Qj , ∂Ω). Then,
for each x ∈ Qj ,

|∂βu(x)| ≤ Cτ−n/2−|β|j ‖u‖
L2(Q̃j)

because of the assertion 1, where Q̃j is the cube with the same center and
double size of Qj . Hence,∫

Qj

|δΩ(x)|β|∂βu(x)|2dV (x) ≤ C‖u‖2
L2(Q̃j)

τ−nj V (Qj) ≤ C
∫
Q̃j

|u|2dV (x).

Summing up in j, we have∫
Ω
|δΩ(x)|β|∂βu(x)|2dV (x) =

∑
j

∫
Qj

|δΩ(x)|β|∂βu(x)|2dV (x)

≤ C
∑
j

∫
Q̃j

|u|2dV ≤ C
∫

Ω
|u|2dV,

which completes the proof. �
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Next, let Ω be a bounded domain surrounded by C∞-smooth surfaces in
Rn. Then Kang and Koo obtain a sharp estimate of harmonic Bergman kernels
in 2001.

Theorem A (Kang-Koo, [5]).

|R(x, y)| ≤ C 1

(δΩ(x) + δΩ(y) + |x− y|)n

R(x, x) ≥ C−1 1

δΩ(x)n

with some constant C.

Englis [3] gives precise boundary behavior of harmonic Bergman kernels
for smooth bounded domain.

Now, we go back to the case of ball Ω = B. Then, the explicit closed form
of the harmonic Bergman kernel are known (for example, see [1]):

R(x, y) =
n− (2n+ 4− 8x · y)|x|2|y|2 + (n− 4)|x|4|y|4

nV (B)(1− 2x · y + |x|2|y|2)n/2+1
.

1.2. Toeplitz operators

For ϕ ∈ L∞(B), the Toeplitz operator Tϕ is de�ned by Tϕu = Q(uf), i.e.,

Tϕu(x) =

∫
B
R(x, y)u(y)ϕ(y)dV (y)

for u ∈ b2(B). By the recognition that it is not necessary for symbol ϕ to be
bounded, it is natural to discuss Toeplitz operators of measure symbol µ

Tµu(x) =

∫
B
R(x, y)u(y)dµ(y).

The problem is to obtain relations between properties of Tϕ and those of ϕ.
For example, J. Miao gives a characterization for Tϕ to be compact in 1997.

Theorem B (Miao, [9]). Let ϕ ∈ L∞(B) be a radial function, i.e., ϕ(x) =
ϕr(|x|) with some function ϕr on [0, 1). Then the following conditions are

equivalent:

1. Tϕ is compact;

2. ϕ̃(x)→ 0 as |x| → 1;

3. 1
1−r

∫ 1
r ϕr(t)dt→ 0 as |x| → 1.

Here,

ϕ̃(x) :=

∫
BR(x, y)2ϕ(y)dV (y)∫

BR(x, y)2dV (y)
is the Berezin transform of ϕ.
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Before this, for holomorphic Bergman space on the unit disk, the corre-
sponding result has been shown by B. Korenblum and K. Zhu [6] in 1995.

2. WEIGHTED HARMONIC BERGMAN KERNEL ON B

The weighted harmonic Bergman spaces b2α(B), de�ned by

b2α(B) := Harm(B) ∩ L2(B, dVα),

are also studied by many mathematicians. In particular, the analysis of the
Toeplitz operators on the harmonic Bergman space is a main topic of the har-
monic Bergman space (for example, see [8, 9, 15]).

In this note, we discuss general measure weight. For a positive Radon
measure ν on B, we put

b2ν := Harm(B) ∩ L2(B, dν)

with L2(dν)-norm ‖ · ‖. We mainly treat a radial (spherically symmetric) me-
asure ν on B, i.e., ν is of form dν(x) = dνr(r)dσ(θ) with some measure νr on
[0, 1), where x = rθ, r ∈ [0, 1), θ ∈ S and σ is the normalized surface measure
on S. LetMrad be the set of all radial �nite Radon measures dν = dνrdσ on
B satisfying νr([r, 1)) > 0 for any r ∈ [0, 1). In this section, we shall see when
ν ∈ Mrad, b

2
ν is a Hilbert space with reproducing kernel, denoted by Rν , and

that the orthogonal projection Qν from L2(B, dν) to b2ν is an integral operator

Qνf(x) =

∫
B
Rν(x, y)f(y)dν(y).

First, we recall some basic properties for harmonic functions on B. We
refer to [1] here. Let Hm = Hm(Rn) be the space of all harmonic homogeneous
polynomials of degree m and for a set D in Rn denote by Hm(D) the space of
their restriction to D. We put Br = {|x| < r} and Sr = ∂Br = {|x| = r}. It
is well-known that for r > 0, the Hilbert space L2(Sr) = L2(Sr, dσr) has an
orthogonal decomposition

(1) L2(Sr, dσr) =

∞⊕
m=0

Hm(Sr),

where σr is the surface measure on Sr. We denote by L2(S) = L2(S, dσ), where
σ is the normalized surface measure on S, i.e., dσ(θ) = dσ1(θ)/σ1(S). The
orthogonal projection from L2(S) to Hm(S) is an integral operator by a kernel
Zm(θ, η)

Zm(θ, η) =

hm∑
k=1

pk,m(θ)pk,m(η),
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where {pk,m}hmk=1 is an orthogonal basis on Hm(S) ⊂ L2(S). Here hm = dimHm.
We remark that Zm is real valued and Zm(θ, θ) = hm, because

Zm(θ, θ) =

hm∑
k=1

|pk,m(θ)|2 = ‖Zm(θ, ·)‖2L2(dσ)

is independent of θ. The kernel Zm(θ, η), which is called the zonal harmonic,
can be extended to Rn × Rn as follows:

Zm(x, y) =

hm∑
k=0

pk(x)pk(y) =

hm∑
k=0

|x|m|y|mpk(θ)rk(η)

for x = |x|θ, y = |y|η ∈ Rn. Then, we have
(2) Zm(x, x) = hm|x|2m

and

(3) |Zm(x, y)| ≤ Zm(x, x)
1
2Zm(y, y)

1
2 = hm|x|m|y|m

for any x, y ∈ Rn.
We begin by remarking the following (see, for example [1, p. 84]).

Lemma 2.1. Let f be a harmonic function on B. Then there uniquely exist

φm ∈ Hm (m = 0, 1, 2, · · · ) such that

(4) f =

∞∑
m=0

φm,

where the series converges uniformly on any compact subset of B.
For the uniqueness, we remark the following (cf. [1, p.23]).

Lemma 2.2. Let φm ∈ Hm (m ≥ 0). If
∞∑
m=0

φm(x) = 0

pointwise in a neighborhood of the origin, then φm = 0 for every m ≥ 0.

The following is a reason why we assume a weight ν is �nite.

Proposition 2.1. Let ν be a radial positive Radon measure on B. If

ν(B) =∞, then b2ν = {0}.
Proof. We write dν(x) = dνr(r)dσ(θ) where x = rθ, r ∈ [0, 1) and θ ∈

S. First, we remark that ν(B) = ∞ implies

∫
[ 1
2
,1)
r2mdνr(r) = ∞, because

ν(B1/2) <∞. Take an arbitrary f ∈ b2ν . By Lemma 2.1, we have

f =
∞∑
m=0

φm
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where φm ∈ Hm and the series converges uniformly on any compact subset of
B. Remarking that φl ⊥ φk in L2(S) for l 6= k, we have

∞ >

∫
B
|f(x)|2dν(x) = lim

ε→1

∫
[0,ε)

∫
S

( ∞∑
m=0

φm(rθ)

)2

dσ(θ)dνr(r)

= lim
ε→1

∫
[0,ε)

∞∑
m=0

∫
S
φm(rθ)2dσ(θ)dνr(r)

=

∫
[0,1)

∞∑
m=0

r2m‖φm‖2L2(S)dνr(r)

≥ ‖φm‖2L2(S)

∫
[0,1)

r2mdνr(r),

for any integer m ≥ 0. Since ν is an in�nite positive Radon measure,∫
[0,1)

r2mdνr(r) ≥
∫

[ 1
2
,1)
r2mdνr(r) =∞.

Therefore, we have ‖φm‖L2(S) = 0 for every m, which shows f = 0. �

We do not know whether the assumption that ν is radial is really necessary
in the above proposition.

In general, b2ν is not always a normed space, (‖f‖ν = 0 does not always
imply f = 0 on B). A set E ⊂ Rn is said to be a uniqueness set for harmonic
functions if E has the following property: For every harmonic function f de�ned
on a domain Ω ⊃ E, �f = 0 on E" implies �f = 0 on Ω". It is clear that if
supp(ν) is a uniqueness set for harmonic functions, then b2ν is a normed space.
When ν is radial, supp(ν) is a uniqueness set for harmonic functions except for
the Dirac measure at the origin, then b2ν is a normed space.

Next, we consider the completeness of b2ν .

Proposition 2.2. Let ν be a �nite positive measure on B. Suppose that

supp(ν) is a uniqueness set for harmonic functions. If supp(ν) is compact on

B, then b2ν is not complete.

Proof.We remark that b2ν is a normed space, because supp(ν) is assumed to
be a uniqueness set for harmonic functions. We give the proof by contradiction.
Suppose that b2ν is complete. Take 0 < r0 < 1 with supp(ν) ⊂ Br0 and θ0 ∈ S.
For m ≥ 0, we take φm ∈ Hm such that φm(θ0) = maxθ∈S φm(θ) = 1. Then,
we have

‖φm‖2ν =

∫
Br0

|φm(x)|2dν(x)

≤ sup
x∈Br0

|φm(x)|2ν(Br0) = r2m
0 ν(B).(5)
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Next, take r1 ∈ (r0, 1) and put am = 1/rm1 . Then, by (5), a series

(6) f =

∞∑
m=0

amφm

converges in b2ν by the completeness of b2ν . Since f is harmonic on B, by
Lemma 2.1, there exist ψm ∈ Hm such that

f(x) =
∞∑
m=0

ψm(x)

which converges uniformly on any compact subset of B. On the other hand, by
the construction of φm, we have

∞∑
m=0

am|φm(x)| ≤
∞∑
m=0

1

rm1
max
x∈Br0

|φm(x)| ≤
∞∑
m=0

(
r0

r1

)m
<∞

for x ∈ Br0 , i.e., the series (6) converges uniformly on Br0 . By Lemma 2.2, we
have amφm = ψm for m ≥ 0. Therefore, we can write

f(x) =

∞∑
m=0

amφm(x)

for x ∈ B. On the other hand, f(r1θ0) =∞, which contradicts the harmonicity
of f . This completes the proof. �

In this way, it is a natural condition that ν belongs to Mrad. Next, we
can show that point evaluation maps are bounded, b2ν is complete and that b2ν
has the reproducing kernel for ν ∈Mrad.

Lemma 2.3. Let ν ∈Mrad. Then, for any x ∈ B the point evaluation map

f 7→ f(x) from b2ν to C is bounded. Moreover, for any r ∈ [0, 1) there exists a

positive constant C(r, ν) > 0 such that

|f(x)| ≤ C(r, ν)‖f‖ν
for any x ∈ Br.

Proof. Let r ∈ [0, 1) and x ∈ Br and take r0 ∈ (r, 1). By using the Poisson
integral, we have

f(x)νr([r0, 1)) =

∫
[r0,1)

∫
St

Pt(x, y)f(y)dσt(y)dνr(t)

for f ∈ b2ν , where

Pt(x, y) =
1

σ1(S)

r2 − |x|2

t|x− y|n
,
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is the Poisson kernel on Bt. Since there exists a constant C(r0) such that

|Pt(x, y)| ≤ C(r0)

for t ∈ [r0, 1), x ∈ Br and y ∈ St, we have

|f(x)|2νr([r0, 1)) ≤ C(r0)

∫
B\Br0

|f(x)|2dν(x) ≤ C(r0)‖f‖2ν .

This implies that the point evaluation map is bounded for x ∈ B. �

Lemma 2.4. Let ν ∈Mrad. Then b2ν is complete.

Proof. Let {fn} ⊂ b2ν be a Cauchy sequence, which converges to some f
in L2(B, dν). By Lemma 2.3, the sequence {fn} converges to f uniformly on
any compact subset of B. Therefore, f is harmonic on B which shows b2ν is
complete. �

In this way, we have

Proposition 2.3. Let ν be a radial �nite positive Radon measure on B.
Then b2ν is a Hilbert space if and only if ν ∈Mrad.

In what follow, we mainly consider ν ∈Mrad which is the set of all radial
�nite positive measure on B satisfying νr([r, 1)) > 0 for any r ∈ [0, 1). By
Lemmas 2.3 and 2.4, b2ν is the reproducing kernel Hilbert space if ν ∈ Mrad.
We denote by Rν(x, y) the reproducing kernel, which is called the harmonic
Bergman kernel. We denote by Qν the orthogonal projection from L2(B, dν)
to b2ν , which is an integral operator by the kernel Rν :

Qνf(x) =

∫
B
Rν(x, y)f(y)dν(y),

for x ∈ B and f ∈ L2(B, dν). Qνm be the orthogonal projection from b2ν to
Hm(B). Since Hm is of �nite dimension, the orthogonal projection Qνm is given
by an integral operator

Qνmf(x) =

∫
B
Zνm(x, y)f(y)dν(y),

for x ∈ B and f ∈ b2ν .
Next, we remark the orthogonal decomposition of b2ν .

Proposition 2.4. Let ν ∈Mrad. Then, we have the following orthogonal

decomposition

b2ν =
∞⊕
m=0

Hm(B)
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Proof. First, clearly, {Hm(B)} are mutually orthogonal closed subspace of

the Hilbert space b2ν . Then, we have only to show that b2ν ⊂
∞⊕
m=0

Hm(B). Let

f ∈ b2ν . Then
∑∞

m=0Q
ν
mf converges to some g in b2ν . By Lemma 2.2, the above

series converges uniformly on compact subsets of B. On the other hand, by
Lemma 2.1,

f(x) =

∞∑
m=0

φm(x)

for some φm ∈ Hm, which converges uniformly on any compact subset of B.
Hence, we have

Qνmf(x) =

∫
B
Zνm(x, y)f(y)dν(y) = lim

r→1

∫
Br

Zνm(x, y)
∞∑
k=0

φk(y)dν(y)

= lim
r→1

∞∑
k=0

∫
[0,r)

tm+k

∫
S
Zνm(x, θ)φk(θ)dσ(θ)dνr(t)

= lim
r→1

∫
Br

φm(y)Zνm(x, y)dν(y) = φm(x).

Therefore, g(x) = f(x) for x ∈ B, which implies that

f =
∞∑
m=0

Qνmf ∈
∞⊕
m=0

Hm.

This completes the proof. �

Finally, we state some properties of Rν . The following follows from Pro-
position 2.4.

Proposition 2.5. Let ν ∈Mrad. Then, we have

Rν(x, y) =

∞∑
m=0

Zνm(x, y) =

∞∑
m=0

Zm(x, y)∫
[0,1) r

2mdνr(r)
,

which converges uniformly on any compact set of B× B.

Proposition 2.6. Let ν ∈Mrad. Then, we have

1. Rν(x, x) is an increasing function of |x|.
2. Rν(x, x)→∞ as |x| → 1.

3. For any r0 ∈ (0, 1), Rν can be extended continuously on Br0 × B.

Proof. By Proposition 2.5 and (2), we have

(7) Rν(x, x) =
∞∑
m=0

Zm(x, x)∫
[0,1) r

2mdνr(r)
=
∞∑
m=0

hm|x|2m∫
[0,1) r

2mdνr(r)
,
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where hm is the dimension of Hm. This implies that Rν(x, x) is an increasing
function of |x|. Letting |x| → 1, we have

lim
|x|→1

Rν(x, x) =

∞∑
m=0

hm∫
[0,1) r

2mdνr(r)
≥ 1

νr([0, 1))

∞∑
m=0

hm =∞.

because hm ≥ 1 for m ≥ 0. Finally, let r0 ∈ (0, 1). By (3), we have

∞∑
m=0

∣∣∣∣∣ Zm(x, y)∫
[0,1) r

2mdνr(r)

∣∣∣∣∣
≤
∞∑
m=0

hm|x|m|y|m∫
[0,1) r

2mdνr(r)
≤
∞∑
m=0

hmr
m
0∫

[0,1) r
2mdνr(r)

= Rν(r0θ0, r0θ0) <∞.

for x ∈ Br0 , y ∈ B and θ0 ∈ S. �

3. TOEPLITZ OPERATORS OF RADIAL MEASURE SYMBOL

For a Radon measure µ on B, the Toeplitz operator Tµ,ν is formally de�ned
by

(8) Tµ,νf(x) =

∫
B
Rν(x, y)f(y)dµ(y).

We make a remark on the de�nition of Toeplitz operators.
(Compact). First, if supp(µ) is a compact set in B, then the operator

Tµ,ν de�ned by (8) can be expressed as

Tµ,νf(x) =

∫
B
Bµ,ν(x, y)f(y)dV (y)

by Proposition 2.6.3. and the Fubini theorem, where

Bµ,ν(x, y) =

∫
B
Rν(x, z)Rν(z, y)dµ(z).

Hence, we see that Tµ,ν is a compact operator on b2ν , because∫
B

∫
B
|Bµ,ν(x, y)|2dV (x)dV (y) <∞.

Proposition 3.1. Let ν ∈ Mrad. If supp(µ) is compact in B, then Tµ,ν
is a Hilbert-Schmidt operator on b2ν .

We also remark that

〈Tµ,νf, g〉ν =

∫
B
f(y)g(y)dµ(y)(9)

for any f, g ∈ b2ν , where 〈·, ·〉ν denote the inner product in b2ν .
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(Positive). Next, we consider �nite positive Radon measures µ on B.
We put

(10) E(f, g) =

∫
B
f(x)g(x)dµ(x)

for f, g ∈ F := b2ν ∩ L2(B, dµ). Then, (E ,F) is a densely-de�ned closed form
on b2ν , i.e., F is complete with respect to a norm

(11) ‖f‖2 = E(f, f) + 〈f, f〉2ν .

By the basic theory of quadratic forms (for example, see [2] p. 82 Theo-
rem 4.4.2), there exists a unique densely-de�ned positive self-adjoint operator
Tµ,ν such that for f, g ∈ Dom(Tµ,ν) ⊂ F

(12)

∫
B
f(x)g(x)dµ(x) = E(f, g) = 〈

√
Tµ,νf,

√
Tµ,νg〉ν = 〈Tµ,νf, g〉ν .

We de�ne the Toeplitz operator by (12), which is natural because of (8).
(Radial). Finally, we consider a radial measure on B. For a radial positive

measure on B, we easily �nd the spectrum of the Toeplitz operator Tµ,ν on b2ν .

Proposition 3.2. Let a measure ν ∈ Mrad and µ be a radial positive

measure. Then, the eigenvalues of the Toeplitz operator Tµ,ν corresponding to

the eigenspace Hm(B) are the following:

(13) λm = λm(Tµ,ν) =

∫
[0,1) r

2mdµr(r)∫
[0,1) r

2mdνr(r)
.

Moreover, Tµ,ν can be decomposed as

(14) Tµ,ν =

∞∑
m=0

λmQ
ν
m.

Proof. We put T =
∞∑
m=0

λmQ
ν
m. Take an orthonormal basis {pmk }

hm
k=1 in

Hm(S) ⊂ L2(S), and put

emk (x) =
pmk (x)

(
∫

[0,1) r
2mdνr(r))

1
2

∈ Hm(B) ( 1 ≤ k ≤ hm )

for x ∈ B. Then, {emk }
hm
k=1 is considered as an orthonormal basis of Hm(B) ⊂ b2ν .

We have

〈Temk , emj 〉ν = 〈λmemk , emj 〉ν

=

∫
[0,1) r

2mdµr(r)
∫

[0,1)

∫
S e

m
k (rθ)emj (rθ)dσ(θ)dνr(r)∫

[0,1) r
2mdνr(r)
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=

∫
B
emk (x)emj (x)dµ(x) = E(emk , e

m
j ).

Since E(fm, fl) = 0 for fm ∈ Hm(B), fm ∈ Hl(B) and m 6= l, we have T =
Tµ,ν . �

We may consider a radial signed measure. Let µ = µ+ − µ− be a radial
signed measure where µ+ and µ− are positive measures. By Theorem 3.2, we
can de�ne the Toeplitz operator Tµ,ν by

(15) Tµ,ν := Tµ+,ν − Tµ−,ν =

∞∑
m=0

λmQ
ν
m,

where

(16) λm = λm(Tµ+,ν)− λm(Tµ−,ν) =

∫
[0,1) r

2mdµr(r)∫
[0,1) r

2mdνr(r)
.

We de�ne the averaging function aµ,ν(r) and the Berezin transform bµ,ν(x)
by

aµ,ν(r) :=
µ(B \Br)
ν(B \Br)

=
µr([r, 1))

νr([r, 1))
and

bµ,ν(x) :=

∫
BRν(x, y)2dµ(y)

Rν(x, x)
,

respectively. We can estimate the norm of Toeplitz operators by those functions.
Here, we state some results in [13].

Theorem 1. Let ν ∈Mrad and µ be a radial �nite Radon measure on B.
Then, we have

sup
x∈B
|bµ,ν(x)| ≤ ‖Tµ,ν‖ ≤ sup

0≤r<1
|aµ,ν(r)|

and
lim sup
|x|→1

|bµ,ν(x)| ≤ ‖Tµ,ν‖e ≤ lim sup
r→1

|aµ,ν(r)|,

where ‖T‖e = inf{‖T − K‖ : K is compact on b2ν}. In particular, if aµ,ν is a

bounded function on [0, 1), then Tµ,ν is bounded and if lim supr→1 |aµ,ν(r)| = 0,
Tµ,ν is compact.

We give a relation of reproducing kernels with Toeplitz operators.

Theorem 2. Let µ, ν ∈Mrad. Then, we have

Rν(x, x)

Rµ(x, x)
≤ bµ,ν(x)

for x ∈ B. Moreover, if the limit lim
r→1

aµ,ν(r) exists, then we have

lim
|x|→1

Rν(x, x)

Rµ(x, x)
= lim
|x|→1

bµ,ν(x) = ‖Tµ,ν‖e = lim
r→1

aµ,ν(r).
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We refer to previous works of Bergman spaces with measure weight on the
unit disc in the complex plane. Nakazi and Yamada consider analytic Berg-
man spaces with general measure weight, and give the necessary and su�cient
condition that an analytic Bergman space with general measure weight is a
Hilbert space [10]. Nakazi and Yoneda deal with radial measure weights and
characterize compact Toeplitz operators of continuous function symbols [11].
For harmonic Bergman space, T. Le [7] obtains the similar results to those of
Nakazi and Yoneda [11]. In our paper, we shall discuss the boundedness and
the compactness of Toeplitz operators with radial measure symbols.

Finally, we remark that we do not know whether the boundedness of
the Toeplitz operator Tµ,ν implies the boundedness of the averaging function
aµ,ν(r).

Example. Let ν be the normalized Lebesgue measure on B, i.e., dνr =
nrn−1dr. Consider a singular radial measure µ such that

µr =
6n

π2

∞∑
k=1

1

k2
δsk ,

where δsk denotes the Dirac measure at a point sk and

sk :=
6

π2

k∑
l=1

1

l2
.

Then, we have

(17) lim
|x|→1

Rν(x, x)

Rµ(x, x)
= 1,

although ν, µ ∈Mrad are mutually singular. In fact, the assertion follows from
Theorem 2 since we can see that limr→1 aµ,ν(r) = 1 by calculation.
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